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Département de Mathématiques - C.P.216

Boulevard du Triomphe
B–1050 Brussels, Belgium
Hendrik Van Maldeghem†

Ghent University
Pure Mathematics and Computer Algebra

Galgaan 2 – S22
B–9000 Gent, Belgium

Abstract

We define four families of geometries with as point graph the graph — or its
complement — of all elliptic hyperplanes of a given parabolic quadric in any finite
6-dimensional projective space, where adjacency is given by intersecting in a tangent
4-space. One of the classes consists of semi-partial geometries constructed in Thas
[7], for which our approach yields a new construction, more directly linked to the
split Cayley hexagon. Our main results determine the complete automorphism
groups of all these geometries.

1 Introduction

In a recent paper [4], the first author classifies all partial linear spaces (these are point-
line incidence geometries where every pair of points is incident with at most one line)
admitting a rank 3 primitive automorphism group of almost simple type. The classical
symplectic, hermitian and orthogonal polar spaces, the Fischer spaces, the buildings of
type E6 are well-known examples of such spaces. In her list also appear new partial
linear spaces, among them some admitting G2(3), G2(4) or G2(8) : 3 as automorphism
group (several new spaces appear for each of these three groups). For the first group,
the geometries were described in terms of elliptic points of PG(6, q) with respect to a
nonsingular quadratic form. For the other two groups, the geometries were described
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in terms of elliptic quadratic forms polarizing into a nonsingular bilinear form of a 6-
dimensional vector space over GF (4) and GF (8), respectively.

The two authors later noticed that, unlike in the paper [4], it was possible to describe
these spaces in a common setting, that of elliptic hyperplanes with respect to the parabolic
quadric Q(6, q). Moreover these new descriptions of the rank 3 geometries extend to any
q.

These geometries all have as collinearity graph the strongly regular graph Γ(q) (or its
complement) obtained from the parabolic quadric Q(6, q) by considering all elliptic hy-
perplanes (and adjacency is given by meeting in a tangent 4-space of the quadric Q(6, q)).
In the present paper, we define four classes of geometries which admit Γ(q) or its comple-
ment as collinearity graph, and which generalize to arbitrary q the examples in the list
of [4]. One of these classes coincides with the class of semi-partial geometry discovered
by Thas in [7]. Where the construction of Thas follows from a more general theory and
can be applied in other situations as well, our construction is more direct and relates the
semi-partial geometries directly to the corresponding split Cayley generalized hexagons,
see below. Moreover, our construction allows to determine the full automorphism group
of the geometries, and we do this for all four classes. This is the main motivation of our
paper. Our method is purely geometric: we reconstruct from the given geometry either
the point-line geometry of the quadric Q(6, q) (and conclude that the full collineation
group of our geometry is the full automorphism group PΓO(7, q) of Q(6, q) in PG(6, q)),
or the generalized hexagon H(q) (and we conclude that the full collineation group of our
geometry is the group AutoG2(q) of type preserving automorphisms of H(q) — the group
AutoG2(q) coincides with the full automorphism group AutG2(q) unless q is a power of
the prime 3, in which case it has index 2).

For small values of q, it is apparent from our construction that the automorphism
group acts as a rank 3 group on the point set. Hence we obtain a computer free proof
of the existence of the relevant examples in [4], which was our initial motivation for this
work.

Finally, we were not yet able to use our results to determine the full automorphism
group of the graph Γ(q), but our results could possibly be used to show that it is isomorphic
to the full automorphism group of Q(6, q) for q ≥ 3.

2 Preliminaries and terminology

The parabolic quadric Q(6, q) of the projective six-dimensional space PG(6, q) over the
finite Galois field GF(q) with q elements is the null set of the quadratic polynomial X0X4+
X1X5 + X2X6 −X2

3 , with respect to a given basis. The perp relation, denoted ⊥, relates
points that are collinear on Q(6, q), i.e., their joining line is entirely contained in Q(6, q).
Recall that the Grassmannian coordinates of a line of PG(6, q) incident with the points
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We define the following point-line geometry H(q). The points of H(q) are all points
of Q(6, q). The lines of H(q) are the lines on Q(6, q) whose Grassmannian coordinates
(p01, p02, . . . , p56) satisfy the six relations p12 = p34, p56 = p03, p45 = p23, p01 = p36, p02 =
−p35 and p46 = −p13.

The geometry H(q) is a generalized hexagon (6-gon) of order q, i.e., the incidence graph
has diameter 6, girth 12 (the girth of a graph that is not a tree is the length of a smallest
cycle) and valency 1 + q.

The generalized hexagon H(q) is called the split Cayley hexagon. The above construc-
tion is due to Jacques Tits [8], see also Chapter 2 of [9].

Some further terminology

If we talk about distance between two elements — points and lines — of a generalized
hexagon, then we mean the distance in the incidence graph. The definition of a generalized
hexagon immediately implies that the maximal possible distance between two elements
is six, and in this case we call the two elements opposite. An easy counting shows that
there are q5 elements opposite any given element in a generalized hexagon of order q.

Two points at distance 2 from each other will be called collinear ; two lines at distance
2 from each other will be called concurrent.

A spread of a generalized hexagon of order q is a set of 1 + q3 mutually opposite lines.
It then follows that every line of the generalized hexagon is either a member of the spread,
or is concurrent with a unique member of the spread (see 7.2.3 of [9]).

Let L and M be two opposite lines in a generalized hexagon, and let Υ be the set
of all points that are at distance 3 from both L and M . Suppose that there are 1 + q
lines at distance 3 from every element of Υ. Then we say that the generalized hexagon
satisfies the regulus condition (see [5]) or that it is distance-3 regular (see [9]). In such a
case we call the set of 1 + q lines at distance 3 from every member of Υ a regulus. The
split Cayley hexagon H(q) is distance-3 regular. Note also that a regulus in H(q) is a set
of skew lines of Q(6, q) in a 3-dimensional subspace; hence it is the set of generators of a
hyperbolic (or “ruled”) quadric isomorphic to Q+(3, q). Also, a line of Q(6, q) that is not
a line of H(q) will be called an ideal line of H(q).

A generalized hexagon is an example of a partial linear space, i.e., a point-line geometry
∆ with the property that two distinct points are incident with at most one line. The
point graph of ∆ is the graph with vertices the points of ∆ and edges are pairs of collinear
points. A strongly regular graph with parameters (v, k, λ, µ) is a graph with v vertices,
such that every vertex is adjacent to exactly k vertices, every edge is contained in exactly
λ triangles, and every two nonadjacent vertices have exactly µ common neighbors. A
({0, α}-) semi-partial geometry is a partial linear space with strongly regular point graph
and such that there exist constants s, t, α, where 1+s is the number of points on any line,
1 + t is the number of lines through any point, and for any non-incident point-line pair
(x, L), there are exactly either 0 or α lines through x concurrent with L. Semi-partial
geometries have been introduced by Debroey and Thas [3] as a common generalization of
partial geometries (introduced by Bose [1]; these are the semi-partial geometries where 0
does not occur in the above situation for (x, L)) and partial quadrangles (introduced by
Cameron [2]; these are the semi-partial geometries with α = 1).
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3 Constructions

Consider the classical hexagon H(q) in its representation on the quadric Q(6, q) in the
projective space PG(6, q). Take a hyperplane of PG(6, q) intersecting the quadric Q(6, q)
in an elliptic quadric Q−(5, q) (such a hyperplane will be called elliptic). It is well known
that the set of lines of H(q) contained in the elliptic hyperplane forms a spread of H(q).
This spread is called Hermitian. This construction is due to Thas [6]. It easily follows that
the regulus determined by two arbitrary lines of a Hermitian spread is entirely contained
in the spread, which is a well known straightforward property.

We will define a strongly regular graph whose vertices are all these Hermitian spreads
(or equivalently all the elliptic hyperplanes). First we need two lemmas.

Lemma 1. Two hermitian spreads of a classical hexagon H(q) meet in either one line or
in a regulus.

Proof. Two Hermitian spreads are determined by two elliptic hyperplanes, which meet
in a 4-space W . We regard W as a hyperplane in one of the elliptic hyperplanes, say
H. We note that the hermitian spread S in H also defines a spread of the generalized
quadrangle Q−(5, q) obtained by intersecting Q(6, q) with H. Now, the 4-space W can
either be tangent to the quadric Q−(5, q) (say, in the point x), or meet it in a Q(4, q).
In the first case, there is clearly exactly one line of the spread S of Q−(5, q) contained in
W (and it is the unique line of the spread through x). Consequently the spreads meet
in a unique line. In the second case, we show that there are exactly q + 1 lines of S in
Q(4, q). Indeed, each line of S that is not contained in Q(4, q) meets Q(4, q) in a unique
point, and different such lines give rise to different such points. Since Q(4, q) has exactly
1 + q + q2 + q3 points, it is easy to calculate that Q(4, q) must contain exactly q + 1
elements of S. All these must be contained in a regulus, as the regulus determined by
any two members of S is contained in S and the regulus determined by two elements of
S in a Q(4, q) is entirely contained in this Q(4, q).

Lemma 2. (a) Let H1, H2, and H3 be three distinct elliptic hyperplanes and let S1, S2,
and S3 be the respective Hermitian spreads. If S1 and S2 meet in some set S which is
either a line or a regulus, and S2 meets S3 in the same set S, then S1 and S3 meet also
exactly in S.

(b) The set of Hermitian spreads containing a given line is partitioned into 1
2q(q − 1)

classes of q2 spreads mutually intersecting in exactly that line (we will call each such class
of spreads a pencil).

(c) Given a pencil P through the line L, every line opposite L is contained in exactly
one spread of P .

(d) There are exactly 1
2q(q − 1) Hermitian spreads containing a given regulus.

Proof. (a) This follows directly from the previous lemma if S is a regulus.
Now suppose that S is a line. Then H1 ∩ H2 ∩ Q(6, q) is a cone with vertex x12 in

the 4-space W12 = H1 ∩H2. Similarly, H2 ∩H3 ∩ Q(6, q) is a cone with vertex x23 in the
4-space W23 = H2 ∩ H3. The space W12 contains all lines of H1 ∩ Q(6, q) through x12.
Suppose they are in H3. Then, since they are also in H2, they should be in W23 ∩Q(6, q).
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Hence H1 ∩H3 does not contain any line of Q(6, q) different from S through x12, unless
x12 = x23 (but then clearly H1 ∩H2 = H2 ∩H3 = H1 ∩H3 and the result follows). Hence,
if x12 &= x23, then H1 ∩H3 ∩ Q(6, q) must also be a cone, since a nondegenerate quadric
Q(4, q) has q + 1 lines through each point. The first part of the statement follows.

(b) Let S be a line of H(q). The relation “. . . is equal to. . . , or, . . . meets . . . in exactly
S ” is by the above an equivalence relation in the set of Hermitian spreads containing S.
Let S be a Hermitian spread containing S, with corresponding hyperplane H, and let W
be a 4-space of H containing S and meeting Q(6, q) in a degenerate quadric. Then each
elliptic hyperplane distinct from H, but through W defines a spread which meets S in
precisely S. There are q + 1 choices for W . For a given W , there are q + 1 hyperplanes
through W from which we must remove H itself and the tangent hyperplane through W .
Notice that every remaining hyperplane H ′ is elliptic (from the structure of the tangent
hyperplane W of H ′ to the quadric Q(6, q)∩H ′). Hence there are (q− 1)(q + 1) = q2 − 1
other Hermitian spreads in the same equivalence class as S.

Counting in two ways the number of pairs (S, L), where S is a Hermitian spread of
H(q) and L a line contained in S, we can calculate that there are precisely 1

2q
3(q − 1)

Hermitian spreads through L. Whence the assertion.
(c) It is well known that there are q5 lines opposite a given line L in H(q). Each of

the q2 spreads in P contains q3 lines opposite to L and no line opposite L can be in two
of these spreads since they intersect exactly in L. Hence the result.

(d) Consider a regulus R and two lines L1 and L2 of R. ¿From (c) we know that
in each pencil of spreads through L1 there is exactly one spread containing L2. As the
regulus determined by any two members of a spread is contained in that spread, these
1
2q(q − 1) spreads all contain R. On the other hand, every spread containing R must be
in one of the q2 pencils through L1, so we have got all of them.

Theorem 3. Let Γ(q) be the graph whose vertices are all the Hermitian spreads (or
equivalently all the elliptic hyperplanes) of a classical hexagon H(q) and such that two
vertices are adjacent if and only if the spreads meet in a unique line (equivalently the
elliptic hyperplanes meet in a tangent 4-space to the quadric). Then Γ(q) is a strongly

regular graph with parameters ( q3(q3−1)
2 , (q2 − 1)(q3 + 1), 2q4 − q3 + q2 − 2, 2q2(q2 − 1)).

Proof. It is well-known that there are q3(q3−1)
2 hyperplanes meeting Q(6, q) in an elliptic

quadric, hence the number of vertices. The degree of the graph follows easily from Lemma
2 (b).

Take two spreads S1 and S2 meeting in a line L. By Lemma 2 (b), there are q2 − 2
other spreads meeting both S1 and S2 in that same line L. We now need to count the
number of spreads meeting S1 and S2 in distinct lines.

Take a line L1 &= L of S1 and the pencil P1 of spreads through L1 meeting S1 in only
L1, or being equal to S1. First notice that there is one line of S2 at distance 2 from L1 (by
the definition of spread of H(q)) and q2 at distance 4; these lines cannot be in a spread
with L1. So there are exactly q3 − q2 lines of S2 opposite L1. By Lemma 2 (c), each of
them is in exactly one spread of P1. Among the lines of S2 opposite L1, one is the line L
itself, k are contained in a spread meeting S2 in a line, and (q2−1−k)(q+1) are contained
in a spread meeting S2 in a regulus. This gives us an equation that yields k = 2q − 1.
Since there are q3 choices for L1, we get λ = q2 − 2 + q3(2q − 1).
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Now take two spreads S1 and S2 meeting in a regulus R. By Lemma 2 (a), there is
no spread meeting both S1 and S2 in a line of the regulus. The same type of counting
argument as above shows that there are 2q spreads through a given line of S1 not on R
and meeting S2 in a single line. Hence µ = 2q(q3 − q).

Since these counts are independent from the choice of spreads, Γ(q) is strongly regular.

Let us now define some families of partial linear spaces admitting Γ(q) or its comple-
ment as collinearity graph. The point set will always be the set of Hermitian spreads of
H(q) (or, equivalently, of elliptic hyperplanes of PG(6, q)).

Family 1. Blocks are the sets of q elliptic hyperplanes containing a fixed degenerate
elliptic 4-space. This partial linear space will be denoted by Γ1(q). Here q > 2, otherwise
we obtain the graph Γ(q) itself.

Family 2. Blocks are the pencils of q2 spreads containing a fixed line of the hexagon and
meeting mutually in exactly that line. This partial linear space will be denoted by Γ2(q).
Here q ≥ 2.

Family 3. Blocks are the sets of elliptic hyperplanes containing a fixed Q(4, q) but not
containing the nucleus of Q(6, q) if q is even. Blocks have size q/2 if q is even and (q−1)/2
or (q+1)/2 (and both occur) if q is odd. This partial linear space will be denoted by Γ3(q).
Here q ≥ 5 (in fact, Γ3(4) is the complement of Γ(4)).

Family 4. Blocks are the sets of q(q−1)/2 spreads containing a fixed regulus. This partial
linear space will be denoted by Γ4(q). Here, q > 2.

For Families 2 and 4, the sizes of the blocks follow from Lemma 2. For Family 1,
among the q + 1 hyperplanes through a degenerate elliptic 4-space, one is the hyperplane
tangent to the quadric, and the other ones are all elliptic, which gives the block size.
For Family 3, we consider a nondegenerate 3-space W and the plane PG(2, q) skew to
W obtained by intersecting all hyperplanes tangent to Q(6, q) at a point of W ∩ Q(6, q).
Then PG(2, q) intersects Q(6, q) in a nondegenerate conic C; the 4-space spanned by an
arbitrary Q(4, q) on Q(6, q) containing W ∩ Q(6, q) intersects PG(2, q) in a point p off
C (distinct from the nucleus if q is even). The elliptic hyperplanes through Q(4, q) are
now those hyperplanes through W that intersect PG(2, q) in secants of C through p, or
in external lines of C through p (depending only on the choice of W and Q(4, q), but not
on the chosen elliptic hyperplane). The sizes of the blocks of the geometries of Family 3
follow now easily.

It is obvious by definition that these define partial linear spaces. Families 2 and 4 use
the hexagon structure, while Families 1 and 3 only use the orthogonal structure. Notice
that for q = 2, our graph Γ(q) is the complete graph, hence the partial linear space Γ2(2) is
actually a linear space, i.e. a partial linear space in which all points are pairwise collinear.

Family 2 has the extra property that each of them is a {0, 2q}-semi-partial geometry.
Indeed, consider a point and a non-incident block of the partial linear space, that is a
spread S and a pencil P of q2 spreads mutually intersecting in L (S not being one of
them). Either L is in the spread S and then S meets all the spreads of the pencil in a
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regulus, or L is not a line of S and then, by a counting argument similar to one we did
above, there are exactly 2q spreads of P meeting S in exactly one line.

This class of semi-partial geometries has been discovered before by Thas [7], but the
construction given here is somewhat simpler. On the other hand, Thas’ construction arises
from a more general method of constructing semi-partial geometries. Thas defines and
uses so-called SPG-reguli, which are solely designed to produce semi-partial geometries.
The generalized hexagon H(q) comes into his construction just because the properties of
the line set of this hexagon, as subset of the line set of the quadric Q(6, q), allow him
to prove that a certain object is an SPG-regulus. Our construction method yields other
families of geometries, since we focus on the particular strongly regular graph Γ(q). No
semi-partial geometries arise anymore.

4 Automorphism groups

The automorphism groups of the members of the Families 1 and 3 contain the automor-
phism group of Q(6, q); those of the members of Families 2 and 4 the automorphism group
of H(q). The question is now whether other automorphisms arise.

We will first deal with Family 2. We start with a lemma.

Lemma 4. Let S be a Hermitian spread in H(q), and let L be a line not belonging to S.
Then every regulus of lines in S every member of which is not opposite L contains the
unique spread element S of S concurrent with L.

Proof. Let R be a regulus consisting of lines of S not opposite L. Let Π be the set of
projections of the members of R onto L. Clearly, if |Π| = q + 1, then the intersection of
S and L belongs to Π, and so S ∈ R. Hence, if S /∈ R, then |Π| < q + 1, and so some
point x on L is the projection of two members M0, M1 of R. But now M0, M1 and S all
are at distance 3 from the point x. By the distance-3 regularity of H(q), and the fact that
the regulus determined by M0 and M1 is contained in S, we see that R is precisely that
regulus, and that it contains S.

The lemma is proved.

Theorem 5. The full collineation group of the semi-partial geometry Γ2(q) coincides with
the full collineation group of the corresponding generalized hexagon H(q), for every q ≥ 2.

Proof. We prove this assertion by reconstructing H(q) from the given semi-partial geome-
try Γ2(q).

We start by defining a relation ‖ on the set of blocks of Γ2(q). Let B1, B2 be two
blocks of Γ2(q). Then we call B1 and B2 parallel, denoted B1‖B2, if no point of B1 is
collinear with any point of B2, or if B1 = B2.

Suppose that each spread of Bi contains the line Li of H(q), i = 1, 2. Then we claim
that B1‖B2 if and only if L1 = L2. Indeed, if L1 = L2, then this is a direct consequence
of Lemma 2. Suppose now B1‖B2. If L1 &= L2, then there is a member S1 of B1 that
does not contain L2. It follows from the counting argument above (proving Γ2(q) is a
semi-partial geometry) that S1 is collinear to exactly 2q points of the block B2, and so B1
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and B2 cannot be parallel. The claim follows. It is now also clear that ‖ is an equivalence
relation.

The equivalence classes of the relation ‖ are now taken as lines of an incidence geometry
(the hexagon H(q) to be). It remains to define concurrency of lines in accordance with
H(q).

Let x be a point of Γ2(q), and let y be any point of Γ2(q) not collinear with x. Then
the set of 1 + q equivalence classes of ‖ corresponding with the blocks through x that
have no points collinear with y corresponds with a line regulus in H(q), more precisely
the regulus which is the intersection of the spreads corresponding to x and y. Also, the
set of 1 + q3 equivalence classes each with a representative containing some fixed point,
corresponds to a Hermitian spread in H(q). Notice that two lines are opposite if and only
if they are contained in a common Hermitian spread.

It now suffices to formulate concurrency of lines of H(q) in terms of Hermitian spreads
and reguli. Let L1 and L2 be two lines of H(q). Then we claim that L1 and L2 are
concurrent if and only if the following property is satisfied:

(*) If S is an arbitrary Hermitian spread containing L1, then every regulus consisting
only of lines of S which do not belong to a Hermitian spread that also contains L2,
contains L1.

If L1 and L2 are concurrent then (*) is satisfied by Lemma 4. Assume now that L1 and
L2 satisfy property (*) and let S be an arbitrary Hermitian spread containing L1. Then
L2 intersects one line L̃ of S and is at distance 4 from q2 lines of S. Let L′ be one of these
q2 lines. Then the regulus determined by L̃ and L′ is contained in S and contains only
lines not opposite to L2, hence it must contain L1 by (*). Therefore L1 is not opposite L2.
Suppose now that L1 is at distance 4 from L2. Let R be the regulus determined by L1

and L̃ and let L3 be a line at distance 4 from L2 not in R. Then the regulus determined
by L̃ and L3 is also contained in S and contains only lines not opposite to L2, hence it
must contain L1 by (*). This is a contradiction since a regulus is determined by any two
of its members, and so the regulus determined by L̃ and L3 is supposed to intersect R in
only one line. This proves that L1 must intersect L2.

The theorem is now proved.

We now deal with Family 1. Remember that we automatically assume q > 2, but we
have repeated it in the theorem below for clarity.

Theorem 6. The full collineation group of the partial linear space Γ1(q) coincides with
the full collineation group of the corresponding parabolic quadric Q(6, q), for every q > 2.

Proof. We prove this assertion by reconstructing Q(6, q) from the given partial linear
space Γ1(q).

We start by defining a relation † on the set of blocks of Γ1(q). Let B1, B2 be two
blocks of Γ1(q). Then we call B1 and B2 totally joined, denoted B1†B2, if B1 and B2 are
disjoint and every point of B1 is collinear with every point of B2. We claim that in this
case the cones C1 and C2 corresponding to B1 and B2 share their vertex. Call W1 and
W2 the 4-space of PG(6, q) containing C1 and C2, respectively, and let p1 and p2 be the
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vertex of the cone C1 and C2, respectively. Since the blocks are disjoint, W1 and W2 do
not generate an elliptic hyperplane of PG(6, q). There are two cases; either W1 and W2

generate a degenerate 5-space W , or they generate the whole space PG(6, q).
In the first case, W = 〈x⊥〉 and the perp of any point other than x in W cannot

contain a degenerate elliptic 4-space, hence x = p1 = p2 as desired.
In the second case, we have dim(W1 ∩ W2) = 2. Let H1 be an elliptic hyperplane

containing W1; that is, a point on B1 in Γ1(q). Then dim(H1 ∩ W2) = 3 and H1 meets
every elliptic hyperplane through W2 in a degenerate 4-space, by hypothesis. There are
three possibilities for the intersection of H1 and W2. It can either be (a) a nondegenerate
3-space, intersecting C2 in a Q−(3, q), (b) a simply degenerate 3-space, intersecting C2 in
a cone on p2 over Q(2, q), or (c) a doubly degenerate 3-space, intersecting C2 in a line
through p2 (by simply and doubly degenerate we mean that the intersection with Q(6, q)
is a cone with 0-dimensional and 1-dimensional kernel, respectively). In each case, the
hyperplanes through W2 (q of them elliptic and one degenerate) partition the set of points
of H1 \ W2. If we consider only the points of H1 that are on the quadric, this fact gives
us the following equalities.

(a) (q4 + q3 + q + 1)− (q2 + 1) = 1 · ((q3 + q2 + q + 1)− (q2 + 1)) + q((1 + q + q3)− (q2 + 1)),
(b) (q4 + q3 + q + 1)− (q2 + q + 1) = 1 · ((q3 + q + 1)− (q2 + q + 1)) + q((1 + q + q3)− (q2 + q + 1)),
(c) (q4 + q3 + q + 1)− (q + 1) = 1 · ((q3 + q + 1)− (q + 1)) + q((1 + q + q3)− (q + 1)).

Now, on the one hand, (a) and (b) are never satisfied (under the assumption q > 2
for (a)). On the other hand, (c) is always satisfied. Hence W2 meets H1 in a doubly
degenerate 3-space S. Let π = W1 ∩ W2 ⊂ S. If π does not contain p2, then take any
hyperplane H ′

1 through π containing W1 but not containing S. Then H ′
1 intersects W2

in a nondegenerate 3-space, and we are in case (a), a contradiction. So π does contain
p2. It can either contain the unique line of C2 in S or not. In the first case take again
any hyperplane H ′

1 through π containing W1 but not containing S. In the second case,
there exists a 3-space of W2 through π not tangent to C2 (because q ≥ 3 and there are
at most two such tangent 3-spaces). Then take H ′

1 generated by this 3-space and W1. In
both cases, H ′

1 intersects W2 in a simply degenerate 3-space and so we are in case (b), a
contradiction. This proves the claim.

Now define points of an incidence geometry S as being the equivalence classes of the
transitive closure of the relation †. We claim that this construction gives exactly the
points of Q(6, q).

Indeed, each block of Γ1(q) corresponds to an elliptic cone, and hence to a point of
Q(6, q), namely the vertex of that cone. If two blocks are in the same equivalence class,
then there exists a sequence of blocks of which consecutive pairs satisfy †. So all the cones
share the same vertex, by the claim above. Now suppose two blocks B1 and B2 correspond
to cones C1 and C2 that share their vertex, say x. Then either the corresponding 4-spaces
intersect in a doubly degenerate 3-space (meeting the quadric in a single line), and so
B1†B2, or the corresponding 4-spaces intersect in a simply degenerate 3-space (meeting
the quadric in a cone over Q(2, q)). In this last case we now show that there always exists
a third block B3 corresponding to a cone with vertex x such that B1†B3 and B3†B2.
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Indeed, projecting the tangent hyperplane at x to Q(6, q) from x, the cones C1 and C2

correspond to elliptic 3-dimensional quadrics E1 and E2, respectively, on a 4-dimensional
quadric Q(4, q), sharing a plane conic C. Let z be any point of E1 \E2, and consider the
tangent plane π1 at z to E1. This plane meets the space generated by E2 in a line L having
empty intersection with E2. Therefore there exists a tangent plane π2 to E2 containing
L. The space generated by π1 and π2 is a 3-space that meets Q(4, q) in an elliptic quadric
E3 (because it contains a point z such that the tangent plane to the intersection only
meets E3 in z). But the spaces generated by E1 and E3, respectively, meet in π1, and so
E1 ∩E3 = {z}. This means that the block B3 of Γ1(q) corresponding to the cone C3 over
E3 with vertex x is totally joined to B1. Similarly B2†B3. Hence B1 and B2 are in the
same equivalence class for the transitive closure of †. The claim is proved.

Let l be a line of the quadric and let T be the 4-space tangent at that line. Let D be a
3-space in T containing no singular point outside of l and let H be an elliptic hyperplane
containing D but not T . There are q + 1 4-spaces in H containing D and each of them
intersects Q(6, q) in an elliptic cone. These q + 1 elliptic cones have all distinct vertices,
otherwise there would be a point of l orthogonal to every point of PG(6, q). The blocks
of Γ1(q) corresponding to these 4-spaces are all concurrent, and they meet in the point
corresponding to H. Let H1 and H2 be two points on two of these blocks, that is, they are
elliptic hyperplanes containing distinct 4-spaces through D in H. Then H1 ∩H2 contains
D, and so this intersection can only meet the quadric in a cone over Q−(3, q), since the
tangent space at a line to Q(4, q) is a 2-space. Consequently, this pencil of q + 1 blocks is
such that any two points on these blocks are collinear. A set of q + 1 concurrent blocks
such that any two points on these blocks are collinear will be called a full star.

We define a line of the incidence geometry S as a set of 1 + q equivalence classes
each having a representative contained in a common full star. We just proved that the
points on a line of Q(6, q) have representatives of the corresponding equivalence classes
in a full star. To complete the proof, it is enough to show that two intersecting blocks
of Γ1(q) such that any two points on these blocks are collinear represent collinear points
of Q(6, q), because the collinearity graph of Q(6, q) determines Q(6, q) completely and
unambiguously (lines can be recovered by considering the maximal cliques of the graph
of common neighbors of two nonadjacent vertices; alternatively, lines arise as the sets
({a, b}⊥)⊥, for collinear points a, b).

Assume we have two such blocks B1 and B2. Since they intersect, the corresponding
degenerate 4-spaces W1 and W2 generate an elliptic hyperplane. If the corresponding
cones C1 and C2 share their vertex, then W1 and W2 generate a degenerate 5-space. So
the vertices of the cones are distinct. Assume they are non-collinear. Then W1 and
W2 meet in a nondegenerate 3-space intersecting the quadric in a Q−(3, q). Let H1 be
an elliptic hyperplane through W1 not containing W2. Then dim(H1 ∩ C2) = 3 and
H1 ∩ W2 = W1 ∩ W2. Moreover H1 meets every elliptic hyperplane through W2 in a
degenerate 4-space, by hypothesis, including the hyperplane containing W1 and W2. As
before, the hyperplanes through C2 (q of them elliptic and one degenerate) partition the
set of points of H1 \W2. If we consider only the points of H1 that are on the quadric, this
fact gives us the following equality:

(q4 + q3 + q + 1)− (q2 + 1) = 1 · ((q3 + q2 + q + 1)− (q2 + 1)) + q((1 + q + q3)− (q2 + 1)),
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which has no solution for q ≥ 3. Hence we proved that the vertices of C1 and C2 are
indeed collinear. This completes the proof.

We now turn to Family 4. Remember that we automatically assume q > 2 (by defini-
tion). But we repeat this restriction for clarity in the theorem below.

We state the crucial observation for Family 4 in a lemma.

Lemma 7. Let Γ4(q) be a member of Family 4, where the blocks have size q(q−1)/2. Let
x be any point of Γ4(q), corresponding to the spread S of H(q), and let B be any block of
Γ4(q) not incident with x, and corresponding to the regulus R of H(q). Denote by α(x, B)
the number of points incident with B and collinear with x. Then we have:

(i) If q is even, then α(x, B) ∈ { q(q−3)
2 −1, q(q−3)

2 +1, q(q−1)
2 −1}, and α(x, B) = q(q−1)

2 −1
if and only if |R ∩ S| = 1.

(ii) If q is odd, then α(x, B) ∈ { q(q−3)
2 − 1, q(q−3)

2 , q(q−3)
2 + 1, q(q−1)

2 − 1, q(q−1)
2 } (where the

first possibility of course does not occur for q = 3), and α(x, B) = q(q−1)
2 − 1 if and

only if |R ∩ S| = 1.

Proof. Since x is not incident with B, the regulus R is not contained in the spread S.
Hence R meets S in at most one line.

First suppose that R and S share a line M . Let R be any line of R \ {M}. The
pencil of spreads determined by M and S contains a unique spread S ′ through R, and
hence through R. No other spread of B can meet S in just M since this would imply by
Lemma 2(a) that the spread meets S ′ also just in M , a contradiction (they share all of
R). So in this case α(x, B) = q(q−1)

2 − 1.
Now suppose that R and S are disjoint (as set of lines of H(q)). Let D and H be the

subspaces of PG(6, q) generated by R and by S, respectively. Then D ∩H ∩Q(6, q) is an
irreducible conic C. Clearly, every ideal line of H(q) — recall it is a line of Q(6, q) that is
not a line of H(q)— contained in D has a unique point in common with C. Let T be the
set of 1 + q lines of S incident with some point of C. Let O be the set of points of H(q) at
distance three from each line of R. The set O is a conic on Q(6, q) the nucleus of which
coincides with the nucleus of Q(6, q) (if q even) , and it contains exactly the points whose
tangent space contains D. Finally, let n be the number of elements of T not incident with
a point of O. It is also the number of points of O not incident with a line of S.

Now let H ′ be any hyperplane of PG(6, q) containing D. Notice that each member of
S \ T is contained in exactly one hyperplane through D. Indeed, every element of S \ T
is disjoint from D, and so, together with D, generates an hyperplane. If H ′ is elliptic,
then it contains either 1 + q or exactly one elements of S, and all these elements are
opposite all members of R. Then, the elliptic hyperplanes through D contain in total
α(x, B) · (1 + q) + ( q(q−1)

2 − α(x, B)) = qα(x, B) + q(q−1)
2 lines of S. None of these lines

belong to T .
If H ′ is tangent, then the corresponding tangent point p belongs to O. If p is incident

with a line of S, then clearly H ′ cannot contain any other line of S (because it contains
only lines at distance 1 or 3 from p). If p is not incident with a line of S, the lines of
H(q) through p meet D in an ideal line l, which intersects the conic C in a unique point c.
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Suppose that one of these lines through p intersects an element of T in a point i distinct
from c. The point i is not on C and the line pi intersects one of the lines of R in j. Let
k be the point of l such that the line of R through k and the line of T through i meet
in a point of C. Since there are no triangles in H(q), the points j and k are distinct. We
see that there is a path of length 6 between j and k in H(q). But, j and k being on an
ideal line, we have j ⊥ k in Q(6, q) and so must they must be at distance 4 in H(q), a
contradiction. Hence, except the line through c, every line of H(q) through p meets a
unique element of S \ T . Since every line at distance ≤ 3 from p is in p⊥, the tangent
hyperplanes through D contain in total nq lines of S \ T .

If H ′ is hyperbolic, then it contains exactly the lines of a subhexagon of order (1, q).
This subhexagon contains two points p, p′ of O, and also all lines through the points in
p⊥ ∩D and p′⊥ ∩D. These two sets are ideal lines and thus contain two points of C (one
each). Hence H ′ contains exactly two lines of T , and so the regulus defined by these two
lines. Of course, there can be no more lines of S in H ′ as any regulus of S and every
additional line of S generate H. So H ′ contains exactly q− 1 lines of S \ T , and in total,
all hyperbolic hyperplanes through D contain (q − 1) q(q+1)

2 lines of S \ T .
If we add the foregoing numbers, then we obtain the identity

qα(x, B) +
q(q − 1)

2
+ nq + (q − 1)

q(q + 1)

2
= q3 − q,

hence

α(X, B) =
q(q − 1)

2
− n.

Now we determine n. Remark first that, if x ∈ O belongs to H, then the element of
S through x meets a line of R, and hence belongs to T . But now H meets O in 0, 1, 2 or
1 + q points (for q odd), or in 0 or 2 points (for q even; indeed, in this case H does not
contain the nucleus of Q(6, q), hence no tangent line to O is contained in H). So we have
n ∈ {0, q − 1, q, 1 + q} for q odd, and n ∈ {q − 1, 1 + q} for q even. Since in either case,
this implies α(x, B) &= q(q−1)

2 − 1, the lemma is proved.

Theorem 8. The full collineation group of the partial linear space Γ4(q) coincides with
the full collineation group of the corresponding generalized hexagon H(q), for every q > 2.

Proof. We define a second geometry Γ′
4(q) as follows. The point set of Γ′

4(q) is the point
set of Γ4(q). The blocks are defined as follows. Consider a point x of Γ4(q). For each
point x′ not collinear with x, we define the block Bx,x′ as the set of points x′′ of Γ4(q)
not collinear with x and such that, for every block B of Γ4(q) incident with x satisfying
α(x′, B) = q(q−1)

2 −1, we have α(x′′, B) = q(q−1)
2 −1; also the point x itself belongs to Bx,x′

by definition. Notice that x′ ∈ Bx,x′ .
We intend to show that Γ′

4(q) is isomorphic to Γ2(q).
We interpret Bx,x′ in H(q). Let S and S ′ be the spreads corresponding to x and x′,

respectively. Then S and S ′ meet in a single line M of H(q). Let B be a block of Γ4(q)
incident with x and such that α(x′, B) = q(q−1)

2 − 1. By the foregoing lemma, we know
that the regulus R corresponding to B contains M (and lies in S). Conversely, every
regulus in H(q) containing M and being itself contained in S defines a block B of Γ4(q)
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with α(x′, B) = q(q−1)
2 −1. So, the spread corresponding to an element x′′ of Bx,x′ \{x, x′}

must, by the foregoing lemma, meet every regulus of S containing M in a single line. This
is only possible if that single line coincides each time with M . Conversely, if the spread
corresponding to a point y intersects S in exactly M , then it satisfies the condition, and so
y ∈ Bx,x′ . We now see that Bx,x′ is nothing else than a pencil of spreads. It follows easily
that Γ′

4(q) is isomorphic to Γ2(q). So the automorphism group of Γ4(q) is contained in the
automorphism group of Γ2(q), which is isomorphic to the automorphism group of H(q) by
Theorem 5. On the other hand, the automorphism group of Γ4(q) obviously contains the
automorphism group of H(q), hence the conclusion.

We now turn to Family 3. Here, q > 4 by definition.
We first state the crucial observation for Family 3 in a lemma. We treat the case q

even. The case q odd is similar. Afterwards, we prove two additional lemmas.

Lemma 9. Let Γ3(q) be a member of Family 3, where the blocks have size q/2. Let x be
any point of Γ3(q), corresponding to the elliptic hyperplane H of PG(6, q), and let B be
any block of Γ3(q) not incident with x, and corresponding to the nondegenerate 4-space D
of PG(6, q). Denote by α(x, B) the number of points incident with B and collinear with
x. Then α(x, B) ∈ {q/2, q/2 − 1, q/2 − 2}, and if the 3-space H ∩D is degenerate, then
α(x, B) = q/2− 1.

Proof. First suppose that D∩H is degenerate, i.e., E := D∩H meets Q(6, q) in a cone K
over a conic (E cannot be doubly degenerate — recall that doubly degenerate means that
the cone has a line as vertex — since D ∩ Q(6, q) does not contain planes). Then there
is a unique (elliptic degenerate) 4-space D′ ⊆ H tangent to H ∩ Q(6, q) with E ⊆ D′.
All other 4-spaces in H containing E are nondegenerate. The hyperplane spanned by D
and D′ is elliptic, as it contains the elliptic degenerate space D′. As all other hyperplanes
through D meet H in a nondegenerate space, we see that α(x, B) = q/2− 1.

Now suppose that D ∩ H is nondegenerate hyperbolic. As a hyperbolic quadric in
projective 3-space can not be contained in any degenerate elliptic quadric in projective
4-space, we see that α(x, B) = q/2.

Finally suppose that D∩H is nondegenerate elliptic. Then, by a counting argument, H
contains exactly two 4-spaces D1 and D2 that intersect the quadric Q(6, q) in elliptic cones
with base in D ∩H, and with vertex p1, p2, respectively, in H. Every elliptic hyperplane
through D that does not contain p1 nor p2 correspond to a point collinear with x in
Γ3(q). If the hyperplane generated by D and p1 (or similarly p2) is elliptic, then the
corresponding point is not collinear to x in Γ3(q)). Remark that the tangent hyperplanes
to Q(6, q) at p1 and p2 cannot both contain D, otherwise the line D⊥ is contained in H
(which is not the case since the nucleus to Q(6, q) is not in D nor H). If one of the tangent
hyperplanes to Q(6, q) at p1 or p2 contains D, then we have α(x, B) = q/2− 1; otherwise
α(x, B) = q/2− 2.

We now prove a lemma about dual conics in a plane of even order. Note that the dual
nucleus of a dual conic is the line consisting of all points that are incident with precisely
one line of the dual conic. We will also call a point that is incident with exactly two lines
of the dual conic a secant point. Notice that all points on a line of the dual conic are
either secant or are on the dual nucleus line.

13



Lemma 10. Let O be a dual conic in PG(2, q), with q even and q ≥ 8. Let p1 be a secant
point, incident with the two lines L, L′ of O, and let p2 &= p1 be another secant point on
L. Then for at least max{4, q − 6} points x on L distinct from p1 and distinct from the
intersection of L with the nucleus line N of O, there exists a point x′ on L′, with x′p2 /∈ O
and x′ not on N , such that the line xx′ contains a secant point y with yp1 ∩ x′p2 again a
secant point.

Proof. Let O have equation A0A2 = A2
1, where [A0, A1, A2] are coordinates of lines in

PG(2, q). The point p1 can be chosen to have coordinates (0, 1, 0), while we can take for
the point p2 the coordinates (0, 1, 1), without loss of generality (indeed, the collineation
group fixing O, L and p1 acts transitively on the secant points of L distinct from p1 as a
cyclic group of order q − 1). Then L has coordinates [1, 0, 0]. Choose b ∈ GF(q) \ {0, 1}
arbitrarily, but such that b3 &= 1 and b3 &= b + 1. We remark that, if q > 8, then at least
q − 7 such numbers b exist; if q = 8, then x3 = 1 has a unique solution, but x3 = x + 1
has precisely 3 solutions, hence in this case exactly 3 such b can be found. Let x′ be the
point (b, 1, 0). Then x′p2 has coordinates [1, b, b] and is not a line of the dual conic. The
point z = (b2 + b3, 1 + b + b2, 1) is incident with x′p2 and is a secant point. Indeed, it is
incident with the two lines [1, b + 1, b2 + 1] and [1, b2, b4] of O (and these do not coincide
since b3 &= 1, hence b2 + b+1 &= 0). Now p1z, which has coordinates [1, 0, b2 + b3], contains
the secant point y = (b2 + b4, 1 + b + b3, 1 + b). This is indeed a secant point as it is
incident with the conic lines [1, 1 + b2, 1 + b4] and [b2 + 1, b3 + b2, b4]; these are different
because b3 &= b + 1. Now x′y has equation [b + 1, b + b2, b] and meets the line L in the
point x = (0, 1, b + 1), as one can easily verify. Varying b, and noting that also x = p2

almost trivially satisfies the conditions, the lemma follows.

The point x in the previous lemma will be said to be planarly spanned by p2 with
respect to p1.

This lemma now implies another version of itself.

Lemma 11. Let O be a dual conic in PG(2, q), with q even and q ≥ 8. Let p1 be a secant
point, incident with the two lines L, L′ of O, and let p2 &= p1 be another secant point on
L. Then for every point x on L distinct from p1 and distinct from the intersection of L
with the nucleus line N of O holds that either it is planarly spanned by p2 with respect to
p1, or there exists a point z on L distinct from p1 and distinct from the intersection of L
with N which is planarly spanned by p2 with respect to p1, such that x is planarly spanned
by z with respect to p1.

Proof. Clearly “x being planarly spanned by y” with respect to p1 is symmetric. Now
let x be arbitrary on L but distinct from p1 and distinct from the intersection of L with
N . The previous lemma implies readily that there is a point y on L which is planarly
spanned by both p2 and x, with respect to p1. The lemma now follows.

We can now prove our last main theorem. In the proof, we use the following notation.
Let p be any point and B any block of Γ3(q) not incident with p. Then we call the plane
span of p and B the linear span in Γ3(q) of the anti-flag {p, B}, and we denote it by
PlSp(p, B). We have chosen to avoid the notation 〈p, B〉 in order not to confuse with the
span of the duals of these elements as subsets of the underlying projective space.
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Theorem 12. The full collineation group of the partial linear space Γ3(q) coincides with
the full collineation group of the corresponding parabolic quadric Q(6, q), for every q > 4.

Proof. Our method of proof is to reconstruct from Γ3(q) the geometry Γ1(q), and then
appeal to Theorem 6.

We remark that, if we apply a duality d in the projective space PG(6, q), then the
points of Γ3(q) are points of that space, and blocks are formed by subsets of lines in that
space (for q odd, one can take as duality the polarity associated with Q(6, q) and then we
see that Γ3(q) is nothing else than the geometry of elliptic points and nonisotropic lines
with respect to Q(6, q)). We will denote by pd the image under the duality of the elliptic
hyperplane of PG(6, q) corresponding to the point p of Γ3(q), and by Bd the image of the
nondegenerate 4-space giving the block B of Γ3(q).

Let p1, p2 be two points that are not collinear in Γ3(q), then the set of points p of Γ3(q)
such that pd lie on the line (p1p2)d of the dual projective space forms precisely a block B̃
of the corresponding geometry Γ1(q) of Family 1.

We first treat the case q even. We select an arbitrary block B containing p2 and such
that α(p1, B) = q/2 − 2 (with notation as in Lemma 9). It is straightforward to verify
that such blocks exist in abundance. In the dual projective space, pd

1 is a point, and Bd

is a line. Let π be the projective plane containing pd
1 and Bd in the dual projective space.

Of course, B̃d is contained entirely in π. Now, π is the image under d of a nondegenerate
elliptic 3-dimensional projective subspace Π of PG(6, q) (with respect to Q(6, q)); this
follows from Lemma 9. The points of Γ3(q) whose image under d is in π can be identified
with the elliptic hyperplanes of PG(6, q) through Π, and the blocks of Γ3(q) whose image
under d is in π can be identified with the nondegenerate 4-spaces of PG(6, q) not containing
the nucleus of Q(6, q) but containing Π.

The tangent 4-spaces through Π form a conic in the residue of Π in PG(6, q). Within
this residue, the elliptic hyperplanes correspond to the lines that intersect the conic in
two points (because they contain two tangent 4-spaces), the hyperbolic hyperplanes to
the lines not intersecting the conic and tangent hyperplanes to tangent lines.

Therefore we see that there is a dual nondegenerate conic C in π, such that the points
of π which are image under d of a point of Γ3(q) are exactly the points lying on exactly
two lines of C (that is the secant points), and the lines of π which are image under d of a
block of Γ3(q) are all the lines of π different from those in C, and distinct from the dual
nucleus line N of C.

The image under d of the plane span PlSp(p1, B) is obviously contained in π, the
images of the points corresponding to some secant points to C inside π and the images of
the blocks corresponding to some lines not in C, and distinct from the dual nucleus line N
of C. Now notice that every point whose image under d is on (p1p2)d, is distinct from pd

2

and is planarly spanned by pd
2 with respect to pd

1 with a chosen x′d (with x′ not collinear
with p1 but collinear with p2 in Γ3(q)) can be geometrically recognized: consider the
points of Γ3(q) on the block x′p2, they are all collinear with p1 (unless it is p2 itself); for
each such point z consider the blocks through x′ that intersect the block p1z nontrivially;
all these blocks contain either no point different from x′ and not collinear in Γ3(q) with p1

(corresponds to the case where the image under d of the block meets the dual conic line
(p1p2)d in a point on the dual nucleus) or exactly one such point (because there are two

15



dual conic lines through p1 and all their points are secant points, except for the points
on the dual nucleus); the points in this last case are the points we are looking for. Add
p2, and you get the set of points that are planarly generated by p2 with respect to p1 and
using x′ as in Lemma 10.

We can now denote the unique point on B different from p2 and not collinear with p1

in Γ3(q) by x′, and we can look at the set of points that are planarly generated by p2 with
respect to p1 and using x′. Varying the block B through p2 such that α(p1, B) = q/2− 2,
we thus obtain a set P ∗ of points. Playing the same game with every point of P ∗ in the
role of p2, Lemma 11 implies that the union of sets thus obtained is precisely B̃ \ {p1}.
We have reconstructed in a geometric way the blocks of Γ1(q) and the theorem follows.

Now let q be odd. Here the duality d can easily be visualized as the polarity corre-
sponding to the quadric, that is the quadric is the set of absolute points of the polarity. If
p is a point of Γ3(q), then pd is an elliptic point of PG(6, q). If B is a block of Γ3(q), then
Bd is a line of PG(6, q) intersecting the quadric in 0 points (in which case |B| = (q +1)/2)
or in 2 points (in which case |B| = (q− 1)/2). Since p1 and p2 are non-collinear in Γ3(q),
the points pd

1 and pd
2 must be on a tangent line to the quadric. Our goal is to recover this

tangent line from the points and blocks of Γ3(q).
We select a block B of size (q+1)/2 through p2 such that p1 is collinear to all but

one points of this line. Then it is easily seen that Bd and pd
1 span in PG(6, q) a plane

π meeting the quadric in a single point, say c. We claim that the image of the plane
span PlSp(p1, B) under d contains all elliptic points in π, and thus the maximal coclique
containing p1 and p2 in PlSp(p1, B) corresponds exactly to the tangent line we are looking
for. Hence we will have reconstructed in a geometric way the blocks of Γ1(q) and the
theorem follows.

We now prove the claim.
In this paragraph all points considered are points of Γ3(q) whose image under d is

in π. We will say that the point x spans the point y (not on B) if y ∈ PlSp(x, B). In
that case PlSp(y, B) ⊆ PlSp(x, B). Let y′ be a point on a common block with y and
a point of B, such that y′d is on the tangent line cxd. By construction, PlSp(y, B) =
PlSp(y′, B). Taking in π an homology with axis Bd and center c mapping xd to y′d, we
see that PlSp(x, B) and PlSp(y′, B) = PlSp(y, B) contain the same number of points, and
so PlSp(y, B) = PlSp(x, B). Hence there exist points x1, x2, . . . , xn such that the sets
PlSp(xi, B)d (i = 1, . . . , n) partition the set of elliptic points of π not on Bd. Without
loss of generality, we can assume that the xi’s are such that xd

i is on the tangent line cpd
1.

Let T be an elliptic tangent line of π, that is a line through c in π containing only
elliptic points except for c. By projecting Bd from the different xd

i ’s, we see that T contains
at least (q − 1)/2 points from each PlSp(xi, B)d. Suppose there exists an xi for which
T contains exactly (q − 1)/2 points of PlSp(xi, B)d. By projecting one elliptic tangent
onto another from any elliptic point in PlSp(xi, B)d, we see that the number of points
of PlSp(xi, B)d on any of the elliptic tangent lines is (q − 1)/2. We build a point-line
geometry with point set the elliptic points of PlSp(xi, B)d and c, and as lines the images
of the blocks in PlSp(xi, B) and the intersections of PlSp(xi, B)d with the elliptic tangent
lines, each adjoined with c. Then we obtain a geometry where each line has (q + 1)/2
points, each pair of points is on a line, and each point is on (q + 1)/2 lines. Hence this is
a projective plane of order (q− 1)/2, a subplane of π. Since a subplane of a Desarguesian
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plane must be Desarguesian of the same characteristic, (q − 1)/2 must be a power of the
same prime that q is a power of, a contradiction. Therefore T contains at least (q + 1)/2
points from each PlSp(xi, B)d. But since T contains exactly q elliptic points, there cannot
be two distinct spans, and so PlSp(p1, B)d contains all elliptic points in π.

This completes the proof of the theorem.

References

[1] R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs,
Pacific J. Math. 13 (1963), 389–419.

[2] P. J. Cameron, Partial quadrangles, Quart. J. Math. Oxford (3) 25 (1974), 1–13.

[3] I. Debroey and J. A. Thas, on semipartial geometries, J. Combin. Theory Ser. A 25
(1978), 242–250.

[4] A. Devillers, A classification of finite partial linear spaces with a primitive rank 3
automorphism group of almost simple type, to appear in Innovations in Incidence
Geometry.

[5] M. A. Ronan, A geometric characterization of the Moufang hexagons, Invent. Math.
57 (1980), 227–262.

[6] J. A. Thas, Polar spaces, generalized hexagons and perfect codes, J. Combin. Theory
Ser. A 29 (1980), 87–93.

[7] J. A. Thas, SPG-reguli and semipartial geometries, Adv. Geom. 1 (2001), 229–244.
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