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Abstract

In this paper, we consider a set L of lines of PG(5, q) with the properties that
(1) every plane contains 0, 1 or q+1 elements of L, (2) every solid contains no more
than q2 + q +1 and no less than q +1 elements of L, and (3) every point of PG(5, q)
is on q + 1 members of L, and we show that, whenever (4) q "= 2 (respectively,
q = 2) and the lines of L through some point are contained in a solid (respectively,
a plane), then L is necessarily the set of lines of a regularly embedded split Cayley
generalized hexagon H(q) in PG(5, q), with q even. We present examples of such
sets L not satisfying (4) based on a Singer cycle in PG(5, q), for all q.

1 Introduction

Recognizing specific geometric structures by certain properties — preferably as weak as
possible — is very important in (finite) geometry, since various configurations can turn up
unexpectedly in completely different contexts, disguised in an unusual definition. Data
that are available for structures in projective spaces are in many situations the intersection
numbers with respect to subspaces. A typical example are the conics in Desarguesian
planes PG(2, q), with q odd, which are characterized as sets of q + 1 points meeting lines
in 0, 1 or 2 points. Other, more involved, examples are the characterizations of quadrics,
Hermitian and Veronesean varieties by intersection numbers.

In the present paper, our aim is to characterize the standard embedding in PG(5, q) of the
split Cayley hexagon H(q), q even, by intersection numbers with subspaces. Of course,
since the points of H(q) are all the points of PG(5, q), such a characterization is impossible
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if we (only) consider intersections of the point set of the hexagon with subspaces. That
is why we consider the intersections of subspaces with the line set of H(q), i.e., we count
the number of lines of a given embedded H(q) in a given subspace and then assume
that we have a set of lines with these intersection numbers (in practice, we take weaker
assumptions). It is also natural to require that we deal with a tactical configuration, i.e.,
we assume that each point of the projective space is incident with exactly q + 1 lines of
our set. A similar characterization for the standard embedding of H(q) in PG(6, q) has
been proved in [7].

Before getting down to precise statements, let us recall the definition and construction of
the split Cayley hexagons H(q).

A point-line geometry is a triple (P ,L, I) consisting of a set P of points, a set L of
lines, and a symmetric incidence relation I saying precisely which points are incident
with which lines (and conversely). The incidence graph of a point-line geometry (P ,L, I)
is the graph with vertex set P ∪ L and adjacency relation I. A generalized hexagon is
a point-line geometry for which the incidence graph has diameter 6 and girth 12, i.e.,
the maximal distance between two vertices is 6, and the length of a shortest circuit is 12.
Whenever each vertex of the incidence graph of a generalized hexagon has valency at least
3, this (bipartite) graph is bi-valent. If the valency of the vertices belonging to P and L
is equal to s + 1 and t + 1, respectively, then we say that the generalized hexagon has
order (s, t). Distances between elements of a point-line geometry are always measured in
the incidence graph. Elements at distance 6 from each other in a generalized hexagon are
called opposite.

Let q be any prime power. Up to isomorphism, the split Cayley hexagon H(q) is defined
as follows (see Tits [8]). Let Q(6, q) be the parabolic quadric in PG(6, q) defined by the
equation X0X4 + X1X5 + X2X6 = X2

3 . Then the points of H(q) are the points of Q(6, q),
the lines of H(q) are the lines of Q(6, q) whose Grassmannian coordinates (p01, p02, . . . , p56)
satisfy the six relations p12 = p34, p56 = p03, p45 = p23, p01 = p36, p02 = −p35 and p46 =
−p13. Incidence is inherited from PG(6, q). For more details, properties and information
about H(q) we refer to [9].

When q is even, then the point with coordinates (0, 0, 0, 1, 0, 0, 0) has the property that
each line of PG(6, q) though that point meets Q(6, q) in exactly one point. Projection of
H(q) from that point onto any hyperplane not containing (0, 0, 0, 1, 0, 0, 0) yields a repre-
sentation of H(q) in PG(5, q). It is exactly this representation that we will characterize in
the present paper. We call it an embedding of H(q) in PG(5, q). (Abstractly, an embedding
of a point-line geometry (P ,L, I) in PG(n, q), for some n, is an injective mapping of P in
the point set of PG(n, q) inducing an injective mapping from L into the line set of PG(n, q)
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and such that the image of P generates PG(n, q).) It has the following properties, see [9]
and [6].

First of all, it is polarized. This means that for every point x of H(q), the set of points not
opposite x is contained in a hyperplane of PG(5, q). Also, the set of lines of H(q) incident
with x is contained in a plane of PG(5, q), and we say that the embedding is flat. Flat and
polarized are abbreviated by the notion regular embedding. By [5], up to projectivity, the
example above is the only flatly embedded generalized hexagon of order (q, q) in PG(5, q).

A line L of PG(5, q) that does not belong to H(q) contains q +1 points at mutual distance
(in the hexagon) either 4, or 6. In the former case, we call the line ideal. In this case,
there is a unique point x of H(q) collinear to all points of L, and we call x the focus of
the ideal line L. If all points of L are mutually opposite, then we say that the points of
L form a point regulus.

We are now ready to state our main results.

2 Main Results

Let L be a set of lines of PG(5, q). Then L is called a pseudo-hexagon if it satisfies the
properties (Pt), (Pl) and (Sd).

(Pt) Every point of PG(5, q) is incident with exactly q + 1 elements of L.

(Pl) Every plane of PG(5, q) is incident with either 0, 1 or q + 1 elements of L.

(Sd) We either have that every solid of PG(5, q) is incident with no more than q2 + q + 1
and no less than q + 1 elements of L, or no solid of PG(5, q) is incident with strictly
less than q2 + q + 1 and strictly more than q + 1 elements of L.

(Sd′) Every solid of PG(5, q) is incident with either q2 + q + 1 or q + 1 elements of L.

(Hp) Every hyperplane of PG(5, q) is incident with exactly q3 + q2 + q + 1 members of L.

(To) The set L contains q5 + q4 + q3 + q2 + q + 1 lines.

A pseudo-hexagon L with the additional property that for some point x, the members
of L through x are contained in a plane will be called flat (and the point x will also be
called flat).
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Our Main Result reads as follows.

Main Result. If L is a pseudo-hexagon, then it also satisfies (Sd′), (Hp) and (To). If
moreover q "= 2 and for some point x the members of L through x are contained in a solid,
then L is flat, all points of PG(5, q) are flat and L is the line set of a regularly embedded
split Cayley hexagon H(q) in PG(5, q), with q even. If q = 2 and some point x is flat, then
we have the same conclusion. Conversely, the line set of every regularly embedded split
Cayley hexagon H(q) in PG(5, q), q even, is a pseudo-hexagon.

We will also provide a class of examples of pseudo-hexagons that are not flat. For q = 2,
there is a complete classification.

Theorem. Up to isomorphism, there are exactly three pseudo-hexagons in PG(5, 2).

3 Proof of the Main Result

First let L be the line set of a regularly embedded split Cayley hexagon H(q) in PG(5, q).
Since all points of PG(5, q) are points of H(q), and since H(q) has order q, Condition (Pt)
follows. Since the embedding is flat, Condition (Pl) is trivial.

Recall that, because q is even, every element of L is an absolute line with respect to some
symplectic polarity ρ. Moreover, two points x, y are conjugate under ρ (meaning x is
incident with yρ) if and only if x and y are at distance at most 4 in the incidence graph
of H(q). Every solid is the image under ρ of a line L of PG(5, q), and there are three
possibilities.

Either L is a line of H(q)

Then Lρ consists of all points at distance ≤ 3 from L in H(q). There are q2 + q + 1 lines
of H(q) in that set of points.

Or it is any other absolute line with respect to ρ

Then L is an ideal line with focus, say, x and Lρ contains all lines of H(q) through x,
which lie in a plane π. Every other line of H(q) in Lρ must meet π in some point u "= x,
but then it is easily seen that u is the only point of that line at distance ≤ 4 from all
points of L, which yields a contradiction. Hence Lρ contains q + 1 lines of H(q).
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Or it is a non absolute line with respect to ρ

In this case, the points of L form a point regulus of H(q) and the set of all points of
H(q) at distance ≤ 4 from each point of L consists of all points on the elements of a line
regulus. Hence here, too, we have q + 1 lines of H(q) in Lρ.

This shows (Sd′).

Next, Condition (Hp) follows from the fact that every hyperplane of PG(5, q) is the image
under ρ of a point of x of H(q), and the lines in xρ are those at distance ≤ 3 from x.
There are q3 + q2 + q + 1 such lines.

Finally, Condition (To) is immediate.

For the remainder of this section, we assume now that a set of lines L satisfies (Pt), (Pl)
and (Sd).

We prove a sequence of lemmas culminating in a complete proof of our Main Result.

Lemma 1 The set L satisfies (To).

Proof. If N is the total number of lines, then, since there are precisely q +1 lines through
each point, and q + 1 points on each line, there are as many lines in L as there are points
in PG(5, q). This proves the lemma. !

Lemma 2 The set L satisfies (Hp).

Proof. Let I be the index set {1, 2, . . . , q5 + q4 + q3 + q2 + q + 1}. Let {Hi | i ∈ I} be the
set of hyperplanes of PG(5, q). Let ti be the number of lines of L contained in Hi, i ∈ I.
Counting pairs (L, Hi), with L ∈ L, i ∈ I and L in Hi, in two different ways, we obtain

∑

i∈I

ti = (q5 + q4 + q3 + q2 + q + 1)(q3 + q2 + q + 1).

Counting the ordered triples (L, L′, Hi), with L, L′ ∈ L, L "= L′, i ∈ I and both L, L′ in
Hi, in two different ways, we obtain

∑

i∈I

ti(ti − 1) = (q5 + q4 + q3 + q2 + q + 1)(q2 + q)(q2 + q + 1) +

+(q5 + q4 + q3 + q2 + q + 1)(q5 + q4 + q3)(q + 1).
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Then one calculates easily that
∑

i∈I

t2i = (q5 + q4 + q3 + q2 + q + 1)(q + 1)2(q2 + 1)2

and hence |I|
∑

i∈I t2i − (
∑

i∈I ti)2 = 0. Consequently the variance (in the probabilistic
sense viewing the ti as test cases of a certain variable) of the ti’s is zero and each ti is
equal to the average (

∑
i∈I ti)/|I|, which is q3 + q2 + q + 1. !

Lemma 3 The set L satisfies (Sd′).

Proof. Let I be the index set {1, 2, . . . , (q4 + q3 + q2 + q +1)(q4 + q2 +1)}. Let {Si | i ∈ I}
be the set of solids of PG(5, q). Let ti be the number of lines of L contained in Si, i ∈ I.
Counting pairs (L, Si), with L ∈ L, i ∈ I and L in Si, in two different ways, we obtain

∑

i∈I

ti = (q5 + q4 + q3 + q2 + q + 1)(q2 + 1)(q2 + q + 1).

Counting the ordered triples (L, L′, Si), with L, L′ ∈ L, L "= L′, i ∈ I and both L, L′ in
Si, in two different ways, we obtain

∑

i∈I

ti(ti − 1) = (q5 + q4 + q3 + q2 + q + 1)(q2 + q)(q2 + q + 1) +

+(q5 + q4 + q3 + q2 + q + 1)(q5 + q4 + q3).

Then one calculates easily that
∑

i∈I

t2i = (q5 + q4 + q3 + q2 + q + 1)(q3 + 2q2 + q + 1)(q2 + q + 1)

and hence
∑

i∈I

(ti − (q + 1))(ti − (q2 + q + 1)) =

=
∑

i∈I

t2i − (q2 + 2q + 2)
∑

i∈I

ti + |I|(q + 1)(q2 + q + 1)

= (q5 + q4 + q3 + q2 + q + 1)(q2 + q + 1)[q3 + 2q2 + q + 1

− q4 − 2q3 − 3q2 − 2q − 2 + q4 + q3 + q2 + q + 1]

= 0.
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By (Sd), since either q +1 ≤ ti ≤ q2 + q +1 or ti does not lie between q +1 and q2 + q +1,
for all i ∈ I, no term of the left hand side is either strictly positive or strictly negative,
so each term must be zero. But this means that ti ∈ {q + 1, q2 + q + 1}. !
Before proving some structural properties of L, we count various types of subspaces con-
taining various numbers of lines of L.

Lemma 4 There are q2(q4 + q2 +1)(q2 + q +1) solids containing exactly q +1 lines of L,
and there are q5 + q4 + q3 + q2 + q + 1 solids containing q2 + q + 1 members of L. Every
member of L is contained in exactly q2 + q + 1 solids containing q2 + q + 1 members of L.

Proof. Let a and b be the numbers of solids containing exactly q + 1 and q2 + q + 1
members of L, respectively. Then, counting the pairs (L, S), with L ∈ L and S a solid
containing L, we obtain

{
a(q + 1) + b(q2 + q + 1) = (q5 + q4 + q3 + q2 + q + 1)(q2 + q + 1)(q2 + 1)

a + b = (q4 + q3 + q2 + q + 1)(q4 + q2 + 1).

The first assertion of the lemma easily follows.

Now let L ∈ L arbitrarily. Let c and d be the number of solids through L containing
exactly q +1 members of L and q2 + q +1 members of L, respectively. Then counting the
pairs (M, S), with M ∈ L \ {L} and S a solid containing L and M , we obtain

{
cq + d(q2 + q) = (q2 + q)(q2 + q + 1) + (q5 + q4 + q3)

c + d = (q2 + q + 1)(q2 + 1).

Now also the second assertion of the lemma follows. !

Lemma 5 There are exactly q5 + q4 + q3 + q2 + q + 1 planes of PG(5, q) containing q + 1
members of L, and through every line of L, there are exactly q + 1 such planes.

Proof. Fix L ∈ L. Then there are q2 + q lines of L concurrent with, but distinct from
L. Counting in two ways the pairs (M, π), with L "= M ∈ L concurrent with L and π
a plane containing L and q other members of L, we easily obtain that there are exactly
q + 1 such planes π. Now we count in two ways all the pairs (M, π), with M ∈ L, and
π a plane containing M and q other lines of L. Since there are equally many lines M in
such planes π as there are planes π through such lines M , there are also equally many
such planes as such lines. !
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Lemma 6 For every plane π of PG(5, q) containing q+1 members of L, there are exactly
q + 1 solids incident with π and containing q2 + q + 1 lines of L.

Proof. Fix a plane π, put I = {1, 2, . . . , q2 + q + 1} and let {pi | i ∈ I} be the set of
points of π. Let ti be the number of lines of L incident with pi and not contained in
π. Let N be the number of solids incident with π and containing q2 + q + 1 lines of L.
Counting in two ways the pairs (M, S), with M ∈ L meeting π in exactly one point and
S a solid containing π and M (and hence containing q2 + q + 1 members of L), we obtain∑

i∈I ti = Nq2.

Now we count the incident pairs (pi, M), with i ∈ I and M ∈ L in π. We obtain∑
i∈I(q+1−ti) = (q+1)2. Combined with the previous paragraph this implies N = q+1.

!
Lemma 4 implies that there exists a solid S containing exactly q2 + q + 1 lines of L. We
fix S and we denote by W the set of lines of L contained in S. Property (Pl) implies that
there are at most three types of planes in S. Planes of Type I contain q + 1 lines of W ,
planes of Type II contain only one line of W , and planes of Type III do not contain any
line of W .

Lemma 7 The solid S contains exactly q +1 planes of Type I, and no planes of Type III.

Proof. Let NX be the number of planes of Type X in S, with X = I,II,III. Counting the
pairs (L, π), with L ∈ W and π a plane of S containing L, we obtain

{
NII + NI(q + 1) = (q2 + q + 1)(q + 1)
NIII + NII + NI = q3 + q2 + q + 1,

from which we deduce that NIq −NIII = q2 + q. Hence NI ≥ q + 1 and if equality holds,
then NIII = 0.

We now count the number of pairs (π, T ), with π a plane of PG(5, q) containing q+1 lines
of L, and T a solid of PG(5, q) containing π and containing q2 + q + 1 members of L, in
two ways. If N is the average number of planes with q + 1 lines of L contained in solids
with q2 + q + 1 lines of L, then by Lemmas 4, 5 and 6, we have

N =
(q5 + q4 + q3 + q2 + q + 1)(q + 1)

q5 + q4 + q3 + q2 + q + 1
= q + 1.

But varying S in the first part of our proof, we now see that NI = q + 1. !
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Lemma 8 For every point p in S, there are equally many lines of W incident with p as
there are planes of Type I in S incident with p.

Proof. Let n be the number of lines of W through p, and let m be the number of planes
of Type I in S incident with p. Counting in two ways the number of incident pairs (L, π),
with L ∈ W and π a plane of S with p ∈ π, we obtain

n(q + 1) + (q2 + q + 1− n) = m(q + 1) + (q2 + q + 1−m),

which proves n = m. !
We now prove a structural property of L.

Lemma 9 If the point x of S is incident with at least three lines of W not contained in a
common plane, then the incidence structure Ω with as points the element of W through x,
as lines the planes of Type I of S through x, and as incidence the natural one, is a (possibly
degenerate) projective plane. Hence each plane of Type I in S through x contains at least
two members of W through x, and any two planes of Type I in S through x intersect in a
line belonging to W.

Proof. Let n be the number of planes of Type I through x, which is also equal to the
number of lines of W through x, by Lemma 8. Let Ω be the linear space with point set
the members of W incident with x, and line set the planes of Type I in S containing at
least two members of W through x. If m is the number of planes of Type I in S through
x containing at least two lines of W that are also incident with x (and so m ≤ n), then
by the main result of [1], we have n ≤ m. We conclude that n = m. Hence every plane
of Type I in S containing x contains at least two lines of W through x. Moreover Ω is a
projective plane, possibly degenerate; see [2] for the definition of a degenerate projective
plane. Hence also any two planes of Type I of S through x intersect in a line of W . !
The next lemmas concern hyperplanes. So we fix a hyperplane H of PG(5, q), and we
prove some results similar to the previous ones for the solid S. Also, from now on, we do
not fix S anymore.

Recall that H contains exactly q3 + q2 + q + 1 members of L. There are three types of
solids. A solid of Type I is a solid containing q2 + q + 1 members of L. A solid of Type
IIa is a solid containing q + 1 members of L, all contained in one plane. A solid of Type
IIb is a solid containing q + 1 mutually non-intersecting members of L.

Lemma 10 A plane of Type II is contained in exactly one solid of Type I.
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Proof. Let π be a plane of Type II. Let L be the unique member of L contained in π. Let
NI be the number of solids of Type I containing π, and let NII be the number of solids of
Types IIa and IIb containing π. Then NI + NII = q2 + q + 1. We count in two different
ways the pairs (S, M), where S is a solid of PG(5, q) containing π, M is a member of L
intersecting π in a unique point, and M is contained in S. Noting that exactly q2(q + 1)
members of L meet π in a point off L, and q(q + 1) meet π in a unique point of L, we
obtain

NI(q
2 + q) + NIIq = (q2 + q)(q + 1),

from which easily follows that NI = 1. !
We now want to count the number of various types of solids and planes in H. In order to
do so, we need a lemma about the intersection of two solids of Type I.

Lemma 11 If a plane π of PG(5, q) is contained in two different solids of Type I, then it
is itself of Type I.

Proof. This follows directly from Lemmas 7 and 10. !
The proof of the next lemma is suspiciously analogous to the proof of Lemma 8. This will
be explained by Lemma 16 below.

Lemma 12 Consider a member L of L contained in H. The number of planes of Type I
through L in H is equal to the number of solids of Type I through L in H. !

Proof. Let n be the number of solids of Type I in H containing L, and let m be the number
of planes of Type I in H containing L. Counting in two ways the number of incident pairs
(S, π), with S a solid of Type I containing L and π a plane in H through L, we obtain,
using Lemmas 4 (last assertion), 6 and 10,

n(q + 1) + (q2 + q + 1− n) = m(q + 1) + (q2 + q + 1−m),

which proves n = m. !
We now count the number of planes and solids in H of various types.

Lemma 13 The hyperplane H contains exactly q + 1 solids of Type I, it contains exactly
q3 + q2 solids of type IIa and exactly q4 solids of Type IIb. Also, H contains exactly
q2 + q + 1 planes of Type I, it contains exactly q2(q2 + q + 1)(q + 1) planes of Type II, and
exactly q6 planes of Type III.
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Proof. Let NX be the number of solids of Type X in H, X ∈ {I, IIa, IIb}. Then a double
count of pairs (L, S), where L is a line of H in L and S is a solid in H containing L,
reveals

NI(q
2 + q + 1) + (q4 + q3 + q2 + q + 1−NI)(q + 1) = (q3 + q2 + q + 1)(q2 + q + 1),

which proves the first assertion of the lemma.

Now let n0 be the number of incident pairs (L, π), with L ∈ L in H and π a plane of
Type I in H, and let n1 be the number of incident pairs (L, S), with L ∈ L in H and S a
solid of Type I in H. If N ′

I is the number of planes of Type I in H, then we easily obtain
n0 = N ′

I(q + 1) and n1 = (q + 1)(q2 + q + 1). But first counting the lines L, we deduce
from Lemma 12 that n0 = n1. Hence N ′

I = q2 + q + 1.

Next we count in two ways the pairs (L, π), where L is a member of L contained in H, and
π is a plane in H containing L. If N ′

Y is the number of planes of Type Y , Y ∈ {II, III},
contained in H, then we obtain

(q3 + q2 + q + 1)(q2 + q + 1) = N ′
I(q + 1) + N ′

II,

implying N ′
II = q2(q2 + q + 1)(q + 1). It follows now easily that there are N ′

III = q6 planes
of Type III in H.

Now we count in two ways the pairs (π, S), where π is a plane of Type I in H, and S is
a solid (necessarily of Type I or IIa) in H containing π. We obtain (q2 + q + 1)(q + 1) =
NI(q + 1) + NIIa, which implies NIIa = q3 + q2. It now also easily follows that there are
NIIb = q4 solids of Type IIb in H.

The lemma is completely proved. !
We now prove a lemma analogously to Lemma 8

Lemma 14 For every point x in H, there are equally many lines of L in H incident with
x as there are solids of Type I in H incident with x.

Proof. Let n be the number of lines of L in H through x, and let m be the number of
solids of Type I in H incident with x. Counting in two ways the number of incident pairs
(L, S), with L ∈ L in H, and S a solid of H through x, we obtain

n(q2 + q + 1) + (q3 + q2 + q + 1− n)(q + 1) = m(q2 + q + 1) + (q3 + q2 + q + 1−m)(q + 1),

which proves n = m. !
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Lemma 15 Every line of PG(5, q) not belonging to L is incident with exactly q +1 solids
of Type I.

Proof. Let L be a line not belonging to L. Let NI be the number of solids of Type I
containing L, and let NII be the number of solids of Types IIa and IIb containing L.
Then NI + NII = (q2 + q + 1)(q2 + 1). We count in two different ways the pairs (S, M),
where S is a solid of PG(5, q) containing L, and M is a member of L contained in S.
Noting that exactly (q + 1)2 members of L meet L in a point, we obtain

NI(q
2 + q + 1) + NII(q + 1) = (q + 1)2(q2 + q + 1) + (q5 + q4 + q3 − q),

from which easily follows that NI = q + 1. !
We now prove that the notion of a pseudo-hexagon of PG(5, q) is a self-dual one, in a
sense made precise in the following lemma.

Lemma 16 The set L′ of solids of Type I is a pseudo-hexagon in the dual of PG(5, q).
Furthermore, a plane of Type X with respect to L′ has the same Type X with respect to
L, X ∈ {I, II, III}. Also, a line of PG(5, q) not belonging to L is a solid of Type IIa in the
dual of PG(5, q) with respect to L′ if and only if it is contained in a plane of Type I.

Proof. The first assertion follows from Lemma 4 (last assertion), Lemma 6, Lemma 7,
Lemma 10, Lemma 13 and Lemma 15.

The second assertion follows from Lemma 6, Lemma 7 and Lemma 10. The last assertion
follows from the defining property of solids of Type IIa and by Lemmas 6 and 15. !
As a result of the previous lemma, we can dualize all lemmas proved sofar. In particular,
two planes of Type I that meet in a line, meet in a member of L. Also, the dual of
Lemma 8 is Lemma 12, explaining why the proofs of these lemmas are so similar.

As a further application we can now show our First Main Result in case there is one
plane of Type I in which all lines are concurrent. For the ease of phrasing, we use the
terminology introduced in Section 2 and which we repeat here for the convenience of the
reader. A point x of PG(5, q) will be called flat if the q + 1 lines of L incident with x are
contained in a common plane.

Lemma 17 If at least one point of PG(5, q) is flat, then all points are flat.
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Proof. We assume dually that a hyperplane H is dually flat, which means that all solids
of Type I in H contain a common plane π of Type I. A simple count of the number of
members of L in H that are contained in the union of these q + 1 solids of Type I reveals
that all members of L in H are contained in these solids; similarly all planes of Type I in
H are contained in the union of these q + 1 solids. Since every point y of H outside π is
contained in a unique solid S of Type I in H, it is contained in a unique member L of L
in H by Lemma 14, which must then be contained in S by the foregoing. Similarly, now
using Lemma 12, we see that L is contained in a unique plane of Type I in H, which must
be contained in S; by Lemma 8 this plane is the unique plane πL of Type I in S (and H)
containing y. Hence the q planes of Type I in S distinct from π pairwise meet at a line of
π, and hence they necessarily all share a common line L∞ contained in π. Since also the
lines of L in these planes do not meet outside π, all lines of πL are concurrent in a point
x∞ ∈ L∞, and there are q such points x∞ on L∞, leaving a unique point z ∈ L∞ which is
not incident with any member of L that lies in S, but not in π. Since x∞ is incident with
q + 1 members of L, only one (L∞) of which is contained in π, the line L∞ is the unique
member of L in π through x∞. Hence all other lines of L in π must be incident with the
point z of L∞. So z is flat, and also all points of π are flat.

The previous paragraph shows that, if we again dualize, if some point x is flat, and if we
denote by πx the plane containing all members of L through x, then all solids of Type I
through πx are contained in a hyperplane H, which in turn implies that all points of πx

are flat. If we now apply this to all points of πx, then we see that all points of H are
flat. Since every member of L meets H in at least one point, this now easily implies the
lemma. !

Lemma 18 Assume that at least one point of PG(5, q) is flat. The incidence graph of
the point-line geometry H with point set the set of points of PG(5, q) and line set L (with
natural incidence relation) has girth at least 12.

Proof. Suppose by way of contradiction that the incidence graph contains a cycle of length
at most 11. Since the incidence graph is bipartite, and since two points are contained
in at most one line, this implies that the geometry H contain a triangle, quadrangle, or
pentagon ξ. Then ξ is contained in a hyperplane. Since all points are flat, the proof of
the previous lemma shows that all hyperplanes are dually flat. This implies, as in the
proof of Lemma 17, that the only points of H incident with at least two members of L
in H are contained in a unique plane π of Type I. Hence ξ is contained in π, clearly a
contradiction, as all lines of L in π are incident with a common point. !
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End of the proof of the Main Result in case of at least one flat point. The
point-line geometry H with point set the set of points of PG(5, q) and line set L has order
q and has girth at least 6. An easy count reveals that every element is at distance at most
6 from any other element. Hence H is a generalized hexagon and the result follows from
Lemma 17 (which means that the embedding of H in PG(5, q) is flat) and the main result
of [6].

Our next aim is to show that, if q > 2, and if for some point x of PG(5, q), the lines of L
though x are contained in a solid, then at least one point of PG(5, q) is flat. Hence, from
now on, we assume that q > 2, that no point of PG(5, q) is flat, and that we have a point
x0 of PG(5, q) with the property that the lines of L through x0 are contained in (and hence
span) a solid S0. For reference we call this Assumption (∗). We seek a contradiction.

Lemma 19 Under Assumption (∗), there are q members of L through x0 contained in
a plane π0 of S0. Also, S0 is of Type I and in S0, there is a unique member L0 of L
(which is incident with x0) incident with q planes of Type I contained in S0, and there is
a hyperbolic quadric Q in S0 containing L0 and a line M0 ∈ L in π0 not meeting L0 such
that the members of L in S0 are the following.

(i) The lines L0 and M0.

(ii) For each point x of L0 different from x0, the q − 1 lines through x not on Q, but
contained in the tangent plane at x to Q.

(iii) The lines through x0 meeting M0 but not contained in Q.

(iv) The q − 1 lines on Q skew to both L0 and M0.

Proof. Since we assume that x0 is not flat, S0 is of Type I, and we can apply Lemma 9 to
obtain a (possibly degenerate) projective plane Ω with point set the lines of L through x0,
and with line set the set of planes of type I containing x0 in S0. If Ω were nondegenerate,
then it would have order ph, for some positive integer h, with q = pn, p a prime number.
Indeed, Ω is a subplane of the projective plane defined by all lines and planes of S0 through
x0, and as such it is Desarguesian. It now follows that pn = p2h + ph, a contradiction.
So Ω is degenerate and q members of L through x0 are contained in a plane π0 of Type
I. Let L1, L2, . . . , Lq be the lines of L through x0 contained in π0. Let {x0, x1, x2, . . . , xq}
be the set of points incident with L0. It is now clear that the q + 1 planes of Type I in S0

are π0 and the planes πi := 〈L0, Li〉, i = 1, 2, . . . , q. It follows that all lines of L through
xi, with i ∈ {1, 2, . . . , q}, and contained in S0, are contained in one of the planes πj. By
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Lemma 8, there are q lines of L in S0 through xi and so we may choose indices in such a
way that the lines in S0 through xi are contained in πi, for all i ∈ {1, 2, . . . , q}.
Now let M0 be the member of L in π0 not through x0. Let Ki be the line through xi in πi

not belonging to L, i = 1, 2, . . . , q. Then M0 meets Ki, since otherwise M0 meets a line
K of L in πi, and then 〈M0, K〉 would be a plane of Type I, contradicting the facts that
it cannot be equal to π0 (since it contains xi and i "= 0) and that it cannot be equal to
any other πj, since M0 is not contained in πj, j ∈ {1, 2, . . . , q}. Evidently, also L0 meets
Ki.

One can count that there are q2 +2 lines of L belonging to a plane of Type I contained in
S0. Hence there remain q−1 members of L not meeting any of these q2 +2 previous lines
and contained in S0. Noting that such a line must meet πi in a point of Ki, we see that
these q − 1 lines, together with L0 and M0, form a regulus; the opposite regulus contains
the lines Kj, j ∈ {1, 2, . . . , q}.
The lemma is now clear. !
A solid of Type I structured as in the previous lemma will be called a hyperbolic solid,
and the point x0 its origin, the line L0 its ridge and the plane π0 its ceiling.

A plane π of type I contained in a hyperplane H will be called isolated in H if it is not
contained in any solid of Type I contained in H. A member of L in H will be called
isolated in H if it is not contained in any plane of Type I contained in H; by Lemma 12,
this is equivalent to being not contained in any solid of Type I contained in H.

Lemma 20 Every plane of type I is isolated in some hyperplane.

Proof. Let π be a plane of Type I. Suppose by way of contradiction that π is not isolated
in any hyperplane it belongs to. We know that there are q +1 solids of Type I through π.
Since every hyperplane through π must contain at least one of these, all these solids lie
in one hyperplane H containing π. It follows that in the dual of PG(5, q), the hyperplane
H is a flat point with respect to L′. The proof of Lemma 17 now implies that all points
of π are flat, contradicting our assumptions. !

Lemma 21 Let π be a plane of Type I isolated in the hyperplane H. Then every member
of L in π is contained in a unique solid of Type I belonging to H. Also, every point x of
π that is incident with a member of L is contained in a unique plane of Type I distinct
from π and contained in H.
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Proof. We count the number of solids of Type I in H through a line L ∈ L of π. Such
a solid cannot contain π. Note that no solid through L not containing π is of Type IIa,
since otherwise there would be some member L′ ∈ L meeting L and not contained in π,
which would imply that the solid of Type I spanned by π and L′ is contained in H, and
contains π, contradicting the isolation of π. Suppose that there are N solids of Type I in
H through L and not containing π. Then there are q2−N solids of Type IIb in H through
L and not containing π. A double count of the incident pairs (M, S), with M ∈ L in H
but not contained in π, and S a solid in H through L but not containing π reveals that
N(q2 + q) + (q2 −N)q = q3 + q2, implying N = 1. Since π contains exactly q + 1 lines of
L, every solid of Type I in H is incident with a unique line of L in π.

Suppose now, by way of contradiction, that some point x incident with a member L of L
in π is incident with two planes π1 and π2 of Type I in H, and both different from π. Since
〈π1, L〉 and 〈π2, L〉 are solids of Type I, they have to coincide since they both contain L.
Then x is incident in 〈π1, L〉 with at least two planes of Type I, hence by Lemma 8, x must
be incident with at least two members of L lying in 〈π1, L〉, contradicting the isolation of
π. Now let S be a solid through some line L of L in π. Then S contains precisely q + 1
planes of Type I meeting L in different points by the foregoing. Hence every point of L
is contained in at least one such plane, and the lemma is proved. !

Lemma 22 Let π be a plane of Type I isolated in the hyperplane H. Suppose that
L1, L2, L3 are three members of L in π not incident with a common point. Let πi,
πi "= π, be the unique plane of Type I in H containing the intersection point Lj ∩ Lk,
for {i, j, k} = {1, 2, 3}. Then π1 ∩ π2 ∩ π3 is a line belonging to L.

Proof. Let Si be the unique solid of Type I in H containing Li. Since these solids have
no common point in π, they have a line L in common. Since Si = 〈Li, πj〉 = 〈Li, πk〉, for
{i, j, k} = {1, 2, 3}, we deduce that πi = 〈Lj ∩ Lk, L〉, with {i, j, k} = {1, 2, 3}, and so L
is the intersection of the planes π1, π2, π3. The assertion now follows from the fact that
two planes of Type I that meet in a line always meet in a line of L. !
We now return to Assumption (∗). By Lemma 21, there is a hyperplane H0 in which π0

is isolated.

Lemma 23 Assumption (∗) leads to a contradiction.

Proof. In π0, we denote the lines of L through x0 by L1, L2, . . . , Lq. The unique member
of L in π0 not through x0 will be denoted by L0. The unique line in π0 through x0 not
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belonging to L will be denoted by L. Put xi = Li ∩ L0, i = 1, 2, . . . , q. Let π be the
unique plane of Type I in H0 through x0 and different from π0. Let πi be the unique
plane of Type I in H0 through xi and different from π0, i = 1, 2, . . . , q. Let x be the
intersection of L with L0. By Lemma 22, the line M := π ∩ π1 is also contained in πi, for
all i ∈ {2, 3, . . . , q}. The q + 1 solids of Type I in H0 are S := 〈L0, M〉 and Si := 〈Li, M〉,
for i = 1, 2, . . . , q. If the plane 〈x, M〉 were of Type I, then in S, there would be q + 1
planes of type I through each point of M , hence for each such point, all lines of L through
it would be contained in S (see Lemma 8), and it is easy to see that in this case all points
on M would be flat, a contradiction. Hence, in H0 (and S), the plane πx, πx "= π0, of Type
I on x meets M in a unique point y. The q lines in S on any other point of M all must
be contained in one plane πi, for some i ∈ {1, 2, . . . , q} (as otherwise a plane generated
by two such lines would be of Type I and not belong to {πx} ∪ {πi | i ∈ {1, 2, . . . , q}}).
Hence for each plane πi, i ∈ {1, 2, . . . , q}, there is a point yi ∈ M , yi "= y, incident with q
members of L incident with πi. It follows that y is incident with q +1 members of L lying
in S, and as πi ∩ πx with i ∈ {1, 2, . . . , q} belongs to L, q of them lie in πx (and these are
all lines through y in πx not incident with x). Hence S is a hyperbolic solid with origin y,
ridge M and ceiling πx. From the structure of hyperbolic solids explained in Lemma 19,
we deduce that the set of points of S not incident with a member of L contained in S are
the q(q − 1) points of the plane β := 〈x, M〉 not on the lines M and xy. Also, the lines
x1y1, x2y2, . . . , xqyq and xy are a set of generators of a hyperbolic quadric Q+ in S.

Fix i ∈ {1, 2, . . . , q}. The point yi is incident with q + 1 solids of Type I contained in H0.
By Lemma 14, all lines of L on yi are contained H0. Since q of these lines are contained in
the plane πi, H0 contains a hyperbolic solid through πi with origin yi. Since there are only
two solids of Type I through πi in H0, this solid must be Si (otherwise S would have two
origins, which is impossible). Since π ⊂ Si, it follows that there is a point z in π incident
with q members of L contained in π. Since neither yz nor x0z belong to L (noting that all
members of L through y are either in πx, which meets π in the unique point y, or equal
M), we see that z belongs to the line x0y. Moreover, the line yiz is the ridge of Si. So it
follows that the only points of Si not incident with any member of L contained in Si, are
the q(q − 1) points of the plane βi := 〈xi, yi, z〉 not on the lines xiyi and yiz. Note that,
for i "= j, the planes βi and βj have only one point in common. This is the point z.

We now count the number of isolated members of L in H0. There are q + 1 solids of
Type I in H0, hence counting with multiplicities, we obtain (q + 1)(q2 + q + 1) lines of L
contained in solids of Type I contained in H0. This way, we counted every such line once,
except for the lines in π different from M , which we counted q times, the lines in each πi

different from M , which we counted twice, i ∈ {1, 2, . . . , q}, and M , which we counted
q + 1 times. So we finally obtain (q + 1)(q2 + q + 1) − (q − 1)q − q2 − q = q3 + 2q + 1
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lines of L in solids of Type I contained in H0. This means that there are precisely q2 − q
isolated lines. Each of these lines meets any solid of Type I in a point not incident with
any member of L contained in that solid. Hence we have q2− q lines in H0 meeting β and
each βi, i = 1, 2, . . . , q, in distinct points.

We now project from the point z onto the solid S the isolated lines in H0 and the planes
βi, i ∈ {1, 2, . . . , q}. The plane βi is projected onto the line xiyi. Each isolated line R is
projected onto a line R′ meeting all of xiyi, i ∈ {1, 2, . . . , q}. If q > 2, this implies that
R′ is contained in Q+ and meets the line xy in a unique point. Hence the unique point of
R in β ⊂ S is a point of the line xy, a contradiction as q2 − q > q − 1.

The lemma is proved. !

4 Non-flat pseudo-hexagons

We now present a class of non-flat pseudo-hexagons.

Let G be a standard cyclic Singer group of PG(5, q), i.e., G is a cyclic subgroup of order
q5 +q4 +q3 +q2 +q+1 of PGL(6, q) acting sharply transitively on the point set of PG(5, q).
Let L be an orbit of lines under the action of G of length q5 + q4 + q3 + q2 + q + 1 with
the property that no nontrivial element of G fixes any plane containing a member of L.
This condition means the following. The unique subgroup H of G of order q2 + q + 1 lies
in a subgroup isomorphic to PGL(3, q) and hence fixes the planes of a (regular) spread of
PG(5, q) (since it fixes at least one plane — that associated with PGL(3, q)— by permuting
its point set transitively, and since all point-orbits are isomorphic by the action of G), and
the last condition just says that no member of L is contained in a plane of this spread.
By the way, the point set of any plane of this spread can be obtained as point orbit under
the action of H. Also, a line L of PG(5, q) has an orbit of length q5 + q4 + q3 + q2 + q + 1
under G if and only it is not fixed under the subgroup of order q + 1 of G. These claims
are easy to verify and show that sets L with the required properties exist in abundance.

We show that L is a non-flat pseudo-hexagon. We first fix some notation. Throughout, we
let g be a fixed generator of G and we choose arbitrarily a point p0 in PG(5, q). For each

integer i, we denote by pi the point pgi

0 . Let L0 be an arbitrary member of L through p0

and denote by Li the line Lgi

0 , for all integers i. In the sequel, when dealing with subscripts
of p and L, we will always assume that integers are taken modulo q5 + q4 + q3 + q2 + q +1,
and we will not repeat this each time.
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L satisfies (Pt)

By the action of the group G, we only need to verify Property (Pt) for p0.

Clearly, a line Li is incident with p0 if and only if p−i is incident with L0. Since L0 contains
q + 1 points, the assertion follows.

L satisfies (Pl)

Suppose the plane π contains two members of L, which we may, without loss of generality,
assume to be L0 and Li, with p0 incident with Li (possibly we have to make another choice
for L0 though p0 to obtain this, or, equivalently, we must choose on L0 another point for
p0). Note that this implies that pi is on Li and p−i is on L0. Consider any point pk on
L0 and apply gi+k. The latter maps p−i to pk and p0 onto pi+k = pgi

k ∈ Li. Hence Li+k is
contained in π. It follows that we already have q + 1 members of L contained in π.

Suppose there are at least q + 2 members of L contained in π. Then there exist three
members Lu, Lv, Lw of L in π such that pu, pv, pw are not collinear. Since p−i ∈ L0, we

have pj−i = pgj

−i ∈ Lj, for all j ∈ {u, v, w}. Hence the image of {pu, pv, pw} under g−i

belongs to π and generates it. Consequently g−i fixes π, contrary to our assumptions.
Note that this argument is independent of whether L0 belongs to π or not.

Note that the previous arguments imply that the lines of L contained in the plane π form
a dual oval. Hence p0 cannot be a flat point.

L satisfies (Sd)

First we show that every solid S containing at least two members, say L0 and Lj, of L
contains at least q + 1 members of L.

If L0 and Lj are concurrent, then the assertion follows from Property (Pl). Suppose now
that L0 and Lj are not concurrent. Let pn be any point of L0. Then pn+j ∈ Lj. Let pz

be any point of the line p0pj. Then pz+n belongs to pnpj+n and hence the line pzpz+n is
contained in S. But Lz contains pgz

0 = pz and pgz

n = pn+z, hence Lz is contained in S.
There are q + 1 choices for pz, hence the assertion.

Note that the q + 1 lines thus constructed form a regulus of a nonsingular hyperbolic
quadric in S (as they all contain a point of pnpn+j, for all pn on L0).

Suppose now the solid S contains at least q2 + q + 2 members of L. Then there exist
four members Lu, Lv, Lw, Lt of L in S with pu, pv, pw, pt not coplanar. A similar argument
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as above shows that in this case for every integer i, with p−i ∈ L0, the map g−i fixes S.
Hence 〈g−i〉 acts freely on the set of q3 + q2 + q + 1 points of S, implying that the order
of g−i divides both of q5 + q4 + q3 + q2 + q + 1 and q3 + q2 + q + 1; hence it divides q + 1
and consequently g−i fixes a spread of lines of PG(5, q). This spread obviously consist of
the lines pnpn−i. But these lines belong to L, hence the orbit L0 under G contains only
q4 + q2 + 1 lines, contradicting our assumptions.

We next claim that there are no solids containing r members of L, with q + 1 < r <
q2 + q +1. Indeed, let S be a solid containing r members of L, with q +1 < r < q2 + q +1.
We define a linear (block) space S as follows. The points are the members of L in S, the
blocks are the planes in S containing exactly q +1 members of L, together with the reguli
in S constructed with two skew members of L in S as above. It is easy to see that this
defines indeed a linear space, and every block has exactly q +1 elements. Since r > q +1,
we can find a block B in S and a member L of L in S not contained in B. Considering
the blocks containing L and an element of B, we obtain (q + 1)(q − 1) additional points
of S. Hence S contains at least (q2 − 1) + (q + 1) + 1 = q2 + q + 1 points, implying our
claim.

This proves Condition (Sd).

The geometry with point set PG(5, q), line set L and natural incidence relation will be
called a Singer geometry. Obviously, one can generalize this to other dimensions. These
Singer geometries seem to have rather special properties. In particular, the line sets have
few intersection numbers with respect to subspaces.

5 Pseudo-hexagons and Singer geometries in PG(5, 2)

We now take a closer look at the case q = 2. It is more convenient to start with a given
geometry rather than with PG(5, 2) and then construct a Singer cycle.

So we consider the geometry S with point set the integers modulo 63 and line set L the
triples {z, z+1, z+6}, for any z modulo 63. We let the points 0, 1, 2, 3, 4, 5 be a basis of a 6-
dimensional vector space V over GF(2), and we denote the basis vectors e0, e1, e2, e3, e4, e5,
respectively, and define the vectors ei, 6 ≤ i ≤ 62, by the rule ei = ei−5 + ei−6 (so that
the vectors ez, ez+1 and ez+6 lie in a common plane, and hence as points of the projective
space PG(V ), they form a line. It then follows that the relation ei = ei−5 + ei−6 also
holds for 0 ≤ i ≤ 5, modulo 63. Hence we have embedded S into PG(V ) = PG(5, 2), and
the map ei ,→ ei+1 defines a Singer cycle G acting sharply transitively on both the point
set and the line set of S (identifying the point set of S with the point set of PG(5, 2) in

20



the obvious way). If we denote a vector by its nonzero coordinates, then we obtain the
following table.

e0 = 0 e1 = 1 e2 = 2 e3 = 3 e4 = 4 e5 = 5 e6 = 01
e7 = 12 e8 = 23 e9 = 34 e10 = 45 e11 = 015 e12 = 02 e13 = 13
e14 = 24 e15 = 35 e16 = 014 e17 = 125 e18 = 0123 e19 = 1234 e20 = 2345
e21 = 01345 e22 = 0245 e23 = 035 e24 = 04 e25 = 15 e26 = 012 e27 = 123
e28 = 234 e29 = 345 e30 = 0145 e31 = 025 e32 = 03 e33 = 14 e34 = 25
e35 = 013 e36 = 124 e37 = 235 e38 = 0134 e39 = 1245 e40 = 01235 e41 = 0234
e42 = 1345 e43 = 01245 e44 = 0235 e45 = 034 e46 = 145 e47 = 0125 e48 = 023
e49 = 134 e50 = 245 e51 = 0135 e52 = 024 e53 = 135 e54 = 0124 e55 = 1235
e56 = 01234 e57 = 12345 e58 = 012345 e59 = 02345 e60 = 0345 e61 = 045 e62 = 05

So L is a pseudo-hexagon as soon as we verify that no member of L is contained in a
plane belonging to the plane spread S defined by G. But these planes are {z, z + 9, z +
18, z + 27, z + 36, z + 45, z + 54}, for 0 ≤ z ≤ 8, and so none of them contains {0, 1, 6}.
Similarly, the set L′ of lines {z, z + 7, z + 26}, z mod 63, is a pseudo-hexagon. We now
show that L and L′ are not projectively equivalent.

For any pseudo-hexagon arising from a Singer group in PG(5, 2), we consider the following
transformation ∂, which we call derivative. With each plane π of Type I, we let correspond
the dual nucleus of the dual conic consisting of the lines of the pseudo-hexagon in π. This
way we obtain a set of 63 lines invariant under the Singer group. It is not clear that it
is again a pseudo-hexagon, but applied to L above, we do obtain a pseudo-hexagon ∂L
consisting of the lines {z, z+2, z+12}, as one easily checks. In fact, L is isomorphic to ∂L
using the isomorphism i ,→ 2i (modulo 63). Doing this again, we obtain ∂2L, consisting
of the lines {z, z + 4, z + 24}. We now see that ∂6L = L, and that ∂iL "= L, for all
i ∈ {1, 2, 3, 4, 5}.
Playing the same game with L′, we easily calculate that ∂ again corresponds to the
isomorphism i ,→ 2i (modulo 63), but this time ∂3L′ = L′. Hence L and L′ cannot be
projectively equivalent.

So we already have at least three non-isomorphic pseudo-hexagons in PG(5, 2).

Remarks.

1. In fact, all lines of PG(5, 2) are given by the lines inside the planes of S, the lines of
the line spread {{z, z+21, z+42} | z mod 63}, and the lines of the pseudo-hexagons
L, ∂L, ∂2L, ∂3L, ∂4L, ∂5L,L′, ∂L′ and ∂2L′.
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2. The Singer geometries Γ and Γ′ defined by L and L′, respectively, are not isomorphic.
This follows easily from the observation that the functor ∂ can be extended to Γ
and Γ′ and defined abstractly as follows. The points of ∂Γ are the points of Γ, and
the lines are the triples of points {x, y, z} such that there exist a triangle {a, b, c}
in Γ with x on bc, y on ca and z on ab, where {a, b, c} ∩ {x, y, z} = ∅. Similarly for
∂Γ′.

We now want to classify pseudo-hexagons in PG(5, 2). For this, we invoke the theory
of bislim geometries developed in [11]. As in the above Remark 2, we consider, for a
given pseudo-hexagon L in PG(5, 2), the geometry Γ(L) with point set the set of points of
PG(5, 2) and line set L, with the obvious and natural incidence relation. Then Γ(L) is a
so-called bislim geometry, i.e., a geometry with 3 points on each line and 3 lines through
each point.

Following [11], we define the local structure of Γ(L) in a point x as the geometry induced
on the seven points collinear with or equal to x, ignoring lines of size one. We call Γ(L)
of honeycomb type if for each point x, the local structure in x has exactly 3 lines of size 3
and exactly 3 lines of size 2, the latter pairwise disjoint. We have the following easy but
useful lemma.

Lemma 24 If Γ is a bislim geometry with the property that every pair of concurrent lines
is contained in exactly one triangle, then Γ is of honeycomb type.

Proof. The condition obviously implies that each local structure only contains three lines
of size 3. Now let x be the intersection point of two distinct intersecting lines L and M
in Γ and let K be the third line of Γ through x, L "= K "= M . Let P ∈ L be such that
L, K, P form a triangle, and let N ∈ L be such that L, M, N form a triangle. Then it
suffices to show that the intersection y of L and N is different from the intersection z of
L and P . If not, then there is a point u on L distinct from both x and y = z. Let Q be
any line through u distinct from L. Then our assumptions imply that Q does meet any of
M, K, N, P (otherwise we can form two triangles with a certain pair of intersecting lines).
But then the third side of the triangle containing the sides L and Q must be a fourth line
through either x or y, contradicting the fact that Γ is bislim. !
Now, if a pseudo-hexagon L∗ in PG(5, 2) does not define a generalized hexagon, then for
every point x of PG(5, 2), the three lines of L∗ through x are not contained in a plane, see
the Main Result. Hence every pair {L.M} of concurrent lines of Γ(L∗) are contained in a
unique triangle and we can apply the above lemma. But then the arguments on page 91
up to 93 in [10] imply that Γ(L∗) is a quotient of the so-called honeycomb geometry, which

22



is the unique bislim geometry with incidence graph the graph defined in the obvious way
by a honeycomb, i.e., a regular tiling of the Euclidean real plane in hexagons. All these
quotients are determined in [11]. From the main result in [10], we easily deduce that there
are 17 pairwise non-isomorphic bislim geometries with 63 points which are quotients of
the honeycomb geometry. We will now quickly define these, using their names given in
[10].

For positive integers a, c, d, define the following geometry M(a,0),(b,c). The points are
the equivalence classes of ordered pairs (i, j) of integers with respect to the equivalence
relation E defined as (i, j)E(i′, j′) if (i − i′, j − j′) = (ka + &c, &d), for some integers k
and &. The lines are the 3-sets {(i, j)/E, (i + 1, j)/E, (i, j + 1)/E}. This geometry has ad
points.

For positive integers r, s, define the following geometry M∗∗
(r),(s,0). The points are the

equivalence classes of ordered pairs (i, j) of integers with respect to the equivalence relation
E∗∗ defined as (i, j)E∗∗(i′, j′) if either (i− i′, j − j′) = (−k(2r + 1) + &s, 2k(2r + 1)), for
some integers k and &, or (i+ i′+r+j, j′−j−2r−1) = (−k(2r+1)+&s, 2k(2r+1)). The
lines are the 3-sets {(i, j)/E∗∗, (i + 1, j)/E∗∗, (i, j + 1)/E∗∗}. This geometry has (2r + 1)s
points.

One must remark that the positive integers have to be large enough in order to really
obtain a bislim geometry which is of honeycomb type. In particular, r ≥ 2 and s ≥ 4,
and for every integer linear combination of (a, 0) and (c, d), say (n, m), we must have
n2 + nm + m2 ≥ 12; see [11] for more details.

So we see that we obtain a geometry with 63 points if we choose a, d in the above such
that ad = 63 and r, s such that (2r + 1)s = 63. According to Lemma 6.2 and Proposition
6.3 of [11], the following is a complete list of pairwise non-isomorphic bislim geometries
of honeycomb type with 63 points:

M(7,0),(0,9),M(7,0),(1,9),M(7,0),(2,9),M(7,0),(6,9),

M(9,0),(1,7),M(9,0),(3,7),M(9,0),(4,7),M(9,0),(5,7),

M(21,0),(1,3),M(21,0),(2,3),M(21,0),(3,3),M(21,0),(5,3),M(21,0),(6,3),M(21,0),(8,3),M(21,0),(19,3),

M∗∗
(4),(7,0),M∗∗

(3),(9,0).

In order to see whether each of these geometries defines a pseudo-hexagon, one has to
see whether there exists some embedding in PG(5, 2). According to [3], this can be done
as follows. For each geometry Γ above, define an abelian additive 2-group G with 63
generators ax, one for each point x of Γ, and with additional relations ax + ay + az = 0,
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for every triple of points x, y, x that form a line in Γ. If this group G turns out to have
less than 64 elements (and hence at least two generators have to coincide), then there is
no embedding, and hence no pseudo-hexagon related with Γ. One can do this exercise
by hand, and after some tedious computations, one can prove that G is trivial for all
cases except for M(9,0),(1,7) and M(21,0),(8,3). Hence there are at most two non-isomorphic
pseudo-hexagons in PG(5, 2). Since we already constructed two, we have exactly two of
them. One can also calculate that M(21,0),(8,3) corresponds with the pseudo-hexagon L
above, and M(9,0),(1,7) corresponds with L′. This completes (a sketch of) the proof of the
last theorem of the introduction.

6 A conjecture and an open problem

The following conjecture is based on research in progress and will hopefully soon be
concluded. The open problem that we will state could also be formulated as a conjecture,
but we do not have reasonable evidence to be convinced of either answer.

Conjecture. If L is a pseudo-hexagon in PG(5, q), q > 3, with the property that for some
point x, the lines of L through x do not span PG(5, q), then L is the line set of a regularly
embedded split Cayley generalized hexagon.

Open Problem. Are the Singer geometries the only examples of pseudo-hexagons that
contain triangles?

A positive answer to this question would imply a beautiful characterization of these Singer
geometries, that would be worthwhile to generalize to other dimensions. For the moment,
however, a solution to this problem seems out of reach (at least, to us).
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