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Abstract

When q is even the simple exceptional group G2(q) is a subgroup of
PSp6(q). We study the action of the group G2(q) < G2(q2) on points
of PG(5, q2) and show that unions of G2(q)–orbits are two–character
sets.

Keywords: exceptional finite groups of Lie type, symplectic polarity, gen-
eralized hexagon, two–character set.

1 Introduction

A two–character set in the projective space PG(d, q) is a set S of n points with
the property that the intersection number with any hyperplane only takes
two values, n − w1 and n − w2. Then the positive integers w1 and w2 are
called the weights (constants) of the two–character set. Embed PG(d, q) as
a hyperplane Π in PG(d + 1, q). The linear representation graph Γ∗

d(S) is the
graph having as vertices the points of PG(d+1, q)\Π and where two vertices
are adjacent whenever the line defined by them meets S. It follows that
Γ∗

d(S) has v = qd+1 vertices and valency k = (q − 1)n. Delsarte [3] proved
that this graph is strongly regular because S is a two–character set. The
other parameters of the graph are λ = k−1+(k− qw1 +1)(k− qw2 +1) and
µ = k +(k− qw1)(k− qw2). On the other hand, regarding the coordinates of
the elements of S as columns of the generator matrix of a code L of length n
and dimension d+1, then the two–character set property of S translates into
the fact that the code L has two weights (w1 and w2) [1]. Such a code is said
to be a projective two–weight code. The weights of the code are precisely the
weights of the two–character set. Moreover, if GF(q0) is a subfield of GF(q),
with qr

0 = q, then the projective two–weight code C, which is defined over
GF(q), determines a projective two–weight code C ′ of length n′ and dimension
kr, with weights w′

1 and w′
2, where n′ = ((q−1)n)/(q0−1), w′

1 = qw1/q0 and
w′

2 = qw2/q0.

Several authors, too many to be quoted here, studied two–character sets,
sometimes involving algebra, sometimes involving geometry. Very recently,
De Wispelaere and Van Maldeghem [4], [5] discovered a new infinite class
of two–character sets in PG(5, q2) using a very interesting idea: an anti–
isomorphism between two skew planes of PG(5, q2) together with a certain
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Baer subplane. Its automorphism group is a non–split extension (q + 1) ·
(ΓL(3, q) × 2). From this construction a new distance–2 ovoid of the split
Cayley hexagon H(4) arises. We recall that a distance−2 ovoid of a general-
ized hexagon of order (s, t), is a set of points of the hexagon of size s2t2+st+1,
such that every line of the generalized hexagon is incident with exactly one
element of the set. Another two–character set found by De Wispelaere and
Van Maldeghem arises from certain orbits of the group PSL2(13), which is a
maximal subgroup of G2(4), on points of PG(5, 4).

In this paper we will construct infinite families of two–character sets of
PG(5, q2), q even, given by the orbits of the action of the exceptional finite
simple group G2(q) on points of PG(5, q2). Apart from well–known instances
(a Baer subgeometry and its complement in PG(5, q2)), the other examples
we have found (and the associated strongly regular graphs) seem to be new.
The automorphism groups of all our two–character sets are the direct prod-
ucts of the standard extensions of G2(q) by all field automorphisms, with a
group of order 2 (the latter a Baer involution in PG(5, q) corresponding to
the field automorphisms of GF(q2) fixing GF(q) pointwise).

Our construction will follow from a rather simple observation implied by
an old result of Thas [8]. Let us review briefly Thas’ result and prove the
corollary we have in mind.

2 Baer subhexagons of generalized hexagons
of order s2

A generalized hexagon is a point-line incidence structure H = (P ,L, I), with
point set P , line set L and symmetric incidence relation I whose incidence
graph — i.e., the bipartite graph with vertex set P ∪L and edge set given by
I — has diameter 6 and girth 12 — the latter is the length of the smallest
circuit. From now on, we will consider distances of elements of a generalized
hexagon in its incidence graph. A generalized hexagon H is called of order
(s, t) if all lines are incident with exactly s+1 points and all lines are incident
with exactly t + 1 lines. A generalized hexagon has an order as soon as
two elements at distance 1 or 5 are incident with at least 3 elements. If
s = t, then we say that the generalized hexagon has order s. A subhexagon
H′ = (P ′,L′, I′) of H is a substructure with P ′ ⊆ P, L′ ⊆ L and I′ coincides
with I on P ′ × L′.

Generalized hexagons were introduced by Tits in the appendix of [9]. More
information is contained in the monograph [10].

We also use standard terminology of incidence geometry, such as collinear
points (points at distance ≤ 2 from each other), concurrent lines (lines at
distance ≤ 2 from one another), etc.
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We have the following result.

Theorem [Thas [8]]. Let H′ be a subhexagon of order (s′, t′) of the gen-
eralized hexagon H of order (s, t), with s′ < s. Then (s′t′)2 ≤ st and if
(s′t′) = st, then every point of H that is not collinear with any point of H′

is at distance 3 from exactly t′ + 1 lines of H′.

A peculiar situation arises when we have a generalized hexagon H = (P ,L, I)
of order s2 and a subhexagon H′ = (P ′,L′, I) of order s. Then (ss)2 =
s2s2 and the equality in the previous theorem holds. We call H′ a Baer
subhexagons in this case. Since here s = t and s′ = t′, the situation is very
symmetric in points and lines. The distance of an element of H to H′ is the
distance of that element to a nearest element of H′. The previous theorem
implies that the maximal distance to H′ is 3. We will denote the set of points
(lines) of H at distance 0, 1, 2, 3 from H′ by P0,P1,P2,P3 (L0,L1,L2,L3),
respectively. Note that P0 = P ′ and L0 = L′. We have the following corollary
to the above theorem.

Corollary 1. Let H′ be a Baer subhexagon of order s of the generalized
hexagon H. With the above notation, the number ni,j of elements of Pj and
Lj incident with an element of Li and Pi, respectively, only depends on i and
j and is given by the following matrix N = (ni,j)0≤i,j≤3.

N =





s + 1 s2 − s 0 0
1 0 s2 0
0 1 0 s2

0 0 s + 1 s2 − s



 .

Proof. The first row of N follows from the definition of L1; the second row
from the definition of L2. Now let p ∈ P2. Then p is incident with a line L
incident with a unique point x of H′, by definition. If any other line through
p would contain a point x′ of H′ or meet a line L′ of H′, then the unique path
in H connecting x with x′ or L′, respectively, would also be contained in H′,
a contradiction since this path would contain p. Hence n2,1 = 1, n2,2 = 0 and
n2,3 = s2. The last row follows directly from the previous theorem.

This corollary enables one to determine the number of elements in any set
Pj or Lj at distance k from any element of Pi or Li, and this number n(k)

i,j

only depends on i, j, k, for i, j ∈ {0, 1, 2, 3} and 0 ≤ k ≤ 6. For instance, one

checks that n(2)
i,j is equal to the (i, j)-entry of N2 if i '= j, and to the (i, j)-

entry of (N − J)N if i = j (where J is the matrix with on every position 1).

It is a bit more cumbersome to find such expressions for n(4)
i,j , but it is still

elementary to deduce it directly from Corollary 1. In fact, one shows:

Corollary 2. Let H′ be a Baer subhexagon of order s of the generalized
hexagon H. With the above notation, the number mi,j of elements of Pj

not opposite an element of Pi only depends on i and j and is given by the
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following matrix M = (mi,j)0≤i,j≤3.





s4 + s3 + s2 + s + 1 s5 − s s7 − s3 s8 − s7 + s6 − s5

s3 + s2 + s + 1 s5 + s4 − s s7 − s3 s8 − s7 + s6 − s5

s3 + s2 + s+1 s5 − s s7 + s4 − s3 s8 − s7 + s6 − s5

s3 + s2 + s + 1 s5 − s s7 − s3 s8 − s7 + s6 − s5 + s4



 .

Proof. As an example let us derive m3,3 = n(0)
3,3 + n(2)

3,3 + n(4)
3,3. Consider an

arbitrary point p ∈ P3. We will say that an element of Pi ∪ Li has type i,
i = 0, 1, 2, 3. To a point x of H at distance 4 from p corresponds a unique
sequence i1i2i3i4 with ij the type of the unique element of H at distance j
from p and 4− j from x, j = 1, 2, 3, 4. We put i0 = 3, the type of p. We now
count the number of points corresponding with such a sequence for which
i4 = 3. It is easy to see with Corollary 1 that the only sequences for which
this number is nonzero are 2123, 2323, 2333, 3233, 3323 and 3333. For each
such sequence A and each j ∈ {1, 2, 3}, we put

f (A)
j,j+1 =

{
nj,j+1 − 1 if ij−1 = ij+1,
nj,j+1 if ij−1 '= ij+1.

Then the number of points N(i1i2i3i4) corresponding to the sequence A =

i1i2i3i4 equals ni0,i1f
(A)
i1,i2f

(A)
i2,i3f

(A)
i3,i4 . Hence

n(4)
3,3 = N(2123) + N(2323) + N(2333) + N(3233) + N(3323) + N(3333)

= s8 − s7 + s6 − s5 + s3 − s2.

Similarly

n(2)
3,3 = n3,2(n2,3 − 1) + n3,3(n3,3 − 1) = s4 − s3 + s2 − 1

and the result follows.

3 An application to two–character sets

3.1 The group G2(q) and the split Cayley hexagon

Let K be a field. Let Q(6, K) be a nonsingular quadric in the projective space
PG(6, K) that has on it totally singular planes. Let PΩ7(K) be the projective
commutator orthogonal group of Q(6, K). The Cartan–Dickson–Chevalley
exceptional group G2(K) is a subgroup of PΩ7(K). It occurs as the stabilizer
in PΩ7(K) of a configuration F of points, lines and planes on Q(6, K). The
geometry of F was explored first by J. Tits [9] and later, from a somewhat
different standpoint, by R.H. Dye [6]. Both approaches involve the geometry
associated with the triality of a hyperbolic quadric in PG(7, K). Tits, in
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particular, by identifying the stabilizer of F with G2(K), obtained a lot of
information on the action of G2(K).

The group G2(K) is also contained in the automorphism group of a classical
generalized hexagon, called the split Cayley hexagon and denoted by H(K).
The latter is a “truncation” of the configuration F , just keeping the points
and lines. So the points of H(K) are all the points of Q(6, K) and the lines
of H(K) are certain lines of Q(6, K). When K is the finite field GF(q), the
hexagon is denoted H(q) and it has order q. For more details, see [10].
The precise definition of the line set is not necessary for the purpose of the
present paper; it suffices to remark that (1) it can be defined using the Plücker
coordinates of the lines and a set of equations with coefficients in the prime
field of GF(q), that (2) two points of PG(5, q) are conjugate with respect to
ρ if and only if they are not opposite in H(q), and that (3) the q + 1 lines on
a point are coplanar.

When q is even, the orthogonal group PΩ7(q) is isomorphic to the symplec-
tic group PSp6(q), so that G2(q) may be regarded as a subgroup of PSp6(q).
Then, it follows that H(q) has a representation in PG(5, q) as a perfect sym-
plectic hexagon, [10, p.74]: the points of H(q) are all the points of PG(5, q)
and the lines of H(q) are certain totally isotropic lines of PG(5, q) with respect
to a symplectic polarity ρ.

Now we embed PG(5, q) in PG(5, q2), thereby extending H(q) to H(q2) and ρ
extends (in a unique way, actually) to PG(5, q2) in such a way that all lines
of H(q) are totally isotropic. The points of H(q2) are all points of PG(5, q2).
Every hyperplane H in PG(5, q2) is the image of a unique point p of H(q2)
under ρ. Since H is the set of points conjugate to p under ρ, it is also the
set of points of H(q2) lying at distance at most 4 from p. The following
proposition can be easily verified using the fact that a line pencil in H(q2) is
a planar line pencil in PG(5, q2).

Proposition 3.1. Let Pi be the set of points of H(q2) at distance i from H(q),
i = 0, 1, 2, 3. Then P1 is precisely the set of points of PG(5, q2) \ PG(5, q)
incident with lines of H(q); P2 is the set of points of PG(5, q2) \ PG(5, q)
incident with a totally isotropic line of PG(5, q) with respect to ρ; finally P3

is the set of points of PG(5, q2) \PG(5, q) incident with a nonisotropic line of
PG(5, q). We also have

|P0| = q5 + q4 + q3 + q2 + q + 1, |P1| = q7 − q,

|P2| = q9 − q3, |P3| = q10 − q9 + q8 − q7 + q6 − q5.

3.2 The two–character sets

Corollary 2 and Proposition 3.1 implies the following theorem. We use the
same notation as in the previous subsection.
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Theorem 3.2. Let Pi be the set of points of H(q2) at distance i from H(q),
i = 0, 1, 2, 3. Then each Pi, i ∈ {0, 1, 2, 3} is a two-character set of PG(5, q2),
and so is each Pi ∪ Pj, i, j ∈ {0, 1, 2, 3}, i '= j, and also each Pi ∪ Pj ∪ Pk,
|{0, 1, 2, 3} \ {i, j, k}| = 1. Omitting the well known Baer subgeometry P0

and its complement P1 ∪ P2 ∪ P3, the corresponding weights w1 and w2 are
as follows.

w1 w2

P1 q7 − q5 q7 − q5 − q4

P2 q9 − q7 q9 − q7 − q4

P3 q10 − q9 q10 − q9 − q4

P0 ∪ P1 q7 q7 + q4

P0 ∪ P2 q9 − q7 + q5 q9 − q7 + q5 + q4

P0 ∪ P3 q10 − q9 + q5 q10 − q9 + q5 + q4

P1 ∪ P2 q9 − q7 + q6 − q5 q9 − q7 + q6 − q5 − q4

P1 ∪ P3 q10 − q9 + q7 − q5 q10 − q9 + q7 − q5 − q4

P2 ∪ P3 q10 − q7 q10 − q7 − q4

P0 ∪ P1 ∪ P2 q9 q9 + q4

P0 ∪ P1 ∪ P3 q10 − q9 + 2q7 q10 − q9 + 2q7 + q4

P0 ∪ P2 ∪ P3 q10 − q7 + q5 q10 − q7 + q5 + q4

For the well know examples P0 and P1 ∪ P2 ∪ P3 we refer to [1, Ex. RT1].
The strongly regular graphs associated to the two–character sets P1, P2 and
P3 all have q6 vertices and valency k equal to (q− 1)(q7− q), (q− 1)(q9− q3)
and (q− 1)(q10− q9 + q8− q7 + q6− q5), respectively. It is easy to determine
the parameters of the associated strongly regular graphs and codes for all
two–character sets of the theorem, but we omit numbers. Checking the list
in [1] and the papers [4], [5], they turn out to be most probably new.

Of course the automorphism group of all our two–character sets is the direct
product of the standard extension of the group G2(q) with all field auto-
morphism of GF(q), with the group of order 2 generated by the involution
induced by the unique field automorphism of order two in GF(q2).

3.3 Definition with orbits

It has been proved in [2, Lemmas 5.2,5.4] that the group G2(q) has two
orbits on totally isotropic lines of PG(5, q) of lengths (q6 − 1)/(q− 1) (H(q)–
lines) and q2(q6 − 1)/(q − 1) and acts transitively on the q4(q4 + q2 + 1)
nonisotropic lines of PG(5, q). In fact, this follows directly from the fact that
G2(q) acts distance-transitively on H(q), i.e., transitive on ordered pairs of
points at fixed but arbitrary distance from one another. This now implies
the following alternative construction of the sets Pi, i ∈ {0, 1, 2, 3}.

Proposition 3.3. The group G2(q) has exactly four orbits on points of
PG(5, q2), and these are P0, P1, P2 and P3
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Proof. Since G2(q) acts distance-transitively on H(q), the action induced on
each line L of PG(5, q) of the stabilizer G2(q)L contains PSL2(q) in its natural
action. But this is transitive on the imaginary points of L over GF(q2). The
proposition is now clear.

Remark. Note that usually the union of two two–character sets is not a two–
character set, since the number of possibilities for the intersection numbers
with hyperplanes is generically equal to four. But in our case, all possible
unions of Pi, i = 0, 1, 2, 3, do give rise to two–character sets. This is a
rather remarkable observation. Probably this can be partly explained by the
fact that the duals of the two–character sets Pi, i = 0, 1, 2, 3, are also two–
character sets in the dual space. With the dual of a two–character set C we
mean the set of hyperplanes meeting C is the minimal number of points.
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