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Abstract

In this paper, we prove that the Hermitian quadrangle H(4, q2) is the unique
generalized quadrangle Γ of order (q2, q3) containing some subquadrangle of order
(q2, q) isomorphic to H(3, q2) such that every central elation of the subquadrangle
is induced by a collineation of Γ.
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1 Introduction

One of the central problems in the theory of finite generalized polygons is the construction
of nonclassical polygons with classical parameters. In particular, it is an open question
whether there exist nonclassical generalized quadrangles of odd order q, or of order (q2, q3),
for some prime power q. For generalized hexagons and octagons, no finite nonclassical
examples are known. One possible way to try to construct new examples is to mimic
Dan Hughes’ construction of the so-called Hughes planes. This involves a Baer subplane
and hence we must define what a Baer subpolygon should be. Purely combinatorially, a
Baer subplane is a subplane that satisfies the equality of the basic inequality involving
the parameters of a subplane. For generalized polygons there is also a restriction on the
parameters of a subpolygon in the form of an inequality, due to Thas [9, 10, 11]. If the
parameters of a subpolygon satisfy the corresponding equality, then we can call it a Baer
subpolygon. A special case occurs if the Baer subpolygon is full or ideal, in which case
the subpolygon is a geometric hyperplane or a dual one. We call such a subpolygon a
large one. It is this situation that we want to study. Hence we start with a large classical
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(Baer) subpolygon of a generalized polygon Γ and then we try to extend this structure to
a nonclassical polygon, assuming that the little projective group (i.e. the group generated
by all root elations) of the subpolygon is induced by the automorphism group of Γ. In [1],
it is proved that no quadrangle Γ of order (q, q2) with a classical subquadrangle of order q
exists with this additional property. Also, in [6], a similar result is shown for generalized
quadrangles of order q with a classical subquadrangle of order (q, 1), and for generalized
hexagons of order q with a classical subhexagon of order (1, q). In [5], such a result for
the split Cayley hexagon inside a hexagon of order (q3, q) is proved for q not divisible by
3.

In the present paper we show the equivalent result for generalized quadrangles of order
(q2, q3). We assume that a generalized quadrangle Γ has a subquadrangle of order (q2, q)
isomorphic to the Hermitian quadrangle Q(3, q2), and that the little projective group of
the latter is induced by automorphisms of Γ. We show that all ovoids of the subquadrangle
subtended by points of Γ are classical Hermitian ovoids. This method has also been used
for the cases discussed in the previous paragraph. However, the difficulty here is now that
each ovoid is 1+ q times subtended, while in analogous situations before this was at most
three times. Nevertheless, we are able to reconstruct H(4, q2) from these ovoids.

Many of the above mentioned results are proved in the thesis of the first author, see [4].
The proof in the present paper differs slightly from the one given in that thesis.

Let us end this introduction with mentioning that generalized polygons were introduced
by Jacques Tits in connection with simple groups of Lie type, see [13].

2 Preliminaries and Main Result

We assume the reader is familiar with the notion of a generalized quadrangle. See [12] for
an excellent introduction to the subject. We will use standard notation such as H(3, q2)
and H(4, q2) for the generalized quadrangle arising from a nonsingular Hermitian variety
in PG(3, q2) and PG(4, q2), respectively.

Let Γ be a generalized quadrangle of order (s, t) and suppose that ∆ is a subquadrangle
of order (s, t′). Consider a point x of Γ not in ∆ (we will write this in the sequel as
x ∈ Γ \ ∆). Then the points in ∆ collinear with x form an ovoid O, i.e., a set of st′ + 1
mutually noncollinear points. We will call O subtended by x and denote it sometimes with
Ox. The intersection of the Hermitian variety H(3, q2) in PG(3, q2) with a plane is either
a pencil of lines, or an ovoid of H(3, q2). We call such an ovoid a classical ovoid.

A hyperbolic line in H(3, q2) is a set of q + 1 points obtained by intersecting H(3, q2) with
a line of PG(3, q2) that neither is a tangent line nor belongs to H(3, q2). A hyperbolic line
is determined by any two x, y of its points and we denote it by h(x, y). If for an ovoid
O of H(3, q2) and a point x ∈ O holds that, whenever y ∈ O \ {x} then all points of the
hyperbolic line h(x, y) are contained in O, then we say that O is locally Hermitian in x. A
classical ovoid is locally Hermitian in all its points. Conversely, an ovoid of H(3, q2) which
is locally Hermitian in all its points must necessarily be classical. This can be seen as
follows. Consider three points x, y, z of the ovoid not on one hyperbolic line, then joining
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x by hyperbolic lines to all points of h(y, z) we obtain q2 + q + 1 points of the ovoid lying
in the plane π of PG(3, q2) spanned by x, y, z. If all points of the ovoid are contained in
π, then the ovoid coincides with the intersection of H(3, q2) with π and hence is classical.
If there is some point of the ovoid not contained in π, then joining by hyperbolic lines
that point with all points of the ovoid in π, we obtain at least q3 + q2 + q + 1 points,
contradicting the fact that each ovoid contains only q3 + 1 points.

For a point x and a line L of a generalized quadrangle Γ, we call the unique point on L
collinear with x the projection of x on L. If x is incident with L, then we say that the
pair (x, L) is a flag. For a point x, we say that the collineation θ is a central elation or
central collineation with center x if θ fixes all points collinear with x. In H(3, q2), every
point x is the center of q central elations, and this group stabilizes every hyperbolic line
h(x, y), with y not collinear to x, and acts transitively on the set h(x, y) \ {x}.
Let x, y be two collinear points of Γ, and denote by xy the joining line. Then an (x, xy, y)-
elation, or briefly elation, is a collineation of Γ fixing all lines through x or y, and fixing all
points on xy. In H(3, q2) we have that for every such x, y, the group of (x, xy, y)-elations
has order q2 and acts transitively on the set of points of an arbitrary line through x or y,
except for x and y itself.

The little projective group of H(3, q2) is the group of collineations of H(3, q2) generated by
all central collineations. It contains all elations.

We can now state our Main Result.

Main Result. Let Γ be a generalized quadrangle of order (q2, q3), for some prime power
q. Suppose that Γ admits a subquadrangle ∆ of order (q2, q) isomorphic to the classi-
cal quadrangle H(3, q2) and suppose that each central collineation of ∆ is induced by an
automorphism of Γ stabilizing ∆ (in other words, some subgroup of the stabilizer of ∆
in the collineation group of Γ induces in ∆ the little projective group of ∆). Then Γ is
isomorphic to the classical quadrangle H(4, q2).

Finally, we will need the following notion in our proof.

For two noncollinear points x, y, an (x, y)-homology, or generalized homology, is a collineation
fixing all lines through x or y. Dually, a collineation fixing all points on two nonconcurrent
lines is also called a generalized homology.

3 Proof of the Main Result

Standing Hypotheses. From now on we let Γ be a generalized quadrangle of order
(q2, q3), and we let ∆ ∼= H(3, q2) be a subquadrangle of Γ. Moreover, we assume that
G := AutΓ induces in ∆ a group that contains the little projective group. Clearly G
contains a subgroup G that stabilizes ∆ and such that G induces in ∆ the little projective
group of ∆. We denote by K the pointwise stabilizer of ∆ in G.

Our first aim is to prove that every subtended ovoid is classical.

By way of contradiction, we assume that there is some nonclassical ovoid Oa of ∆ sub-
tended from the point a of Γ \ ∆.
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Lemma 1 Let (x, L) be a flag of H(3, q2). Any collineation that fixes all the points on L
and that acts semiregularly on the set of lines concurrent with L but not incident with x
is a central collineation with center x.

Proof. Let G∗ be the collineation group of H(3, q2) isomorphic to PGU4(q2). The stabilizer
of L acts sharply triply transitively on L, so the pointwise stabilizer of L in G∗ has order

q6(q4 − 1)(q3 + 1)(q2 − 1)

(q + 1)(q3 + 1)(q2 + 1)q2(q2 − 1)
= q4(q − 1).

For each line not concurrent with L, there is a set of q−2 nontrivial generalized homologies,
and this accounts already for q4(q−2) different noncentral collineations fixing L pointwise,
none of which acts semiregularly on the set of lines concurrent with L but not incident
with x.

Using the explicit form of an (x, L, y)-elation, with y %= x on L, as given in 4.5.2 of [14], we
see that for each projective Baer subline L′ of L, there is set of q − 1 nontrivial (u, L, v)-
elations, with u, v ∈ L′, such that every such elation fixes all lines through any point of
L′. Hence this accounts for another

(q2 + 1)q2(q2 − 1)

(q + 1)q(q − 1)
· (q − 1) = (q2 + 1)q(q − 1)

elements that fix L pointwise, but also fix some line concurrent with L not incident with
x.

Finally, there are q2(q− 1) nontrivial central collineations with center on L different from
x. Hence there are at most

q4(q − 1)− q4(q − 2)− (q2 + 1)q(q − 1)− q2(q − 1) = q

elements of the pointwise stabilizer of L acting semi-regularly on the set of lines concurrent
with L different from those through x. But these form the group of central collineations
with center x, because this has precisely order q.

The lemma is proved. !

Lemma 2 Consider a collinear pair of points (a, y), with a ∈ Γ \ ∆ and y ∈ ∆. If Oa is
not locally Hermitian in y, then the size of the orbit of this pair under the action of G is
a multiple of q3(q4 − 1)(q3 + 1)/(q + 1, 4).

Proof. Let Oa be not locally Hermitian in y. The orbit of y under G is the whole point
set of ∆, hence it contains (q2 + 1)(q3 + 1) points. We choose a point x in ∆ collinear
with y such that the points of Oa collinear with x do not form a hyperbolic line of ∆. We
claim that we can choose x in such a way that there is a hyperbolic line in ∆ containing x
and intersecting Oa is exactly one point x′′′. Indeed, joining by a hyperbolic line the pairs
of points of (Oa ∩ x⊥) \ {y} defines at most q(q − 1)/2 points on the line xy; hence there
is at least one point x′ on xy such that all hyperbolic lines through x′ in x⊥ containing a
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point of Oa meet Oa in exactly one point. If Oa ∩ x′⊥ is not a hyperbolic line, then we
re-choose x as x′. Otherwise, every hyperbolic line in x′⊥ through x and a point of Oa

meets Oa in a unique point. Our claim is proved.

Now consider the following three subgroups H1/K, H2/K and H3/K of G/K. The group
H1/K corresponds to the central collineations of ∆ with center y. The group H2/K
corresponds with the group of (x, xy, y)-elations. Now fix a point x′ ∈ Oa \ {y} collinear
with x, and let L be a line through y different from xy. Let z be the projection of x′

onto L. Then H3/K corresponds to the group of (x, z)-homologies. By the proof of
Theorem 8.3.3 of [14], we have |H3/K| = (q2 − 1)/(q + 1, 4). We also have |H1/K| = q
and |H2/K| = q2.

Now let x′′ ∈ Oa \ {y, x′} be collinear to x, but so that x′′ /∈ h(y, x′) (x′′ exists since, by
the choice of x, the points of Oa collinear with x do not form a hyperbolic line). It is clear
that the orbit {x′, x′′}H23 , with H23 = 〈H2, H3〉, has exactly q2(q2−1)/(q +1, 4) elements.
Each element corresponds to a different subtended ovoid, and hence to a different point
in the orbit aGy . Since the group H1/K fixes all points collinear with x, and since it
acts transitively on the hyperbolic line containing x and x′′′, we deduce that each of the
q3(q2− 1)/(q + 1, 4) elements of {x′, x′′, x′′′}H123 , with H123 = 〈H1, H23〉, corresponds with
a different ovoid, and hence with a different point of aGy (where Gy is the stabilizer in
G of the point y). Now the lemma follows from the fact that the orbit aGy is a union of
orbits under H123. !

Lemma 3 Let a ∈ Γ\∆ be arbitrary, and let y ∈ Oa. Then either Oa is locally Hermitian
in y, or the orbit of (a, y) under G has size 3q3(q4 − 1)(q3 + 1)/4, q is a power of 3 and
every hyperbolic line in ∆ through y intersects Oa in exactly 1, 1 + q/3, 1 + 2q/3 or 1 + q
points.

Proof. The assertion is trivial for q = 3, so we assume from now on that q %= 3. Suppose
that Oa is not locally Hermitian in y. From the previous lemma we deduce that the orbit
of (a, y) under the action of G has size kq3(q4−1)(q3+1)/(q+1, 4), with 1 ≤ k ≤ (q+1, 4)
(since there are only q3(q4− 1) points in Γ \∆, and each such point is collinear with only
q3 + 1 points of ∆). Then the stabilizer G{a,y} has size |K| · q3(q2 − 1)/k. Let p be the
unique prime dividing q. Then G{a,y} contains a subgroup P of order q3/(p, 3), and if
k %= 3, we may assume that P has order q3.

The group P clearly fixes some line L of ∆ through y. Let u′ %= y be any point on L,
and let v %= y be any point of Oa collinear with u′. There are at most q − 1 hyperbolic
lines through v meeting Oa in at least two points and contained in u⊥. Hence, there are
at least q2 − q points u on L such that the hyperbolic line uv meets Oa only in v.

Suppose by way of contradiction that P does not act transitively on the points of L
different from y. Then the size of the stabilizer Pu of the point u of the previous paragraph
is larger than or equal to q. Since the order of Pu is a power of p, and since the restriction
of Pu to ∆ is a group of linear maps, viewed as a subset of PGL4(q2), we deduce that
either
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* Pu contains a nontrivial element g fixing all lines through u, and hence also all points
of u⊥ (hence g is a central collineation; but it maps v to a point not belonging to
Oa, a contradiction),

or

** p = 3 and Pu acts transitively on (Oa ∩ u⊥) \ {y}. In this case |uP | = q/3. Since
there are at least q2 − q such points u, and this is more than 2q2/3, there are at
most 3 orbits of P on L \ {y}, and therefore every point on L except for y has the
property that there is a hyperbolic line through it meeting Oa in only one point.
This implies that Pu acts semiregularly on the set of lines concurrent with L but
not incident with y. Hence, by Lemma 1, Pu is the group of central elations with
center y. But this implies that Oa is locally Hermitian in y.

Hence P acts transitively on the points of L except for y.

It follows that through every point of L there is a hyperbolic line meeting Oa in exactly
one point.

Suppose now that some element g of P fixes a point x of Oa distinct from y. Hence g fixes
the projection x′ of x on L. Similarly as in the previous paragraphs, this implies that g
is the identity. Hence P acts semiregularly on Oa \ {y}. The pointwise stabilizer of L is
a group of order q/(p, 3) and acts semiregularly on the set of lines concurrent with L but
not incident with y. By Lemma 1 this group is a group of central collineations with center
y. This implies that for any point z ∈ Oa, the hyperbolic line h(y, z) is either completely
contained in Oa, or intersects Oa in 1 + q/3 or 1 + 2q/3 points.

The lemma is proved. !

Lemma 4 If q %= 3, then every subtended ovoid is classical.

Proof. Let y ∈ Oa, with a ∈ Γ \ ∆. If Oa is not locally Hermitian in y, then there is a
hyperbolic line h(x, y), with x ∈ Oa, meeting Oa in 1 + q/3 or 1 + 2q/3 points. Suppose
that h(x, y) ⊆ u⊥. Clearly, there is a point x′ ∈ (Oa ∩ u⊥) \ h(x, y). The hyperbolic line
h(x, x′) meets Oa in at least 1 + q/3 points, all lying in u⊥. We can then form with all
these points 1 + q/3 different hyperbolic lines by joining them with y. This implies that
u⊥ contains at least 1 + q/3 + q2/9 points of Oa, a contradiction.

Hence Oa is locally Hermitian in every of its points, and the lemma follows from the
arguments in the introduction. !
Since PSU4(q) acts transitively on the classical ovoids of ∆ and since there are q3(q2 +
1)(q − 1) such, we obtain that every classical ovoid is (q + 1)-fold subtended.

The case q = 3 remains and shall be treated in the next two lemmas.

Lemma 5 The group PSU4(3) does not have a subgroup of order 25 · 32 · 7.
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Proof. According to [3], the maximal subgroups H of PSU4(3) whose order is divisible by
2 ∗ 5 · 32 · 7 have order 26 · 32 · 5 · 7 (and H is isomorphic to PSL3(4)) or 25 · 33 · 7 (and H
is isomorphic to PSU3(3)). But, according to the same reference, neither PSL3(4) has a
subgroup of index 10, nor PSU3(3) has a subgroup of index 3, which completes the proof
of our lemma. !

Lemma 6 If q = 3, then every subtended ovoid is classical and 4-fold subtended.

Proof. With the notation of Lemma 2, and assuming that there is a nonclassical subtended
ovoid, we have in this case that the orbit of the pair (a, y) has length k · 27 · 80 · 7, with
k ∈ {1, 2, 3, 4}, and the total number of such pairs is 4 · 27 · 80 · 7. If k ∈ {1, 2, 4}, then
the ovoid Oa is locally Hermitian in y, and so we may assume that k = 3. This implies
that for every pair (a′, y′), with a ∈ Γ \ ∆ collinear with y ∈ ∆, not in the orbit of (a, y),
the ovoid Oa′ is locally Hermitian in y. Suppose some point a′ of Γ \ ∆ is not contained
in any pair (a∗, y∗) of the orbit of (a, y). Then the ovoid Oa′ is locally Hermitian in all of
its points, hence it is classical. Since G acts transitively on the set of all classical ovoids,
since the stabilizer in G of such an ovoid acts transitively on the points of that ovoid,
and since there are 540 of them, we see that these give rise to an orbit of length at least
(and hence exactly) 27 ·80 ·7. Consequently every Hermitian ovoid is uniquely subtended,
implying that K is trivial. Since all other subtended ovoids are in one orbit under G, it
follows that they are equally many times subtended, say they are all k-fold subtended.
We can calculate the order of the stabilizer of a nonclassical subtended ovoid Oa and we
obtain a subgroup of PSU4(3) of index 27 · 60/k. Hence it has order k · 25 · 32 · 7 and acts
transitively on Oa. Also, stabilizing y, we see that it contains a transitive subgroup T of
order exactly 25 · 32 · 7. This contradicts Lemma 5.

Hence we may suppose that every point a′ of Γ \ ∆ is contained in a pair of the orbit of
(a, y). Then G acts transitively on the set of 27 · 80 points of Γ \∆, and hence each point
a′ ∈ Γ \ ∆ is collinear with exactly 21 points y′ for which (a′, y′) is in the orbit of (a, y).
This implies that each subtended ovoid is locally Hermitian in exactly 7 points. Now
note that, for such a point x, the group of central collineations with center x preserves
the ovoid and hence preserves the set of points in which the ovoid is locally Hermitian.
This implies that these seven points form a subspace of the unital corresponding with the
ovoid. But it is easy to see that this subspace can only contain 2 blocks meeting in a
point, and hence cannot be a subspace after all.

Hence we proved that our assumption of the existence of a nonclassical subtended ovoid
leads to a contradiction and the lemma is proved. !
We now want to say more about the structure of G and its subgroups stabilizing some
element of Γ. This is the purpose of the next few lemmas.

Lemma 7 Let g ∈ G be such that it stabilizes an ovoid O subtended by some point x ∈ Γ.
If the action of g on O is contained in PSU3(q), then g fixes x. In particular, if g is a
central collineation in ∆, then it is also a central collineation in Γ.
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Proof. The stabilizer GO acts on O as PGU3(q). Since |K| divides q+1, a Sylow subgroup
P of GO lifts uniquely to G, and we also call it P . Note that |P | = q3, and P acts on the
q + 1 points subtending O. Consequently, P has to fix at least one point y subtending O.
Let x1, . . . , xq be the other points subtending O and put X = {xi : 1 ≤ i ≤ q}.
Suppose first that Z(P ), which has order q and consists precisely of the central collineations
in P , acts freely on X. Then P acts transitively on X and the stabilizer Px1 would be a
complement of Z(P ) in P , a contradiction. Hence Z(P )x1 is nontrivial. Since all elements
of Z(P ) are conjugate in GO, all nontrivial elements of Z(P ) have equally many fixed
points in X, say k, with k %= 0. Applying Burnside’s Orbit Counting Theorem, we see
that # = q+k(q−1)

q , which is the number of orbits of P on X, is a natural number. This
implies that k|q, so k = q and Z(P ) fixes X pointwise.

Since PSU3(q) is generated by the centers of all Sylow p-subgroups, the first assertion
follows. Since every central collineation stabilizes every classical ovoid containing the
center, the second assertion follows. !
We now define G† to be the subgroup of G generated by all central collineations of Γ with
center in ∆. Clearly G† induces the little projective group in ∆. So everything we proved
so far for G also holds for G†.

Lemma 8 The group G† acts transitively of the flags {x, L}, where x is a point of Γ not
in ∆, and L is a line of Γ incident with x.

Proof. Denote by Γ \∆ the geometry with point set the points of Γ not in ∆, and line set
the set of lines of Γ not in ∆, with incidence induced by Γ. Then, since ∆ is a geometric
hyperplane in Γ (meaning that every line of Γ either is completely contained in ∆, or
meets ∆ in exactly one point), we can apply the main result of [2] to see that Γ \ ∆ is
connected. So, in order to show that G† acts transitively on the line set of Γ\∆, it suffices
to show that, given two lines L, L′ of Γ that intersect in a point x of Γ \ ∆, there exists
g ∈ G† fixing x and mapping L to L′. But this follows from Lemma 7 taking into account
that PSU3(q) acts 2-transitively in its natural action on a Hermitian unital.

So it now suffices to show that G†
L acts transitively on the q2 points on L not in ∆.

Putting K† = G† ∩K, we have by the first paragraph

|G†
L| = |K†|q

5(q2 − 1)

(q + 1, 4)
,

since there are q(q3 + 1)(q4 − 1) lines of Γ not in ∆. Since |K†| is relatively prime to q,
an arbitrary Sylow p-subgroup P of G†

L has size q5. The stabilizer Px of a point x on L is
contained in a Sylow p-subgroup of G†

Ox
, and the latter has size |K†|.|GU3(q)|/(q + 1, 4).

Hence |Px| ≤ q3 and the orbit of P on L has size at least q2, implying that P acts
transitively on the points of L not in ∆.

The lemma is proved. !
We can now pin down the exact structure of G†.
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Lemma 9 If q > 3, then the group G† is isomorphic to SU4(q), which is the universal
covering group of U4(q).

Proof. First we claim that G† is a perfect central extension of PSU4(q). That means
that (1) G† is perfect, and (2) K† ≤ Z(G†). Now (1) follows from the fact that central
collineations in U4(q) are commutators of elations, and (2) follows from the fact that
each element of K† commutes with each central elation with center in ∆ (because the
commutator leaves ∆ pointwise invariant and also fixes all points of Γ collinear with the
center). The claim follows.

From the tables in [8], we now derive that G† is a central quotient of SU4(q), which has
order (q + 1, 4)|U4(q)|. Hence |K†| divides (q + 1, 4).

We now show that (q + 1, 4) divides |K†|, which concludes the proof of the lemma. To
that aim, we consider a point x of Γ\∆, and three points u, v, w in ∆ collinear with x and
lying on a hyperbolic line. We are interested in the order n1 of the pointwise stabilizer
G1 in G† of Ox ∪ {x}. First, n1 is clearly equal to the order n2 of the subgroup G2 of
G† stabilizing Ox setwise and fixing {x, u, v, w} pointwise, divided by the order n3 of the
permutation group G2/G1 induced on O ∪ {x} by G2. Now, n2 is equal to the order of
G† divided by the length of the orbit of the ordered quadruple (x, u, v, w), and, in view of
|G†| = |U4(q)|.|K†|, Lemma 8 (which implies that there are (q4− 1)q3 choices for x, q3 +1
for u, q3 for v and q − 1 for w), and the fact that the stabilizer in U3(q) of a block of the
corresponding unital acts triply transitively on that block, we obtain

n2 =
q6(q4 − 1)(q3 + 1)(q2 − 1)|K†|

(q + 1, 4) · (q4 − 1)q3(q3 + 1)q3(q − 1)
=

(q + 1)|K†|
(q + 1, 4)

.

Now we calculate n3. We remark that by Lemma 7, the group G2/G1 is induced by either
PSU3(q) or PGU3(q). Hence n3 is equal to either (q +1)/(q +1, 3) or q +1. So we see that
n1 is equal to

either
|K†|(q + 1, 3)

(q + 1, 4)
or

|K†|
(q + 1, 4)

,

which implies in both cases that |K†| is divisible by (q + 1, 4). !
Note that the previous proof also holds for q = 3, except that we do not know that |K†|
divides (q + 1, 4) = 4, since the the universal perfect central extension G̃† of PSU4(3) has
size 9 · 4 · |PSU4(3)|. However, we know that G̃†/G† ∼= 32 × 4, which implies that SU4(3)
is the only perfect central extension of PSU4(3) of size 4 · |PSU4(3)|. Hence, in view of
the last paragraph of the proof of Lemma 9, there only remains to show that K† does not
contain an element of order 3. Suppose it does. Then |K†| ≥ 12 and so there are at least
12 points of Γ \∆ subtending the same classical ovoid of ∆, implying that we have a dual
(12× 28)-grid in Γ. Now by [7] we infer 11 · 27 ≤ 92, a contradiction.

If q = 2, finally, then the universal perfect central extension G̃† of PSU4(2) has size
2 · |SU4(2)|, with SU4(2) = PSU4(2), and hence either G† ∼= SU4(2), or K† contains an
involution, contradicting the fact that K† has no factor in common with q = 2.
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So in all cases we know that G† is isomorphic to SU4(q). We now determine the exact
structure of the stabilizers of the points, lines and flags of Γ.

Lemma 10 Let x be an arbitrary point of ∆ and u be an arbitrary point Γ \ ∆ collinear
with x. Let O be the classical ovoid of ∆ subtended by u and denote by L the line ux. Let
∆ be embedded in PG(3, q2) in the standard way, and let X be the tangent line in x to O
in the plane π generated by the points of O. Let G† act on PG(3, q2) in the natural way
(with kernel K†). Then

[Stab(u)] the stabilizer G†
u of u in G† ∼= SU4(q) is the standard normal subgroup of the stabilizer

G†
O
∼= GU3(q) isomorphic to SU3(q), and

[Stab(L, u)] the stabilizer G†
L,u of the flag (L, u) is the stabilizer in G†

u
∼= SU3(q) of the point x

(with the natural action of SU3(q) on O).

Let U be any Sylow p-subgroup of G†
X . Then

[Stab(L)] the stabilizer G†
L of L in G† is generated by U and G†

L,u, and

[Stab(L, x)] the stabilizer G†
L,x of the flag (L, x) coincides with G†

L.

Furthermore, the stabilizer of x in G† is the inverse image in SU4(q) of the stabilizer of x
in the natural action of the quotient group PSU4(q) on ∆, and likewise for the stabilizer
of any line of ∆.

Proof. We noted earlier that G†
u induces in O a permutation group containing PSU3(q) in

its natural action. Since G† is contained in GU3(q), we see by comparing orders that G†
u

is isomorphic to SU3(q), since the only possibility PGU3(q), apart from PSU3(q) itself, for
the action of G†

u induced on O, has the right order, but is only a subgroup of GU3(q) if it
isomorphic to SU3(q) anyway. This shows [Stab(u)], and [Stab(L, u)] now follows easily.

In order to prove [Stab(L)], it suffices to show that the points on L apart from x subtend
the ovoids of ∆ whose planes in PG(3, q2) contain the line X. But this follows directly
from the fact that all these ovoids pairwise intersect in the point x (and every plane of
PG(3, q2) containing x and meeting π not in X contains further points of O), and that
the number of planes in PG(3, q2) through X meeting δ in an ovoid is exactly equal to
the number of points of Γ \ ∆ incident with L.

The other assertions follow easily. !

End of the proof of the Main Result.

In Lemma 10 we have determined the exact structure of the various stabilizers of elements
of Γ. Since G† acts flag transitively on Γ \ ∆, we can represent all points and lines of
Γ\∆ as cosets of the subgroups G†

U and G†
L, respectively, with incidence defined by being

nondisjoint. Since these stabilizers are unique up to conjugacy (given the fact that they
intersect in a group isomorphic to G†

L,u), we can reconstruct Γ\∆ in a unique way. But the
same thing holds for the points of ∆ and the lines of Γ \ ∆. So Γ is uniquely determined
and hence must be isomorphic to H(4, q2).
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