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Abstract

In this paper, we construct a new infinite class of two-character sets in PG(5, q2)
and determine their automorphism groups. From this construction arise new infinite
classes of two-weight codes and strongly regular graphs, and a new distance-2-ovoid
of the split Cayley hexagon of order 4.
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1 Introduction

A two-character set in a projective space is a set S of points with the property
that the size of the intersection of S with any hyperplane only takes two values,
v1 and v2, and then the positive integers |S| − v1 and |S| − v2 are called the
weights of the two-character set. In 1972, Delsarte [2] proved that each such a
set gives rise to a projective linear two-weight code (the weights are precisely
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the weights of the two-character set) and a strongly regular graph. See also the
paper of Calderbank and Kantor [1], who observed that each projective linear
two-weight code over the field GF(qr) defines in a canonical way a projective
linear two-weight code over the field GF(q).

In [1], all known two-character sets at that time were examined. Some new
examples of two-character sets arose since then, mainly from constructions of
interesting geometric objects such as pseudo-ovoids (or eggs) and m-systems.
In the present paper, we will define a new two-character set in PG(5, q2), for
every prime power q. Our construction uses an unexpected idea, namely, the
idea of an anti-isomorphism between two skew planes of PG(5, q2), combined
with the consideration of a Baer subplane.

As an application, we will embed the two-character set thus obtained in
PG(5, 4) into the split Cayley generalized hexagon H(4) in such a way that
it becomes a distance-2-ovoid of H(4), i.e., a subset of the point set with the
property that every line contains exactly one point of that subset. Distance-2-
ovoids of generalized hexagons seem to be rare, as there are only 3 examples
known until now (and they live in H(q), one for each q = 2, 3, 4; see [3] —
where it is shown that the examples for q = 2, 3 are unique — and [4]). This is
the fourth example, but our attempts to define an infinite family this way were
not successful; in fact we proved that the — otherwise natural — construction
of this ovoid does not generalize to other values of q distinct from 4.

We will also prove that every member of the new family of two-character
sets has a fairly big (though intransitive) automorphism group, and some
nice geometric properties. The intransitivity of the automorphism group is
probably the major reason why this class has not been noticed before.

2 Preliminaries and statement of the main results

2.1 The new two-character sets

Let q be a prime power and let PG(5, q2) denote the 5-dimensional projective
space over the Galois field GF(q2) of order q2. Let Π and Π′ be two skew planes
in PG(5, q2), and choose any anti-isomorphism θ from Π onto Π′ (so θ maps
the point set of Π onto the line set of Π′ and the line set of Π onto the point
set of Π′, thereby preserving the incidence relation). Let B be a Baer subplane
of Π (i.e., a subplane over the subfield GF(q)) and denote its image under θ by
B′. We will call the points and lines of both B and B′ Baer points and Baer
lines, respectively. The other points and lines of Π and Π′ will be referred to
as non Baer points and non Baer lines.
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We now construct the set S(Π, Π′, B, θ) which will turn out to be a two-
character set. The points of S(Π, Π′, B, θ) are of three types. Notice first that
every point x of PG(5, q2), not in the union of Π and Π′, lies on a unique line
L(x) which meets both Π and Π′ in points xΠ and xΠ′ , respectively. Namely,
xΠ = 〈Π′, x〉 ∩ Π and x′Π = 〈Π, x〉 ∩ Π′ and hence the line L(x) is unique as
the intersection of 〈Π, x〉 and 〈Π′, x〉. Moreover, for three collinear points x,
y, z in PG(5, q2) \ (Π ∪Π′) the three points xΠ, yΠ, zΠ of Π (respectively xΠ′ ,
yΠ′ , zΠ′ of Π′) are collinear (or coincide). We will use this notation below.

(PI) The PI points are the points of Π.
(BB) The BB points are the points x of PG(5, q2) not in Π ∪ Π′ such that both

xΠ and xΠ′ are Baer points with xΠ′ not incident with xθ
Π.

(NB) The NB points are the points x of PG(5, q2) not in Π ∪ Π′ such that both
xΠ and xΠ′ are non Baer points with xΠ′ incident with xθ

Π.

Call a line uu′, with u ∈ Π and u′ ∈ Π′, an S-line if either both u and u′

are Baer points and uθ is not incident with u′, or both u and u′ are non Baer
points and uθ is incident with u′. Note that all q2 points of an S-line distinct
from its intersection with Π′ belong to S.

Remark 1.
For any point x of PG(5, q2) \ Π ∪ Π′ the line L(x) is an S-line if and only if
x ∈ S.

Our first main result reads:

Proposition 1 The set S(Π, Π′, B, θ) contains exactly q8 + q4 + 1 points
of PG(5, q2) and constitutes a two-character set with weights q8 − q6 and
q8 − q6 + q4. The automorphism group of S(Π, Π′, B, θ) in PG(5, q2) is a non
split extension (q + 1) · (ΓL(3, q) × 2). The planes Π and Π′ have the follow-
ing characterizing properties with respect to S(Π, Π′, B, θ) (and hence are fixed
under the automorphism group of S(Π, Π′, B, θ)):
(i) the plane Π is the unique plane of PG(5, q2) entirely contained in S(Π, Π′, B, θ);
(ii) the plane Π′ is the only plane of PG(5, q2) all of whose points x have the
following property: x is not contained in S(Π, Π′, B, θ), but x is incident with
a line L all other points of which are contained in S(Π, Π′, B, θ), and such
that L meets the unique plane Π entirely contained in S(Π, Π′, B, θ).

Let S =: S(Π, Π′, B, θ) be the two-character set as described in the previous
proposition. Now embed PG(5, q2) as a hyperplane H in PG(6, q2). Then the
linear representation graph Γ∗

5(S) is the graph with as vertex set V the points
in PG(6, q2) not in H, where two vertices are adjacent whenever the line joining
them intersects S. Then |V | =: v = q12 and every vertex has valency k =
(q2 − 1)(q8 + q4 + 1). Delsarte [2] proved that this graph is strongly regular
precisely when S is a two-character set. If w1, w2 are the weights of S, then
the other two parameters of Γ∗

5(S) are λ = k− 1 + (k− qw1 + 1)(k− qw2 + 1)
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and µ = k + (k − qw1)(k − qw2). Viewing the coordinates of the elements of
S as columns of the generator matrix of a code C, then the property that
hyperplanes miss either w1 or w2 points of S translates into the fact that the
code C has two weights, namely w1 and w2. Such a code will be referred to as
a projective two-weight code.

From [1] we know that, if GF(q0) is a subfield of GF(q), with qr
0 = q, then the

projective two-weight code C (defined over GF(q)) canonically determines a
projective two-weight code C ′ of length n′ and dimension kr, with weights w′

1

and w′
2, where n′ = (q−1)n

q0−1 , w′
1 = qw1

q0
and w′

2 = qw2

q0
.

Hence we immediately have the following corollary to our proposition above:

Corollary 2 The two-character set S in PG(5, q2) described above defines a
new strongly regular graph with parameters

(v, k,λ, µ) = (q12, (q2− 1)(q8 + q4 + 1), q8− q6 + q2− 2, q2(q2− 1)(q4− q2 + 1))

and new projective two-weight codes: one q2-ary code of length q8 + q4 + 1,
dimension 12 and weights q8 − q6, q8 − q6 + q4, and, for each prime power q0

such that qr
0 = q, one q0-ary code of length (q8 +q4 +1) q2−1

q0−1 , dimension 12×2r

and weights q0
2r−1(q8 − q6) and q0

2r−1(q8 − q6 + q4).

2.2 Generalized hexagons and distance-2-ovoids

Now we introduce an application to the theory of ovoids in generalized hexagons.
First we introduce the split Cayley hexagons.

A generalized hexagon Γ (of order (s, t)) is a point-line geometry the incidence
graph of which has diameter 6 and girth 12 (and every lines is incident with
s + 1 points; every point incident with t + 1 lines). Note that, if P is the
point set and L is the line set of Γ, then the incidence graph is the (bipartite)
graph with vertices P ∪ L and adjacency given by incidence. The definition
implies that, given any two elements a, b of P ∪ L, either these elements are
at distance 6 from one another in the incidence graph, in which case we call
them opposite, or there exists a unique shortest path from a to b. If for two
points a, b there exists a unique point collinear with both, then we denote
that point by a #$ b. Finally, the set a⊥ is defined to be the set of all points
collinear with a.

In this paper we are only interested in the split Cayley hexagons H(q), for even
q, which can be constructed as follows. Choose coordinates in the projective
space PG(6, q) in such a way that the parabolic quadric Q(6, q) has equation
X0X4 +X1X5 +X2X6 = X2

3 , and let the points of H(q) be all points of Q(6, q).
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The lines of H(q) are the lines on Q(6, q) whose Grassmannian coordinates
(p01, p02, . . . , p56) satisfy the six relations p12 = p34, p56 = p03, p45 = p23, p01 =
p36, p02 = p35 and p46 = p13. This construction is due to Tits [5]. We refer to
[6] for more details and a lot of properties of H(q). The next paragraphs follow
from various propositions in [6].

The generators on the quadric Q(6, q) are planes. Such a plane either contains
the q + 1 hexagon lines through a point x or contains no hexagon line at all.
In the first case we call the plane a hexagon plane, and denote it by Πx. In the
second case we call the plane an ideal plane. Note that all points of an ideal
plane are mutually at distance 4 in the hexagon. The lines of an ideal plane
(which are lines on Q(6, q)) will be called ideal lines. For every ideal plane Π,
there is a unique ideal plane Π′ — called the hexagon twin of Π — with the
property that Π ∪ Π′ is the point set of a subhexagon of order (1, q) of H(q).
Equivalently, every point x of Π is collinear (in H(q)) with exactly q+1 points
of Π′, and vice versa. These q + 1 points form a line L in Π′. The map x (→ L
from the point set of Π to the line set of Π′ defines a unique anti-isomorphism
from Π to Π′, called the hexagon twin anti-isomorphism.

The hexagon H(q) admits Dickson’s group G2(q) as an automorphism group.

Now, since q is even, the quadric Q(6, q) has a nucleus n, i.e., each line through
n meets Q(6, q) in exactly one point. Projecting all points of Q(6, q) from n
onto some hyperplane not containing n, one obtains a representation of H(q)
in the PG(5, q), where the lines of H(q) are totally isotropic lines with respect
to some symplectic polarity (here, n = (0, 0, 0, 1, 0, 0, 0) and choosing the
hyperplane with equation X3 = 0, the associated symplectic form is X0Y4 +
X4Y0 + X1Y5 + X5Y1 + X2Y6 + X6Y2).

A distance-j-ovoid, 2 ≤ j ≤ 3, is a set of points Sj in Γ such that any two
elements of Sj are at distance at least 2j from one another (in the incidence
graph) and every element of Γ is at distance at most j from at least one
element of Sj (see [6], 7.3.9). It is easy to see that a distance-2-ovoid of a
generalized hexagon with order (q, q) is any set of 1 + q2 + q4 non collinear
points such that every line of the hexagon is incident with exactly one point
of that set. Equivalently, if we attach to each point of the hexagon the set of
lines incident with it, then a distance-2-ovoid partitions the set of lines of the
hexagon.

It is shown in [4] that every distance-2-ovoid of H(q), represented in PG(5, q)
as above, is a two-character set in PG(5, q). We now consider the question
whether the two-character set of Proposition 1 could arise in this way from
H(q2). Of course, to answer this, one has to investigate all possible situations
for the two planes Π and Π′, the anti-isomorphism θ, and the Baer subplane
B. We will only consider the most natural situation (and we conjecture that
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the other situations never give rise to a distance-2-ovoid of H(q2)).

So consider H(q2) represented in PG(5, q2) as just explained. Choose an arbi-
trary ideal plane Π and let the ideal plane Π′ be its hexagon twin. Let τ be the
associated hexagon twin anti-isomorphism. Choose a Baer subplane B in Π′

and let β denote the associated semilinear involution in Π whose fixed point
set is exactly the set of points of B. Put θ = βτ . Then we shall prove below:

Proposition 3 The two-character set S(Π, Π′, B, θ), with Π, Π′, B and θ as
just described, is a distance-2-ovoid of H(q2), q even, if and only if q = 2 and
B is not contained in a subhexagon of order (2, 2). In that case, it is a new
distance-2-ovoid.

Hence we now have four distance-2-ovoids: one in each of H(2) and H(3) (and
these are unique, see [3]), and two in H(4).

3 Two-character sets in PG(5, q2)

In this section, we prove Proposition 1. We set S := S(Π, Π′, B, θ). We shall
now show that |S| = q8 + q4 + 1. To start with, S contains q4 + q2 + 1 points
of Π. Each one of these points, take for instance a point x, now determines
q2(q2 − 1) BB or NB (depending on x being a Baer point or not) points of S.
Furthermore, any one of those BB or NB points is collinear to a unique point
of Π. Hence non of the points thus obtained are counted double and a simple
calculation

|S| = (q4 + q2 + 1)(1 + q2(q2 − 1))

yields the above stated.

First we note a certain symmetry in the construction of S. Indeed, one easily
checks that the set S(Π′, Π, Bθ, θ−1) is equal to (S ∪ Π′) \ Π. We will refer to
this as the Symmetry Property.

Now let H be any hyperplane of PG(5, q2). We must show that H intersects
S in either q6 + 1 or q6 + q4 + 1 points.

There are three distinct situations to consider.

H contains Π′. In this case we show that |H ∩ S| = q6 + 1.

The intersection of H with Π is here some line L. Note that for every point
p of Π, there are exactly q2(q2 − 1) points x of PG(5, q2) \ (Π ∪ Π′) with
xΠ = p, which are partitioned into q2 lines through p. Hence it is clear that,
if a point x /∈ Π belongs to H ∩ S, then the point xΠ is incident with L.
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There are q2 + 1 possibilities for this. The construction of S implies that
there are now exactly q2 possibilities for xΠ′ . In conclusion, H ∩ S contains
(q2 + 1) + (q2 + 1)q2(q2 − 1) = q6 + 1 points.

H contains Π. In this case we show that |H ∩ S| = q6 + q4 + 1.

Indeed, by the Symmetry Property, H∩S contains (q6+1)−(q2+1)+(q4+q2+1)
points.

The general situation: H meets Π in a line L and Π′ in a line L′.

Denote by ' the number of S-lines intersecting both L and L′ nontrivially. Since
there are exactly (q2 +1)q2 S-lines intersecting L, respectively L′, nontrivially,
and since every S-line meeting neither L nor L′ intersects H in a unique point
of S, we obtain

|H ∩ S|= (q2 − 1)' + (q2 + 1) + ((q6 + q4 + q2)− 2(q4 + q2 − ')− ')

= q6 − q4 + 'q2 + 1

Hence it suffices to determine '. For this, we need to distinguish the cases
where L is a Baer line or not, L′ is a Baer line or not, and Lθ is incident with
L′ or not. Using the Symmetry Property, we thus obtain six different cases.
For each case one performs an elementary counting. As a first example we
treat the — in our opinion — most involved case, namely the case where both
L and L′ are non Baer lines and Lθ belongs to L′. Note that Lθ is a non Baer
point.

Let x be the unique Baer point on L. Then xθ is incident with Lθ and different
from L′. Hence it is not incident with the unique Baer point x′ on L′. So the
line xx′ is an S-line.

Since Lθ is on L′, there exists a unique non Baer point y on L with yθ = L′.
Every line yy′, with y′ any non Baer point of L′, is an S-line.

Symmetrically, putting z′ = Lθ = zθ ∩ L′, for every other point z on L, the
line zz′ is an S-line.

Hence we count 1 + q2 + (q2 − 1) = 2q2 S-lines meeting both L and L′ non-
trivially.

As a second and final example, consider the case where L and L′ are non Baer
lines and Lθ is a point off L′. In this particular situation we have to distinguish
two subsituations, namely the Baer line through Lθ can intersect L′ in its Baer
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point or not. However, in both cases we will end up with l equal to q2, as we
shall show.

Suppose x′, the Baer point on L′, is incident with xθ, where x is the Baer
point on L. Then yy′, with y′ = yθ ∩ L′ and y ranging over the q2 non Baer
points of L, exhaust all S-lines.

If xθ does not go through x′, then the S-lines in question are xx′ and yy′, with
y′ = yθ ∩ L′ and y ranging over the q2 − 1 non Baer points on L for which yθ

does not contain x′.

Thus in either case, we have l = q2.

We summarize the counting results for all the six different cases in the following
table.

L ∈ B ∈ B ∈ B ∈ B /∈ B /∈ B

L′ /∈ B ∈ B /∈ B ∈ B /∈ B /∈ B

Lθ ∈ L′ ∈ L′ /∈ L′ /∈ L′ ∈ L′ /∈ L′

' q2 q2 q2 2q2 2q2 q2

Hence S is a two-character set with weights q8 − q6 + q4 and q8 − q6.

We now show that Π is the only plane of PG(5, q2) all of whose points belong
to S.

Let, by way of contradiction, Π∗ be another plane all of whose points are
contained in S. Note that Π′ ∩ Π∗ = ∅.

If Π ∩ Π∗ is a line, then let the point x′ be the intersection of Π′ with the
space generated by Π and Π∗. Since for every point x of Π∗ \ Π, the S-line
containing x also contains x′, there are q4 S-lines through x′, a contradiction
(every point of Π′ is on exactly q2 S-lines by construction).

If Π ∩ Π∗ is a point p, then let the line M ′ be the intersection of Π′ with
the space generated by Π and Π∗. Let x′ be a Baer point on M ′. The 3-space
generated by x′ and Π∗ meets Π in a line M and clearly all lines xx′, with
x ∈ M \ {p}, are S-lines (see Remark 1). This contradicts the construction of
S and the fact that at least one such point x is non Baer.

If Π ∩ Π∗ is empty, then the correspondence ξ : x (→ x′, with x ∈ Π,
x′ ∈ Π′ and |xx′ ∩ Π∗| = 1, is an isomorphism from Π to Π′. Note that
every line xxξ is an S-line. Let L be any non Baer line of Π. If Lθ ∈ Lξ,
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then all S-lines containing non Baer points of both L and Lξ pass through
either Lθ or (Lξ)θ−1

, a contradiction. Hence Lθ /∈ Lξ and the correspondence
ζ : L → Lξ : x (→ Lξ ∩ xθ is an isomorphism of projective lines. By the
construction of S, this isomorphism now coincides with the restriction of ξ to
L on all non Baer points of L. Hence it must also coincide on the unique Baer
point z of L, and we obtain zξ = zζ ∈ zθ, contradicting the fact that zzξ is an
S-line.

This completes the proof of the fact that Π is the unique plane entirely con-
tained in S.

Now we call a point x of PG(5, q2) an antipoint (with respect to S) if it does
not belong to S, but if it is contained in a line L of PG(5, q2) meeting Π in
some point and such that all points of L except for x are contained in S.

We now show that Π′ is the unique plane of PG(5, q2) all of whose points are
antipoints. Note first that, if x is an antipoint not contained in Π′, then the
point xΠ is a Baer point. Indeed, let L be a line incident with x and meeting
Π in some point y such that all points of L except for x are points of S. If z′

is the intersection of Π′ with the space spanned by Π and x, then for every
point u ∈ L \ {x, y}, the line z′u contains points of S, and hence z′ is a non
Baer point (note that z′ is in fact the point xΠ′). Since z′x does not contain
points of S, the point xΠ = z′x ∩ Π is a Baer point (by construction of S).
Moreover, as the argument shows, xΠ′ is non Baer for any antipoint x not in
Π′.

Now let Π∗ be a plane all of whose points are antipoints, and assume Π∗ ,= Π′.
Then Π∗ cannot be disjoint from Π′ since the previous paragraph would imply
that every point of Π is a Baer point. Also, Π∗ ∩ Π′ cannot be a point since
this would imply that all points of the line obtained by intersecting Π with
the space spanned by Π∗ and Π′ are Baer points. Hence Π∗ ∩ Π′ is a line L′.
The intersection point x of Π with the space spanned by Π∗ ∪ Π′ is a Baer
point lying on the inverse image of θ of at least q4 points of Π′, clearly a
contradiction!

So we have shown that Π and Π′ are unique in S with respect to a geometric
property. Consequently the automorphism group G of S fixes both planes Π
and Π′. It is also easy to see that the restriction of every element of G to
Π∪Π′ commutes with θ. It follows that the automorphism group of S consists
of those elements of PΓL(6, q2) having any companion field automorphism of
GF(q2) and a block matrix




M 0

0 kM−t



 ,

where k ∈ GF(q2) and M is an arbitrary nonsingular 3× 3 matrix over GF(q).
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Splitting off those k that belong to GF(q), and the Baer involution (identity
matrix and involutive field automorphism), we obtain the structure of G as
stated in the proposition.

Proposition 1 is completely proved. !

Remarks.
(1) The two-character set S = S(Π, Π′, B, θ) in PG(5, 4) is distinct from the
one described in [4] as the automorphism group of the latter is L2(13).

(2) The codes of Corollary 2 are indeed new because of their parameters, see
[1]. Also, the smallest graphs of that corollary are new in view of Brouwer’s
list on the internet. Although it is probably hard to check with a certainty of
100 percent, it is quite likely that all the graphs are new.

4 A distance-2-ovoid in H(4)

In this section we prove Proposition 3.

The proof is completely algebraic and consists of writing down explicit coor-
dinates for the points of the two-character set. We are not going to perform
all calculations in detail here, but we just treat the key case. All other cases
are straightforward and easy.

So consider H(q2), q even, represented in PG(5, q2) as explained at the end of
Subsection 2.2. Let Π be an arbitrary ideal plane and let Π′ be its hexagon
twin. Let τ be the associated hexagon twin anti-isomorphism. Let B be a
Baer subplane in Π and let β denote the associated semilinear involution in
Π whose fixed point set is exactly the set of points of B. Put θ = βτ and set
S = S(Π, Π′, B, θ), with notations as in the previous section; whence referring
to BB or NB points.

First we note that for q ≡ 1 mod 3, the points of B are necessarily con-
tained in a subhexagon of order (q, q) (and isomorphic to H(q)), while for
q ≡ 2 mod 3, there are two orbits of such B in the full automorphism group
of H(q2). This follows from the orbit counting theorem, noting that the sta-
bilizer within G2(s) of an ideal plane P in H(s) is isomorphic to SL3(s), and
hence the pointwise stabilizer of P has order 3 for s ≡ 1 mod 3 and is trivial
for s ≡ 2 mod 3. Using this observation for s = q and s = q2 yields that
the number of Baer subplanes of some ideal plane that are contained in some
subhexagon of order (q, q) is one third of the total number of Baer subplanes
of some ideal plane, in the case q ≡ 2 mod 3 (and then the fact that the
other two-thirds are all equivalent follows from the fact that the Frobenius

10



map in GF(q2) interchanges the two cosets of the subgroup of third powers of
the multiplicative group of GF (q2)). First suppose that B is not contained in
a subhexagon of order (q, q).

We leave it as a straightforward exercise to check that for any even q, two
points of S are never collinear in H(q2) if they are not both NB points.

Hence we consider two generic NB points p and p′ and deduce a necessary and
sufficient condition for p and p′ to be collinear in H(q).

We now choose appropriate coordinates. We use the representation of H(q2)
in PG(5, q2) as described in Subsection 2.2. In particular, we label the co-
ordinates of a point as (x0, x1, x2, x4, x5, x6). For Π we can take the points
with coordinates (x0, x1, x2, 0, 0, 0), and then the points of Π′ have coordi-
nates (0, 0, 0, x4, x5, x6), with xi ∈ GF(q2), i = 0, 1, 2, 4, 5, 6. We choose λ ∈
GF(q2) \ GF(q) such that λ is not a third power in GF(q2). Then we may
choose the points of B as the points with coordinates (λr0, r1, r2, 0, 0, 0),
with ri ∈ GF(q), i = 1, 2, 3. The Baer involution fixing all points of B is
then given by (x0, x1, x2, 0, 0, 0) (→ (λ1−qxq

0, x
q
1, x

q
2, 0, 0, 0). From now on, we

denote xq by x. One easily checks that the points of Bθ have coordinates
(0, 0, 0, x4, λx5, λx6), with (x4, x5, x6) ,= (0, 0, 0). With obvious notation, we
also see that θ maps the point (x0, x1, x2, 0, 0, 0) onto the line with equation
(λ/λ)x0X4 + x1X5 + x2X6 = 0.

In order to choose coordinates for p, we may start by choosing the coordi-
nates of pΠ as (0, 1, z, 0, 0, 0), z ∈ GF(q2) \ GF(q). Then pΠ′ has coordinates
(0, 0, 0, a, zλ,λ), with a ∈ GF(q2). Hence we may assume that p has coordinates
(0, k, kz, a, zλ,λ), for some k ∈ GF(q2) \ {0}.

For p′, there are two possibilities. Either pΠp′Π is a Baer line, or not. We leave
the first case to the reader (as it is simpler than the second case). In the
second case, we may choose without loss of generality as coordinates for p′Π
the 6-tuple (λ, z′, 0, 0, 0, 0). As above, one calculates that p′ may be given the
coordinates (k′λ, k′z′, 0, z′, λ, λa′), for some a′ ∈ GF(q2) and k′ ∈ GF(q)2 \ {0}.

In order to check whether p and p′ are collinear in H(q2), one now has to check
whether the Grassmannian coordinates of the line L in PG(6, q2) spanned by
the points p0 and p′0 with respective coordinates

(0, k, kz,
√

kλ
√

z + z, a, zλ,λ), (k′λ, k′z′, 0,
√

k′λ
√

z′ + z′, z′, λ,λa′)

satisfy the equations p12 = p34, p56 = p03, p45 = p23, p01 = p36, p02 = p35 and
p46 = p13.

An elementary calculation (eliminate a in the first and third equation) now
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shows that such collinear points p and p′ exist if and only if there exist z, z′ ∈
GF(q2) \ GF(q) and k, k′ ∈ GF(q2) \ {0} such that

kk′z =
√

kλ
√

z + z +
√

k′λ
√

z′ + z′z,

or, equivalently,

λ =
z2k2k′2

z2k′(z′ + z′) + k(z + z)
.

But noting that Baer subplanes B corresponding to different values for λ
modulo nonzero third powers in GF(q2) are equivalent, we conclude that S is
a distance-2-ovoid if and only if

zkk′(z2k′(z′ + z′) + k(z + z))

is a nonzero third power in GF(q2), for every choice of z, z′ ∈ GF(q2) \ GF(q)
and k, k′ ∈ GF(q2)\{0}. It is easy to give counterexamples to this condition if
q is big enough, i.e., if q ≥ 8. Indeed, choosing arbitrary k′, z, z′, we obtain a
quadratic expression of the form Ak2 +Bk, A, B ∈ GF(q2)\{0}, which should
never be a third power for any choice of nonzero k ∈ GF(q2). But Ak2 + Bk
takes (q2/2)− 1 values of GF(q2), while there are only (q2− 1)/3 third powers
in GF(q2).

If q = 2, however, then the only nonzero third power of GF(4) is 1. Moreover,
we always have z + z = z′ + z′ = 1 and z2 = z. Putting ' = zk′, we see that
the condition simplifies to k'(k + ') = 1, for all k, l ∈ GF(4) \ {0}, with k ,= '.
But this is obviously true!

The case where B is contained in a subhexagon of order (q, q) never leads to
a distance-2-ovoid and this, opposed to the previous situation, can be shown
by a geometrical argument. First of all, note that B ∪B′ is the point set of a
weak subhexagon Γ′ of order (1, q). If now B and consequently also this weak
subhexagon were to be in a subhexagon Γ of order (q, q) then all BB points
of S belong to Γ. However, this would imply that the alleged distance-2-ovoid
contains

(1 + q + q2)[q2(q − 1) + 1]

points of Γ, which is far to big a number for a set of non collinear points inside
a generalized hexagon of order (q, q).

The proposition is proved. !
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