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Abstract

In this paper, we consider any two split Cayley generalized hexagons rep-
resented on the parabolic quadric Q(6, q) and determine their common point
reguli. As an application of our results we investigate which 1-systems of
Q(6, 3) that are a derivation of the exceptional spread of H(3), see [4], are a
spread of some hexagon on this quadric.
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1 Introduction

From [6] we know that the intersection of the line sets of two generalized hexagons
Γ ∼= H(q) and Γ′ ∼= H(q) on the same quadric Q(6, q) is a dual ovoidal subspace in
both these hexagons.

These dual ovoidal subspaces were introduced by Brouns and Van Maldeghem in
[1] in order to characterize the finite generalized hexagon H(q) by means of certain
regularity conditions. It follows from [1] that a dual ovoidal subspace, and hence
the line intersection of two split Cayley generalized hexagons naturally embedded in
the same Q(6, q), is either the set of lines at distance at most 3 from a given point,
or the set of lines of an ideal non-thick subhexagon, or a distance-3 spread.

From [6] we know that, given a weak subhexagon of order (1, q), a distance-3 spread,
and a line set at distance at most 3 from a given point, there are respectively q− 1,
q + 1 and q split Cayley generalized hexagons naturally embedded in Q(6, q) that
contain this line set as a subset.

In [5] the authors showed that for a given split Cayley generalized hexagon naturally
embedded in Q(6, q), q odd, there exists a suitable choice of a second hexagon
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such that their common point reguli define an incidence structure which is either a
subdesign of (q ≡ 2 mod 3) or isomorphic to (q %≡ 2 mod 3) the Hölz design.

In the present paper we study, inspired by the results of [6] and [5], the common
point reguli of two split Cayley generalized hexagons naturally embedded in the
same Q(6, q).

The motivation for this study is two-fold. Firstly, the geometric information can be
used in some specific situation to prove other results, for instance on spreads. We
demonstrate this in the present paper by an application to the exceptional spreads of
H(3). We determine by hand all isomorphism classes of 1-systems of Q(6, 3) obtained
by a derivation of this exceptional spread.

Secondly, the action of the stabilizer of a dual ovoidal subspace S of some H(q) on
Q(6, q) inside the full group of collineations of Q(6, q) does not always act primitively
on the set of generalized hexagons isomorphic to H(q) naturally embedded on Q(6, q)
and containing S. Indeed, in case S is related to a non-thick ideal subhexagon or
a distance-3 spread, this stabilizer is roughly a dihedral group in its natural action,
and so the generalized hexagons through S are paired up in a group-theoretical way.
This pairing cannot be explained geometrically by looking at the intersections of
line sets, but it can be recovered by considering the common point reguli. Hence,
our geometric study provides a finer subdivision which explains the action of certain
subgroups.

2 Preliminaries

2.1 Generalized hexagons and the split Cayley hexagon

A generalized hexagon Γ (of order (s, t)) is a point-line geometry the incidence graph
of which has diameter 6 and girth 12 (and every line is incident with s + 1 points;
every point incident with t + 1 lines). Note that, if P is the point set and L is the
line set of Γ, then the incidence graph is the (bipartite) graph with set of vertices
P ∪L and adjacency given by incidence. The definition implies that, given any two
elements a, b of P ∪ L, either these elements are at distance 6 from one another in
the incidence graph, in which case we call them opposite, or there exists a unique
shortest path from a to b. For two points a and b at distance four, there exists a
unique point collinear with both, denoted by a!"b. Finally, if two elements a and
b are at distance k < 6, we denote the unique element at distance 1 from a and at
distance k − 1 from b by projab, and call this the projection of b onto a.

In this paper we are mostly interested in the split Cayley hexagons H(q). The
standard model H of this hexagon, the construction of which is due to Tits [8], can
be defined as follows (see [8]; also [9]). Choose coordinates in the projective space
PG(6, q) in such a way that the points of Q(6, q) satisfy the equation X0X4+X1X5+
X2X6 = X2

3 , and let the points of H be all points of Q(6, q). The lines of H are the
lines on Q(6, q) whose Grassmannian coordinates (p01, p02, . . . , p56) satisfy the six
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relations p12 = p34, p56 = p03, p45 = p23, p01 = p36, p02 = −p35 and p46 = −p13. A
natural embedding of H(q) arises from the standard model by an automorphism of
the full automorphism group of Q(6, q).

If q is even, the polar space Q(6, q) is isomorphic to the symplectic polar space
W(5, q) (obtained by projection from the nucleus n of Q(6, q) – that is the intersection
of all tangent hyperplanes of Q(6, q) – onto some hyperplane not containing n).
This substantiality results in an embedding of H(q) in PG(5, q), where all lines of
H(q) are totally isotropic with respect to a certain symplectic polarity in PG(5, q)
(here n = (0, 0, 0, 1, 0, 0, 0) and choosing the hyperplane with equation X3 = 0, the
associated symplectic form is X0Y4 + X4Y0 + X1Y5 + X5Y1 + X2Y6 + X6Y2).

The generalized hexagon H(q) has the following property (see [9], 1.9.17 and 2.4.15).
Let x, y be two opposite points and let L, M be two opposite lines at distance 3 from
both x, y. All points at distance 3 from both L, M are at distance 3 from all lines at
distance 3 from both x, y. Hence we obtain a setR(x, y) of q+1 points every member
of which is at distance 3 from any member of a set R(L, M) of q + 1 lines. We call
R(x, y) a point regulus, and R(L, M) a line regulus. Any regulus is determined by
two of its elements. The two above reguli are said to be complementary, i.e. every
element of one regulus is at distance 3 from every element of the other regulus.
Every regulus has a unique complementary regulus.

Now consider again our model H. We will call a line of the quadric Q(6, q) which
does not belong to the hexagon H an ideal line. If L is an ideal line, then there is
a unique point x collinear to every point of L. This point will be called the focus
of L. On the quadric Q(6, q), every line regulus constitutes a hyperbolic quadric
isomorphic to Q+(3, q). Hence there is a unique opposite regulus, which is a set of
q + 1 ideal lines that intersect every line of the given regulus in a unique point. If q
is odd, the quadric Q(6, q) is associated with a unique non-degenerate polarity ρ of
PG(6, q) and the image under the polarity of the 3-space generated by a line regulus
is a plane which meets Q(6, q) exactly in the complementary point regulus. Point
reguli of H are thus simply (some) conics on Q(6, q). The plane in which all points
of a point regulus R are contained will be referred to as the regulus plane αR.

We now introduce some more notation and terminology.

Let H be a hyperplane in PG(6, q). Then exactly one of the following cases occurs.

(Tan) The points of H(q) in H are the points not opposite a given point x of H(q);
in fact, H is the tangent hyperplane of Q(6, q) at x. We shall denote this
hyperplane as TxQ(6, q)

(Sub) The lines of H(q) in H are the lines of a subhexagon of H(q) of order (1, q), the
points of which are those points of H(q) that are incident with exactly q + 1
lines of H(q) lying in H. This subhexagon is uniquely determined by any two
opposite points x, y it contains and will be denoted by Γ(x, y). It contains
exactly 2(q2 + q + 1) points and if collinearity is called adjacency, then it can
be viewed as the incidence graph of the Desarguesian projective plane PG(2, q)
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of order q. The lines of Γ(x, y) can be identified with the incident point-line
pairs of that projective plane. We denote Γ(x, y) by 2PG(2, q) and call it the
double of PG(2, q). The q2 + q +1 points of Γ(x, y) belonging to the same type
of elements of PG(2, q), points or lines, are the points of a projective plane
in PG(6, q). Hence H ∩ Q(6, q) contains two projective planes Π+ and Π−,
the points of which are precisely the points of Γ(x, y), and which we call the
hexagon twin planes of H. In this case, we call H a hyperbolic hyperplane.
In fact, a hyperbolic hyperplane is a hyperplane that intersects Q(6, q) in a
non-degenerate hyperbolic quadric.

(Spr) The lines of H(q) in H are the lines of a distance-3 spread, called a Hermitian
or classical distance-3 spread of H(q). In this case, we call H an elliptic
hyperplane (as it intersects Q(6, q) in an elliptic quadric).

An ovoidal subspace in a generalized hexagon is a set of points O with the property
that every point of that hexagon outside O is collinear with exactly one point of O.
Dually, one defines a dual ovoidal subspace.

An ovoid, short for distance-3 ovoid, of H(q) is a set of q3 + 1 opposite points
(Proposition 7.2.3 in [9]). Dually one defines a spread.

2.2 m-Systems

The notion of an m-systems on finite quadrics (and, more generally, on finite polar
spaces) has been introduced by Shult and Thas [7]. The theory of m-systems has a
lot of applications. Here, we only need the notion of a 1-system of Q(6, q). For the
general definition, motivation and applications, we refer to [7].

A 1-system M of Q(6, q) is a set of q3 + 1 lines such that any plane of Q(6, q)
containing an element of M does not intersect any other element of M.

It is well known and easy to verify that, if a 1-system M contains a regulus R
of lines (a set of q + 1 lines of a hyperbolic quadric Q+(3, q) entirely contained in
Q(6, q)), then we can derive M at that regulus — namely, we replace all elements
of R by the elements of the opposite regulus (the other set of q + 1 generators of
Q+(3, q)) — and obtain a 1-system. If we do so at a number of disjoint reguli, then
we call the obtained 1-system a derivation of the original one.

2.3 Main Result

In this paper we shall prove the following theorem:

Main Result. Let H1 and H2 be two models of H(q) isomorphic to the model H
as defined above. Denote by S, respectively Ω, the set of common lines, respectively
point reguli of H1 and H2. For q odd, we have one of following situations:

(i) S is the set of lines at distance at most 3 from a given point and |Ω| = q3.
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(ii) S is the set of lines of an ideal subhexagon and |Ω| = q2(q2 + q + 1) or |Ω| =
q3(q2 + q + 1).

(iii) S is a distance-3 spread and |Ω| = q2(q2− q +1) or |Ω| = q2(q2− q +1)(q +2).

Furthermore, in both situations (ii) and (iii) there exists, given H1 and S, a unique
hexagon H2 such that Ω contains the maximal number of point reguli.

If, on the other hand, q is even then H1 and H2 share all their point reguli.

In the next section we determine the common point reguli of two distinct split Cayley
hexagons embedded into the parabolic quadric Q(6, q) and prove the main result.
In Section 4 we give an application of this result.

3 Proof of the Main Result

Let us start by proving that for even q any two hexagons embedded on the parabolic
quadric Q(6, q) share all point reguli. This is equivalent with saying that in W(5, q)
all point reguli are the same. In this representation of H(q) in PG(5, q) a point
regulus is the perp of a non-degenerate 3-space determined by the associated line
regulus. Hence point reguli are lines only dependent on W(5, q).

From now on we shall be working with odd q.

Let H1 and H2 be two models of H(q) as described in Section 2.1 and choose coor-
dinates of Q(6, q) such that H1 is given in exactly the coordinates as in Section 2.1.
Denote by S the intersection of the line sets and by Ω the set of all common point
reguli of these two hexagons. From [6] we know that the subspace generated by S,
say ΠS, is a hyperplane of PG(6, q).

Remember from the introduction that S has one of three types, say 0, + or −,
corresponding to S being a set of lines at distance at most 3 from a given point, of
an ideal non-thick subhexagon or of a distance-3 spread, respectively.

Lemma 1 If R is an element of Ω, then either

(a) the complement of R belongs to S or

(b) the complement of R in H1 is opposite the one in H2. Furthermore, every point
of R is incident with a unique line of S.

Hence Ω is the union of two sets Ω1 and Ω2, which correspond to the sets of respective
type (a) and type (b) point reguli.
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Proof Consider αR the regulus plane of R. The polar image of αR, say Υ, is a
3-space which has to contain the complementary line regulus of R both in H1 and in
H2. Hence these either coincide or are opposite, proving the first part of the lemma.
Suppose they are opposite and Mi and Li, i ∈ {0, . . . , q} denote the lines of Υ in H1

and H2 respectively.

Take a point p of R. Inside H1, p is collinear with all points of a certain ideal
line Li, i ∈ {0, . . . , q}. In the same way, p is collinear with all points of say Mj,
j ∈ {0, . . . , q}, this time inside H2. Hence prij, with Li I rij I Mj, is the unique line
on p belonging to S. !

Note. Lemma 2(b) in fact states that if R is of type (b) then all of its points belong
to ΠS, the hyperplane generated by all lines of S.

Lemma 2 If S has type 0 then situation (b) of Lemma 1 does not occur.

Proof Let x be the unique point that is at distance at most 3 from every line of
S. Suppose by way of contradiction that R is a point regulus which is completely
contained in TxQ(6, q). As R belongs to TxQ(6, q), which is the perp of x, we
immediately find that x belongs to the three-space generated by Rc. Hence x is
incident with one of the lines, say L, of Rc. By definition of S we know that L
belongs to both hexagons. However, the complement of R in H1 should be opposite
the one determined by H2, a contradiction as L ∈ Rc.

!

To prove part (i) of the Main Result it now suffices to show that for given H1 and
S (the lines of H1 in TxQ(6, q) for some point x ∈ Q(6, q)) the q other hexagons
intersecting H1 in S share q3 point reguli with H1. Say R belongs to Ω1 and denote
its complement by Rc. Since all lines of Rc belong to S it is easy to see that R has
to have x as one of its points (as Rc does not contain an element of Γ1(x), it belongs
to Γ3(x), so x ∈ R). Conversely, every point regulus on x has a complement which,
by definition, consists of q +1 lines at distance 3 from x. In other words, these q +1
lines belong to S and Ω1 is the set of all point reguli on x. Conclusion: if S is the
line set at distance at most 3 from a point then |Ω| = q3.

In order to prove part (ii) of the Main Result we suppose that S has type +. Denote
by Ω the set of point reguli of H1 that are also point reguli of H2. Clearly, Ω contains
the subset Ω1 of all point reguli complementary to the q2(q2 + q + 1) line reguli in
S.

Without loss of generality, we may assume ΠS : X3 = 0 to be the hyperplane which
determines all lines of S and denote the hexagon twin planes inside ΠS by Π+ and
Π−. With this hyperplane we shall now determine a unique H2 through S in the
exact same way as described in [5].

Consider the point p = Πρ
S with coordinates (0, 0, 0, 1, 0, 0, 0) in PG(6, q). Every line

through p and a point x of ΠS ∩ Q(6, q) intersects Q(6, q) only in x, as x is the
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radical of that tangent line. Any other line through p and a point y on the quadric
intersects Q(6, q) in a second point y′. The involution g interchanging y and y′ and
fixing all points of ΠS extends to an involutive collineation of PG(6, q), which we
also denote by g. It is actually easy to see that g does not preserve H1. Indeed, the
set of lines of H1 through a point x of (ΠS ∩ Q(6, q)) \ (Π+ ∪ Π−) fill up a plane of
Q(6, q), and this plane is fixed under g only if it contains p or is contained in ΠS,
clearly a contradiction.

Let H2 be the image of H1 under g, and note that H1 %= H2. Henceforth, we shall
use the convention of writing a point regulus of Hi with a subindex i, i = 1, 2. So
the point regulus determined by two points a, b in Hi is denoted by Ri(a, b). Since
line reguli are determined by Q(6, q), such a notation for line reguli is superfluous.

We define the following set Ω3 of point reguli common to H1 and H2. Consider two
arbitrary but opposite lines L and M of S, let a be any point on L\ (Π+ ∪ Π−), and
denote by Θ the 3-space generated by L and M . Let b be the point on M collinear
with a on Q(6, q). Then b is at distance 4 from a in the incidence graph of both
H1 and H2. Put r = a!"b (inside H1) and denote rg by r′. Obviously r′a and r′b
are lines of H2, implying r′ belongs to Θρ. Hence both r and r′ belong to the point
regulus in both H1 and H2 complementary to R(L, M). Therefore r′ is collinear in
H1 with two points a′ and b′ (obviously distinct from a and b, respectively) on L and
M respectively. Since g is an involution, the lines ra′ and rb′ of PG(6, q) are lines
of H2. The point regulus R1(a, b′) is complementary to R(rb, r′a′) and the point
regulus R2(a, b′) is complementary to R(ra′, r′b). Since rb and r′a′ generate the
same 3-space Υ in PG(6, q) as ra′ and r′b, we conclude that R1(a, b′) = R2(a, b′).
Moreover, it is clear that Υ is invariant under g, and hence p ∈ Υ. This implies now
that R1(a, b′), which belongs to Υρ ⊆ pρ, is entirely contained in ΠS.

The set Ω3 consist of all point reguli R1(a, b′), for all such choices of L, M and a
(but a and b′ determine L and M uniquely, so there is no need to include L and M
in the notation). Remark that one can easily count the number of elements of Ω3

to be (q2 + q + 1)q2(q − 1).

Lemma 3 With the above notation, we have Ω3 = Ω2 and |Ω| = (q2 + q + 1)q3.

Proof From our discussion above we already have Ω3 ⊆ Ω2. Now suppose that
Ω3 %= Ω2 and let R be a point regulus of Ω2 \ Ω3. Let a and b be two points of R.
By Lemma 2 we know that both these points are incident with a unique line of S,
say La and Lb respectively. Denote projLa

b and projLb
a by a′ and b′ respectively

and let x and x′ denote a!"b′ and a′!"b respectively. We shall show that x′ has to be
the image of x under g. Indeed, since R belongs to the set of common point reguli
of both hexagons we immediately find that xa′ and x′b′ are lines of H2. Suppose xg

is a point x′′ distinct of x′ then also xa′′ (with a′′ = projLa
x′′) belongs to the line set

of H2, a contradiction.

The lemma is proved. !
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Lemma 4 Every other model of H(q) (not H2) which also contains S as a subset
of lines, intersects H1 in a set of q2(q2 + q + 1) point reguli. In other words, here Ω
equals Ω1.

Proof Take a model H3 %= H2 of H(q) through S. Obviously Ω, in the same way
as before, contains Ω1 as a subset. Suppose by way of contradiction that R(a, b) is a
type (b) point regulus of both hexagons. As an immediate consequence of Lemma 1
we know that αR, the regulus plane of R, is a subspace of ΠS, the hyperplane
containing all lines of S. By polarity we thus find p = Πρ

S to be a point of Υ = αρ
R.

On Q(6, q) this 3-space constitutes a hyperbolic quadric isomorphic to Q+(3, q) which
we shall denote by Q+

Υ.

Put La, respectively Lb, the unique element of S incident with a, respectively b.
Inside H1 we denote projLb

a, projLa
b by b′, a′ and a!"b′, a′!"b by x, x′ respectively.

From our discussion above we know that there exists a unique point regulus R′, on
a and a point b′′ I Lb, which belongs to both H1 and H2. The point b′′ is the unique
point of Lb which is collinear (within H1) with xg = px ∩ Q(6, q) \ {x}. However,
since p ∈ Υ and x ∈ Υ we have that xg ∈ Υ∩ (LaLb)ρ and see that xg should belong
to a line of Q+

Υ and hence equals x′. Furthermore, this implies that H2 and H3, apart
from having all lines of S in common, share the complementary line regulus of R
(i.e. R is of type (a) with respect to these two hexagons). In other words, we find
that H3 equals H2 and we are done. !

The proof of part (iii) is similar. Here we just point out the main difference.

First of all, the subset Ω1 contains q2(q2 − q + 1) point reguli which are comple-
mentary to the line reguli of S. There is, however, a crucial distinction between
both situations (ii) and (iii) when it comes down to defining the set Ω3. Before, we
considered L and M two lines of S and a a point on L \ (Π+ ∪ Π−). In the current
situation, with S a distance-3 spread, we lay no restriction on the choice of a on L
and hence end up with

|S|(|S|− 1)

(q + 1)q
(q + 1)

elements of Ω3 instead of
|S|(|S|− 1)

(q + 1)q
(q − 1)

as we did before.

In order to complete the proof we may carefully copy the above. Indeed, in the
same way one can show that Ω3 consists of all elements of type (b) and hence find
|Ω| = q2(q2 − q + 1)(q + 2). Finally by Lemma 4 we may conclude the main result
to be proven.

Remark. If H1 and H2 share point reguli of type (b), meaning Ω2 is a non-empty
set, then (while the set Ω1 determines all lines of S) the set Ω2 determines all lines
of H1 \ S (and consequently also all lines of H2), as we shall show.
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Denote the set of lines that are in a complementary regulus of some element of Ω2

by L and suppose L has cardinality A. First of all, we determine, given a line L of L
the number n1 of point reguli ω2 ∈ Ω2, such that L ∈ ωc

2. Since L belongs to H1 \S,
it is concurrent with a unique line L1 of S (as ΠS is a hyperplane). A point x on L
and a line M through x then completely fix an element ω2 ∈ Ω2, such that L ∈ ωc

2

(this is true because M is concurrent with a unique line L2 of S and because x and
xg determine two points a and b, on L1 and L2, of ω2). Hence by an easy counting
argument one obtains that n1 = q (consider the triple (x, M,R), with L1 % I x I L,
L1 %= M I x, L ∈ R and Rc ∈ Ω2).

We are now ready to apply a double counting on the couples (ω2, L), ω2 ∈ Ω2 and
L ∈ ω2

c. Here we treat the case where S has type − and omit the counting for S of
type +, which is similar. Since |Ω2| = (q3 + 1)q2 we find

(q3 + 1)q2(q + 1) = Aq

and hence
A = (q3 + 1)q(q + 1)

This number of lines together with all spread lines add up to

A + (q3 + 1) =
q6 − 1

q − 1

the total amount of lines in H1.

4 A transitive 1-system of Q(6, 3)

In this section we will be working with the exceptional spread SE of H(3) as con-
structed in [4]. However, to clarify further reading we admit a short introduction to
this particular type of spreads.

Let H be an elliptic hyperplane in PG(6, 3) and let SH be the corresponding spread
of H(3). We extend PG(6, 3), Q(6, 3) and H(3) to PG(6, 9), Q(6, 9) and H(9), respec-
tively, as projective varieties. By [10], the hyperplane H viewed as a hyperplane
of PG(6, 9), defines in H(9) the subhexagon Γ of H(9) and Γ ∩ H(3) = SH. If Π+

and Π− are the two hexagon twin planes of Γ then according to [10] the lines of
SH meet Π± in the points of a hermitian curve, which we will call U±. Put Φ± be
the corresponding isomorphism between the lines of SH and the points of U±. The
image of R0, a fixed line regulus of SH, under Φ± is then the intersection of U± with
a line L±0 .

Roughly, the construction of SE goes as follows. There are three Hermitian spreads
containing R0. In each of these, we choose appropriately two additional reguli in
such a way that, together with R0, these three reguli form, viewed as blocks of U±,
a polar triangle.

Apart from this definition of SE, we shall also be using the observation that when
considering the set of all line reguli of SE (seven in total) as a point set and the sets
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of three reguli contained in a common elliptic hyperplane as line set one obtains a
geometry isomorphic to the projective plane of order 2.

Let Γ be the geometry, isomorphic to PG(2, 2), with as point set the reguli of SE

and where three points are on a line if they –as line reguli of SE– belong to the same
Hermitian spread (see [4]). From now on we shall denote the line reguli of SE by
R0, . . . ,R6 and use the standard description of Γ as a difference set. Namely, for
each i ∈ Z mod 7, there is a line {Ri,Ri+1,Ri+3}.
Note that it now makes sense to talk about switching points of Γ when meaning to
switch the corresponding line reguli.

By [3] we know that switching any number of line reguli of SE yields a 1-system
of Q(6, 3). It is now straightforward to see that the 1-system obtained by a ”full”
derivation of SE (i.e. switch all seven reguli) admits 23.SL3(2) acting transitively.

We start by determining when a derivation belongs to some H2 %= H1.

Take H1 and H2, a model of H(3) on Q(6, 3), and let SE be an exceptional spread
of this hexagon. Denote a derivation of SE by S ′

E, the common line set of those
two hexagons by S and the set of switched line reguli by χ. Since S ′

E is a proper
derivation of SE, the set Ω2 will be non-empty. By Lemma 4 we may thus conclude
that H2 = Hg

1, where g is the involutive collineation of previous section linked to ΠS,
the hyperplane generated by S. Furthermore we know that p, the polar point of
ΠS, belongs to every 3-space generated by any one of the switched reguli. In other
words, if the lines of Ri determine the 3-space Υi then p belongs to Υi when Ri is
one of the line reguli that we switch.

Lemma 5 As soon as χ contains the points of a line of Γ as a subset, the thus
obtained derivation of SE can never be a spread of any other hexagon H2.

Proof Suppose R0, R1 and R3 are three such line reguli. These three determine,
by definition of the exceptional spread, a polar triangle ∆+ in Π+. In the exact
same way they also determine a polar triangle ∆− in Π−. Denote a point of these
respective polar triangles by r±ij if it is the intersection point of L±i and L±j , where

L±i is the line containing all points of RΦ±
i ∩ U±.

With this notation at hand it easy to see that Υ0∩Υ1 = r+
01r

−
01. However, these two

points (r+
01 and r−01) belong to Υρ

3 which is a plane disjoint of Υ3. Hence Υ0, Υ1 and
Υ3 have an empty intersection, which is contradictory to the fact that p belongs to
this intersection. !

Lemma 6 If there is a line of Γ on which exactly one point is switched, then S ′
E

can never be a spread of any other hexagon.

Proof Suppose by way of contradiction that there exists a line L on which we
switch a single point t and suppose that the hexagon H2 contains S ′

E. The two
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remaining points on L correspond to two reguli of SE that are not switched and are
hence entirely contained in ΠS, as defined above. Since these two reguli generate
ΠS, the lines of t belong to S and to H2, a contradiction. !

As an immediate consequence of Lemma 5 and 6 we see that the only possibility for
a derivation of SE to be a spread of H2 is obtained by not switching all points on a
line of Γ and switching the rest.

Proposition 7 The 1-system obtained by not switching all points on a line of Γ
and switching the rest is a spread of H2.

Proof Before starting the actual proof of this theorem, we shall give some more
information concerning the construction of SE. As stated above we start with a fixed
line regulus R0. A crucial property shall be that this regulus is contained in three
distinct Hermitian spreads. This phenomenon can be explained by looking at the
extension of PG(6, 3) to PG(6, 9). Indeed, take any two lines M and N of R0 and
consider these lines in H(9). On those lines we have three pairs of conjugate points
and each of these pairs determines a hyperbolic hyperplane of Q(6, 9) (the focus
of each transversal to M and N in these two points, together with R0 completely
determines this hyperplane), which is an elliptic hyperplane of Q(6, 3).

For instance, if R0, R1 and R3 are the three reguli contained in SH, the Hermitian
spread we started from, then the intersection of L±0 , where L±0 = RΦ±

0 ∩ U±, with
M and N gives us the corresponding conjugate pair of points. Furthermore r−13,
respectively r+

13, is the point of H(9) collinear to both intersection points of L+
0 ,

respectively L−
0 , with M and N .

Let α be the polar image of Υ0 and put α the extension of α over GF(9). The
intersection of α with Q(6, 3) is a conic, say C. The extension of C over GF(9),
denoted by C, contains six additional points of which r+

13 and r−13 are a conjugate
pair. As this first pair corresponds to SH = S0

H we shall, from now on, denote
them by r+

0 and r−0 . In general we put (r+
i , r−i ) as the conjugate pair of points

corresponding to the Hermitian spread S i
H, with i = 0, 1,−1, on R0.

We are now ready to start the actual proof of this theorem.

Suppose χ = {R0,R1,R3} and switch all other points of Γ. Without loss of gen-
erality we may suppose R2, R6 and R4, R5 together with R0 to be reguli of the
Hermitian spreads S1

H and S−1
H , respectively. If p = Πρ

S, with ΠS = 〈Υ0, Υ1, Υ3〉, is
a point of every one of the 3-spaces Υ2, Υ4, Υ5, Υ6 then the obtained 1-system is a
spread of H2(= Hg

1).

First of all, one can easily see that Υ2∩Υ6 = r+
1 r−1 while Υ4∩Υ5 = r+

−1r
−
−1. As both

these lines contain two conjugate points they are lines which belong to α and hence
intersect in a point, say t ∈ α. It now suffices to show that t equals p to complete
the proof.
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As we already know two lines of α on t and as every line on t and a point of C is
either a tangent or an intersection line, the two remaining lines of α through t are
intersection lines of C.

Since r+
0 r−0 is a line of α, it does not pass through t. Hence tr+

0 and tr−0 are tangent
lines of C, meaning r+

0 r−0 belongs to tρ. On the other hand, a simple application
of the polarity gives us, as t belongs to Υρ

0 (= α), that also Υ0 is a subspace of tρ.
Hence the span of this 3-space and the line r+

0 r−0 belongs to the polar hyperplane of
t. As both Υ0 and r+

0 r−0 are disjoint subspace of ΠS, they in fact span this particular
hyperplane. In other words, we have that tρ = pρ or that t equals p and we are done.

!

A nice consequence of this theorem is that there are only 4 equivalence classes of
derived 1-systems of SE on Q(6, q), as we shall show. We can also determine the
automorphism groups in each case. Suppose SE is an exceptional spread of H1.

Corollary 8 If S ′
E is a derivation of SE, then – up to isomorphism – either

(i) the set χ is empty;

(ii) the set χ contains a unique point;

(iii) the set χ contains two points;

(iv) the set χ contains three points on a line of Γ.

In cases (i) and (iv), the automorphism group of S ′
E has the structure 23 · SL3(2);

in the other two cases we have 23.S4, where S4 is a maximal subgroup of SL3(2)
corresponding to a point stabilizer in PG(2, 2).

Proof The first three equivalence classes are obtained trivially (the automorphism
group acts 2-transitively on the set of line reguli).

Now suppose χ contains three points which are not on a line. Without loss of
generality we may assume R0,R3,R6 to be these three points (with the labelling
of Γ as described above). By additionally switching R5, we obtain (as a result of
Theorem 7) a derivation of SE which is contained in another hexagon H2. Mapping
H1 to H2 and switching only R5 shows the equivalence between this situation and
situation (ii).

When χ contains three points on a line a similar technique always results in the
switching of three points on a line in the new hexagon. Hence this is an isomorphism
class which is non-equivalent with the classes (i) up to (iii).

For the remaining situations, the cardinality of χ will be greater than or equal to 4
and it will be advisable to look at the complement of this set of points, denoted by
χ.

12



Suppose χ contains three points in a triangle. Again without loss of generality
we may assume this triangle to contain the points R0,R3,R6. This situation is
equivalent to situation (iii), as switching R2 and R3 gives us a derivation contained
in some H2.

Not switching the points on a line and switching the rest is just how we obtain a
derivation which yields a spread of H2, hence this is equivalent with situation (i).

Switching the unique third point on the line containing both non-switched points of
χ shows the equivalence between |χ| = 5 and situation (ii).

While switching two points on any line through the unique element of χ demonstrates
the equivalence between |χ| = 6 and situation (iii).

Finally, suppose we have switched all points of Γ. Switching back three points on
a line results in the spread of Theorem 7. Hence switching all points of Γ can be
reduced to situation (iv) and we are done.

Regarding the automorphism groups, the one of case (i) follow from [4]. It is clear
that, if all reguli are switched, then we obtain again the same automorphism group;
whence case (iv). In case (ii), the regulus that can be switched in order to obtain
a spread in a hexagon is unique; clearly the automorphisms of the bottom group 23

also act on every derivation. This proves the case (ii). For case (iii), it is similarly
enough to remark that the third point on the line joining the two points that are
switched is unique with respect to the following geometric property: if it is switched,
then we obtain a spread of type (iv).

This completes the proof of the corollary.

!

The following theorem states a general result concerning similar questions starting
from a Hermitian spread SH of H1, a model of H(q).

Proposition 9 If we switch disjoint blocks of the Hermitian spread SH of H1, then
the following statements are equivalent:

(i) The obtained set of lines is a spread of some hexagon H2 %= H1.

(ii) The obtained set of lines is isomorphic to H2(q2) on Q−(5, q).

(iii) All blocks conjugate to some given block B are switched.

Proof We start by proving the equivalence between (i) and (ii). Suppose S ′
H,

the derived set of lines, is a spread of H2. This fact, together with the knowledge
that switching lines does not alter the space they are in, easily implies that S ′

H is a
Hermitian spread. Thus situation (i) implies situation (ii).

If S ′
H is isomorphic to H2(q2) on Q−(5, q), then there are q + 1 hexagons – hence at

least one – containing this set of lines as a subset. Hence the equivalence between
the first two cases is shown.
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In order to prove the equivalence of (ii) and (iii), we dualize the situation and
consider ovoids of the Hermitian generalized quadrangle H(3, q2). Note that an
ovoid of H(3, q2) is Hermitian if and only if all points of it are contained in a plane
of the ambient projective space PG(3, q2). Also, a regulus is here a set of points on
a secant line, and “switching a regulus” corresponds to “substituting a secant line
all of whose points are contained in the ovoid by the conjugate line with respect
to the (unitary) polarity of PG(3, q2) defined by H(3, q2)”; we will briefly say that
we “replace a block (by its conjugate)”. It is now clear that, in a Hermitian ovoid
O generating the plane π, replacing one block by its conjugate does not produce
a Hermitian ovoid because the unchanged points still span π. Also, if we replace
two block B1 and B2 by their conjugates B′

1 and B′
2, respectively, then clearly all

conjugates of lines in the plane π′ spanned by B′
1 and B′

2 are incident with the
intersection point z of the lines defined by the blocks B1 and B2. Hence, in order
to obtain an ovoid contained in π′, we have to get rid of every point x not in the
intersection of π and π′ by replacing the unique block on the line xz. The block
B defined by π ∩ π′ must remain unchanged, and that is exactly the block all of
whose points are conjugate to z with respect to the polarity in π corresponding to
the Hermitian curve O. The equivalence between (ii) and (iii) now follows. !
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