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Abstract

We study geometries that arise from the natural G2(K) action on the geometry of one-
dimensional subspaces, of nonsingular two-dimensional subspaces, and of nonsingular three-
dimensional subspaces of the building geometry of type Cs3(K) where K is a perfect field of
characteristic 2. One of these geometries is intransitive in such a way that the non-standard
geometric covering theory from [9] is not applicable. In this paper we introduce the concept
of fused amalgams in order to extend the geometric covering theory so that it applies to that
geometry. This yields an interesting new amalgamation result for the group G2 (K).

1 Introduction

Tits’ lemma [25] (see also [14, Lemma 5] or [15, Theorem 12.28]) provides a geometric way to prove
that certain groups can be identified as universal enveloping groups of certain amalgams. More
precisely, the universal enveloping group of the amalgam of parabolic subgroups of a flag-transitive
group G of automorphisms of a geometry I' equals G if and only if I' is simply connected. Obviously,
this technique to compute amalgams of groups is limited. In order to include more amalgams
with this geometric technique, one can generalise Tits’ lemma to intransitive geometries. Roughly
speaking, two difficulties have to be overcome in this generalisation process: (1) the reconstruction
of the geometry from the various parabolic subgroups, (2) finding the right amalgam and getting
control over its universal enveloping group using the simple connectivity of the geometry.

In [9] a theory was established for geometries with an automorphism group admitting possibly
more than one vertex orbit per type. For the reconstruction of the geometry from the stabiliser
data the authors used a result of Stroppel [21]. Their work was motivated by the geometries arising
from non-isotropic elements with respect to an orthogonal polarity in projective space. Another
sporadic amalgam, considered by Hoffman and Shpectorov [12], related to the group Ga(3) could
be handled very elegantly with that theory. Yet another application of the new covering theory is
a local characterisation of the group SL,,1(F,) via centralisers of root subgroups using the local
characterisation of the graph on incident point-hyperplane pairs obtained in [10]. In general, it
seems that non-standard amalgams related to exceptional groups of Lie type cannot be treated
with Tits’ original lemma [25]. But also the intransitive theory developed in [9] often falls short,
as it requires that

(1) for every flag F' of rank two or three of T, the action of G on the orbit G.F is flag-transitive.

In the present paper, we consider some rather natural amalgams related to Dickson’s groups
of type G,. For some of them, the existing theory suffices to get control over the universal closure.
For others, we need to modify the theory. This will lead us to fused amalgams. Roughly speaking,
fused amalgams occur when the corresponding group acts intransitively on the set of maximal
flags of the corresponding geometry as in [9], but the reconstruction of the geometry fails because
Property (f) above is not satisfied. In our example, the group acts transitively on each type of
vertex (and there are three types), but there are two orbits on the set of chambers. As a result,
there seems to be no purely group-theoretic way to reconstruct the geometry. Instead, we use
the properties of the diagram to settle incidences that cannot be recovered by the group. We in
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particular exploit the fact that the diagram is a string of length three, and that hence the residues
of the elements belonging to the middle node are generalised digons. We will consider geometries
belonging to tree diagrams, because circuits introduce ambiguity on how to define incidence in
residues that are generalised digons. The main covering theoretic results of this article are the
Reconstruction Theorem 3.4 and the Covering Theorem 3.11. The main applications of this
covering theory contained in this paper are the simple connectivity result Theorem 2.4 and the
amalgamation result Theorem 3.13

The paper is structured as follows. In Section 2 we define the geometries that are relevant
for the rest of the paper and in particular for the amalgams that we will consider in Section 2.3.
In Section 3, we develop a theory of intransitive geometries and amalgams, which we call fused
amalgams, that allows us to tackle the amalgam described in Section 2.3 and immediately apply
the theory to our situation. In the final Section 4, we prove the simple connectivity results for the
investigated geometries.

2 Some geometries related to G,

2.1 The split Cayley hexagon and its properties

We consider the Chevalley group G2(K), with K any (commutative) field. Naturally associated
with each Chevalley group is a building, in the sense of Tits [23]. In the case of Gz (K), this building
is a bipartite graph, which is the incidence graph of a pair of generalised hexagons (and we may
freely consider one of those by choosing one of the bipartition classes as set of points, and the
other class as set of lines). We use the standard notions from incidence geometry and the theory
of building geometries, like distances between elements and opposition of elements, cf. [15] and
[23]. We recall that a generalised hexagon is a point-line incidence geometry with the properties
that

(GH1) every two elements (points or lines) are contained in an ordinary hexagon (i.e., a cycle of 12
distinct consecutively incident elements), and

(GH2) there are no ordinary n-gons for n < 6.

The generalised hexagon related to Go(K) is called the split Cayley heragon and can be rep-
resented on the parabolic quadric Q(6,K), which is a nondegenerate quadric in PG(6,K) of
(maximal) Witt index 3. The points of the hexagon are all points of Q(6,K), while the lines
(the hezagon lines) are only some well-chosen lines on Q(6,K). If Q(6,K) has the standard
equation Xo X4 + X7 X5 + Xo X6 = Xg, then a line on Q(6,K) with Grassmannian coordinates
(Po1,Po2; - - -, Pos; P12, P13, - - -, P56) i a hexagon line if and only if p12 = psa,ps6 = pos,pas =
D23,Po1 = P36, P02 = —p35 and psg = —p13. This line set has the following properties (see e.g. [27]).

(i) The set of lines of H(K) through a fixed point fills up a projective plane on Q(6,K). We call
such a plane a hexagonal plane.

(ii) Any plane of Q(6,K) that contains at least one hexagon line is a hexagonal one. Any other
plane of Q(6,K) will be called an ideal plane.

(iii) Every line of Q(6,K) that does not belong to the hexagon is contained in a unique hexagonal
plane. We call such a line an ¢deal line. The point of the corresponding hexagonal plane
that is the intersection of all hexagon lines in that plane is called the ideal center of the ideal
line.

(iv) The ideal centers of all ideal lines of an ideal plane 7 form again an ideal plane 7', which,
together with 7, generates a hyperplane H of PG(6,K) that intersects Q(6,K) is a non-
degenerate (hyperbolic) quadric of Witt index 3. The point set of # U 7’ is the point set of
a non-thick ideal subhexagon of H(K). The hyperplane H is called a hyperbolic hyperplane.
Every hyperplane that intersects Q(6,K) in a hyperbolic quadric arises in this way. In
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particular, every hyperplane H that contains a plane of Q(6, K) is either a tangent hyperplane
or a hyperbolic hyperplane. The former does not contain disjoint planes of Q(6, K).

If K has characteristic two, and K is perfect (which means that the mapping = — z? is

surjective), then the projection of the point set of Q(6,K) from the point (0,0,0,1,0,0,0) onto the
hyperplane PG(5,K) with equation X3 = 0 embeds Q(6,K) bijectively onto a symplectic space
W(5,K), so that we also obtain an embedding of H(K) into W(5,K). The lines of Q(6,K) are
projected onto totally isotropic lines with respect to the corresponding symplectic polarity (we
will call such lines symplectic lines), cf. 2.4.14 of [27]. The lines of PG(5, K) that are not symplectic
will be called non-symplectic lines. The projection of hexagonal planes and ideal planes will be
called hezagonal and ideal, respectively. Likewise, the projection of hexagon and ideal lines will be
called hexagon and ideal, respectively; both are symplectic lines. A nonsingular plane is a plane of
PG(5,K) in which the non-symplectic lines form a dual affine plane. A special nonsingular plane
is a nonsingular plane containing a hexagon line.

The above properties also translate to the situation in PG(5,K), when the characteristic of K
is equal to two. For instance, every ideal line is contained in a unique hexagonal plane and the
ideal center is not contained in that ideal line.

Moreover, we have the following:

(v) Let I be a non-symplectic line of PG(5, K). Then the set of hexagon lines at hexagon-distance
three from all points of ! form a distinguished regulus R of a hyperbolic quadric Q(3,K) in
the orthogonal space I+ of I with respect to the symplectic polarity. This follows immediately
from the regulus property (see [16]) and the fact that opposition of points in the hexagon
corresponds to non-perpendicularity in the symplectic polar space. Moreover, every pair of
opposite lines (in the hexagon) is contained in such a regulus.

2.2 Some geometries

We now consider four different infinite classes of geometries I'g, I'y, 'z, I's, all of rank 3 and with
type set {1,2,3}. We call elements of type 1 points, of type 2 lines, and of type 3 planes.

To define Ty, T'y, Iy let K be perfect and of characteristic two. The geometries I';, ¢ € {0,1,2},
have as set of elements of type 1 the set of points of PG(5,K), and as set of elements of type 2
the set of non-symplectic lines of PG(5,K), with natural incidence. The elements of type 3 of the
geometries I'g, I'; and T'; are all nonsingular planes, all nonspecial nonsingular planes, and all
special nonsingular planes, respectively. Incidence between elements of type 2 and 3 is natural,
and incidence between elements of type 1 and 3 is given by the following rule: p is incident with
m if and only if there is a type 2 element [/ incident with both. The geometry I'y is flag-transitive
for the symplectic group S¢(K) and has been considered by Cuypers [5] and Hall [11] and, more
recently, by Blok and Hoffman [3]; see also [7].

The geometry Ty is in a certain sense a join of the geometries I'; and I'y. Indeed, the point-line
truncations of 'y, I';, and I's coincide, while the plane set of I'g consists of the disjoint union of
the plane sets of T'y and I's.

The following gives a relation between covers of two connected rank 3 geometries Ay, As
having identical point-line truncations and the join A of A; and A,. For i = 1,2 let A; be the
universal cover of A; and let ¢; be number of layers of the covering projection from A; to A;.
Furthermore, let A be the universal cover of A and let ¢ be number of layers of the covering
projection from A to A. (We refer the reader to [17] for a thorough introduction to the covering
theory of simplicial complexes, in particular for the definition of a universal cover of a connected
pure simplicial complex.)

Proposition 2.1
Assume that the planes of Ay and A, are connected. If, for some i € {1,2}, we have t; < oo, then
t|t;.



2 SOME GEOMETRIES RELATED TO G, 4

Proof. Let m: A — A be a universal covering of A and, for i = 1,2, let A; be the pre-image of
A; under 7. Since the planes of A; are connected and since A; and A have identical connected
point-line truncations, the preimage A; is connected, so 7 induces a covering from A; to A;. Hence
t|t;, if ¢; is finite. O

Corollary 2.2
Assume that the planes of A; and A, are connected.

(i) If one of Ay, Ay is simply connected, then A is simply connected.

(if) Suppose t1,t2 < oo. Then t|ged(ti,t2). In particular, A is simply connected, if t; and tq
are coprime.

Remark 2.3 The join of two geometries A; and Ay can be simply connected, even if A; and
A, are isomorphic and admit infinite universal covers. A nice example for this behaviour is the
geometry studied in [12], which in fact also occurs in [1], [6], [13] in different guise. In [12]
Hoffman and Shpectorov study an amalgam of maximal subgroups of G = Aut(G2(3)) given by
a certain choice of subgroups L = 23 - L3(2) : 2, N = 247.(S5 x S3), M = Go(2) = Us(3) : 2
which corresponds to an amalgam of subgroups of G = G2(3) given by L = LNG=23. L3(2),
N=NnG=21*"(3x3).2, M =Gy(2) = U3(3) : 2, K = eMe™" for e € Oz(L)\O2(L). The
groups G, = E, Gy = N , 63 = M define a flag-transitive coset geometry I' of rank three for
G = Aut(G2(3)), which is simply connected by [12]. The subgroup G = G2(3) of G does not
act flag-transitively on I'. Nevertheless, the groups G, = L, G; = N, G, = M, G, = K
define an intransitive coset geometry of rank three for G = G,(3) satisfying Property (f) from the
introduction, which is isomorphic to I by [12] and, hence, simply connected, so that non-standard
covering theory as in [9] is applicable.

The coset geometries (Gp, Gi, Gr,,*) and (Gp, Gi, Gr,,*) are isomorphic to the GAB — Ge-
ometry that is Almost a Building — studied in [1, Table 1, Example 4], in [6, Section 6.1], and in
[13] with diagram 6

e} O.

This GAB is very far from being simply connected. In fact, by [13] the amalgam of L, N, M
admits the group G2(Qz) as universal enveloping group — while by [12] the amalgam of L, N,
M admits the group Aut(G,(3)) as its universal enveloping group. We conjecture that Kantor’s
description [13] of the universal cover of (Gp,Gi,Gr,,*) = (Gp,Gi,Gr,,*) can be used to give
an alternative proof of the simple connectivity of the join of (Gp, Gy, Gr,,*) and (Gp, Gy, Gr,y, *)
by studying those quotients of the group G2(Qx) that admit an involutory outer automorphism.
However, the combinatorial simple connectivity proof given by Hoffman and Shpectorov [12] is
short and clear and likely to be shorter than any group-theoretic proof of simple connectivity.

Concerning the fourth class of geometries, let K be any field. Then the rank 3 geometry I's
consists of the points of the split Cayley hexagon H(K), the ideal lines, and the ideal planes, with
natural incidence. The amalgam and corresponding geometry I's considered here has also been
treated by Baumeister, Shpectorov and Stroth in an unpublished manuscript [2]. We have found
an independent proof which we include here so that a proof of this fact is made available in the
literature. Moreover there exists a result [19] by Shpectorov dealing with the simple connectiv-
ity of hyperplane complements in arbitrary dual polar spaces with line size at least five, thus
independently implying simple connectivity of I's, but only for |K| > 4.

In this article we prove the following results:

Theorem 2.4
(i) The geometry Ty is simply connected.
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(ii) The geometry T’y is flag-transitive. Moreover, it is simply connected, whenever |K| > 2.
(iii) The geometry T's is simply connected.
(iv) The geometry TI's is simply connected.
Proof.
(i) This is proved in Proposition 4.1, also [3] or Proposition 2.1 plus Proposition 4.3.
(ii) See Propositions 2.5 and 4.2.
(iii) Cf. Proposition 4.3.
(iv) This follows from Proposition 4.4, also [2], or [19] for |K| > 4.

2.3 Amalgams for I'y

Since the geometries 'y and I's have been extensively studied and since, moreover, the geometry
I'; is flag-transitive, cf. Proposition 2.5, so that classical covering theory applies, we concentrate
on the amalgam of parabolics given by the G»(K) action on T's.

Let p,l,m be a chamber of I'y and denote by G, Gi, G, Gp,, etc., the respective stabilisers.
We now collect information about 'y and these stabilisers, most of which are based on the following
proof of the flag-transitivity of I';.

Proposition 2.5
The action of G2 (K) on the geometry T'y is flag-transitive.

Proof. Set G := G2(K). All non-symplectic lines are determined by two opposite points of H(K).
The fact that G acts transitively on pairs of opposite points of H(K) (see e.g. Chapter 4 of [27])
implies that G acts transitively on the point-line pairs of I';. So we may fix such a point-line pair
(2,1) and it suffices to prove that H := (G, acts transitively on the planes of I'; containing [.
Now, H stabilises the polar ¥ of ! with respect to the symplectic polarity related to W(5,K). The
polar ¥ is a projective 3-space, so that every plane 7 of PG(5, K) containing / meets ¥ in a unique
point z,. Viewed in H(K), the space X is determined by the lines at distance 3 from all the points
of I. These lines form a distinguished regulus R of a hyperbolic quadric Q(3,K) in ¥, cf. Section
2.1, item (v). Clearly, 7 is nonsingular. Also, it is easy to see that 7 contains a hexagon line if
and only if z, is contained in the quadric Q(3,K). Let R' be the complementary regulus of R on
Q(3,K). Then every point y on ! uniquely determines a line m of R’ by the fact that all hexagon
lines through y meet m. Now, the stabiliser in G of Q(3,K) contains the group Ls(K) x La(K).
Hence the assertion is equivalent with saying that in X, the group Ly(K) x Ly(K) stabilising the
hyperbolic quadric Q(3,K) acts transitively on the pairs (p, k), where p is a point off the quadric,
and k is a line of a fixed regulus of the quadric, which is a true statement as one can easily verify.
O

Proposition 2.6

The action of Go(K) on the geometry I is transitive on the incident point-line pairs and transitive
on the incident line-plane pairs, but it is intransitive on the incident point-plane pairs and has two
incident point-plane orbits instead. Moreover, the stabiliser of an incident line-plane pair (I, 7)
has two orbits on the points incident to .

Proof.

(i) Point-line-transitivity: The point-line truncations of I'; and I'y coincide (see the discussion
before Proposition 2.1) and G, (K) is flag-transitive on I'y by Proposition 2.5, so that Gz (K)
acts transitively on the incident point-line pairs of I's.
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(ii) Point-plane-intransitivity: The planes of T's are those rank 2 planes of W(5, K) which contain
a (unique) hexagon line. Therefore the plane stabiliser G has to fix this hexagon line and
consequently cannot map a point on that line onto a point in the plane not on the line.
Hence G, is not transitive on the set of points incident with w, whence I'y is not point-
plane-transitive.

(iii) Line-plane-transitivity: Let | be a line of I's as in the proof of Proposition 2.5. A plane 7 of
PG(5,K) containing [ has rank two with respect to the symplectic form, and intersects the
polar ¥ of [ with respect to the symplectic form in a point z,. As in the proof of Proposition
2.5, the space X carries the structure of a Q(3,K), and 7 contains a hexagon line if and only
if z; is contained in Q(3,K). Line-plane-transitivity now is a consequence of line-transitivity
and transitivity of G on the points of Q(3, K).

(iv) Two orbits: Denote the hexagon line contained in 7 by h. The polar I+ of I with respect
to the symplectic polarity contains a regulus of hexagon lines, cf. Section 2.1, item (v). The
map sending a point of [ onto the set of points of R at distance three in H(K) is a bijection
of the points of [ onto the lines of the complementary regulus of R. Since the pointwise
stabiliser H in Gy(K) of R acts two-transitively on the complementary regulus (this follows
from the Moufang property and the regulus condition, cf. [16], [27, Proposition 4.5.11]) and
since H stabilises the line I, we see that H, acts transitively on [\ {z} where z = INh. Hence
G2(K) has two orbits on the incident point-plane pairs as well.

O

3 Fused amalgams and intransitive geometries

The nonstandard notions that we will need below were introduced in [9], to which we refer for
more details and results.

3.1 Diagram coset pregeometries

Definition 3.1 (Diagram Coset Pregeometry) Let I be a finite set, let A = (
and let (T;);cr be a family of pairwise disjoint sets. Also, let G be a group and let ( teT; iel be
a family of subgroups of G. Then the diagram coset pregeometry of G with respect to (G"%)ie icr
equals the pregeometry

I,~) be a tree,
Gt,z’)

({(C,t) : t € T; for some i € I,C € G/G"'} ,,typ)
over I with typ(C,t) =1 if t € T}, and
(DCos) gG%* x hG®7 if

e i=jand t =s and gG** N hG*7 £ 0,
e i, j adjacent in A and gG** N hG*I # 0, or

e i, j not adjacent in A and there exists a geodesic i = zg,...,xr = j in A and cosets
gtm[vletm”wl With th’Z = gtmovﬁoGtm07w07 th’] = gtmkvkatmk’wk a‘nd gtmlaletml’wl *
(2 Ti41
gthlmHG 14+1°%71+1

Since the type function is completely determined by the indices, we also denote the coset prege-
ometry of G with respect to (G*)er, ier by

(G/G"" x {t}etier, ).

If the diagram coset pregeometry happens to be a geometry, then A is its basic diagram if and
only if at least one of the residues corresponding to adjacent i, j is not a generalised digon.
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Theorem 3.2 (inspired by Buekenhout & Cohen [4])
Let |I| > 1. The diagram coset geometry ((G/G%* x {t})te, ic1,*) is connected if and only if

G=(G"|ielteT).
Proof. Suppose that T' is connected. Take i € I and t € T;. If a € G, then there is a path
th’i, agGlero , a1 Gt , athz’i2, - Ay GEmoim , aGtt

in the geometry connecting the elements 1G*? and aG** of I'. Extending that path, if necessary,
we can assume that the types i; and ;11 are adjacent in A for all j. Therefore

th,i t i
akG kslk N ak+1G k+4+1:tk41 ?g @7

SO
ay gy = Gtk71thk+1,lk+1

for k=0,...,m — 1. Hence
a= (lflao)(aalal) .- (a,_nl_lam)(a:nla) € GHi@toio ... @m-1stm—1 Glmyim GtE

and so a € (G4 | i € I,j € T;). The converse is obtained by reversing the above argument. The
only difficulties that can occur are the occasions in which g; Gt N ¢G> #£ (), where 41 = i
or i1, i not neighbors in A. However, this can be remedied by including some suitable chain of
cosets between g;G*1>%t and g,G*2'% into the chain of incidences. O

Definition 3.3 (Sketch) Let I' = (X, ,typ) be a geometry over a finite set I whose basic
diagram A is a tree, let G be a group of automorphisms of T', and let W C X be a set of G-orbit
representatives of X. We write
w=Jwi
iel
with W; C typ~1(i). The sketch of T with respect to (G, W, A) is the diagram coset geometry

(G/Guw x {w})wews ier, *)-

Let ¢ : G — Sym X be a group action. Then we denote by ¢ X the corresponding permutation
group, called a G-set. Two G-sets ¢X and X' are said to be equivalent if there is a bijection
¥ : X — X' such that ¥ o ¢(g) oy~ = ¢'(g) for each g € G or, equivalently, 1 o ¢(g) = ¢'(g) o ¢
for all g € G. In this case, we shall also say that ¢ X and ¢ X' are isomorphic G-sets.

Recall also from [9, Definition 2.2] that a lounge of a geometry I' = (X, *,typ) over I is a set
W C X of elements such that each subset V' C W for which typ,, : V' — I is an injection, is a
flag. A hallis a lounge W with typ(W) = I.

Recall also that, for geometries I'y = (X, *q,typ;) over I and I'y = (X, *9,typ,) over I,
the direct sum I'y ® I'y is the geometry (X; U Xy, *g, typg) over I LI I' with *@|x,xx, = *1 and
*@| X, x, = *2 and *g|x . x, = X1 x X and typ@lx1 = typ; and typ@lx2 = typy- A geometry I’
is said to have the direct sum property, if for each flag F' of T, the residue of I in F' is isomorphic to
the direct sum of its truncations to the connected components of its diagram, where the direct sum
of more than two geometries is defined iteratively. Note that residual connectivity is a sufficient
condition for the direct sum property, see [15, Theorem 4.2].

Theorem 3.4 (Reconstruction theorem)
Let T = (X, *,typ) be a geometry over a finite set I with the direct sum property whose basic
diagram A is a tree. Let G be a group of automorphisms of I". For each i € I let

i i
Wy, Wy,

be G-orbit representatives of the elements of type i of T such that
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(i) W:=U;er {wi,...,wi } is a hall and,

(ii) if V C W is a flag, the action of G on the pregeometry over typ(V') consisting of all elements
of the G-orbits G.x, x € V, is transitive on the flags of type {i,j} for all i,j € typ(V)
corresponding to adjacent nodes of the diagram A.

Then the bijection ® between the sketch of T' with respect to (G, W,A) and the pregeometry T'
given by '

is an isomorphism between geometries and an isomorphism between G-sets.

Proof. The isomorphism as G-sets is clear from the fundamental theorem of permutation rep-
resentations as W is a transversal with respect to the action of G. Therefore let us turn to the
isomorphism as geometries. For adjacent i, j we have gG,, i NhG,i 79 () if and only if gw,c * hw,C

by the isomorphism theorem for incidence-transitive geometrles If i and j are non-adjacent, then

each pair of incident gw;, * hw? k; is contained in a chamber of I', hence the basic d1agram A implies

incidence of ¢G, i hG,; inthe sketch. If gw,C , hwk are not incident, then gG,, i hG,; cannot
; kj

be incident by the dlrect sum property. |

The direct sum property in the hypothesis of Theorem 3.4 is necessary. Indeed, let T'; and I's
be isomorphic geometries of rank 4 with a string basic diagram over the type set {0,1,2,3}. Let
f :T1 — T’y be an isomorphism and glue I'y to I's via f restricted to the set of elements of type
1; denote the resulting geometry by I'. Two elements of I" of type distinct from 1 are incident if
and only if they are contributed by the same I'; and are incident in I';. For z € I'; of type 1 and
y € 'y, we have zxy in I if and only if 2y in 'y or f(z)*y in I'y. The basic diagram of T" also is a
string, but the residue of an element of type 1 does not split into the direct sum of two geometries,
so I' does not satisfy the direct sum property. Moreover, if the T'; are flag-transitive, then T is
flag-transitive. Altogether, all hypotheses of Theorem 3.4 are satisfied. Nevertheless, I' cannot be
recovered from its sketch (considered as a diagram coset geometry), because, given an element x of
type 1, Definition 3.1 forces all elements of type 0 incident with x to be incident to all elements of
type 2 incident with z, which is not the case in I'. Of course, I" can be reconstructed in the classical
way from its sketch as a flag-transitive geometry, emphasising that our reconstruction approach
in the present paper is not a generalisation of the classical reconstruction or the reconstruction by
Stroppel [21], cf. also [9].

3.2 Fused amalgams

In the present paper we will work with the following definition of an amalgam.

Definition 3.5 (Amalgam) Let J = (J,<) be a finite graded poset with grading function
7:J = I=1{1,2,..,n} such that every maximal chain has length n — 1 (namely, it contains an
element of every grade). Then an amalgam of shape J is a pair A = ((G})jes, (¢i,;)icj) such
that G is a group for every j € J and, for any i,j € J with ¢ < j, the map ¢;; : G; = G is a
monomorphism satisfying ¢; r¢; ; = ¢ir for any choice of ¢, j,k € J with ¢ < j < k.

The fibers 771(i) are denoted by J;, for i € I.

Example 3.6 In the following diagram we depict an amalgam with I = {0,1,2}, Jo = {1,2},
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Ji1 =41,2,3,4,5}, Jo» = {1,2,3,4}. The maps ¢; ; are given by arrows and compositions of arrows.

Gl,l E—— Gl’g

Gaa Gap

G Gs,1 Gs,2
G20 G, Gap
\ /
Gs,1

In terms of stabilisers of a group G acting on a geometry I' with orbit representatives p, I, 71,
o this example might concretely arise as

Gp’l e Gp

G )1 Gl
Gp,l,m Gpnrz Gr,
GP,l,ﬂz Gl,m Gﬂz
/
Gi,r,

If in the above example m; and 75 happen to be contained in the same G-orbit, then of course we
have G, = gGr,g ' for some g € G. But it may happen that this element g cannot be described
in terms of the amalgam, as G, and G, might not be conjugate in the universal enveloping
group of this amalgam, so that in this case it is very difficult to establish a nice correspondence
between amalgams and coverings of geometries, as done in geometric covering theory. If, however,
Gr, = 9Gr,g7! for some g € G, then such a correspondence exists. In this case automatically
Giny = GiNGr, = GiNgGr, 97! = gG1,x, 97" Furthermore, g € G| is an element of the amalgam,
and we can fuse G, and G, via conjugation with g. We call such an amalgam A a fused amalgam
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of parabolics and depict it by

Gy —— G,

Gpaﬂ'l Gl =/ g
Gp,lﬂfl GPJT2 G7T1
g
Gp,lﬂm Gl,ﬂl Gﬂ'z
\ g /
'
I,

The next definition formalises the concept of a fused amalgam. In this paper we only define
fused amalgams sufficiently general for our purposes, although a number of possible generalisations
come to mind immediately.

Definition 3.7 (Fused Amalgam) Let A = ((G;)jes,(¢ij)i<j) be an amalgam, with underly-
ing graded poset J = (J, <) with grading function 7 : J = I = {1,2,...,n}. A fusion of A, turning
A into a fused amalgam, consists of three indices jo, j1,j2 € J, = 77'(n), an element g € G;,, a
lower neighbor i of jo and ji, a lower neighbor i of jo and js, and an isomorphism v : G, = G},
such that the following properties hold:

(1) Bina(929™") = (7 0 iy 1) (2);
(i) @i (x) = (70 ¢55,)(x) for each i < ji, ja.

Definition 3.8 (Enveloping Group) Let A be a fused amalgam. A pair (G,7) consisting of a
group G and a map « : UA — G is called an enveloping group of A, if

(i) for all j € J the restriction of w to G is a homomorphism of G; to G;
(ii) m @, o ¢i; = Mg, for all i < j;
(iii) 7 preserves fusion, i.e., m(y(z)) = w(g)m(z)n(g)~" for every z € G;, and g, v, j1 as in
Definition 3.7; and

(iv) m(UA) generates G.

Proposition 3.9
Let A as above be a fused amalgam of groups, let F(A) = ((ug)4eca) be the free group on the
elements of A and let

S1 = {uzuy = u,, whenever zy = z in some G, }

and
So = {ugy = uy, whenever ¢(x) =y for some identification ¢}

and

1

S3 = {u, = guyg™', whenever x € G; and y € G are fused by g}

be relations for F'. Then for each enveloping group (G,w) of A there exists a unique group
epimorphism

T:UA) =G
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with m = T o ¢ where

U(A) = ((ug)gen | S1,52,83) and ¢ : UA = U(A) : g — uy.
LA —2> U(A)
G
Proof. Asin [9]. O

Definition 3.10 (Universal Enveloping Group) Let A be a fused amalgam of groups. Then
:UA > UA) g uy

for U(A) as in Proposition 3.9 is called the universal enveloping group of A.

3.3 Some additional theory of intransitive geometries

Note that the covering theory from [9] does not apply to the geometry I's from Subsection 2.2 by
Proposition 2.6. In this section we present a covering theorem making use of fused amalgams in
order to tackle that geometry I's. For simplicity, we will state the theorem in such a way that it
exactly fits the properties of I's. Generalisations are of course possible.

Theorem 3.11
Let T' = (X, *,typ) be a connected geometry over I = {1,2,3} having the direct sum property
whose basic diagram A is ° o 0. Let G be a vertex-transitive group of auto-

morphisms of G that acts trans1t1ve]y on the flags of type {i, J} for alli,j el correspondmg to
adjacent nodes of the diagram A. Furthermore, let F = {w',w?, w3} be a flag, let w® and gw3,
g € G2, be orbit representatives of the action of Gy 2 on the elements of type 3. Finally, let
A= AT, G, F) be the fused amalgam of parabolics. Then the diagram coset pregeometry

T = (U(A)/Gui x {w'}ier, #)

is a simply connected geometry that admits a universal covering 7 : T — I induced by the natural
epimorphism U(A) — G. Moreover, U(A) is of the form 7 (T).G.

Proof. First notice that, since I' is connected, G is generated by all its parabolics (different from
G) by Theorem 3.2. As the embedding of A in G preserves fusion, by Definition 3.8, the group G
is an enveloping group of A and Proposition 3.9 shows that the natural morphism U (A) — G is

surjective.
The map
p:UA—=G
and, thus, the map R
¢:UA = UA)

is injective. Therefore the natural epimorphism
v :UA) - G

induces an isomorphism between the amalgam $(UA) inside U(A) and the amalgam ¢(LIA) inside
G. Hence the epimorphism ¢ : U(A) — G induces a quotient map between pregeometries

m:T = (U(A)/Gus X {w'icr, ) = (G/Gut X {w'}icr, %)
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The latter diagram coset pregeometry is isomorphic to I' by the Reconstruction Theorem 3.4.
Notice that U(A) acts on ' = ((G/Gi x {w})ier, *) via

(gG i, w)) = (Y(u)gGpi,w?) for ueU(A).

We want to prove that this quotient map actually is a covering map. The pregeometry T is
connected by Theorem 3.2, because U(A) is generated by ¢(LLA). Let us start with proving the
isomorphism between the residues of elements of type 2. Since the diagram is a string, a coset
Gy is incident with a coset yY with Y = G s or Y = Gy, if and only if there exists a coset
2G 2 such that G N 2G 2 # 0 # 2G> NyY. So, all thats needs to be checked is that there
is a bijection between the cosets of G,,1 in U(A) that meet G2 and the corresponding cosets in
G, and similarly for cosets of Y. However, the existence of such bijections is obvious. Indeed,
the cosets of G,,1 meeting G,,2 are precisely those that can be written as hG,,: for h € G2, and
similarly for cosets of Y.

Turning to the residue w!, let hG s represent a 3-element incident to G, . Then there exists
a coset h1Gy2 with hy € Gy1 and hiG2 N hGys # 0. As hy € G1, we have Gy N hiGye =
h1 Gy 2. Turning to hG\s, the condition hy G2 NAG s # 0 is equivalent to G2 Nhy hG s # 0.
This shows that we can choose h such that hl_lh = hy € G2, namely h = hihy € Gu1G 2.
Moreover, in view of the hypotheses we have assumed on G .2, there exists an element f €
Gy 2 such that either fhoGys = Gys or fhoGys = gGys. In the former case we can choose
hy = f~! € Gy1 2 and h = hihy € Gy Thus, G1 NhGyz = hGy 3. Also, Gyt NGz NhaG s
contains haf™' € Gy 2. Hence Gy N Gyz N haGys = [T Gyt 42,08, Accordingly, Gy N
h1Gu2 NhGys = hi f7 Gy w2 e So, these particular {2, 3}-flags of res(w') correspond to cosets
of Gy1 42,3 in G,1. However, the above holds in G as well asin G. Consequently, that the part of
fwl formed by 2-elements and 3-elements in the same orbit of G,s is isomorphic to the analogous
part of T',,1. Suppose now that the latter case occurs, namely fhoG,z = gG,3. So, hG,32 =
h1h2oGys = hy f~1gG s, whence hGsg™! = h1 f 719G 39 . As h1Gy2 = h19G 29~ (because
9G w297t = G2, since g € G,,2), we have h1G 2 NhG3 # 0 if and only if hyGoNhy f~19G 397! #
0. So, we can repeat the above argument with hG s replaced by hGsg~' = h1 f 1gGsg~ ", thus
obtaining that the flag {h1G2, hG3} of res(w') corresponds to a coset of Gt N G2 N gGysg ™t
in G,1. In other words, the part of res(w') formed by the 2-elements and the 3-elements of the
orbit containing gw? is isomorphic to the geometry of cosets of Gy 2 and Gy gys inside G.
Again, this is true in T as well as in T. So, in either of these two geometries, that part of the
residue of w' is canonically isomorphic to the same geometry of cosets inside G,1. So, that part
of the residue of w' in T is isomorphic to the corresponding part of the residue of w! in T. So far,
we have proved that each of the two parts of T',,1 is isomorphic to the corresponding part in T'y1.
Moreover, it is clear from the above that the two ‘partial’ isomorphisms constructed in this way
from I',1 to I'y1 agree on the set of 2-elements. Therefore they can be pasted together so that to
construct an isomorphism from the whole of I';,1 to the whole of G,1.

A similar argument applies to residues of w®. Hence 7 : I' = T induces isomorphisms between
the residues of flags of rank one, so 7 indeed is a covering of pregeometries. Since I' actually is a
geometry the pregeometry I is also a geometry. The universality of the covering

7:T =T

induced by the canonical map U(A) — G is proved as in [9, Theorem 3.1]. The structure of

G=u (A) is evident by combinatorial topology, cf. Chapter 8 of [17], restated in [9, Section 2.2].
O

Corollary 3.12 (Tits’ lemma)
Let T = (X, *,typ) be a connected geometry over I = {1,2,3} having the direct sum property
whose basic diagram A is ° o 0. Let G be a vertex-transitive group of auto-

2
morphisms of T’ that acts transitively on the flags of type {i,j} for all i,j € I corresponding to



4 SIMPLE CONNECTIVITY 13

adjacent nodes of the diagram A. Furthermore, let F = {w',w?, w3} be a flag, let w® and gw?,

g € G2, be orbit representatives of the action of Gy 2 on the elements of type 3. Finally, let
A= A, G, F) be the fused amalgam of parabolics. The geometry I is simply connected if and
only if the canonical epimorphism

UAT,G,F)) - G

is an isomorphism. |

3.4 Amalgamation

By Proposition 2.6 the Gy(KK) action on T'y satisfies the hypotheses of Theorem 3.11, so that by
Proposition 4.3 we can apply Corollary 3.12 in order to obtain the following amalgamation result.

Theorem 3.13
Let p, 1, m, ma = gm1, g € Gy be a set of orbit representatives of the Gy(K) action on I'y such that
p, I, m1 is a chamber of Ty. Then G»(K) is the universal enveloping group of the following fused
amalgam of parabolics:

Gp,l _— Gp

GP,7T1 Gl 29
Gp,l,m Gpﬂrz G7r1
9:
Gp,l,ﬂ'z Gl,7r1 Gﬂ'g
\ 9 /
Y
Gl,ﬂ'z

4 Simple connectivity

In this section, we show the simply connectivity of most of the geometries I';, ¢ = 0,1,2,3. To be
precise, we prove that all these geometries are simply connected, except for I'; with |K| = 2.

Collinearity on Q(6,K) and in W(5, K) will be denoted by L. Also, in H(K), there is a natural
distance function on the set of points and lines, with values in {0,1,...,6} (this function is the
graph theoretic distance in the incidence graph). airs of elements at distance 6 will be called
opposite. In PG(5,K), there are two types of singular planes: the ideal planes, and the hexagonal
singular planes. If « is a hexagonal singular plane, then the ideal centers of all ideal lines in «a
coincide and will be called the hexagonal pole of « (it is the intersection of all hexagon lines in «).
The pencil of hexagon lines will be denoted by P,. Also, a nonsingular plane § contains a pencil
of symplectic lines; this pencil will be denoted by Ps and the intersection of the lines of Pg shall
be called the pole of 3.

First we will start by proving simple connectivity of Ty, I';, Ty as defined in Subsection 2.2.
In what follows, we will use over and over the simple observation that, if two symplectic lines
Ly, Ly meet in a point p, then every line in the plane (L1, Ls) through p is symplectic. Moreover,
if the plane (Ly, L») is nondegenerate, then at most one of these lines can be hexagonal, because
a pair of intersecting hexagon lines spans a totally isotropic plane, see Section 2.1, item (i). In
the following, a geometric triangle is a triangle consisting of points and lines in a plane of the
geometry.

The next proposition has also been proved by Blok and Hoffman [3], but we provide a short
proof for sake of completeness.
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Proposition 4.1
The geometry Ty is simply connected.

Proof. Clearly the diameter at type 1 of the truncation of Ty at the types 1 and 2 is two, so it
suffices to show that we can subdivide any triangle, any quadrangle and any pentagon in geometric
triangles. Every triangle is geometric, so for triangles there is nothing to prove.

Let a,b,c,d be a quadrangle of type 1 elements (points of PG(5,q)). We may assume that
ac and bd are symplectic lines, since otherwise the quadrangle automatically decomposes into
triangles. Choose any point e on ab. If ce were symplectic, then so would ¢b. Hence ce, and
similarly also de, are non-symplectic. We have subdivided our quadrangle in the triangles a,d,e
and c¢,d,e and b, c, e.

Now let a,b,c,d, e be a pentagon of type 1 elements. Again we may assume that all of ac,
bd, ce, da and eb are symplectic, since otherwise the pentagon decomposes automatically. Since
a,c,d is a triangle in PG(5, ), the corresponding symplectic hyperplanes a*, ¢, d* do not meet
in a 3-space, whence their union cannot cover the whole space. Therefore there is a point f with
cf, df and af non-symplectic lines and we have subdivided our pentagon into the null-homotopic
circuits a, b, ¢, f and ¢,d, f and d, e, a, f. O

Proposition 4.2
The geometry 'y is simply connected, whenever |K| > 2.

Proof. Since the point-line truncations of I'g and I'; coincide, by the proof of Proposition 4.1, it
suffices to show that every triangle is null-homotopic.

Let a, b, ¢ be a triangle, and suppose it is not geometric. Hence a, b, ¢ are three pairwise opposite
points in H(K) and the plane (a, b, ¢} contains a (unique) hexagon line [. We may assume that a is
not incident with /. Then there exists a hexagon line m through a not concurrent with ! and not
concurrent with a hexagon line that is concurrent with I. It follows that the 3-space E := (I, m)
is nondegenerate and contains a regulus, consisting of hexagon lines, of a ruled nondegenerate
quadric @, cf. Section 2.1, item (v). Denote the unique line of @ in {a,b,c) different from [ by
I' (and note that !’ is incident with a and meets [), and for each point z € I', denote by I, the
unique hexagon line on ). To prove the claim, it suffices to find a point x such that the planes
(a,b,z),{a,c,z) and (b,c,z) do not contain any hexagon line and such that the lines az, bz, cx
are not symplectic. The latter is satisfied whenever z € = is not contained in the union U of the
planes m,, m, 7., where 7, is generated by the symplectic lines through a inside =, and likewise
for m, and .. Note that (a,b,¢) = (I,I') C E. The former is satisfied whenever x does not lie in
the union Us of the planes {(a,b,lopnw ), {a, ¢, lacrir) ,{b, ¢ lperi) and {a,b,c). Since I’ contains a,
we see that lgpnp = lgenr = m. Since Z cannot be the union of seven planes if |K| > 8, we may
suppose |K| = 4. In that case Uy, which is the union of four planes no three of which meet in a
line, i.e., a tetrahedron, covers exactly 58 points, leaving a set S of 85 — 58 = 27 possibilities for
z. If a plane contained in U/, does not contain an intersection line of two planes in Us, then it
meets S in 7 or 6 points. If, on the other hand, such a plane does contain such an intersection
line, it contains 9 points of S. Consequently we may assume that the planes in U partition S and
each plane contains some intersection line of planes in U/5. For all three planes, this line must be
the same, as otherwise the three intersections would have to be pairwise distinct. Hence in that
case each of the three planes would have to contain two lines of the tetrahedron, which would
imply that they actually belong to Uz, a contradiction. But then the planes m,, 7, 7. contain
a common line, which implies that a,b,c are collinear in PG(5,K) (since E is nondegenerate),
another contradiction. m|

The above proof fails for |K| = 2. In fact, a computation using GAP reveals that T’y admits in
this case a 3-fold universal cover. The source code of the program we used for verification of this
fact can be found in [8].

Proposition 4.3
The geometry T's is simply connected.
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Proof. As in the case of I'1 we only need to prove that every triangle is null-homotopic. Suppose
K| > 2 (hence |[K| > 4, as the characteristic of K is two). Given a triangle po,p1,p2 of the
collinearity graph of I's, not contained in one line of Ty, set 7 := (pg, p1,p2). Clearly, the plane
7 is nondegenerate. Let p be its pole. We may assume that 7 is a plane of I';, as otherwise
our triangle is geometric. So all the symplectic lines of 7 are ideal. Given a line I € Py, let m
be the hexagonal plane on ! and let p; = p,, be the hexagonal pole of ;. Suppose, by way of
contradiction, that = C p;-. So, the singular planes on pp; are precisely those spanned by p; and a
line m € P,. Since pp; is a hexagon line, all of these planes are hexagonal and the map sending a
line m € P, to the hexagonal pole p,, of (m,p;) is a bijection from P, to the set of points of pp;.
Therefore, p = p,, for some line m € P,. Hence m is a hexagon line, contrary to our assumptions.
As a consequence, p;- N m = [ for every line [ € P,. We can now choose the line ! such that
1 € Px \ {ppo,pp1,pp2} (noting that we have assumed |K| > 2). For 1 < i < j < 3, none of the
planes 7;; = (p;, p;j,pr) is singular (since they contain the non-symplectic line p;p;), but each of
them contains a hexagon line, namely the line a;;p;, where a;; = INp;p;. So, we have decomposed
Do, P1,p2 into triangles p;,pj, a, each of which is contained in a plane of I's.

For |K| = 2, a computer based argument proves the claim. Again, the source code for the GAP
program we used can be found in [8]. O

Proposition 4.4
The geometry I's is simply connected.

Proof. We prove this in a series of lemmas. The strategy is to show that every cycle in the
collinearity graph of I's is null homotopic. We begin by noting that the diameter of that graph
is equal to two. Indeed, if two points a,b are incident with the same hexagon line [, then we
can choose a hexagonal plane 7 through [/ such that neither a nor b is incident with at least two
hexagon lines of 7. Consequently, for any point ¢ in 7 not on [ the lines ac and bc are ideal. If two
points a, b are at distance two in the collinearity graph of Q(6,K), then the points ¢ collinear to
both a and b form a generalised quadrangle Q(4,K); those for which either ac or bc are hexagon
lines form two lines in Q(4,K). Hence there are plenty of points ¢ in Q(4,K) for which ac and bc
are ideal. As a consequence, we only have to show that triangles, quadrangles and pentagons are
null homotopic. This will be done in lemmas 4.5, 4.7, and 4.8. O

Lemma 4.5
Every triangle is null homotopic.

Proof. If the triangle is geometric, i.e., contained in an ideal plane, then this is trivial. So we
may assume that we have a triangle a, b, ¢ in a hexagonal plane. Let 7’ be an ideal plane on some
ideal line of {a, b, ¢) not containing a, b or ¢. Then, by Section 2.1, item (iv), the ideal centers of
the ideal lines of ' form an ideal plane w. Then span H := (m,7') is a hyperplane of PG(6, K)
meeting @ in a nondegenerate hyperbolic quadric @Q*. Moreover, none of the points a, b, ¢ is
incident with = U 7', and 7 contains the pole of the plane (a,b,c). By Section 2.1, item (iv) the
hexagonal planes in H are those that share a point of 7 or 7’ and a line of #’ or m, respectively.
Now we apply the Klein correspondence to view the situation in a 3-space PG(3,K). To be
precise, we map 7 to a point 2 and hence 7’ to a plane « off that point. Translated to the space
PG(3, K), the hexagonal planes in H correspond with the points of o and with the planes through
z. The plane (a,b,c) corresponds to a point z in «, and the points a,b,c correspond to lines
A, B, C, respectively, through z, but not contained in a and not incident with z. Also, none of the
planes (4, B), (4,C), (B,C) contain z. Let [ be a line in « not through z and let 8 be a plane
through [, different from «, and not incident with z. Then the intersections Lo := S N (A, B),
Lg:=8N(A,C) and L4 := B8N (B, ) form a triangle which corresponds with a null-homotopic
triangle in I'. By construction also the triangles A, B, L¢ and A,C, Lg and B,C, L4 correspond
with null-homotopic triangles in I', and likewise so do the triangles L4, Lp,C and L4, Lc, B and
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Lp,Lc, A. Hence also the triangle a, b, ¢ is null homotopic as it it is the sum of seven geometric
triangles. O

Lemma 4.6
Every quadrangle a,b,c,d with a / ¢ and b [ d, is null homotopic.

Proof. Let x be the ideal center of ab and let y be the ideal center of cd. It is easy to see that
our assumptions imply that z and y are not collinear in H(K). Suppose now first that the planes
(z,a,b) and (y,c,d) are disjoint. This, as z, y are noncollinear in H(K) is equivalent to z being
opposite y in H(K). Let X; be the set of points of H(K) collinear with 2z and not opposite y, and
let likewise Y7 be the set of points of H(K) not opposite z and collinear with y. Note that a € X3
if and only if d ¢ Y7 (and similarly, b € X; if and only if ¢ ¢ Y;). For assume a € X, then
clearly, the only point of Y; collinear in Q(6,K) with a is also collinear with a in H(K), thus not
collinear with a in T', and hence d ¢ Y;. The remaining implications follow identically. In view of
the above, either b € X; or ¢ € Y;. We may assume that b € X;. So ¢ € Y7 and we are left with
the following cases.

(i) In case a € X1, the intersection a* Nb N {y,c,d) is a singleton {u}. Our assumptions imply
that u ¢ {c,d,y}. If u belonged to the (hexagon) line yc, then, since ¢ € b+, also y € b+,
a contradiction. So u ¢ yc and likewise u ¢ yd. Moreover, neither au nor bu are hexagon
lines, as neither a nor b belong to X;. Hence u is collinear in I" with all of a,b, ¢,d and we
can subdivide the quadrangle a, b, ¢, d in the triangles a, b, u and b, ¢,u and ¢, d, u and d, a, u.

(ii) In case a € X1, we have d ¢ Y;. Pick any point v on the ideal line ab, different from a and
b. Our assumptions imply easily that there is a unique point w on c¢d collinear in T' with
v. Since v ¢ X;, we know that vw is an ideal line. Also, since ¢ is collinear with b in T',
and w cannot be, we deduce that w # ¢. Similarly w # d. By the previous arguments the
quadrangles a,v,w,d and v, b, ¢,w are null homotopic, and they subdivide a,b,c,d. Hence
also in this case a, b, ¢, d is null homotopic. Note that the situation considered here does not
occur when |K| = 2.

Suppose now secondly that the planes (a, b, z) and (¢, d, y) meet in a point z. Our assumptions
imply that z is distinct from the intersection point x; of ab with zz, and also from the intersection
point y; of cd with yz. Now clearly the ideal centers of ad and bc are opposite z, which is the ideal
center of z;y1. Hence, by the previous arguments (with ab replaced by wd and vb, respectively),
the quadrangles a,z1,y1,d and b, z1,y1,d are null homotopic. Since they subdivide a,b, ¢, d, the
lemma follows. O

Lemma 4.7
Every quadrangle a, b, ¢,d is null homotopic.

Proof. By Lemma 4.6, we may assume that a and ¢ are collinear on Q(6,K). If ac is ideal,
then we are done by the fact that all triangles are null homotopic, see Lemma, 4.5. Hence we may
assume that ac is a hexagon line. Clearly, we may assume that b and d are not collinear on the
quadric as otherwise a, b, ¢,d lie in a plane of the quadric and then ad meets bc in some point e.
The triangles a, b, e and ¢, d, e are null homotopic by Lemma 4.5, hence the result.

The plane {a, b, c) is degenerate since it contains a hexagon line. Considering any other plane
7 through be, it follows that 7 is an ideal plane. Since d [ b, the line I = 7 Nd* does not coincide
with bc and hence contains at least two points u,v off be. If both du and dv were hexagon lines,
then also dc must be a hexagon line, a contradiction. So we may assume that du is ideal. But now
we have subdivided the quadrangle a,b, ¢, d into the circuits ¢,d,u and ¢,u,b and u,b,a,d. The
two former are null homotopic by Lemma 4.5, while the latter is null homotopic by Lemma 4.6,
noting that v is not collinear with a on the quadric. |
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Lemma 4.8
Every pentagon ag, a1, a2, as,ay is null homotopic.

Proof. For i = 0,1,...,4, let I; = a;a;31 be the ideal line through a; and a;y1 (indices being
computed modulo 5). Suppose first that l;12 ¢ a;i- for some i. For instance, I ¢ ag. As the line
Iy is ideal, all singular planes on 2 but one are ideal. So, we can choose an ideal plane 8 on s
such that the plane a = (ag N B, ao) is different from the unique hexagonal plane containing all
hexagonal lines through ag. Consequently, at most one of the lines of a through ag is hexagonal.
Given an ideal line [ of a through ag, let ¢ = 1N (a N B). Then cis collinear with both as and as
in I's, since (3 is an ideal plane. Thus, we can split ag, a1, a2, as, a4 into ag, a1, as,c and c,as,as
and ag, ¢, as,aq.

Suppose now that l;1» C ai for every i = 0,1,...,4. Then ag,a1,as,a3,a4 is contained in a
singular plane. Put b:=lyNls and ¢ :=I4Nly. Then ag,ay,as,as, a4 splits into the sum of ag, b, ¢
and b,ay,as2,b and c, a3, ay. |
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