The simple exceptional group $G_2(q)$, qeven, and two-character sets

Antonio Cossidente Dipartimento di Matematica Università della Basilicata I-85100 Potenza – Italy cossidente@unibas.it

Hendrik Van Maldeghem Department of Pure Mathematics and Computer Algebra Ghent University Krijgslaan 281, S22 B-9000 Gent – Belgium hvm@cage.ugent.be **Proposed Running Head:** The exceptional group $G_2(q)$, q even, and two-character sets

Corresponding Author:

Antonio Cossidente Dipartimento di Matematica Università della Basilicata Contrada Macchia Romana I-85100 Potenza Italy cossidente@unibas.it

Abstract

When q is even the simple exceptional group $G_2(q)$ is a subgroup of $\mathsf{PSp}_6(q)$. We study the action of the group $G_2(q) < G_2(q^2)$ on points of $\mathsf{PG}(5,q^2)$ and show that unions of $\mathsf{G}_2(q)$ -orbits are two-character sets.

Keywords: exceptional finite groups of Lie type, symplectic polarity, generalized hexagon, two-character set.

1 Introduction

A two-character set in the projective space $\mathsf{PG}(d,q)$ is a set S of n points with the property that the intersection number with any hyperplane only takes two values, $n - w_1$ and $n - w_2$. Then the positive integers w_1 and w_2 are called the weights (constants) of the two-character set. Embed PG(d,q) as a hyperplane Π in $\mathsf{PG}(d+1,q)$. The linear representation graph $\Gamma^*_d(\mathcal{S})$ is the graph having as vertices the points of $\mathsf{PG}(d+1,q) \setminus \Pi$ and where two vertices are adjacent whenever the line defined by them meets \mathcal{S} . It follows that $\Gamma_d^*(\mathcal{S})$ has $v = q^{d+1}$ vertices and valency k = (q-1)n. Delsarte [3] proved that this graph is strongly regular because \mathcal{S} is a two-character set. The other parameters of the graph are $\lambda = k - 1 + (k - qw_1 + 1)(k - qw_2 + 1)$ and $\mu = k + (k - qw_1)(k - qw_2)$. On the other hand, regarding the coordinates of the elements of \mathcal{S} as columns of the generator matrix of a code \mathcal{L} of length nand dimension d+1, then the two-character set property of S translates into the fact that the code \mathcal{L} has two weights $(w_1 \text{ and } w_2)$ [1]. Such a code is said to be a *projective two-weight code*. The weights of the code are precisely the weights of the two-character set. Moreover, if $\mathsf{GF}(q_0)$ is a subfield of $\mathsf{GF}(q)$, with $q_0^r = q$, then the projective two-weight code C, which is defined over $\mathsf{GF}(q)$, determines a projective two–weight code C' of length n' and dimension kr, with weights w'_1 and w'_2 , where $n' = ((q-1)n)/(q_0-1)$, $w'_1 = qw_1/q_0$ and $w_2' = qw_2/q_0.$

Several authors, too many to be quoted here, studied two-character sets, sometimes involving algebra, sometimes involving geometry. Very recently, De Wispelaere and Van Maldeghem [4], [5] discovered a new infinite class of two-character sets in $\mathsf{PG}(5,q^2)$ using a very interesting idea: an antiisomorphism between two skew planes of $\mathsf{PG}(5,q^2)$ together with a certain Baer subplane. Its automorphism group is a non-split extension $(q + 1) \cdot (\Gamma L(3,q) \times 2)$. From this construction a new distance-2 ovoid of the split Cayley hexagon H(4) arises. We recall that a distance-2 ovoid of a generalized hexagon of order (s,t), is a set of points of the hexagon of size s^2t^2+st+1 , such that every line of the generalized hexagon is incident with exactly one element of the set. Another two-character set found by De Wispelaere and Van Maldeghem arises from certain orbits of the group $\mathsf{PSL}_2(13)$, which is a maximal subgroup of $\mathsf{G}_2(4)$, on points of $\mathsf{PG}(5,4)$.

In this paper we will construct infinite families of two-character sets of $\mathsf{PG}(5,q^2)$, q even, given by the orbits of the action of the exceptional finite simple group $\mathsf{G}_2(q)$ on points of $\mathsf{PG}(5,q^2)$. Apart from well-known instances (a Baer subgeometry and its complement in $\mathsf{PG}(5,q^2)$), the other examples we have found (and the associated strongly regular graphs) seem to be new. The automorphism groups of all our two-character sets are the direct products of the standard extensions of $\mathsf{G}_2(q)$ by all field automorphisms, with a group of order 2 (the latter a Baer involution in $\mathsf{PG}(5,q)$ corresponding to the field automorphisms of $\mathsf{GF}(q^2)$ fixing $\mathsf{GF}(q)$ pointwise).

Our construction will follow from a rather simple observation implied by an old result of Thas [8]. Let us review briefly Thas' result and prove the corollary we have in mind.

2 Baer subhexagons of generalized hexagons of order s^2

A generalized hexagon is a point-line incidence structure $\mathcal{H} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$, with point set \mathcal{P} , line set \mathcal{L} and symmetric incidence relation \mathbf{I} whose incidence graph — i.e., the bipartite graph with vertex set $\mathcal{P} \cup \mathcal{L}$ and edge set given by \mathbf{I} — has diameter 6 and girth 12 — the latter is the length of the smallest circuit. From now on, we will consider distances of elements of a generalized hexagon in its incidence graph. A generalized hexagon \mathcal{H} is called *of order* (s,t) if all lines are incident with exactly s+1 points and all lines are incident with exactly t + 1 lines. A generalized hexagon has an order as soon as two elements at distance 1 or 5 are incident with at least 3 elements. If s = t, then we say that the generalized hexagon has order s. A subhexagon $\mathcal{H}' = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ of \mathcal{H} is a substructure with $\mathcal{P}' \subseteq \mathcal{P}, \mathcal{L}' \subseteq \mathcal{L}$ and \mathbf{I}' coincides with \mathbf{I} on $\mathcal{P}' \times \mathcal{L}'$.

Generalized hexagons were introduced by Tits in the appendix of [9]. More information is contained in the monograph [10].

We also use standard terminology of incidence geometry, such as *collinear* points (points at distance ≤ 2 from each other), concurrent lines (lines at distance ≤ 2 from one another), etc.

We have the following result.

Theorem [Thas [8]]. Let \mathcal{H}' be a subhexagon of order (s', t') of the generalized hexagon \mathcal{H} of order (s,t), with s' < s. Then $(s't')^2 \leq st$ and if (s't') = st, then every point of \mathcal{H} that is not collinear with any point of \mathcal{H}' is at distance 3 from exactly t' + 1 lines of \mathcal{H}' .

A peculiar situation arises when we have a generalized hexagon $\mathcal{H} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ of order s^2 and a subhexagon $\mathcal{H}' = (\mathcal{P}', \mathcal{L}', \mathbf{I})$ of order s. Then $(ss)^2 = s^2s^2$ and the equality in the previous theorem holds. We call \mathcal{H}' a *Baer* subhexagons in this case. Since here s = t and s' = t', the situation is very symmetric in points and lines. The distance of an element of \mathcal{H} to \mathcal{H}' is the distance of that element to a nearest element of \mathcal{H}' . The previous theorem implies that the maximal distance to \mathcal{H}' is 3. We will denote the set of points (lines) of \mathcal{H} at distance 0, 1, 2, 3 from \mathcal{H}' by $\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ ($\mathcal{L}_0, \mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$), respectively. Note that $\mathcal{P}_0 = \mathcal{P}'$ and $\mathcal{L}_0 = \mathcal{L}'$. We have the following corollary to the above theorem.

Corollary 1. Let \mathcal{H}' be a Baer subhexagon of order s of the generalized hexagon \mathcal{H} . With the above notation, the number $n_{i,j}$ of elements of \mathcal{P}_j and \mathcal{L}_j incident with an element of \mathcal{L}_i and \mathcal{P}_i , respectively, only depends on i and j and is given by the following matrix $N = (n_{i,j})_{0 \le i,j \le 3}$.

$$N = \begin{bmatrix} s+1 & s^2-s & 0 & 0\\ 1 & 0 & s^2 & 0\\ 0 & 1 & 0 & s^2\\ 0 & 0 & s+1 & s^2-s \end{bmatrix}.$$

Proof. The first row of N follows from the definition of \mathcal{L}_1 ; the second row from the definition of \mathcal{L}_2 . Now let $p \in \mathcal{P}_2$. Then p is incident with a line Lincident with a unique point x of \mathcal{H}' , by definition. If any other line through p would contain a point x' of \mathcal{H}' or meet a line L' of \mathcal{H}' , then the unique path in \mathcal{H} connecting x with x' or L', respectively, would also be contained in \mathcal{H}' , a contradiction since this path would contain p. Hence $n_{2,1} = 1$, $n_{2,2} = 0$ and $n_{2,3} = s^2$. The last row follows directly from the previous theorem. \Box

This corollary enables one to determine the number of elements in any set \mathcal{P}_j or \mathcal{L}_j at distance k from any element of \mathcal{P}_i or \mathcal{L}_i , and this number $n_{i,j}^{(k)}$ only depends on i, j, k, for $i, j \in \{0, 1, 2, 3\}$ and $0 \le k \le 6$. For instance, one checks that $n_{i,j}^{(2)}$ is equal to the (i, j)-entry of N^2 if $i \ne j$, and to the (i, j)-entry of (N - J)N if i = j (where J is the matrix with on every position 1). It is a bit more cumbersome to find such expressions for $n_{i,j}^{(4)}$, but it is still elementary to deduce it directly from Corollary 1. In fact, one shows:

Corollary 2. Let \mathcal{H}' be a Baer subhexagon of order s of the generalized hexagon \mathcal{H} . With the above notation, the number $m_{i,j}$ of elements of \mathcal{P}_j not opposite an element of \mathcal{P}_i only depends on i and j and is given by the

following matrix $M = (m_{i,j})_{0 \le i,j \le 3}$.

Proof. As an example let us derive $m_{3,3} = n_{3,3}^{(0)} + n_{3,3}^{(2)} + n_{3,3}^{(4)}$. Consider an arbitrary point $p \in \mathcal{P}_3$. We will say that an element of $\mathcal{P}_i \cup \mathcal{L}_i$ has type i, i = 0, 1, 2, 3. To a point x of \mathcal{H} at distance 4 from p corresponds a unique sequence $i_1i_2i_3i_4$ with i_j the type of the unique element of \mathcal{H} at distance j from p and 4 - j from x, j = 1, 2, 3, 4. We put $i_0 = 3$, the type of p. We now count the number of points corresponding with such a sequence for which $i_4 = 3$. It is easy to see with Corollary 1 that the only sequences for which this number is nonzero are 2123, 2323, 2333, 3233, 3323 and 3333. For each such sequence A and each $j \in \{1, 2, 3\}$, we put

$$f_{j,j+1}^{(A)} = \begin{cases} n_{j,j+1} - 1 & \text{if } i_{j-1} = i_{j+1}, \\ n_{j,j+1} & \text{if } i_{j-1} \neq i_{j+1}. \end{cases}$$

Then the number of points $N(i_1i_2i_3i_4)$ corresponding to the sequence $A = i_1i_2i_3i_4$ equals $n_{i_0,i_1}f_{i_1,i_2}^{(A)}f_{i_2,i_3}^{(A)}f_{i_3,i_4}^{(A)}$. Hence

$$n_{3,3}^{(4)} = N(2123) + N(2323) + N(2333) + N(3233) + N(3323) + N(3333)$$

= $s^8 - s^7 + s^6 - s^5 + s^3 - s^2$.

Similarly

$$n_{3,3}^{(2)} = n_{3,2}(n_{2,3} - 1) + n_{3,3}(n_{3,3} - 1) = s^4 - s^3 + s^2 - 1$$

and the result follows.

3 An application to two-character sets

3.1 The group $G_2(q)$ and the split Cayley hexagon

Let \mathbb{K} be a field. Let $\mathbb{Q}(6, \mathbb{K})$ be a nonsingular quadric in the projective space $\mathsf{PG}(6, \mathbb{K})$ that has on it totally singular planes. Let $\mathsf{P}\Omega_7(\mathbb{K})$ be the projective commutator orthogonal group of $\mathbb{Q}(6, \mathbb{K})$. The Cartan–Dickson–Chevalley exceptional group $\mathsf{G}_2(\mathbb{K})$ is a subgroup of $\mathsf{P}\Omega_7(\mathbb{K})$. It occurs as the stabilizer in $\mathsf{P}\Omega_7(\mathbb{K})$ of a configuration \mathcal{F} of points, lines and planes on $\mathbb{Q}(6, \mathbb{K})$. The geometry of \mathcal{F} was explored first by J. Tits [9] and later, from a somewhat different standpoint, by R.H. Dye [6]. Both approaches involve the geometry associated with the triality of a hyperbolic quadric in $\mathsf{PG}(7, \mathbb{K})$. Tits, in

particular, by identifying the stabilizer of \mathcal{F} with $G_2(\mathbb{K})$, obtained a lot of information on the action of $G_2(\mathbb{K})$.

The group $G_2(\mathbb{K})$ is also contained in the automorphism group of a classical generalized hexagon, called the *split Cayley hexagon* and denoted by $H(\mathbb{K})$. The latter is a "truncation" of the configuration \mathcal{F} , just keeping the points and lines. So the points of $H(\mathbb{K})$ are all the points of $Q(6, \mathbb{K})$ and the lines of $H(\mathbb{K})$ are certain lines of $Q(6, \mathbb{K})$. When \mathbb{K} is the finite field GF(q), the hexagon is denoted H(q) and it has order q. For more details, see [10]. The precise definition of the line set is not necessary for the purpose of the present paper; it suffices to remark that (1) it can be defined using the Plücker coordinates of the lines and a set of equations with coefficients in the prime field of GF(q), that (2) two points of PG(5,q) are conjugate with respect to ρ if and only if they are not opposite in H(q), and that (3) the q + 1 lines on a point are coplanar.

When q is even, the orthogonal group $P\Omega_7(q)$ is isomorphic to the symplectic group $\mathsf{PSp}_6(q)$, so that $\mathsf{G}_2(q)$ may be regarded as a subgroup of $\mathsf{PSp}_6(q)$. Then, it follows that $\mathsf{H}(q)$ has a representation in $\mathsf{PG}(5,q)$ as a *perfect symplectic hexagon*, [10, p.74]: the points of $\mathsf{H}(q)$ are all the points of $\mathsf{PG}(5,q)$ and the lines of $\mathsf{H}(q)$ are certain totally isotropic lines of $\mathsf{PG}(5,q)$ with respect to a symplectic polarity ρ .

Now we embed $\mathsf{PG}(5,q)$ in $\mathsf{PG}(5,q^2)$, thereby extending $\mathsf{H}(q)$ to $\mathsf{H}(q^2)$ and ρ extends (in a unique way, actually) to $\mathsf{PG}(5,q^2)$ in such a way that all lines of $\mathsf{H}(q)$ are totally isotropic. The points of $\mathsf{H}(q^2)$ are all points of $\mathsf{PG}(5,q^2)$. Every hyperplane H in $\mathsf{PG}(5,q^2)$ is the image of a unique point p of $\mathsf{H}(q^2)$ under ρ . Since H is the set of points conjugate to p under ρ , it is also the set of points of $\mathsf{H}(q^2)$ lying at distance at most 4 from p. The following proposition can be easily verified using the fact that a line pencil in $\mathsf{H}(q^2)$ is a planar line pencil in $\mathsf{PG}(5,q^2)$.

Proposition 3.1. Let \mathcal{P}_i be the set of points of $\mathsf{H}(q^2)$ at distance *i* from $\mathsf{H}(q)$, i = 0, 1, 2, 3. Then \mathcal{P}_1 is precisely the set of points of $\mathsf{PG}(5, q^2) \setminus \mathsf{PG}(5, q)$ incident with lines of $\mathsf{H}(q)$; \mathcal{P}_2 is the set of points of $\mathsf{PG}(5, q^2) \setminus \mathsf{PG}(5, q)$ incident with a totally isotropic line of $\mathsf{PG}(5, q)$ with respect to ρ ; finally \mathcal{P}_3 is the set of points of $\mathsf{PG}(5, q^2) \setminus \mathsf{PG}(5, q)$ incident with a nonisotropic line of $\mathsf{PG}(5, q)$. We also have

$$|\mathcal{P}_0| = q^5 + q^4 + q^3 + q^2 + q + 1,$$
 $|\mathcal{P}_1| = q^7 - q,$
 $|\mathcal{P}_2| = q^9 - q^3,$ $|\mathcal{P}_3| = q^{10} - q^9 + q^8 - q^7 + q^6 - q^5.$

3.2 The two-character sets

Corollary 2 and Proposition 3.1 implies the following theorem. We use the same notation as in the previous subsection.

Theorem 3.2. Let \mathcal{P}_i be the set of points of $\mathsf{H}(q^2)$ at distance i from $\mathsf{H}(q)$, i = 0, 1, 2, 3. Then each \mathcal{P}_i , $i \in \{0, 1, 2, 3\}$ is a two-character set of $\mathsf{PG}(5, q^2)$, and so is each $\mathcal{P}_i \cup \mathcal{P}_j$, $i, j \in \{0, 1, 2, 3\}$, $i \neq j$, and also each $\mathcal{P}_i \cup \mathcal{P}_j \cup \mathcal{P}_k$, $|\{0, 1, 2, 3\} \setminus \{i, j, k\}| = 1$. Omitting the well known Baer subgeometry \mathcal{P}_0 and its complement $\mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3$, the corresponding weights w_1 and w_2 are as follows.

	$ $ w_1	w_2
\mathcal{P}_1	$q^7 - q^5$	$q^7 - q^5 - q^4$
\mathcal{P}_2	$q^9 - q^7$	$q^9 - q^7 - q^4$
\mathcal{P}_3	$q^{10} - q^9$	$q^{10} - q^9 - q^4$
$\mathcal{P}_0 \cup \mathcal{P}_1$	q^7	$q^7 + q^4$
$\mathcal{P}_0 \cup \mathcal{P}_2$	$q^9 - q^7 + q^5$	$q^9 - q^7 + q^5 + q^4$
$\mathcal{P}_0\cup\mathcal{P}_3$	$q^{10} - q^9 + q^5$	$q^{10} - q^9 + q^5 + q^4$
$\mathcal{P}_1 \cup \mathcal{P}_2$	$q^9 - q^7 + q^6 - q^5$	$q^9 - q^7 + q^6 - q^5 - q^4$
$\mathcal{P}_1\cup\mathcal{P}_3$	$q^{10} - q^9 + q^7 - q^5$	$q^{10} - q^9 + q^7 - q^5 - q^4$
$\mathcal{P}_2\cup\mathcal{P}_3$	$q^{10} - q^7$	$q^{10} - q^7 - q^4$
$\mathcal{P}_0 \cup \mathcal{P}_1 \cup \mathcal{P}_2$	q^9	$q^9 + q^4$
$\mathcal{P}_0\cup\mathcal{P}_1\cup\mathcal{P}_3$	$q^{10} - q^9 + 2q^7$	$q^{10} - q^9 + 2q^7 + q^4$
$\mathcal{P}_0\cup\mathcal{P}_2\cup\mathcal{P}_3$	$ q^{10} - q^7 + q^5$	$q^{10} - q^7 + q^5 + q^4$

For the well know examples \mathcal{P}_0 and $\mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3$ we refer to [1, Ex. RT1]. The strongly regular graphs associated to the two-character sets \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3 all have q^6 vertices and valency k equal to $(q-1)(q^7-q)$, $(q-1)(q^9-q^3)$ and $(q-1)(q^{10}-q^9+q^8-q^7+q^6-q^5)$, respectively. It is easy to determine the parameters of the associated strongly regular graphs and codes for all two-character sets of the theorem, but we omit numbers. Checking the list in [1] and the papers [4], [5], they turn out to be most probably new.

Of course the automorphism group of all our two-character sets is the direct product of the standard extension of the group $G_2(q)$ with all field automorphism of GF(q), with the group of order 2 generated by the involution induced by the unique field automorphism of order two in $GF(q^2)$.

3.3 Definition with orbits

It has been proved in [2, Lemmas 5.2,5.4] that the group $G_2(q)$ has two orbits on totally isotropic lines of PG(5,q) of lengths $(q^6-1)/(q-1)$ (H(q)lines) and $q^2(q^6-1)/(q-1)$ and acts transitively on the $q^4(q^4+q^2+1)$ nonisotropic lines of PG(5,q). In fact, this follows directly from the fact that $G_2(q)$ acts distance-transitively on H(q), i.e., transitive on ordered pairs of points at fixed but arbitrary distance from one another. This now implies the following alternative construction of the sets \mathcal{P}_i , $i \in \{0, 1, 2, 3\}$.

Proposition 3.3. The group $G_2(q)$ has exactly four orbits on points of $PG(5, q^2)$, and these are \mathcal{P}_0 , \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3

Proof. Since $G_2(q)$ acts distance-transitively on H(q), the action induced on each line L of PG(5,q) of the stabilizer $G_2(q)_L$ contains $PSL_2(q)$ in its natural action. But this is transitive on the imaginary points of L over $GF(q^2)$. The proposition is now clear.

Remark. Note that usually the union of two two-character sets is not a twocharacter set, since the number of possibilities for the intersection numbers with hyperplanes is generically equal to four. But in our case, all possible unions of \mathcal{P}_i , i = 0, 1, 2, 3, do give rise to two-character sets. This is a rather remarkable observation. Probably this can be partly explained by the fact that the *duals* of the two-character sets \mathcal{P}_i , i = 0, 1, 2, 3, are also twocharacter sets in the dual space. With the *dual* of a two-character set \mathcal{C} we mean the set of hyperplanes meeting \mathcal{C} is the minimal number of points.

References

- R. Calderbank, W.M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986), 97–122.
- [2] B.N. Cooperstein, Maximal subgroups of $G_2(2^n)$, J. Algebra 70 (1981), 23–36.
- [3] Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, *Discrete Math.* **3** (1972), 47–64.
- [4] A. De Wispelaere, H. Van Maldeghem, Codes from generalized hexagons, *Des. Codes and Cryptogr.* (to appear).
- [5] A. De Wispelaere, H. Van Maldeghem, Some new two-character sets in $PG(5, q^2)$ and a distance-2 ovoid in the generalized hexagon H(4), Proc. of com2MaC Conference on Association Schemes, Codes and Designs, Korea (to appear).
- [6] R.H. Dye, A quick geometrical proof that $G_2(K)$ is maximal in $P\Omega_7(K)$, Geom. Dedicata **26** (1988), 361–364.
- [7] D.E. Taylor, The geometry of the classical groups, Heldermann Verlag, Berlin 1992.
- [8] J.A. Thas, A restriction on the parameters of a subhexagon, J. Combin. Theory, Ser. A 21 (1976), 115–117.
- [9] J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Publ. Math. Inst. Hautes Études Sci. 2 (1959), 37–60.
- [10] H. Van Maldeghem, *Generalized polygons*, Monographs in Mathematics 93, Birkhäuser Verlag, Basel, 1998.