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1 Introduction

Moufang sets are the Moufang buildings of rank 1. They are the axiomatization of the
permutation groups generated by two opposite root groups (belonging to opposite roots
R0 and R∞) in a Moufang building of rank at least 2, acting on the set of roots R
such that R ∪R0 or R ∪R∞ form an apartment. Similar, but slightly different, notions
are Timmesfeld’s rank one groups, and split BN-pairs of rank one. Moufang sets were
introduced some years ago by Jacques Tits as tools in the classification programme of twin
buildings — a programme that has been successfully completed by Bernhard Mühlherr
(and in Mühlherr’s approach, Moufang sets play indeed a central role). In the present
paper, we want to show a uniqueness result for all Moufang sets arising from higher rank
Moufang buildings as mentioned above, and in addition also for some well known Moufang
sets arising from diagram automorphisms of some rank two buildings, in casu the Suzuki
groups (some of which also appear as above in Moufang octagons) and the Ree groups in
characteristic 3.

The motivation for this work, and for studying Moufang sets in general, is threefold.

• Firstly, results on Moufang sets can be applied in situations where one deals with
higher rank Moufang building, as is clear from the origin of the notion. As an
example, we refer to [1], where Moufang sets are used to prove the uniqueness of
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the splitting of any spherical split BN-pair of rank at least two. Other examples
can be found in the papers [3] and [8], where Moufang sets are used to characterize
Moufang quadrangles in terms of “one half” of the conditions, and [4], where an
even weaker assumption is made.

• Secondly, Jacques Tits initiated in [11] (see also [12]) a geometric study of buildings
of rank one, via a procedure involving the unipotent subgroups of the corresponding
Moufang sets. The results of the current paper are very useful in this respect.

• Thirdly, Moufang sets also appear outside the theory of buildings in situations where
permutation groups are involved. For instance, when investigating automorphism
groups of (finite) rank two geometries with Moufang-like conditions, Moufang sets
come naturally into play. Also, it has recently been shown [2] that Moufang sets
with abelian root groups and no sharply 2-transitive little projective group, are
equivalent to Jordan division algebras. Hence theorems about abelian Moufang sets
immediately imply results on Jordan division algebras and vice versa. The Main
Result of the present paper covers all these abelian Moufang sets.

Roughly speaking, we will show in this paper that the root groups of large classes of
known Moufang sets are unique as transitive nilpotent normal subgroups of the point
stabilizers.

We will state this more precisely in the next section. In the course of the proof, we also
complete a slight oversight in [1].

Finally we remark that all finite Moufang sets are classified. In the case where the little
projective group (see below for a definition) is not sharply 2-transitive, one has either
PSL2(q), q ≥ 4, PSU3(q), q ≥ 3, Sz(q) ∼= 2B2(q), q ≥ 8, and Re(q) ∼= 2G2(q), for
appropriate prime powers q. This has been shown by Hering, Kantor and Seitz [5] (odd
characteristic) and Shult [7] (even characteristic).

2 Definitions and Statement of the Main Result

2.1 Definition of a Moufang Set

A Moufang Set is a system M = (X, (U+
x )x∈X) consisting of a set X and a family of groups

of permutations (we write the action of a permutation on a point on the right, using
exponential notation) of X indexed by X itself and satisfying the following conditions.

(MS1) U+
x fixes x ∈ X and is sharply transitive on X\{x}.
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(MS2) In the full permutation group of X, each U+
x normalizes the set of subgroups {U+

y |
y ∈ X}

The group U+
x shall be called a root group. The elements of U+

x are often called root
elations.

If M = (X, (U+
x )x∈X) is a Moufang set, and Y ⊆ X, then Y induces a sub Moufang set

if for each x ∈ X ′, the stabilizer (U+
y )Y acts sharply transitively on Y \ {y}. In this case

(Y, ((U+
y )Y )y∈Y ) is a Moufang set.

The group generated by the U+
x , for all x ∈ X, is called the little projective group of M.

A (faithful) permutation group G of X is called a projective group of M if U+
x ! Gx, for

all x ∈ X. A permutation of X that normalizes the set of subgroups {U+
y | y ∈ X}, is

called an automorphism of the Moufang set. For a given projective group G, we shall call
a subgroup Vx of Gx a unipotent subgroup of G if

(US1) Vx acts transitively on X \ {x};

(US2) Vx ! Gx;

(US3) Vx is nilpotent.

In fact, the existence of a unipotent subgroup is equivalent with the Moufang set being a
split BN-pair of rank 1. If the little projective group of a Moufang set is not sharply two-
transitive, then in all known examples, the root groups are unipotent subgroups of any
projective group. The question arises whether the root subgroups can be characterized in
this way. We will show that it is indeed the case for all Moufang sets related to Moufang
buildings of rank 2 (including the ones corresponding with the Suzuki groups) and the
Ree groups in characteristic 3.

In order to provide a precise statement, we introduce these classes of Moufang sets below.

We will not prove that these well known examples are in fact Moufang sets. We will
just define them. In most cases, this means that we give two root groups as permutation
groups. The other root groups are obtained by conjugation.

We also provide some so-called µ-actions. For a given (ordered) pair of distinct root
groups (U+

∞, U+
0 ), with 0,∞ ∈ X, and for every element x ∈ X \ {0,∞}, there are unique

elements u ∈ U+
0 and u′, u′′ ∈ U+

∞ such that u(x) = ∞ and µ(x) := u′uu′′ interchanges 0
with∞. The action of µ(x) on X is called the simple µ-action with respect to (U+

∞, U+
0 , x).

If x′ ∈ X \ {0,∞}, then the action of µ(x, x′) := µ(x)−1µ(x′) is called the double µ-action
with respect to (U+

∞, U+
0 , x, x′). The latter fixes both 0 and ∞, and so it normalizes both

U+
0 and U+

∞.
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2.2 Projective lines over skew fields

Let K be any skew field. Put X equal to the set of vector lines of the 2-dimensional (left)
vector space V (2, K) over K. After a suitable coordinatization, let 0 denote the vector
line spanned by (1, 0) and ∞ the vector line spanned by (0, 1). Then, with regard to the
usual (right) action of matrices on vectors (and hence on vector lines), we define U+

0 as

the group of matrices

(
1 0
k 1

)
, for all k ∈ K. The group U+

∞ consists of the matrices
(

1 k
0 1

)
, k ∈ K.

The little projective group is here PSL3(K) in its natural action. We denote this Moufang
set as MPL(K) and call it the projective line over K. The corresponding set is sometimes
denoted by PG(1, K).

It is an elementary exercise to compute the µ-actions for the pair (U+
∞, U+

0 ). One obtains
µ((1, a)) : K(x, y) (→ K(ya−1,−xa). The double µ-action is now easy: µ((1, 1), (1, a)) :
K(x, y) (→ K(xa−1, ya).

Identifying K(1, k) with k ∈ K and K(0, 1) with the element ∞, we may also write the
above actions as follows:

U+
∞ = {u : x (→ x + a,∞ (→ ∞ | a ∈ K},

U+
0 = {u : x (→ (x−1 + a−1)−1,−a (→ ∞,∞ (→ a, 0 (→ 0 | a ∈ K},

µ(a) : x (→ −ax−1a, 0 ↔∞,
µ(1, a) : x (→ axa.

We will refer to this as the non-homogeneous representation.

2.3 Projective lines over alternative division rings

An alternative division ring is a ring A with identity 1 in which the following laws hold.

(ADR1) For each non-zero element a, there exists an element b such that b · ac = c and
ca · b = c for all c ∈ A.

(ADR2) (ab · a)c = a(b · ac) and b(a · ca) = (ba · c)a for all a, b, c ∈ A.

(ADR3) ab · ca = a(bc · a) = (a · bc)a for all a, b, c ∈ A.

An alternative division ring is associative if and only if it is a skew field. The only non-
associative alternative division rings are the Cayley division rings. Axiom (ADR2) implies
that every two elements of an alternative division ring are contained in a sub skew field.
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As, by (ADR1), each element a of A has a unique inverse a−1, we may define the root
groups U+

0 and U+
∞ in the same way as we did for the skew fields in the non-homogeneous

representation. We then also obtain the same results for the simple and double µ-actions
(and note that expressions like axa are unambiguous by (ADR2)). The corresponding
Moufang set is denoted by MPL(A) and called the projective line over A.

2.4 Polar lines

Let K be a skew field and let σ be an involution of K (so (ab)σ = bσaσ, for all a, b ∈ K).
Define Kσ = {a + aσ | a ∈ K} and FixK(σ) = {a ∈ K | aσ = a}. Let K0 be an additive
subgroup of K such that

(IS1) Kσ ⊆ K0 ⊆ FixK(σ),

(IS2) aσK0a ⊂ K0 for all a ∈ K,

(IS3) 1 ∈ K0.

Then (K, K0, σ) is called an involutory set. The restriction of MPL(K) to K0 ∪ {∞} in
the non-homogeneous representation is well defined and is a Moufang set, called a polar
line, denoted by MPL(K, K0, σ). Hence, again, the root group actions and the µ-actions
can be copied from the non-homogeneous representation of projective lines over a skew
field given above.

2.5 Hexagonal Moufang sets

We recall the notion of a hexagonal system, which is essentially equivalent to the notion
of a quadratic Jordan division algebra of degree three.

A hexagonal system is a tuple (J, F, N, #, T,×, 1), where F is a commutative field, J is a
vector space over F, N is a function from J to F called the norm, # is a function from J
to itself called the adjoint, T is a symmetric bilinear form on J called the trace, × is a
symmetric bilinear map from J× J to J and 1 is a distinguished element of J \ {0} called
the identity such that for all t ∈ F and all a, b, c ∈ J, the following identities hold.

1. (ta)# = t2a#, 2. N(ta) = t3N(a),
3. T(a× b, c) = T(a, b× c), 4. (a + b)# = a# + a× b + b#,
5. N(a + b) = N(a) + T(a#, b) + T(a, b#) + N(b), 6. T(a, a#) = 3N(a),
7. a## = N(a)a, 8. a# × (a× b) = N(a)b + T(a#, b)a,
9. a# × b# + (a× b)# = T(a#, b)b + T(a, b#)a, 10. 1# = 1,

11. b = T(b, 1) · 1− 1× b, 12. N(a) = 0 if and only if a = 0.
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If we define the inverse a−1 of an arbitrary nonzero a ∈ J as a−1 = N(a)−1a#, then we
can define the Moufang set MH(J) related to J in exactly the same way as before for the
projective line over a field K, in its non-homogeneous representation. These Moufang sets
are called hexagonal Moufang sets.

Hexagonal systems are classified by the work of various people. We refer to [13] for more
details.

2.6 Orthogonal Moufang sets

Let K be a commutative field and let L0 be vector space over K. An anisotropic quadratic
form q on L0 is a function from L0 to K such that

(AQF1) q(ta) = t2q(a) for all t ∈ K and all a ∈ L0,

(AQF2) the function f : L0 × L0 → K given by f(a, b) = q(a + b) − q(a) − q(b), for all
a, b ∈ L0, is bilinear,

(AQF3) q−1(0) = {0}.

The map f is called the bilinear form associated with q. Now embed L0 in a vector space
L over K as a codimension 2 subspace; hence we may put L = K × L0 × K, and we
define X as the set of all vector lines K(x−, v0, x+) in the vector space K× L0 ×K) such
that x−x+ = q(v0). Then U+

(0,0,1) consists of the maps uw, w ∈ L0, fixing K(0, 0, 1) and

mapping K(1, v, q(v)) onto K(1, v+w, q(v+w)). Likewise, U+
(1,0,0) consists of the maps u′w,

w ∈ L0, fixing K(1, 0, 0) and mapping K(q(v), v, 1) onto K(q(v+w), v+w, 1). This defines
a Moufang set, called an orthogonal Moufang set over K, and denoted by MO(K, q).

One calculates that uw maps K(q(v), v, 1) onto the vector line K(q(z), z, 1), with

z = q(v)q(q(v)w + v)−1(q(v)w + v).

If L0 has dimension 1, then we may put q(x) = x2 and MO(K, q) is isomorphic with the
projective line MPL(K). If L0 has dimension 2, then q defines a field extension F of K
and MO(K, q) is isomorphic with MPL(F).

This class of Moufang sets also comprises the ones related to indifferent sets (with the
terminology of [13], see [12].
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2.7 Hermitian Moufang sets

Let (K, K0, σ) be an involutory set, let L0 be a right vector space over K and let q be a
function from L0 to K. Then q is an anisotropic pseudo-quadratic form on L0 with respect
to K0 and σ if there is a skew-hermitian form (with respect to σ) f on L0 such that

(APQF1) q(a + b) ≡ q(a) + q(b) + f(a, b) (mod K0),

(APQF2) q(at) ≡ tσq(a)t (mod K0)
for all a, b ∈ L0 and all t ∈ K,

(APQF3) q(a) ≡ 0 (mod K0) only for a = 0.

An anisotropic pseudo-quadratic space is a quintuple (K, K0, σ, L0, q) such that (K, K0, σ)
is an involutory set, L0 is a right vector space over K and q is an anisotropic pseudo-
quadratic form on L0 with respect to K0 and σ.

Let (K, K0, σ, L0, q) be some anisotropic pseudo-quadratic space and let f denote the
corresponding skew-hermitian form. Following [13, (11.24)], let (T, ·) denote the group
{(a, t) ∈ L0 × K | q(a) − t ∈ K0} with (a, t) · (b, u) = (a + b, t + u + f(b, a)) and
choose (a, t) ∈ T \ {(0, 0)} and s ∈ K \ {0}. Then we may put X = T ∪ {∞}, and the
group U+

∞ is given by the right action of T on itself. The double µ-action is given by
µ((0, 1), (a, t) =: µ(a,t) : (b, v) (→ ((b− at−1f(a, b))tσ, tvtσ).

These Moufang sets are called Hermitian Moufang sets.

2.8 An exceptional Moufang set of type E7

There is a Moufang set corresponding with an algebraic group of absolute type E7 and
which also arises from an exceptional Moufang quadrangle of type E8. We will not give a
detailed description here, but in the course of our proof, we will refer to [13] for a precise
definition of this exceptional Moufang set of type E7.

2.9 Suzuki-Tits Moufang sets

Let K be a field of characteristic 2, and denote by K2 its subfield of all squares. Suppose
that K admits some Tits endomorphism θ, i.e., the endomorphism θ is such that it maps
xθ to x2, for all x ∈ K. Let Kθ denote the image of K under θ. Let L be a vector space
over Kθ contained in K, such that Kθ ⊆ L and such that L \ {0} is closed under taking
multiplicative inverse. For a unique standard notation, we also assume that L generates
K as a ring. The Suzuki-Tits Moufang set MSz(K, L, θ) can be defined as the action of
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a certain subgroup of the centralizer of a polarity of a mixed quadrangle Q(K, Kθ; L, Lθ)
on the corresponding set of absolute points. A more precise and explicit description can
be extracted from Section 7.6 of [14], as follows.

Let X be the following set of points of PG(3, K), given with coordinates with respect to
some given basis:

X = {(1, 0, 0, 0)} ∪ {(a2+θ + aa′ + a′θ, 1, a′, a) | a, a′ ∈ L}.

Let (x, x′)∞ be the collineation of PG(3, K) determined by

(x0 x1 x2 x3) (→ (x0 x1 x2 x3)





1 0 0 0
x2+θ + xx′ + x′θ 1 x′ x

x 0 1 0
x1+θ + x′ 0 xθ 1



 ,

and let (x, x′)0 be the collineation of PG(3, K) determined by

(x0 x1 x2 x3) (→ (x0 x1 x2 x3)





1 x2+θ + xx′ + x′θ x x′

0 1 0 0
0 x1+θ + x′ 1 xθ

0 x 0 1



 .

The group Sz(K, L, θ) is generated by the subgroups

U+
∞ = {(x, x′)∞ | x, x′ ∈ L} and U+

0 = {(x, x′)0 | x, x′ ∈ L}.

Both subgroups U+
∞ and U+

0 indeed act on X, as an easy computation shows, and they
act sharply transitively on X \ {(1, 0, 0, 0)} and X \ {(0, 1, 0, 0)}, respectively. Moreover,
it can be checked easily that (U+

0 )(x,x′)∞ = (U+
∞)(y,y′)0 , with

y =
x′

x2+θ + xx′ + x′θ
and y′ =

x

x2+θ + xx′ + x′θ
.

It now follows rather easily that we indeed obtain a Moufang set. When emphasizing one
particular point, namely (∞) := (1, 0, 0, 0), we can write (a, a′) := (a2+θ+aa′+a′θ, 1, a′, a),
and the unique element of U+

∞ that maps (0, 0) to (b, b′) is given by (b, b′)∞ : (a, a′) (→
(a + b, a′ + b′ + abθ). The root group U+

∞ is given by the set {(a, a′)∞ | a, a′ ∈ L} with
operation (a, a′)∞ ⊕ (b, b′)∞ = (a + b, a′ + b′ + abθ)∞.

We remark that, if L = K, then the Moufang set can also be obtained from a Moufang
octagon, unlike the case L 0= K.
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2.10 Ree-Tits

Let K be a field of characteristic 3, and denote by K3 its subfield of all third powers.
Suppose that K admits some Tits endomorphism θ, i.e., the endomorphism θ is such
that it maps xθ to x3, for all x ∈ K. Let Kθ denote the image of K under θ. The Ree-
Tits Moufang set MRe(K, θ) can be defined as the action of a certain subgroup of the
centralizer of a polarity of a mixed Moufang hexagon H(K, Kθ) on the corresponding set of
absolute points. A more precise and explicit description can be extracted from Section 7.7
of [14], as follows.

For a, a′, a′′ ∈ K, we put

f1(a, a′, a′′) = −a4+2θ − aa′′θ + a1+θa′θ + a′′2 + a′1+θ − a′a3+θ − a2a′2,

f2(a, a′, a′′) = −a3+θ + a′θ − aa′′ + a2a′,

f3(a, a′, a′′) = −a3+2θ − a′′θ + aθa′θ + a′a′′ + aa′2.

Let X be the following set of points of PG(6, K), given with coordinates with respect to
some given basis:

X = {(1, 0, 0, 0, 0, 0, 0)}∪{(f1(a, a′, a′′),−a′,−a,−a′′, 1, f2(a, a′, a′′), f3(a, a′, a′′)) | a, a′, a′′ ∈ K}.

Let (x, x′, x′′)∞ be the collineation of PG(6, K) determined by (x0 x1 x2 x3 x4 x5 x6) (→

(x0 x1 x2 x3 x4 x5 x6)





1 0 0 0 0 0 0
p 1 0 −x 0 x2 −x′′ − xx′

q xθ 1 x′ − x1+θ r s
x′′ 0 0 1 0 x −x′

f1(x, x′, x′′) −x′ −x −x′′ 1 f2(x, x′, x′′) f3(x, x′, x′′)
x′ − x1+θ 0 0 0 0 1 −xθ

x 0 0 0 0 0 1





,

with

p = x1+θ − x′θ − xx′′ − x2x′,

q = x′′θ + xθx′θ + x′x′′ − xx′2 − x2+θx′ − x1+θx′′ − x3+2θ,

r = x′′ − xx′ + x2+θ,

s = x′2 − x1+θx′ − xθx′′,
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and put (x, x′, x′′)0 := (x, x′, x′′)g
∞, with g the collineation of PG(6, K) determined by

(x0 x1 x2 x3 x4 x5 x6) (→ (x0 x1 x2 x3 x4 x5 x6)





0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 −1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0





.

The group Re(K, θ) is generated by the subgroups

U+
∞ = {(x, x′, x′′)∞ | x, x′, x′′ ∈ K} and U+

0 = {(x, x′, x′′)0 | x, x′, x′′ ∈ K}.

Both subgroups U+
∞ and U+

0 indeed act on X, as the reader can verify with a straight-
forward, but tedious computation, and they act regularly on X \ {(1, 0, 0, 0, 0, 0, 0)} and
X \ {(0, 0, 0, 0, 1, 0, 0)}, respectively. Moreover, it can be checked that (U+

0 )(x,x′,x′′)∞ =
(U+

∞)(y,y′,y′′)0 , with

y = −f3(x, x′, x′′)

f1(x, x′, x′′)
,

y′ = −f2(x, x′, x′′)

f1(x, x′, x′′)
,

y′′ = − x′′

f1(x, x′, x′′)
.

It now follows that we indeed obtain a Moufang set. When emphasizing one particular
point, namely (∞) := (1, 0, 0, 0, 0, 0, 0), we can write, following 7.7.7 of [14],

(a, a′, a′′) := (f1(a, a′, a′′),−a′,−a,−a′′, 1, f2(a, a′, a′′), f3(a, a′, a′′)),

and the unique element of U+
∞ that maps (0, 0, 0) to (b, b′, b′′) is given by

(b, b′, b′′)∞ : (a, a′, a′′) (→ (a + b, a′ + b′ + abθ, a′′ + b′′ + ab′ − a′b− ab1+θ).

The root group U+
∞ is now the set {(a, a′, a′′)∞ | a, a′, a′′ ∈ K} with operation

(a, a′, a′′)∞ ⊕ (b, b′, b′′)∞ = (a + b, a′ + b′ + abθ, a′′ + b′′ + ab′ − a′b− ab1+θ)∞.
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2.11 Main Result

Our main result reads as follows.

Main Result. Let M be a projective line over a skew field or over a division ring, a polar
line, an orthogonal Moufang set, a Hermitian Moufang set, an exceptional Moufang set
of type E7, a hexagonal Moufang set, a Suzuki-Tits Moufang set, a Ree-Tits Moufang set,
or any sub Moufang set of any projective line over a skew field and let G be any projective
group of M. Then every unipotent subgroup of G is a root group of M, except if M is
the Hermitian Moufang set acting on 9 points with little projective group PSU4(2), and G
is PΣU4(2). In the latter case Gx is not a root group, but it is a unipotent subgroup, for
all x ∈ X.

In the next section, we will prove the Main Result. Note that [1] already contains a partial
proof of the Main Result, namely for the cases of a projective line, a hexagonal Moufang
set and an orthogonal Moufang set. However, due to some change in the arguments for
a projective line in the revised version of that paper, the proof there became in fact
incomplete for the hexagonal Moufang sets, the projective lines over proper alternative
division rings, and for orthogonal Moufang sets. For this reason, we reprove these cases
here, using a slightly more direct and shorter argument.

We also note that Timmesfeld proved part of the Main Result in [10]. The reason why
we insist on giving yet a full proof here is that our arguments are more streamlined, more
general, and more elementary.

3 Proof of the Main Result

3.1 Moufang sets with commutative root groups

The Moufang sets introduced in the previous section that have commutative root groups
are those isomorphic to a sub Moufang set of a projective line over a (skew) field (which we
shall refer to as semi projective lines (over a (skew) field), the hexagonal and orthogonal
Moufang sets, and the projective lines over proper alternative division rings. We treat
all these cases simultaneously. The arguments are different from the ones in [1] in that
we need a slightly more complicated computation for the case of a projective line over a
skew field, but this argument can be copied for the other cases (this type of reasoning was
alluded to in [1], but unfortunately, the authors of the latter reference overlooked the fact
that the arguments given for the projective line over a skew field was not extendable).
Note that we also include some other type of Moufang sets with commutative root groups,
and contained in a projective line over a field in characteristic 2, see [6], not explicitly
mentioned here.
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So let M = (X, (U+
x )x∈X) be a Moufang set with commutative root groups as in the

previous paragraph. Each of these Moufang sets is defined using (or “over”) a field K.
We choose arbitrarily two elements of X and call them 0 and ∞. Then U+

∞ is an abelian
group and we denote the composition low in this group by +. Let G be any projective
group of M.

Suppose U∞ is a second unipotent subgroup of G, contained in G∞. Since the product
of two normal nilpotent subgroups is nilpotent, we may assume without loss of generality
that U+

∞ ! U∞. Since U+
∞ acts sharply transitively on the set X \ {∞}, there exists

ϕ ∈ U∞ fixing some element of X, and we may assume without loss of generality that ϕ
fixes 0.

Let z be a nontrivial element of the center of U∞, and let u ∈ U+
∞ be such that zu

fixes 0. Since zu centralizes U+
∞, it must fix X pointwise, hence z = u−1. In all cases,

the three elements 0, 0z and ∞ are contained in a semi projective line over a field F.
Without loss of generality, we may put 0z equal to the multiplicative identity element 1
of F. Indeed, we pass to the new multiplication a · b = a(0z)−1b if necessary. Moreover,
in the case of hexagonal Moufang sets and projective lines over alternative division rings,
we may assume that 1 is the identity element of the division algebra (this amounts to
passing to a isotopic algebra; the Moufang sets do not change). Hence z maps 0 to 1, i.e.,
u : x (→ x + 1. Now let a ∈ X \ {0, 1,∞} be arbitrary. Then 0, 1,∞ and a are contained
in a semi projective line over some skew field F′. The restriction to the points of X of
the addition with respect to ∞ in F′ coincides with the + of our root group. Since we
are in a skew field now, the double µ-actions are well defined; hence a2 is well defined in
particular (and one can check that it is independent of the chosen sub Moufang set by
considering the intersection of all of them). Since the center is a characteristic subgroup
of U∞, it is normal in G∞, and since G contains the little projective group, it contains all
double µ-actions with respect to (U+

∞, U+
0 , 1, a), for every a ∈ X \ {0,∞}. It follows that

x (→ x + a2 also belongs to the center of U∞, and hence ϕ fixes all squares in X.

First suppose that the characteristic of K is not equal to 2. Then every a ∈ X can
be written as a = 1

4((a + 1)2 − (a − 1)2). Note that a + 1, a − 1 ∈ X, and so x (→
x + (a + 1)2 − (a − 1)2 belongs to the center of U∞. Applying now the double µ-action
with respect to (U+

∞, U+
0 , 1, 1/2), we see that x (→ x + a belongs to the center of U∞, and

hence ϕ must fix all a ∈ X, a contradiction.

Next suppose that K has characteristic 2. Define U [0]
∞ := U∞, U [j]

∞ := [U∞, U [j−1]
∞ ] for

j ≥ 1 and take i such that U [i]
∞ does not act freely on X \ {∞}, but U [i+1]

∞ does (i exists

by nilpotency of U∞). We may clearly assume that ϕ ∈ U [i]
∞. We prove some properties

of ϕ.

Observation 1 The map ϕ is additive, i.e., for all a, b ∈ X, we have (a+ b)ϕ = aϕ + bϕ.

Proof Denote U+
∞ 1 ta : x (→ x+a, a ∈ X \{∞}. We have (tatb)ϕ = tϕa tϕb and 0tϕa = aϕ,
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so tϕa = taϕ . We get (ta+b)ϕ = (tatb)ϕ = tϕa tϕb = taϕtbϕ . Taking the image of 0 , we obtain
the result. !

Observation 2 For all a, b ∈ X such that {0, 1, a, b,∞} is contained in a semi projective
line over some skew field L with the property that ϕ fixes the multiplicative identity 1,
we have (aba)ϕ = aϕbϕaϕ (where juxtaposition is multiplication in the skew field L).
Consequently, (a−1)ϕ = (aϕ)−1 =: a−ϕ.

Proof Denote the element of U+
0 mapping a to ∞ by t′a, and use the notation ta of

the previous proof, too. By definition the double µ-action µa := x (→ axa is equal to the
product t1t′1t1tat

′
ata. As before, tϕa = taϕ and t′ϕa = t′aϕ . We now have, remembering that

ϕ fixes 1:

(aba)ϕ = bµaϕ = bt1t′1t1tat′ataϕ = (bϕ)(t1t′1t1tat′ata)ϕ

= (bϕ)t1t′1t1taϕ t′aϕ taϕ = (bϕ)µaϕ = aϕbϕaϕ.

So the first assertion is proved. Now put b = a−1 and the second assertion follows. !

For every b ∈ X, we have [ϕ, tb] = tb+bϕ and by nilpotency of U∞ and the fact that ϕ
cannot centralize U+

∞, there exists b ∈ X with b 0= bϕ such that [ϕ, tb+bϕ ] = 1 and tb+bϕ 0= 1.
So we have (b + bϕ)ϕ = b + bϕ, implying bϕ2

= b.

Now [ϕ, U [i]] acts freely on X \ {∞}. Denote as above, for a ∈ X, the double µ-action
x (→ axa by µa. Then [µaϕ−1µ−1

a , ϕ−1] acts freely on X \ {∞}, and since both ϕ and
µa fix 0, we get [µaϕ−1µ−1

a , ϕ−1] = id. Now we claim that in all cases except for M
orthogonal, the set {0, 1, a, aϕ,∞} is contained in a semi projective line over some skew
field F. This is trivial if M is itself a semi projective line. If it is a projective line over a
proper alternative division ring, then this follows from the fact that every two elements in
such a division ring generate an associative division ring. If M is a hexagonal Moufang
set, then use [13, (30.6) and (30.17)]. The claim follows. If M is an orthogonal Moufang
set, then, as is noted in [1], {0, b, bϕ,∞} is contained in a sub Moufang set isomorphic to
a projective line over a field, which we can also denote by F (and which is isomorphic to a
quadratic extension of K). If this sub Moufang set does not contain the element 1 chosen
before, then we can re-choose it as b + bϕ. It is fixed under ϕ.

We now calculate, using the multiplication in F, and taking into account bϕ−2
= b, b−ϕ−1

=
b−ϕ, and Observation 2,

b−1 = (b−1)[µbϕ−1µ−1
b ,ϕ−1] = bϕµ−1

b ϕµbϕ−1µ−1
b ϕ

= (b−1)ϕ−1
bϕ−2

(b−1)ϕ−1
bb−1b(b−1)ϕ−1

bϕ−2
(b−1)ϕ−1

= cbc,
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where c = b−ϕbb−ϕ. So we have cbc = b−1, which implies (cb)2 = 1. Since charK = 2, we
obtain cb = 1. Hence 1 = b−1cb2. But b2 = (b2)ϕ = (bϕ)2 (since ϕ fixes all squares and
then use the first assertion of Observation 2), and we obtain 1 = b−1b−ϕbbϕ, resulting in
bbϕ = bϕb.

But now (b + bϕ)2 = b2 + (bϕ)2 + bbϕ + bϕb = b2 + b2 = 0, hence b = bϕ, a contradiction.
Hence ϕ is already the identity and U∞ = U+

∞.

3.2 Hermitian Moufang sets

Let Ξ = (K, K0, σ, L0, q) be a proper anisotropic pseudo-quadratic space as defined above
(see also [13, (11.17)]), with corresponding skew-hermitian form f : L0 × L0 → K. By
[13, (21.16)], we may assume that q is non-degenerate, i.e. {a ∈ L0 | f(a, L0) = 0} = 0.
Let (T, ·) be as in Subsection 2.7. Then the group U+

∞ is isomorphic to T , and acts in a
natural way on T itself by right multiplication; we will write τ(a,t) for the element of U+

∞
mapping (b, v) ∈ T to (b, v) · (a, t). Then Z(U+

∞) = {τ(0,t) | t ∈ K0}. We will also write
T ∗ for T \ {(0, 0)}. In general, we write a superscript ∗ when we delete the 0-element of
a set (0-vector, additive identity,. . . ).

As before, let U+
∞ ! U∞. For convenience we shall write U = U∞ and U+ = U+

∞. Also,
put B := G∞. Since U+ ! B and U ≤ B, we have that Z(U+) ! B and Z(U+) ! U .
Let Ũ := U/Z(U+), Ũ+ := U+/Z(U+), and B̃ := B/Z(U+). Then Ũ+ ! Ũ , and Ũ is
a non-trivial nilpotent group; in particular, Z̃ := Z(Ũ) 0= 1. For every a ∈ L0, we let
τa := τ(a,q(a))Z(U+) ∈ Ũ+; then the map a (→ τa is an isomorphism from (L0, +) to Ũ+.
Note that Ũ+ 0= 1 by the properness of Ξ. The natural action of B on T induces an action
of B̃ on L0. Since Ũ+ acts regularly on L0, there exists an element ϕ in Ũ \ Ũ+ fixing
0 ∈ L0. Then ϕ fixes the orbit 0Z̃ elementwise.

Since [Ũ+, Ũ ] ≤ Ũ+, it follows from the nilpotency of Ũ that there exists a non-trivial
element τ ∈ Ũ+ ∩ Z̃. Moreover, Z̃ ! B̃; for every (a, t) ∈ T ∗, the mapping

µa,t : b (→
(
b− at−1f(a, b)

)
tσ ,

for all b ∈ L0, belongs to B̃. (See [13, (33.13)].) Let F := {c ∈ L0 | τc ∈ Z̃}. Then F is a
non-trivial additive subgroup of L0 such that µ(a,t)(F ) ⊆ F for all (a, t) ∈ T ∗. If we can
now show that F = L0, then it would follow that ϕ = 1, which is a contradiction; hence
it would follow that U = U+, which is we want to obtain. We will see that there is one
exception for which there really exists U 0= U+.

We start by making some observations about the maps µ(a,t). Let b ∈ L∗
0 be fixed. If

(a, t) ∈ T ∗ is such that f(a, b) = 0, then we have

µ(a,t)(b) = btσ ; (1)

14



in particular, if t ∈ K0, then µ(0,t)(b) = btσ = bt, since K0 ≤ FixK(σ), and hence F is
closed under right multiplication by K0.

Lemma 3.1 If F is a non-trivial K-subspace of L0, then F = L0.

Proof Suppose that F is a non-trivial K-subspace of L0.

Let b ∈ F ∗ be fixed, let a ∈ L∗
0 be arbitrary, and let t = q(a); then (a, t) ∈ T ∗. If

f(a, b) 0= 0, then b − µ(a,t)(b)t−σ = at−1f(a, b) ∈ F , and hence a ∈ F . So assume that
f(a, b) = 0. Since q is non-degenerate, there exists a c ∈ L0 such that f(c, b) 0= 0, and
hence also f(a + c, b) = f(c, b) 0= 0. Hence c ∈ F and a + c ∈ F , so also in this case we
have that a = (a + c)− c ∈ F . !

If K0 generates K (as a ring), then it follows from the fact that F is closed under right
multiplication by K0, that F is a K-subspace of L0. So we may assume that K0 does
not generate K as a ring. By [13, (23.23)], this implies that K0 is a commutative field,
and either K/K0 is a separable quadratic extension and σ is the non-trivial element of
Gal(K/K0), or K is a quaternion division algebra over K0 and σ is the standard involution
of K. Let N and T denote the (reduced) norm and trace of K/K0, respectively.

Assume first that dimK L0 = 1; we will, in fact, identify L0 and K in this case. Let
ρ := q(1) ∈ K \ K0; then q(t) + K0 = tσρt + K0 = tσ(ρ + K0)t for all t ∈ K. Also,
f(1, 1) = γ := ρ − ρσ, and hence f(s, t) = sσγt for all s, t ∈ K. One can now compute
that

µ(t,tσ(ρ+c)t)(s) = (ρ + c)−1(ρ + c)σstσ(ρ + c)σt ,

for all s, t ∈ K∗ and all c ∈ K0. Since N(ρ + c) = (ρ + c)(ρ + c)σ ∈ K0, it follows that, for
all s ∈ F ∗, (ρσ + c)2stσ(ρσ + c)t ∈ F as well, and hence

r2stσrt ∈ F , for all r ∈ 〈1, ρ〉K0 and all t ∈ K . (2)

Suppose first that K/K0 is a separable quadratic extension; then K is commutative, and
K = 〈1, ρ〉K0 . Hence, by (2), r3s ∈ F for all r ∈ K. If K0 = GF(2), then K = GF(4),
and then r3 ∈ K0 for all r ∈ K (this is the case which will lead to the exception). So
assume that |K0| ≥ 3, and suppose that K3 ⊆ K0. Since K = K0(ρ) is a quadratic
extension field of K0, we have ρ2 = aρ + b for some a, b ∈ K0. Then ρ3 = (a2 + b)ρ + ab,
hence a2 + b = 0, and therefore ρ2 − aρ + a2 = 0. If char(K) = 3, then this would
imply (ρ + a)2 = 0 and thus ρ = −a ∈ K0, a contradiction. If char(K) 0= 3, then
(ρ + t)3 − ρ3 − 1 = 3ρt(ρ + t) ∈ K0, and therefore ρ(ρ + t) ∈ K0 for all t ∈ K∗

0 . Choose
a t ∈ K0 \ {0,−1}; then ρ = ρ(ρ + (t + 1)) − ρ(ρ + t) ∈ K0, again a contradiction. We
conclude that K3 0⊆ K0, and hence F = K.

Suppose now that K is a quaternion division algebra over K0; in particular, K0 is an
infinite commutative field. If we consider (2) with r = ρ+c for some c ∈ K0\{0} = Z(K)∗,
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subtract the same expression with r = ρ and r = c, and divide by c, then we get that

ρ(ρ + 2c)N(t)s + (c + 2ρ)stσρt ∈ F ,

for all c ∈ K∗
0 . If char(K) = 2, then it follows that ρ2N(t)s + cstσρt ∈ F , for all c ∈ K∗

0 ,
and hence stσρt ∈ F for all t ∈ K. If char(K) 0= 2, then we write ρ2 = aρ + b with
a, b ∈ K0; if we take r = ρ− a/2 in (2), then we obtain that stσρt ∈ F for all t ∈ K since
r2 ∈ K∗

0 and stσ(a/2)t ∈ sK0 ⊆ F . So we have shown that, in all characteristics, F is
invariant under right multiplication by elements of the set K0∪{tσρt | t ∈ K}. It remains
to show that the subring generated by K0 ∪ {tσρt | t ∈ K} is K. Suppose that

K1 := 〈K0 ∪ {tσρt | t ∈ K}〉ring 0= K .

Since every subring of K containing K0 is a K0-vector space of dimension 1, 2 or 4, and
since ρ 0∈ K0, we must have dimK0 K1 = 2; hence we can find a t ∈ K \ K1 for which
T(t) = 0 and T(ρt) 0= 0. Then tσ = −t and ρt = −tσρσ + r for some r ∈ K∗; hence

tσρt = −t(−tσρσ + r) = tσt · ρσ − t · r 0∈ K1 ,

a contradiction. So K1 = K, and hence F = K in this case as well.

Now suppose that dimK L0 ≥ 2. If K is a quaternion division algebra over K0 or if K
is a quadratic extension field over K0 with K0 0= GF(2), then it follows from the result
in dimension 1 that F is a K-subspace of L0, and hence F = L0 by Lemma 3.1. It only
remains to consider the case where K0 = GF(2) and K = GF(4).

Let b ∈ F \ {0} be arbitrary. Since dimK L0 ≥ 2, there exists an a ∈ L∗
0 such that

f(a, b) = 0; by (1), bq(a)σ ∈ F . Since q is anisotropic, q(a)σ 0∈ K0, and it thus follows
that bK ∈ F . This shows that F is a K-subspace of L0, and we can again conclude by
Lemma 3.1 that F = L0.

We will now describe the exception. So let K0 = GF(2), let K = GF(4), and let dimK L0 =
1; we will again identify L0 and K = GF(4). Then ρ := q(1) is one of the two elements
in K \ K0, and f(1, 1) = γ := ρ − ρσ = 1; hence f(s, t) = sσt for all s, t ∈ K. Then
U+ ∼= T is a group of order 8. In the case that the projective group is PΣU(3, 2), we have
B+ = T ·Gal(K/K0), which is a group of order 16. If we take U = B+, then U is of course
a normal subgroup of B+, but U is also nilpotent (since it is a 2-group) and transitive
(since U+ is already transitive), giving us the desired exception to the Main Theorem.

3.3 Exceptional Moufang sets of type E7

We now consider the case of the Moufang sets arising from a Moufang quadrangle of
type E6, E7 or E8. In fact, we have already handled E6 and E7, since these correspond to
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Hermitian Moufang sets, but our approach does not make any distinction between these
three cases.

Let (K, L0, q) be a quadratic space of type E6, E7 or E8 as defined in [13, (12.31)], with
corresponding bilinear form f : L0 × L0 → K and with base point ε ∈ L∗

0. Let X0 be the
vector space over K and (a, v) (→ av be the map from X0 × L0 → X0 as defined in [13,
(13.9)]. Let h be the bilinear map from X0×X0 to L0 defined in [13, (13.18) and (13.19)],
let g be the bilinear map from X0 × X0 to K defined in [13, (13.26)], and let π be the
map from X0 to L0 as defined in [13, (13.28)]. Moreover, let π(a, t) := π(a) + tε for all
(a, t) ∈ X0. Following [13, (16.6)], let (S, ·) be the group with underlying set X0×K and
with group operation

(a, t) · (b, u) = (a + b, t + u + g(a, b))

for all (a, t), (b, u) ∈ S. Then the group U+ := U+
∞ is isomorphic to S, and acts in a

natural way on S itself by right multiplication; we will write τ(a,t) for the element of U+

mapping (b, v) ∈ S to (b, v) · (a, t). Then Z(U+) = {τ(0,t) | t ∈ K}.
Let U be a second unipotent subgroup in G∞, and assume, as before, U+ ≤ U .

Exactly as in section 3.2, we let Ũ := U/Z(U+), Ũ+ := U+/Z(U+), B̃ := B/Z(U+),
and Z̃ := Z(Ũ) 0= 1. For every a ∈ X0, we let τa := τ(a,0)Z(U+) ∈ Ũ+; then the map
a (→ τa is an isomorphism from (X0, +) to Ũ+. The natural action of U on S induces an
action of Ũ on X0. Since Ũ+ acts regularly on X0, there exists an element ϕ in Ũ \ Ũ+

fixing 0 ∈ X0, and hence fixing the orbit 0Z̃ elementwise. Again, there exists a non-trivial
element τ ∈ Ũ+ ∩ Z̃. For every (a, t) ∈ S∗, the mapping

µa,t : b (→ bπ(a, t) + ah(b, a)− f(h(b, a), π(a, t))

q(π(a, t))
aπ(a, t) ,

for all b ∈ X0, belongs to B̃. (The computation of this expression requires some calcula-
tion, similar to the other cases in [13, Chapter 33]. Observe also that q(π(a, t)) 0= 0 by
[13, (13.49)].) Let F := {c ∈ X0 | τc ∈ Z̃}. Then F is a non-trivial additive subgroup of
X0 such that µ(a,t)(F ) ⊆ F for all (a, t) ∈ S∗. We will again show that F = X0 to obtain
the required contradiction.

First of all, observe that it follows from the fact that µ(0,t)(b) = tb for all t ∈ K and all
b ∈ X0 that F is a K-subspace of X0.

Lemma 3.2 Let b ∈ X∗
0 . If b ∈ F , then bπ(b) ∈ F .

Proof Let b ∈ F . Then, for all t ∈ K, also µb,t(b) ∈ F , that is,

µb,t(b) =

(
1− f(h(b, b), π(b, t))

q(π(b, t))

)
bπ(b, t) + bh(b, b) ∈ F . (3)
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Note that h(b, b) = 2π(b) if char(K) 0= 2 and that h(b, b) = f(π(b), ε)ε if char(K) = 2, by
[13, (13.28) and (13.45)]. Also observe that we have already shown that b · sε ∈ F for all
s ∈ K.

Assume first that char(K) 0= 2. Then it follows from (3) that

(
3− f(2π(b), π(b, t))

q(π(b, t))

)
bπ(b) ∈ F ,

for all t ∈ K, and it is easily checked that this expression is zero if and only if q(π(b)) = 3t2.
Choose any t for which q(π(b)) 0= 3t2; then it follows that bπ(b) ∈ F since F is a K-
subspace of X0.

Now assume that char(K) = 2. It now follows from (3) that

(
1 +

f(f(π(b), ε)ε, π(b, t))

q(π(b, t))

)
bπ(b) ∈ F ,

for all t ∈ K, and this expression is zero if and only if

t2 + f(π(b), ε)t + q(π(b)) + f(π(b), ε)2 = 0 .

This quadratic equation has at most 2 solutions; let t be any element of K which is not
a solution of this equation. Then it follows that bπ(b) ∈ F in this case as well. !

Lemma 3.3 Let b ∈ X∗
0 . If there exist elements s, t ∈ K, not both zero, such that

b(sπ(b) + tε) ∈ F , then b ∈ F .

Proof Let b ∈ X∗
0 and s, t ∈ K (not both zero) be such that b(sπ(b) + tε) ∈ F .

If s = 0, then t 0= 0, and then tb ∈ F , hence b ∈ F . So assume that s 0= 0; then
bπ(b, s−1t) ∈ F . Assume without loss of generality that s = 1. It is shown in the proof
of [13, (13.67)] that π(bπ(b, t)) = q(π(b, t))π(b). By [13, (13.49)], q(π(b, t)) 0= 0. If we
now apply Lemma 3.2 on the element bπ(b, t) ∈ F , then we get that bπ(b, t)π(b) ∈ F ,
and since π(b, t) = f(ε, π(b, t))ε − π(b, t), it also follows that bπ(b, t)π(b, t) ∈ F . But
bπ(b, t)π(b, t) = q(π(b, t))b by [13, (13.7)], so b ∈ F , and we are done. !

As in [13, (13.42)], we define P (a, b) := f(h(a, b), ε) for all a, b ∈ X0; then P is an
alternating bilinear form, which is non-degenerate. (This form is called F in [13], but we
choose P to avoid confusion with our set F .)

Lemma 3.4 Let a, b ∈ X∗
0 . If b ∈ F and P (b, a) 0= 0, then a ∈ F .
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Proof Let a ∈ X∗
0 and let b ∈ F such that P (b, a) 0= 0. Then for all s, t ∈ K, we have

that µa,t(b)− µa,s(b) ∈ F . It follows that

f(h(b, a), π(a, s))

q(π(a, s))
aπ(a, s)− f(h(b, a), π(a, t))

q(π(a, t))
aπ(a, t) ∈ F ,

for all s, t ∈ K. Let x := f(h(b, a), π(a)) ∈ K and let y := P (b, a) ∈ K∗; then this can be
rewritten as

(
x + sy

q(π(a, s))
− x + ty

q(π(a, t))

)
aπ(a) +

(
s

x + sy

q(π(a, s))
− t

x + ty

q(π(a, t))

)
a ∈ F .

By [13, (13.41)], a and aπ(a) are linearly independent. On the other hand, since y 0= 0,
there exists only one element s ∈ K for which x + sy = 0. If we now choose s 0= t such
that x + sy 0= 0 and x + ty 0= 0, then the expression above cannot be zero, and hence
we have found constants c, d ∈ K, not both zero, such that a(cπ(a) + dε) ∈ F . It follows
from Lemma 3.3 that a ∈ F , which is what we had to show. !

We are now in a position to show that X0 = F . We already know that F is non-trivial,
so choose some fixed element b ∈ F ∗. Now let c ∈ X∗

0 be arbitrary. If P (b, c) 0= 0, then
c ∈ F by Lemma 3.4. If P (b, c) = 0, then choose an element a ∈ X0 such that P (b, a) 0= 0
(such an element exists since P is non-degenerate). But now the elements a and a + c
both satisfy the hypotheses of Lemma 3.4, and hence they both belong to F . It follows
that also c = (a + c)− a belongs to F , and hence we have shown that X0 = F .

3.4 Suzuki-Tits Moufang sets

We start with some observations. We use the notation of Subsection 2.9.

Observation 3 The mapping x (→ x1+θ induces a permutation of L. Also, the Tits
endomorphism x (→ xθ is a bijection from L onto Lθ.

Proof Indeed, if x ∈ L, then xθ ∈ Lθ ⊆ Kθ, so x1+θ = xθx ∈ KθL = L. Moreover, for
given nonzero u ∈ L, the element uθ−1 is mapped onto uθ

u .u2

uθ = u. Since u−1 ∈ L, also
uθ−1 = uθu−1 ∈ L. The mapping x (→ x1+θ is injective since x (→ xθ−1 is its inverse.

If xθ = yθ, then applying θ, we get x2 = y2, so x = y. !

Observation 4 For each nonzero t ∈ Lθ, the mapping ht fixing (∞) and mapping (a, a′)
onto (ta, t1+θa′) belongs to Sz(K, L, θ).
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Proof This follows from a calculation similar to one culminating in the formulae of
(33.17) of [13], using the matrices in Subsection 2.9. !

Observation 5 For |K| = 2, every projective group of MSz(K, K, id) is isomorphic to
the little projective group G. Also, in this Moufang set the stabilizer G∞ related to (∞)
is isomorphic to U+

∞ and hence this Moufang set has unique transitive nilpotent normal
subgroups.

Proof This readily follows from the well known fact that, in this case, the Moufang set
is a Frobenius group of order 20 acting on 5 elements, and that this group is a maximal
subgroup of the full symmetric group on five letters. !

From now on, we may assume that |K| ≥ 8. The following observation is well known for
the classical case L = K.

Observation 6 The center Z+
∞ of U+

∞ coincides precisely with the set of elements of U+
∞

of order less than or equal to 2. The orbit of (0, 0) under Z+
∞ is equal to {(0, a′) | a′ ∈ L},

while the orbit of (∞) under the center Z+
0 of U+

0 is equal to {(a, 0) | a ∈ L∗} ∪ {(∞)}.

Proof An easy and straightforward computation shows that Z+
∞ = {(0, a′)∞ | a′ ∈ L},

and also that (a, a′)∞ has order two if and only if a = 0 and a′ 0= 0. Using the matrices
of Subsection 2.9, one now sees that Z+

0 = {(0, x′)0 | x ∈ L}, but the element (0, a−1−θ)0

maps (1, 0, 0, 0) to (1, (a−1−θ)θ, 0, a−1−θ), which coincides with (a2+θ, 1, 0, a) = (a, 0). !

Our Main Result will strongly depend on the following lemma.

Lemma 3.5 Let ϕ be an automorphism of the Moufang set MSz(K, L, θ) fixing (∞) and
all elements (0, a′) with a′ ∈ Lθ. Then ϕ is necessarily the identity.

Proof By the definition of automorphism, the permutation ϕ normalizes U+
∞, and hence

also Z+
∞. Likewise, it normalizes Z+

0 . Using Observation 6, this immediately implies
that ϕ stabilizes the sets {(0, a′) | a ∈ L} and (a, 0) | a ∈ L. Hence we may write
(a, 0)ϕ = (aϕ1 , 0), with ϕ1 a permutation of L fixing 0, and (0, a′)ϕ = (0, a′ϕ2), with ϕ2 a
permutation of L fixing Lθ pointwise. Since ϕ fixes (0, 0), we may interpret the foregoing
formulae as conjugation of elements of U+

∞ with ϕ. Hence, we obtain

(a, a′)ϕ
∞ = (a, 0)ϕ

∞ ⊕ (0, a′)ϕ
∞ = (aϕ1 , a′ϕ2)∞.

We now use the fact that ϕ induces an automorphism of U+∞ by conjugation. The
equality (a, 0)ϕ

∞ ⊕ (b, 0)ϕ
∞ = (a + b, abθ)ϕ

∞ translates implies

aϕ1(bϕ1)θ = (abθ)ϕ2 (4)
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Putting a = 1, and taking into account that bθ ∈ Lθ is fixed by ϕ2, we see that 1ϕ1(bϕ1)θ =
bθ. Putting b = 1, this implies 1ϕ1(1ϕ1)θ = 1, hence 1ϕ1 = 1 by Observation 3. The
previous equality now gives us (bϕ1)θ = bθ. Again using Observation 3 we conclude
ϕ1 = id.

Now putting b = 1 in Equation (4), we deduce aϕ1 = aϕ2 . The assertion now follows. !

Theorem 3.6 Let G be an arbitrary projective group of MSz(K, L, θ), and let U∞ be a
unipotent subgroup of G. Then U∞ ≡ U+

∞.

Proof We may assume U+
∞ ≤ U∞. Let u ∈ Z(U∞). Then u acts fixed point freely on

X \ {(∞)}, and it commutes with every element of U+
∞. Identifying the element (a, a′)

with the group element (a, a′)∞, and noting that the action of U+
∞ can hence be identified

with the right action on itself, the action of u can be described as left action on U+
∞. So,

if u maps (0, 0) onto (c, c′), then we may write u : (a, a′)∞ (→ (c, c′)∞ ⊕ (a, a′)∞. Hence,
if c 0= 0, then the map ϕ : (a, a′)∞ (→ (c, c′)∞ ⊕ (a, a′)∞ ⊕ (c, c′ + c1+θ)∞ is nontrivial,
belongs to U∞ and fixes all elements of the form (0, a′), with a′ ∈ L. This contradicts
Lemma 3.5.

So c = 0. Considering the isomorphic Moufang set MSz(K, Lc′−1, θ), we may assume that
c′ = 1. Since the center of U∞ is invariant under each mapping ht, t ∈ Lθ. Observation 4
implies that (0, tθ)∞ ∈ Z(U∞). If U∞ 0= U+

∞, then there exists a nontrivial element ϕ ∈ U∞
fixing (0, 0). Since ϕ commutes with (0, tθ), t ∈ L, it fixes all elements (0, tθ), with t ∈ L.
Lemma 3.5 shows that ϕ is the identity, a contradiction. Hence U∞ must coincide with
U+
∞.

The theorem is proved. !

3.5 Ree-Tits Moufang sets

We start again with some observations, using the notation of Subsection 2.10.

Observation 7 The mapping x (→ x2+θ is a permutation of K, inducing a permutation
of K2. Also, the Tits endomorphism x (→ xθ is a bijection from K onto Kθ. Finally, the
set {t1+θ | t ∈ K} contains K2.

Proof The inverse of x (→ x2+θ is given by x (→ x2−θ, for x 0= 0, and 0 (→ 0.

Also, if xθ = yθ, then applying θ, we get x3 = y3, so x = y.

Finally, for any x ∈ K, the element (x−1+θ)1+θ is the arbitrary but prescribed square
x2 ∈ K2, which proves the last assertion. !
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Observation 8 For each nonzero t ∈ K, the mapping ht fixing (∞) and mapping (a, a′, a′′)
onto (tθ−1a, t2a′, t1+θa′′) belongs to Re(K, θ).

Proof The subgroups {(0, x′, 0)∞ | x′ ∈ K} ≤ U+
∞ and {(0, x′, 0)0 | x′ ∈ K} ≤ U+

0

preserve the set {(0, a′, 0) | a′ ∈ K} ∪ {(∞)}, inducing a Moufang set M′ isomorphic to
a projective line over K. Using the matrices above related to the mapping (0, x′, 0)∞ and
(0, x′, 0)0, one now calculates that the mapping (0, a′, 0) (→ (0, t2a′, 0), for any t ∈ K∗,
which belongs to M′, acts on X as ht. !

Observation 9 The center Z+
∞ of U+

∞ consists precisely of the elements (0, 0, a′′)∞, with
a′′ ∈ K. Also, the elements of U+

∞ of order less than or equal to 3 form a subgroup
V +
∞ = {(0, a′, a′′) | a′, a′′ ∈ K} which coincides precisely with the commutator subgroup

[U+
∞, U+

∞], and also with the set of elements u ∈ U+
∞ satisfying [u, U+

∞] ≤ Z+
∞. The orbit of

(0, 0, 0) under Z+
∞ is equal to {(0, 0, a′′) | a′′ ∈ K}, while the orbit of (∞) under the center

Z+
0 of U+

0 is equal to {(a, 0,−a2+θ) | a ∈ K∗} ∪ {(∞)}.

Proof The first assertion follows from an easy and straightforward computation using
the operation ⊕ introduced above.

The second assertion follows from the identities

(a, a′, a′′)∞ ⊕ (a, a′, a′′)∞ ⊕ (a, a′, a′′)∞ = (0, 0,−a2+θ)∞

and

[(a, a′, a′′)∞, (b, b′, b′′)∞] = (0, abθ − aθb, ab1+θ − a1+θb + aθb2 − a2bθ + a′b− ab′)∞,

and from the following two claims: (1) for arbitrary a ∈ K, the identity abθ− aθb = 0, for
all b ∈ K, implies a = 0, and (2) the additive subgroup A of K generated by the elements
abθ − aθb, for a, b ∈ K, coincides with K itself.

We prove Claim (1). Putting b = 1, Observation 7 implies a = 1, a contradiction since
bθ− b = 0 is not an identity in K. We now prove Claim (2). Putting a 0= b, we see that A
is nontrivial. Let x ∈ A, x 0= 0, with x = abθ−aθb, for some a, b ∈ K. Substituting ta and
tb for a and b, respectively, with t ∈ K∗ arbitrary, we see that t1+θx ∈ A. Observation 7
implies that, for all k ∈ K, the element xk2 belongs to A. For arbitrary y ∈ K, we now
have

y = x(x−1 − y)2 − x(x−1)2 − xy2 ∈ A.

The claim is proved.

The explicit form (using matrices as in Subsection 2.10) of (0, 0, a′′)0 = (0, 0, a′′)g
∞ shows

that

(∞)(0,0,a′′)0 = (−f3(0, 0, a
′′)f1(0, 0, a

′′)−1,−f2(0, 0, a
′′)f1(0, 0, a

′′)−1,−a′′f1(0, 0, a
′′)−1),

= (a′′θ−2, 0,−a′′−1),
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and the last assertion follows by putting a′′ = a−2−θ. !

We need one more observation before we can prove the analogue of Lemma 3.5 for Ree-Tits
Moufang sets.

Observation 10 Let ϕ be an automorphism of the Moufang set MRe(K, θ) fixing (∞)
and (0, 0, 0). Then ϕ stabilizes the set {(0, a′, 0) | a′ ∈ K}.

Proof Let a′ ∈ K∗ be arbitrary and let (b, b′, b′′) be the image of (0, a′, 0) under
ϕ. Then (0, a′, 0)ϕ

∞ = (b, b′, b′′)∞. Since (0, a′, 0)∞ ∈ [U+
∞, U+

∞], also (b, b′, b′′)∞ be-
longs to the commutator subgroup. It follows that b = 0. This argument means in
fact that (b, b′, b′′) must belong to the orbit of (0, 0, 0) under [U+

∞, U+
∞]. Now we re-

mark that (0,−b′−1, 0)0 maps (∞) onto (0, b′, 0). Hence, similarly as above, (0, b′, b′′)
must belong to the orbit of (∞) under [U+

0 , U+
0 ]. Using the same technique as in the

proof of the previous observation, one shows that this orbit consists of, besides (∞),
the elements (−f3(0, x′, x′′)f1(0, x′, x′′)−1,−f2(0, x′, x′′)f1(0, x′, x′′)−1,−x′′f1(0, x′, x′′)−1),
for x′, x′′ ∈ K. Such an element also belongs to the orbit of (0, 0, 0) under [U+

∞, U+
∞] if

and only if f3(0, x′, x′′) = 0, hence if and only if x′′θ = x′x′′. If x′′ = 0, then the assertion
follows. If x′′ 0= 0, then x′ = x′′θ−1 and we have f1(0, x′, x′′) = x′′2 + x′′(θ−1)(θ+1) = −x′′2,
hence (0, b′, b′′) = (0, x′′1−θ, x′′−1), for some x′′ ∈ K∗. In this case, the image of (0,−a′, 0)
must be equal to, in view of (0,−a′, 0)∞ = (0, a′, 0)−1

∞ , the element (0,−x′′1−θ,−x′′−1).
But then

−x′′1−θ = (−x′′)1−θ,

a contradiction. !

Our Main Result will strongly depend on the following lemma.

Lemma 3.7 Let ϕ be an automorphism of the Moufang set MRe(K, θ) fixing (∞) and
all elements (0, 0, a′′) with a′′ ∈ K. Then ϕ is necessarily the identity.

Proof By assumption, we have (0, 0, a′′)ϕ = (0, 0, a′′), for all a′′ ∈ K. By Observa-
tion 10, there is a permutation ϕ1 of K such that (0, a′, 0)ϕ = (0, a′ϕ1 , 0), for all a′ ∈ K.
Now, by definition of automorphism of a Moufang set, ϕ normalizes U+

0 , and hence also
its center Z+

0 . Using Observation 9, this implies that there is a permutation ϕ2 of K such
that (a, 0,−a2+θ)ϕ = (aϕ2 , 0,−(aϕ2)2+θ).

This implies

(a, a′, a′′)ϕ
∞ = (a, 0,−a2+θ)ϕ

∞ ⊕ (0, a′, 0)ϕ
∞ ⊕ (0, 0, a′′ + a2+θ − aa′)ϕ

∞, (5)

= (aϕ2 , a′ϕ1 , a′′ − (aϕ2)2+θ + aϕ2a′ϕ1 + a2+θ − aa′)∞. (6)
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Let a, b ∈ K be arbitrary. Equating the second positions of (a, 0, 0)ϕ
∞ ⊕ (b, 0, 0)ϕ

∞ and
(a + b, abθ,−ab1+θ)ϕ

∞, we obtain, using the general formulae (6),

aϕ2(bϕ2)θ = (abθ)ϕ1 , (7)

for all a, b ∈ K.

Similarly, equating the third positions of (0, c, 0)ϕ
∞⊕(d, 0, 0)ϕ

∞ and (d, c,−cd)ϕ
∞, we obtain,

again using the general formulae (6),

−(dϕ2)2+θ + d2+θ − dϕ2cϕ1 = cd− (dϕ2)2+θ + dϕ2cϕ1 + d2+θ,

for all c, d ∈ K, which implies

cd = cϕ1dϕ2 , (8)

for all c, d ∈ K. Putting a = b = 1 in Equation (7), we see that 1ϕ2(1ϕ2)θ = 1ϕ1 , which
implies, in view of Equation (8) with c = d = 1, that (1ϕ2)2+θ = 1. Consequently,
Observation 7 shows 1ϕ2 = 1. Putting d = 1 in Equation (8), we now see c = cϕ1 , for all
c ∈ K, so ϕ1 is the identity. The same Equation (8), now again with general d ∈ K, now
also shows that ϕ2 is the identity. Formula (6) now implies that ϕ is trivial. !

Theorem 3.8 Let G be an arbitrary projective group of MRe(K, θ), and let U∞ ≤ G∞
be a unipotent subgroup of G. Then U∞ ≡ U+

∞.

Proof We may assume U+
∞ ≤ U∞. Let u ∈ Z(U∞). If u maps (0, 0, 0) onto (c, c′, c′′),

then, similarly as in the beginning of the proof of Theorem 3.6, u can be presented
as u : (a, a′, a′′)∞ (→ (c, c′, c′′)∞ ⊕ (a, a′, a′′)∞. Hence, if (c, c′) 0= (0, 0), then the map
ϕ : (a, a′, a′′)∞ (→ (c, c′, c′′)∞⊕ (a, a′, a′′)∞⊕ (−c,−c′ + c1+θ,−c′′ + cc′− c2+θ)∞ belongs to
U∞ and fixes all elements of the form (0, 0, a′′), with a′ ∈ L. This contradicts Lemma 3.5.

So we may assume that (c, c′) = (0, 0). Then u = (0, 0, c′′)∞, for some c′′ ∈ K. Since
the center of U∞ is invariant under each mapping ht, t ∈ K, Observation 8 implies that
(0, 0, t1+θc′′)∞ ∈ Z(U∞). Hence by Observation 7 (0, 0, k2c′′)∞ ∈ Z(U∞), for all k ∈ K.
For arbitrary x ∈ K, we see that

(0, 0, x)∞ = (0, 0, (x− c′′−1)c′′)∞ ⊕ (0, 0, x2c′′)−1
∞ ⊕ (0, 0, (c′′−1)2c′′)−1

∞ ,

which implies Z(U∞) = Z+
∞. Standard group theory now implies that ϕ fixes all elements

(0, 0, x), with x ∈ K. Lemma 3.7 shows that ϕ is the identity, a contradiction. Hence U∞
must coincide with U+

∞.

The theorem, and also our Main result, are proved. !
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4 Final remarks

The present paper treats almost all known Moufang sets that do not arise from sharply 2-
transitive groups. Only the cases of an algebraic group of relative rank 1 and exceptional
absolute type, or absolute type D4, were left out, as are the new Moufang sets discovered
in [6] and which arise from a polarity of an exceptional Moufang quadrangle of type F4.
However, all Moufang sets that appear in higher rank 2-spherical Moufang buildings as
permutation groups generated by opposite root groups are covered by our Main Result,
and by [1], this provides a new proof of the main result of loc.cit., namely the fact that in
every split spherical BN-pair of irreducible rank ≥ 2 the unipotent subgroups are unique
as transitive nilpotent normal subgroups of the Borel subgroups.

We end by noting that our Main Result implies that for the Moufang sets under consider-
ation, and for every projective group G, the root groups Ux are characteristic subgroups
of the point stabilizers Gx. It is this fact that we expect to be very useful in geometric
approach to the rank 1 buildings defined by Moufang sets with nonabelian root groups,
as proposed by Jacques Tits [11].
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