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Abstract

In this paper, we prove that a set L of q5 + q4 + q3 + q2 + q + 1 lines of PG(6, q) with the properties
that (1) every point of PG(6, q) is incident with either 0 or q +1 elements of L, (2) every plane of PG(6, q)

is incident with either 0, 1 or q + 1 elements of L, (3) every solid of PG(6, q) is incident with either 0, 1,
q +1 or 2q +1 elements of L, and (4) every hyperplane of PG(6, q) is incident with at most q3 +3q2 +3q
members of L, is necessarily the set of lines of a regularly embedded split Cayley generalized hexagon
H(q) in PG(6, q).
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Recognizing specific geometric structures by certain properties – preferably as weak as
possible – is very important in (finite) geometry, since various configurations can turn up
unexpectedly in completely different contexts, disguised in an unusual definition. Data that are
available for structures in projective spaces are in many situations the intersection numbers with
respect to subspaces. A typical example are the conics in Desarguesian planes PG(2, q), with q
odd, which are characterized as sets of q + 1 points meeting lines in 0, 1 or 2 points. Other, more
involved, examples are the characterizations of quadrics, Hermitian and Veronesean varieties by
intersection numbers.

In the present paper, our aim is to characterize the standard embedding of the split Cayley
hexagon H(q) in PG(6, q) by intersection numbers with subspaces. Of course, since the points
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of H(q) are exactly the points of a parabolic quadric in PG(6, q), such a characterization is
impossible if we (only) consider intersections of the point set of the hexagon with subspaces.
That is why we consider the intersections of subspaces with the line set of H(q), i.e., we count
the number of lines of a given embedded H(q) in a given subspace and then assume that we have
a set of lines with these intersection numbers (in practice, we take weaker assumptions). It is also
natural to require that we deal with a tactical configuration, i.e., we assume that each point of the
projective space that is incident with al least one line of our set, is incident with exactly q + 1
lines of our set.

Before getting down to precise statements, let us recall the definition and construction of the
split Cayley hexagons H(q).

A point–line geometry is a triple (P,L, I) consisting of a set P of points, a set L of lines, and
a symmetric incidence relation I saying precisely which points are incident with which lines (and
conversely). The incidence graph of the point–line geometry (P,L, I) is the graph with vertex
set P ∪ L and adjacency relation I. A generalized hexagon is a point–line geometry for which
the incidence graph has diameter 6 and girth 12, i.e., the maximal distance between two vertices
is 6, and the length of a shortest circuit is 12. Whenever each vertex of the incidence graph of
a generalized hexagon has valency at least 3, this (bipartite) graph is bi-valent. If the valency of
the vertices belonging to P and L is equal to s + 1 and t + 1, respectively, then we say that the
generalized hexagon has order (s, t). Distances between elements of a point–line geometry are
always measured in the incidence graph. Elements at distance 6 from each other in a generalized
hexagon are called opposite.

Let q be any prime power. Up to isomorphism, the split Cayley hexagon H(q) is defined as
follows (see Tits [4]). Let Q(6, q) be the parabolic quadric in PG(6, q) defined by the equation
X0 X4 + X1 X5 + X2 X6 = X2

3. Then the points of H(q) are the points of Q(6, q), the lines of
H(q) are the lines of Q(6, q) whose Grassmannian coordinates (p01, p02, . . . , p56) satisfy the
six relations p12 = p34, p56 = p03, p45 = p23, p01 = p36, p02 = −p35 and p46 = −p13.
Incidence is inherited from PG(6, q). For more details, properties and information about H(q)

we refer to [5].
The above construction, which we call an embedding of H(q) in PG(6, q) has the following

properties, see [5,3]. Recall first that, abstractly, an embedding of a point–line geometry (P,L, I)
in PG(d, q), for some d , is an injective mapping of P in the point set of PG(d, q) inducing an
injective mapping from L into the line set of PG(d, q) and such that the image of P generates
PG(d, q).)

First of all, the embedding described above is polarized. This means that for every point x
of H(q), the set of points not opposite x is contained in a hyperplane of PG(6, q). Also, the
set of lines of H(q) incident with x is contained in a plane of PG(6, q), and we say that the
embedding is flat. Flat and polarized are abbreviated by the notion regular embedding. By [2],
up to projectivity, the example above is the only regularly embedded generalized hexagon in
PG(6, q).

We are now ready to state our Main Result.
Let L be a set of lines of PG(6, q) and consider the following properties.

(Pt) Every point of PG(6, q) is incident with either 0 or q + 1 elements of L.
(Pl) Every plane of PG(6, q) is incident with either 0, 1 or q + 1 elements of L.
(Sd) Every solid of PG(6, q) is incident with either 0, 1, q + 1 or 2q + 1 elements of L.
(Hp) Every hyperplane of PG(6, q) is incident with at most q3 + 3q2 + 3q members of L.
(To) The set L contains q5 + q4 + q3 + q2 + q + 1 lines.
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Main Result. If L is a set of lines of PG(6, q) satisfying (Pt), (Pl), (Sd), (Hp) and (To), then
it is the line set of a regularly embedded split Cayley hexagon H(q) in PG(6, q). Conversely,
the line set of every regularly embedded split Cayley hexagon H(q) in PG(6, q) satisfies the
Properties (Pt), (Pl), (Sd), (Hp) and (To).

Remark. In the proof of our Main Result below, there are only two places where we will use
Condition (Sd), namely, in the proof of Lemma 1 and in the proof of Lemma 5. In both cases
the solid under consideration contains intersecting lines of L, so that the Condition (Sd) can be
replaced by
(Sd′) Every solid of PG(6, q) containing distinct intersecting elements of L contains at most

2q + 1 elements of L.

2. Proof of the Main Result

First let L be the line set of a regularly embedded split Cayley hexagon H(q) in PG(6, q).
Note that the point set of H(q) is a nonsingular (parabolic) quadric Q(6, q) in PG(6, q). Since
H(q) has order q , Condition (Pt) follows. Since the embedding is flat, Condition (Pl) is trivial.
Of course, Condition (To) follows from the well known formula of the total number of lines of
H(q).

Consider now Condition (Hp). It is well known that there are three kinds of hyperplanes
in PG(6, q) with respect to the quadric Q(6, q): tangent hyperplanes — and these contain
q3 + q2 + q + 1 lines of H(q), namely all those at distance ≤ 3 from the tangent point –
elliptic hyperplanes – they meet Q(6, q) in an elliptic quadric Q−(5, q) and contain q3 + 1 lines
of H(q), see [1] – and hyperbolic ones – meeting Q(6, q) in a hyperbolic quadric Q+(5, q) and
containing (q + 1)(q2 + q + 1) lines of H(q). Whence Condition (Hp).

Finally let Σ be a solid of PG(6, q) containing at least two lines L , M of H(q). We may
assume that L and M are at maximal distance d in Σ . If d = 6, then L and M are at maximal
distance in H(q) and hence Σ meets Q(6, q) in a nonsingular hyperbolic quadric Q+(3, q). So
Σ contains q + 1 lines of H(q) (all lines of one regulus of Q+(3, q)). If d = 4, then let N be
the line at distance 2 from both L , M . Then Σ contains the 2q + 1 lines of H(q) incident with
the intersection of N and L , and of N and M . By maximality of d , any other line K of H(q)

in Σ must meet N . But then 〈L , M, K 〉 is 4-dimensional since every three planes of Q(6, q),
containing a common line, generate a 4-space (this can be seen as follows: the 4-dimensional
tangent space at N meets Q(6, q) in a singular quadric with vertex N and base a nonsingular
conic). Finally, if d = 2, then clearly, by flatness of the embedding, there are exactly q + 1 lines
of H(q) in Σ .

For the remainder of this section, we assume now that a set of lines L in PG(6, q) satisfies
(Pt), (Pl), (Sd), (Hp) and (To).

We prove a sequence of lemmas culminating in a complete proof of our Main Result.
We denote by P the set of points of PG(6, q) which are incident with a line of L. Note that

an easy counting argument shows that |P| = |L|.

Lemma 1. The q + 1 lines of L through a fixed point of P are all coplanar.

Proof. Suppose by way of contradiction that there are three lines L1, L2, L3 ∈ L incident with
a point x of PG(6, q) and that they span a 3-space. Each of the planes 〈Li , L j 〉, i, j ∈ {1, 2, 3},
i )= j , contains exactly q + 1 members of L, implying that the solid 〈L1, L2, L3〉 contains at
least 3q > 2q + 1 elements of L. !
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Lemma 2. A hyperplane of PG(6, q) contains either q3 + 1, or q3 + q2 + q + 1, or
(q + 1)(q2 + q + 1) members of L.

Proof. Let H be any hyperplane, and let h be the number of lines of H in L. Note that by
Lemma 1 every point of H ∩ P is incident either with one line of L inside H , or with q + 1
such lines. Let a be the number of points of H on exactly one line of L in H , and let b be the
number of points of H on q + 1 lines of L lying inside H . A double count of the pairs (x, L),
with x ∈ H ∩ P and L ∈ L, x ∈ L , leads easily to

{
a + b(q + 1) = h(q + 1)

q5 + · · · + 1 − h = aq,

which implies that b is divisible by q2 +q +1, say b = !(q2 +q +1). The values ! = 0, 1, 2 lead
to the numbers of the lemma, the values ! ≥ 3 lead to a contradiction with Condition (Hp). !

Note that the previous proof implies that a hyperplane H contains 0, q2+q+1 or 2(q2+q+1)

points incident with q + 1 members of L belonging to H , depending on whether H contains
q3 + 1, q3 + q2 + q + 1 or (q + 1)(q2 + q + 1) members of L, respectively.

For any subspace Ω of PG(6, q), we say that a point x of Ω ∩ P is isolated in Ω if no line of
L through x is contained in Ω .

Lemma 3. A plane π of PG(6, q) containing exactly one line of L contains !q isolated points,
for some nonnegative integer !.

Proof. Let a be the number of solids containing π and containing q + 1 members of L; let b
be the number of solids containing π and containing 2q + 1 members of L. Also, let m be the
number of isolated points of π . A double count of the pairs (L ,Σ ), with L a line of L meeting
π in a unique point, and with Σ a solid containing L and π reveals

qa + 2qb = (q2 + q) + m(q + 1),

implying that m must be divisible by q . !

Lemma 4. A solid Σ of PG(6, q) which contains at least three lines L1, L2, L3 of L such that
L1 meets L2 in a point x12 and L2 meets L3 in a point x23, with x12 )= x23, contains at most
q + 1 isolated points.

Proof. Clearly Σ contains the q + 1 lines of L through x12 and x23, respectively. Since these
already account for 2q + 1 elements of L in Σ , there are no more members of L in Σ . Let m
be the number of isolated points of Σ . Let a be the number of hyperplanes of PG(6, q) incident
with Σ and containing q3 + q2 + q + 1 members of L, and let b be the number of hyperplanes
of PG(6, q) incident with Σ and containing (q + 1)(q2 + q + 1) members of L. Note that by
the remark following the proof of Lemma 2 there are no hyperplanes incident with Σ containing
exactly q3 + 1 elements of L. So we have a + b = q2 + q + 1. Moreover, a double count of the
pairs (L , H), where L ∈ L does not belong to Σ , and H is a hyperplane containing Σ and L ,
shows

a(q3 + q2 − q) + b(q3 + 2q2) = (2q2 + q − 1)q(q + 1) + m(q + 1)(q + 1)

+ (q5 + q4 + q3 + q2 + q + 1 − (2q2 + q − 1)q − m(q + 1) − (2q + 1)),

which implies a + m = q + 1 and b − m = q2. The former now reveals that m = q + 1 − a
≤ q + 1. !
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Lemma 5. The structure H = (P,L, I), with I the appropriate restriction of the natural
incidence in PG(6, q), is a generalized hexagon of order (q, q).

Proof. Suppose K , L , M is a triangle of lines in H. Lemma 1 implies that the q + 1 lines of the
plane 〈K , L〉 through the intersection point x of K and L belong to L; hence that plane contains
at least q + 2 lines, a contradiction.

Suppose K , L , M, N form a quadrangle in H. Then these four lines generate a solid Σ . But
each of the planes 〈K , L〉, 〈L , M〉, 〈M, N 〉 and 〈N , K 〉 contains q + 1 lines of L, adding up to
at least 4q members of L in Σ , contradicting Condition (Sd).

Finally, suppose J, K , L , M, N form a pentagon inH. Similarly as in the previous paragraph,
they cannot generate a solid, hence J, K , L , with J and L intersecting K , generate a solid Σ ,
which contains q−1 isolated points arising from the intersection of Σ with the lines ofL incident
with the intersection point of M and N . It is easily seen that no two of these isolated points are
contained in the same plane through K . But each plane through K containing an isolated point
of Σ contains at least q isolated points, by Lemma 3. Hence, if q > 2, then Σ contains at least
q(q − 1) > q + 1 isolated points, contradicting Lemma 4.

Now suppose q = 2. By the previous paragraph, we have at least two isolated points x1, x2 in
a plane π through K . That plane does not contain J . If 〈x1, J 〉 )= 〈x2, J 〉, these two planes give
rise to two more isolated points (using Lemma 3), contradicting Lemma 4. If 〈x1, J 〉 = 〈x2, J 〉,
we have 〈x1, L〉 )= 〈x2, L〉 and we similarly obtain a contradiction.

We have shown that H does not contain an ordinary n-gon, for n ≤ 5. Since

|P| = |L| = q5 + q4 + q3 + q2 + q + 1

and each point is incident with q + 1 lines, and each line with q + 1 points, a standard counting
argument implies that H is a generalized hexagon. !
End of the proof of the Main Result. The generalized hexagon H has order q and is, by
Lemma 1, flatly and fully embedded in PG(6, q). Now (ii) of the Main Result of [3] concludes
the proof of our Main Result.
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