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One-point extensions of generalized hexagons and octagons

H. Cuypersb, A. De Wispelaerea,∗,1, H. Van Maldeghema

a Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281-S22, B-9000 Gent, Belgium
b Department of Mathematics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Received 27 June 2006; accepted 5 December 2007
Available online 9 January 2008

Abstract

In this note, we prove the uniqueness of the one-point extension S of a generalized hexagon of order 2 and prove the non-
existence of such an extension S of any other finite generalized hexagon of classical order, different from the one of order 2,
and of the known finite generalized octagons provided the following property holds: for any three points x , y and z of S , the
graph-theoretic distance from y to z in the derived generalized hexagon Sx is the same as the distance from x to z in S y .
c© 2008 Elsevier B.V. All rights reserved.
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1. General introduction

In 1981, Hölz [5] constructed a family of 2−(q3
+1, q+1, q+2)-designs whose point set coincides with the point

set of the Hermitian unital over the field GF(q), and with an automorphism group containing PGU3(q). Here, q is any
odd prime power. Two years later, Thas [8] proved that these designs are one-point extensions of the Ahrens-Szekeres
generalized quadrangles AS(q) of order (q − 1, q + 1) (see [2]).

Besides this infinite family of one-point extensions of generalized quadrangles, there are only four sporadic
examples of one-point extensions of finite thick generalized polygons known.

(1) First there is the one-point extensions of the Fano plane leading to the design of points and planes in the affine
geometry AG(3, 2).

(2) The only other one-point extension of a projective plane is the unique Witt design on 22 points related to the
Mathieu group M22.

(3) There exists a unique one-point extension of the unique generalized quadrangle of order 2, and
(4) a one-point extension of the split Cayley generalized hexagon H(2) of order 2.

The existence of these sporadic examples (different from the Witt design) is due to the fact that the point sets of
the corresponding polygons can be identified with the non-zero vectors of some vector space over GF(2), while the
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lines can be identified with some special 2-spaces. To obtain a one-point extension, one adds the zero vector and all
translates of the special 2-spaces. Such extension will be called the affine extension of the corresponding polygon.

We will characterize the affine extension S of the split Cayley hexagon H(2) using the following combinatorial
property (to which we will refer as the distance property): for any three points x , y and z, the graph-theoretic distance
from y to z in the derived generalized hexagon Sx is the same as from x to z in S y . From this point on we shall denote
the distance in the derived geometry at x by dx .

Note that in every one of the above described affine extensions the distance property holds.

Theorem 1. If Γ is a one-point extension of a generalized hexagon of classical order (s, t) satisfying the distance
property, then Γ is isomorphic to the affine extension of the classical generalized hexagon H(2).

The previous theorem can be extended to the known generalized octagons, for which we prove the following result:

Theorem 2. There exists no one-point extension of the known generalized octagons satisfying the distance property.

The above results, together with knowledge of the maximal subgroups of the automorphism groups of the classical
generalized polygons, imply the following characterization of the affine extension of H(2).

Theorem 3. Suppose that Γ is a one-point extension of a classical generalized hexagon or octagon admitting a flag
(i.e. incident point-block pair) transitive automorphism group, then Γ is isomorphic to the affine extension of the
classical generalized hexagon H(2).

2. Preliminaries

2.1. Generalized n-gons

Let Γ be a point-line geometry with P the point set and L the line set. We will usually denote the (symmetric
assumed) incidence relation by I. The incidence graph of Γ is the (bipartite) graph with set of vertices P ∪ L and
adjacency given by incidence. A generalized n-gon (or generalized polygon if n is unspecified) Γ (of order (s, t)) is
a point-line geometry the incidence graph of which has diameter n and girth 2n (and every line is incident with s + 1
points; every point incident with t + 1 lines). Defining the dual of a point-line geometry Γ by the geometry obtained
from Γ by interchanging the point set with the line line set, immediately implies that the dual of a generalized polygon
(of order (s, t)) is a generalized polygon (of order (t, s)).

Let Γ be a generalized polygon. The definition implies that, given any two elements a, b of P ∪ L, either these
elements are at distance n from one another in the incidence graph, in which case we call them opposite, or there
exists a unique shortest path (in the incidence graph) from a to b. In the latter case, let γ = (a, . . . , b′a, b) be this
shortest path, then the element b′a is called the projection projab of a onto b. We define Γm(x) as the set of objects
at distance m from x and denote Γi (u) ∩ Γn−i (w) by uw

[i]. Furthermore it is convenient to write uw instead of uw
[2].

Whenever two points u and v are at distance d < n, we use the convention of denoting the unique point collinear to u
at distance d − 2 from w by uw. Finally, the set a⊥ is defined to be the set of all points collinear with a.

A path (a, b, c, d, . . .) shall occasionally be denoted by a I b I c I d I · · ·. Also, we denote collinearity by⊥, and
then that path shall also be denoted by a ⊥ c ⊥ · · ·, if a is a point.

If s = 1 or t = 1, the n-gon is called weak, if both parameters are equal to 1 it is said to be thin, while for s, t > 1
it is called thick.

Let (s, t) be the order of a generalized n-gon Γ with v points and b lines. The 2 − (v + 1, s + 2, t + 1) design
S = (P,B, I) is said to be a one-point extension of Γ (or briefly extension) if for any point x of P the derived
structure of S in x is a generalized n-gon of order (s, t), and for at least one point it is isomorphic to Γ . Recall that
the derived structure of S in x is the 1-design Sx = (Px ,Bx , Ix ) with Px = P \ {x}, Bx the set of all blocks of B
incident with x in which we remove the point x , and Ix the incidence induced by I.

We remark that in the literature one sometimes only considers one-point extensions in which all derived geometries
are isomorphic. We do not require that.
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2.2. Generalized hexagons

The only known thick finite generalized hexagons and octagons are the so-called classical, i.e. they arise in a
standard way from certain classes of Chevalley groups. For the generalized hexagons, these groups are G2(q) and
3D4(q). We provide some more details for each of these cases.

The generalized hexagons related to G2(q) are denoted by H(q) and H(q)D (for dual). Tits [9] constructs the split
Cayley hexagon H(q) geometrically as follows. Consider a non-degenerate quadric Q(6, q) in the projective space
PG(6, q). Choose coordinates in PG(6, q) in such a way that Q(6, q) has equation X0 X4 + X1 X5 + X2 X6 = X2

3 ,
and let the points of H(q) be all points of Q(6, q). The lines of H(q) are the lines on Q(6, q) whose Grassmannian
coordinates (p01, p02, . . . , p06, p12, . . . , p56) satisfy the six relations p12 = p34, p56 = p03, p45 = p23, p01 =

p36, p02 = −p35 and p46 = −p13.
We will use the fact that, in H(q), for any triple of points x, y, z, with x opposite to both y, z, one has x y

= x z

whenever |x y
∩ x z
| ≥ 2. Such a set x y will be called an ideal line (it corresponds to a line of Q(6, q) not belonging

to H(q)). The dual H(q)D does not have this property provided q is not divisible by 3 (if 3 divides q, then H(q) is
isomorphic to H(q)D).

Furthermore, for every triple of elements x, y, z (all points or all lines) with x opposite to y, z, one also has
x y
[3] = x z

[3] whenever |x y
[3] ∩ x z

[3]| ≥ 2. The sets x y
[3] will be called reguli, and this property is called the regulus

property. In particular, if they consist of lines (points), we shall call them line (point) reguli. Every line (point) regulus
is determined by two of its elements L ,M (u, v) and we denote this line (point) regulus by R(L ,M) (R(u, v)).

For all these properties, see [11], 1.9.17 and 2.4.15.
The generalized hexagons T(q3, q) and T(q, q3) = T(q3, q)D are constructed from 3D4(q) and have order (q3, q)

and (q, q3), respectively. We will not need the actual construction, but only the following properties. Every ordinary
heptagon of the hexagon T(q, q3) is contained in a (unique) subhexagon isomorphic to H(q)D . Moreover, both
T(q3, q) and T(q, q3) satisfy the regulus property.

Up to duality, H(q) and T(q3, q) are the only known finite thick generalized hexagons. Moreover, by a result of
Cohen and Tits [4], it is known that any finite thick generalized hexagon of order (s, t) with s = 2 is isomorphic to
one of the classical hexagons H(2), H(2)D or T(2, 8).

2.3. Generalized octagons

The only finite thick octagons known to date belong to the family of Ree-Tits octagons related to the twisted
Chevalley groups of type 2F4 over a finite field K of even characteristic. In that case s is an odd power of 2 and t = s2.
We shall denote this octagon by O(s) and also call it classical. We will need an explicit construction of the smallest
member of this family, but with the same effort, we can describe every member.

Let K be the finite field with 22e−1 elements, for some positive natural number e. We denote the field automorphism
x 7→ x2e

by σ . For k = (k0, k1) ∈ K2, we set Tr(k) = kσ+1
0 + k1 and also N(k) = kσ+2

0 + k0k1 + kσ1 .
Define a multiplication a ⊗ k = a ⊗ (k0, k1) = (ak0, aσ+1k1) for a ∈ K and k ∈ K2, and an addition
(k0, k1)⊕ (l0, l1) = (k0 + l0, k1 + l1 + l0kσ0 ), for k, l ∈ K2. Following Tits [10] we denote the group parameterized

by the pairs (k0, k1) ∈ K×K with the previous addition as operation law by K(2)
σ . Also write (k0, k1)

σ for (kσ0 , kσ1 ).
We denote the set of pairs of elements of K with the above structure by K(σ ).

Then the point set of O(q), q = 22e−1, is the union of the sets {(∞)}, K, K(σ ) × K, K × K(σ ) × K,
K(σ )×K×K(σ )×K, K×K(σ )×K×K(σ )×K, K(σ )×K×K(σ )×K×K(σ )×K and K×K(σ )×K×K(σ )×K×K(σ )×K,
and we write the elements with round parentheses. The line set is similarly the union of the sets {[∞]}, K(σ ), K×K(σ ),
K(σ ) × K × K(σ ), K × K(σ ) × K × K(σ ), K(σ ) × K × K(σ ) × K × K(σ ), K × K(σ ) × K × K(σ ) × K × K(σ ) and
K(σ ) ×K×K(σ ) ×K×K(σ ) ×K×K(σ ), and we write the elements with square brackets.

Incidence is given as follows. For every a, a′, a′′, a′′′, b, b′, b′′ ∈ K, and every k, k′, k′′, k′′′, l, l ′, l ′′ ∈ K(σ ), we
have

(a, l, a′, l ′, a′′, l ′′, a′′′) I [a, l, a′, l ′, a′′, l ′′] I (a, l, a′, l ′, a′′) I [a, l, a′, l ′] I (a, l, a′) I

[a, l] I (a) I [∞] I (∞) I [k] I (k, b) I [k, b, k′] I (k, b, k′, b′) I [k, b, k′, b′, k′′] I

(k, b, k′, b′, k′′, b′′) I [k, b, k′, b′, k′′, b′′, k′′′]
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and (a, l, a′, l ′, a′′, l ′′, a′′′) I [k, b, k′, b′, k′′, b′′, k′′′] if and only if

k′′′ = (l0, l1)⊕ a ⊗ (k0, k1)⊕ (0, al ′0 + aσ l ′′0 )

b′′ = a′ + aσ+1N(k)+ k0(al ′0 + aσ l ′′0 + Tr(l))+ aσ (a′′′ + l0k1)+ al ′′0
σ
+ l0l ′0

k′′ = aσ ⊗ (k1,Tr(k)N(k))⊕ k0 ⊗ (l0, l1)
σ
⊕ (0,Tr(k)N(l)+ aσ+1l0N(k)σ

+Tr(k)(aa′ + aσ l0l ′′0 + aσ+1a′′′)+ Tr(l)(kσ1 a + a′′′)+ kσ1 aσ+1l ′′0 + kσ+1
0 a2l ′′0

σ

+ k0(a
′
+ al ′′0

σ
+ k1aσ l0 + aσa′′′)σ + kσ0 l0(a

′
+ al ′′0

σ
+ k1aσ l0 + aσa′′′)

+ a(l ′′1 + a′′′σ l0 + a′′′l ′0)+ l ′′0 (a
′
+ aσa′′′)+ a′′l0 + l0l ′0l ′′0 )⊕ (l

′

0, l
′

1)

b′ = a′′ + aσ+1N(k)σ + a(k0l ′′0 + l0k1 + a′′′)σ + Tr(k)(l1 + aσ l ′′0 )+ kσ0 (a
′
+ aσa′′′)+ l ′0l ′′0 + lσ0 a′′′

k′ = (l ′′0 , l
′′

1 )⊕ a ⊗ (Tr(k), k0N(k)σ )⊕ l0 ⊗ (k0, k1)
σ
⊕ (0,N(k)(aσ l ′′0 + l1)

+ k0(a
′′
+ l ′0l ′′0 + aa′′′σ + lσ0 a′′′)+ k1(k1l0aσ + a′ + al ′′0

σ
+ aσa′′′)+ k0kσ1 alσ0 + a′′′σ l0 + a′′′l ′0)

b = a′′′ + aN(k)+ l0k1 + k0l ′′0

and no other incidences occur.
Finally, we will call the orders of the classical hexagons and octagons themselves classical.

3. Proof of the main results

The main goal of this section is to prove Theorems 1 and 2. We start with a very useful lemma on the parameters
of a generalized n-gon, with n = 6 or 8, admitting a one-point extension satisfying the distance property. This lemma
will be used to show that an extension of a generalized n-gon, with n = 6 or 8, of classical order (s, t) that satisfies
the distance property, automatically has s = 2.

In Section 3.2 we prove Theorem 1. In Section 3.3 we give a second geometric characterization of the extension of
H(2). In Section 3.4 we prove Theorem 2 and finally, in Section 3.5 we prove Theorem 3.

3.1. Preliminary results

Lemma 4. Suppose that S is a one-point extension of a generalized n-gon Γ of order (s, t), with n = 6 or 8. Then

s + 2 | 2t (2t − 1)(t + 1)(1− 2t + 4t2)

when n = 6 and

s + 2 | 2t (4t2
− 2t + 1)(t + 1)(1− 2t + 4t2

− 8t3)

when n = 8.

Proof. An elementary double counting of the incident point-block pairs within S yields the result. �

Corollary 5. There are only finitely many one-point extensions of finite generalized 6- and 8-gons of classical order
(s, t), with s > 1.

Proof. This follows directly from the divisibility conditions given in Lemma 4. �

From now on, we let Γ = (P,L, I) be a generalized n-gon, with n = 6 or 8 of order (s, t). Also, we denote by
S = (P ′,B, I′) a one-point extension of Γ that satisfies the distance property. Without loss of generality, we may
view P ′ as the point set of Γ union a new point α. Requiring Sα to be isomorphic to Γ yields that we may take the
points in {α} ∪ Γ1(L) as the points of a block of S , and this for any line L ∈ L. This type of blocks, referred to as
Line-blocks, gives us a first block on any pair of collinear points of Γ . Suppose that {x, y} is such a collinear pair. Note
that the graph-theoretic distance in Sα from a to b is simply given by the distance between these two points within Γ
and shall hence be denoted by d(a, b) instead of by dα(a, b).

For convenience we introduce the following notation a0 . . . as to denote the line {a0, . . . , as} of Sx .
If B = {x, y, b0, . . . , bs−1} is a block on {x, y} distinct of the Line-block defined by these two points, then inside

Sx the point α is a point off the line yb0 . . . bs−1 for which dx (α, y) = 2. In other words dx (α, bi ) = 4 and hence



H. Cuypers et al. / Discrete Mathematics 309 (2009) 341–353 345

by the distance property d(x, bi ) = 4, for i ∈ {0, . . . , s − 1}. In the exact same way the situation within S y yields
d(y, bi ) = 4, for i ∈ {0, . . . , s − 1}. If we now consider the derived generalized n-gon Sb0 , then α is a point not on
the line xyb1 . . . bs−1 for which db0(α, x) = db0(α, y) = 4. Hence, by definition of a derived generalized n-gon, there
exists a unique point bi collinear to α within Sb0 . Consequently db0(α, bi ) = 2 and db0(α, b j ) = 4 or equivalently
d(b0, bi ) = 2 and d(b0, b j ) = 4, for some i ∈ {1, . . . , s − 1} and all j ∈ {1, . . . , s − 1} \ {i}. Since b0 was chosen
arbitrary, it is now easy to see that within Γ the s+2 points of B are paired off into s+2

2 lines through a common point
z of Γ .

Note that the configuration of this second and final type of blocks on two collinear points, referred to as Vee-blocks
with Vee-point z, immediately yields s is even and s

2 ≤ t . In any case, a thin generalized n-gon of order (1, t) can
never contain such Vee-blocks and is hence non-extendible under the distance property assumption.

Let χV be the total number of Vee-blocks. A double count of the incident couple-block pairs ((x, y), V ), with
d(x, y) = 2 and V a Vee-block yields

|P|(t + 1)st = χV
s + 2

2
2.

Let χ be the average number of such Vee-blocks through two points x, y with d(x, y) = 4. Then a similar double
count yields

|P|(t + 1)stsχ = χV (s + 2)s

and substituting the above obtained value of χV leads to χ = 1. We now claim that no two distinct Vee-blocks share
a common pair of points at distance 4. Indeed, let B and B ′ be two Vee-blocks, with respective Vee-points z and z′

and suppose, by way of contradiction, that {x, y} ⊆ B ∩ B ′ with d(x, y) = 4. Then, obviously, the corresponding
Vee-points coincide. So, B = {x, y, x1, y1} and B ′ = {x, y, x ′1, y′1}. In Sx we see three lines, namely yx1 y1, yx ′1 y′1
and x1x ′1z, which form a triangle, a contradiction.

In other words, there is a unique Vee-block on any two points at distance 4.
Now consider a block B = {x, y, c0, . . . , cs−1} on two points x and y at distance 4 from one another, that is

distinct from the unique Vee-block on these two. Within Sx and S y the relative position of the point α and the lines
yc0 . . . cs−1 and xc0 . . . cs−1 together with the distance property in S results into d(x, ci ) = 6 and d(y, ci ) = 6,
for all i ∈ {0, . . . , s − 1}, respectively. Inside Sci these distances, again together with the distance property in S ,
first lead to the existence of a unique point c j for which dci (α, c j ) = 4 and secondly to dci (α, ck) = 6, for all
k ∈ {0, . . . , s− 1} \ {i, j}. If we now let i run through the set {0, . . . , s− 1} and carefully take all previously obtained
distances into account, one can readily see that we have a subdivision of the points of B into s+2

2 pairs {a, b} for which
d(a, b) = 4 and d(a, c) = d(b, c) = 6 for all points c in B \ {a, b}.

With these partial results on S , we are ready to state the following lemma.

Lemma 6. Suppose that S is a one-point extension of a generalized n-gon, with n = 6 or 8, of order (s, t) having the
distance property. Then

(a) s + 2 | 2t (t + 1).
(b) t ≥ s/2.
(c) s is even.

Proof. As noted above, the configuration of the Vee-blocks in S immediately leads to (b) and (c).
To prove part (a) of the lemma we consider a fixed point y of Γ and define X as the set of points in y⊥ together

with α and the point y itself. A double counting of the incident point-block pairs in X will then complete the proof of
the lemma. Indeed, there are three type of points in X : the point α, the point y and any point z in y⊥. Each of these
points we claim to be incident with t + 1 blocks that are entirely contained in X . First of all, since all blocks on α are
Line-blocks there are t + 1 such blocks of S on α in X . As any two points of X \ {α} are at most at distance 4 from
one another in Γ , we only have to consider Line-blocks and Vee-blocks as possible blocks in X . The point y is, just
as α, on t + 1 Line-blocks in X . A Vee-block on this point would contain points outside X and hence these blocks do
not contribute to the counting. Finally, a point z in y⊥ is on a unique Line-block contained in X and since every two
points at distance 4 determine a unique Vee-block we have ts

s such blocks in X on z that have y as its Vee-point. The
claim now follows.
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Counting the incident point-block pairs in X , we obtain (1+ 1+ (t + 1)s)(t + 1) = β(s + 2), where β stands for
the number of blocks in X . This implies s + 2 | (2+ st + s)(t + 1) from which we deduce that

s + 2 | 2t (t + 1).

This proves (a) and hence the lemma. �

As a direct consequence of this lemma we find that

Corollary 7. If there exists a one-point extension of a generalized hexagon of classical order (s, t), with s ≥ 2, that
satisfies the distance property, then s = 2.

Proof. By (b) of the above lemma t 6= 3
√

s. If t = 1 or s, then by (a) we have s + 2 | 4 and s = 2. If t = s3, then (a)
implies s + 2 | 24

· 7. Using that s is a power of 2 yields the corollary. �

In other words, there are only four finite generalized hexagons of classical order which hypothetically can have a
one-point extension satisfying the distance property, namely the split Cayley hexagon H(2), its dual, T(2, 8) and the
weak hexagon of order (2, 1).

Regarding finite generalized octagons the lemma implies

Corollary 8. If there exists a one-point extension of a generalized octagon of classical order (s, t), with s ≥ 2, which
satisfies the distance property, then it has order (2, 4), order (4, 2) or order (8, 64).

Proof. By (b) of the above lemma t =
√

s can only occur for s = 4 and the corresponding order (4, 2) satisfies all
other restrictions on s and t . By (a) and t = s2 we immediately have s + 2 | 40 and thus s = 2 or s = 8. �

Nevertheless, if Γ is a generalized octagon, we are able to give some additional information on the third type of
blocks in S and hereby improve the result in Lemma 6.

We use the previous notation. Let B = {x, y, c0, . . . , cs−1} be a non-Vee-block on {x, y}, with d(x, y) = 4, and
suppose that B determines the following set of s+2

2 pairs of points {{x, y}, {c0, c1}, . . . , {cs−2, cs−1}}. Remember
that within each of these pairs the distance is 4 and all other distances between two points of B are 6. We shall now
determine the relative position of a point ci to the points x and y and claim that every such a point ci is at distance 4
from the point xy (=yx ). As d(ci , x) = d(ci , y) = 6, we immediately have d(ci , xy) = 4 or d(ci , xy) = 8. The latter
case, however, leads to a contradiction as we shall show. Denote by B ′ = {x, y, b0, . . . , bs−1} the unique Vee-block
on {x, y} and let b0 and b1 be the points of B ′ collinear to x and y, respectively. Within Sx we now have dx (b0, ci ) = 4
and hence these two points uniquely determine a Vee-block B ′′ within Sx . This block contains, next to b0 and ci , a
point b j for which d(b0, b j ) = 4 (as x is the unique point of B ′ that is collinear to b0). On the other hand, we know
that d(b0, ci ) = 8, a contradiction as any block on {b0, b j } contains points at distance at most 6 from both of them.
Hence the claim.

If we denote the projection of ci onto xy by L i , then one can prove that L i = L j , for all i, j ∈ {0, . . . , s − 1}.
Indeed, first of all d(c0, c1) = 4 implies that L0 = L1 (as otherwise we obtain a hexagon within Γ ). Interchanging
the role of {x, y} and {c0, c1} now leads to d(c j , xy) = d(c j , c0c1) = 4 and consequently to L j = L0, for all
j ∈ {2, . . . , s − 1}.

In conclusion the block B, a so-called Wee-block, determines a unique line, the so-called Wee-line of B, at distance
3 from all of its points (distances in Γ ). In the exact same way as before a double counting now yields a unique
Wee-block on every two points at distance 6 in Γ .

Any other block on {x, y}, with d(x, y) = 6, will contain s additional points, d0, . . . , ds−1, every one of which is
opposite to x and y (look within Sx and S y to obtain this result).

We are now ready to state the next lemma.

Lemma 9. Suppose S is a one-point extension of a generalized octagon of order (s, t) having the distance property.
Then

s + 2 | 4t.
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Proof. The proof of this lemma is similar to the proof of Lemma 6.
For some fixed line L of Γ we define the point set X as the union of the set of points on L , in Γ3(L) and in {α}.

Obviously, there are 1 + (s + 1)t Line-blocks on α in X . As any two points of X \ {α} are never opposite, the only
blocks within X are Line-, Vee- and Wee-blocks. Next to α, we have two remaining type of points in X . Namely, the
ones that are incident with L , and those that are not. A point y on L determines t + 1 Line-blocks and sts

s Vee-blocks
(with Vee-point on L) in X . In total we obtain t + 1 + st = 1 + (s + 1)t blocks on y in X . Finally consider a point
z off L in X . Such a point is contained in a unique Line-block and in ts

s Vee-blocks (with Vee-point L ′z) of S in X .
A Wee-block on z in X has L as its Wee-line and is determined by a single point at distance 6 from it. Hence there
are sts

s such blocks on z. In other words, we obtain a total of 1 + t + st blocks on z. A double counting of incident
point-block pairs in X leads to (1+ (s + 1)+ (s + 1)ts)(1+ t (s + 1)) = β(s + 2), where β stands for the number of
blocks in X . From this we deduce that

s + 2 | 2t (1− t),

which in combination with

s + 2 | 2t (1+ t)

completes the proof of the lemma. �

As a direct consequence of this lemma we find that

Corollary 10. If there exists a one-point extension of a generalized octagon of classical order (s, t), with s ≥ 2, that
satisfies the distance property, then s = 2 and t = 4.

Proof. By Lemma 6 we already know that such a generalized octagon Γ has to have order (2, 4), (4, 2) or (8, 64).
Obviously, Lemma 9 immediately rules out both orders (4, 2) and (8, 64), leaving us with s = 2 and t = 4 as the only
possible parameters of Γ . �

3.2. Proof of Theorem 1

Say Γ is a generalized hexagon of order (2, t). We shall now try to construct an extension, S , of Γ only using the
distance property. First of all, the blocks constructed above for a generalized n-gon, with n = 6 or 8, determine three
type of blocks in S . Namely, Line-blocks, Vee-blocks and a third type of blocks that still has to be further analyzed.
Since s = 2 a Vee-block consists of four points in the symmetrical difference of any two intersecting lines of Γ . If
B = {x, y, c0, c1} is a non-Vee-block on {x, y}, with d(x, y) = 4, then d(c0, c1) = 4 and all other distances between
two points of B are 6. An easy counting argument shows that any two opposite points of Γ are in t+1 of these blocks.
Hence this type of blocks is in fact the final type of blocks in S and moreover the only type of blocks on any two
opposite points.

Suppose that B = {a, b, c, d} is a block of S , with a and b opposite points in Γ . We will now determine the relative
position of c to a = a0 and of d to b = a3 under the assumption that d(a, c) = d(b, d) = 4.

Denote the projection of b onto the line az (with z = ac) by a1 and ba1 by a2. Finally, denote the third point on any
line ai a j by ai j , for i and j elements of {0, 1, 2, 3}.

With this notation, let us first assume that z differs from a1 and call pcz the third point on the line cz (from now on
we shall always use this convention).

Within Sb we will show that this situation can never occur. First of all, we find a1a12a23 as a line in Sb
corresponding to a Vee-block through b. On this line the point a23 is collinear to α, as it is collinear to b in Γ .
On the other hand, we defined B as a block of S and thus find a, c and d also to be the points of a line in Sb. We now
claim that the point d is collinear to a1 in Sb. Indeed, in Sa the point c is both collinear to b and d (by definition of
B) and to a1 and pcz (Vee-block). Therefore we find that da(b, a1) = 4 and thus db(a1, a) = 4. In a similar way (by
using the distance property in Sc) one finds that db(a1, c) = 4, which leads to the claim.

Now, as d(b, d) = 4, we obtain db(d, α) = 4. This together with the fact that d is collinear to a1 in Sb, implies
that d has to be the point a12, contradicting the fact that d is opposite to a in Γ .

Hence c has to be collinear to the projection from b onto a certain line through a. Note that this already implies
t 6= 1.
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Before starting to determine the actual structure of such a block we first show that, next to B being a block, a point
p collinear to a1 but distinct of c can never be in a block with a and b. Indeed, otherwise we obtain within Sa a triangle
pbc when p is on the line a1c or a quadrangle bca01 p if p is on another line (distinct from aa1, a1c and a1a2) through
a1 (note that this situation only occurs when t > 2).

This simple result implies that for every one of the paths from a to b there exists a block containing these two
points and a point with the same relative position to a and b as c. In other words, for every path

a I L I a1 I M I a2 I N I b

exactly one of the points collinear to a1, at distance 4 from a and opposite to b, is in a block with a and b.
We now include this path (a = a0, a1, a2, a3 = b) into an ordinary hexagon (a0, . . . , a6 = a0) and suppose that d

is, in the same way as c is to a1, collinear to a4. As we mentioned above, c and d are opposite points. We now have
one of three situations (noting that one can interchange the role of [a, a1] with [ba4 ] and c with d) each of which will
be shown to be contradictory: first of all, pca1 can be collinear to pda4 (this is the only possibility for t = 2); secondly,
pca1 can be at distance 4 from a4 as is a1 to d; and finally, a1 and a4 are at distance 4 from d and c, respectively.

In the first case, we look inside Sa and obtain either a triangle, a quadrangle or a pentagon in this derived hexagon,
as we shall show. First of all bcd is a line of Sa . Furthermore we have that a, d and a′5 (a point collinear to a5) belong
to a block of this last type. As do a, b and a′′5 (collinear to a5). Now, if a′5 equals a′′5 we get a triangle; if they are
collinear we obtain a quadrangle and otherwise we obtain a pentagon where in both latter cases we use the fact that
every point that is collinear to a5 is in a Vee-block with a and a05.

Both the second and third situation do not occur when t = 2. Nevertheless, when t > 2 these situations as well as
the previous one lead to the following contradictions.

If pca1 projects onto a4 as does a1 onto d, we obtain a pentagon inside Sd : first of all the point b is in a Vee-block
with d and pda4 , hence inside Sd these two points, b and pda4 , are collinear. As pca1 projects onto a4 and a1 projects
onto d, the point c has to project onto the point pda4 . Therefore c is in a block with d and a point x collinear to pda4 . In
other words, c is collinear to x in Sd and as x is also in a Vee-block with d and a4 we obtain a pentagon (bpda4a4xc)
inside what ought to be a generalized hexagon, a contradiction.

Finally, when a1 and a4 project onto d and c, respectively, there exists a quadrangle inside Sd , a contradiction as
we shall show. Just as in the latter case b is collinear to pda4 in this particular derived hexagon. However, since there
exists a path from c to d passing through the point a4, the point c is in a block with d and a point collinear to a4. This
last point is also in a Vee-block with d and pda4 , hence obtaining a quadrangle in Sd .

Conclusion: if B should be a block of S , then c has to be collinear to a1 and d has to be collinear to a2 and this for
some path a ⊥ a1 ⊥ a2 ⊥ b from a to b.

For Γ isomorphic to H(2) we shall show that c cannot be on the ideal line through a and a2, with notations as
described above. On the other hand, for Γ isomorphic to the dual of H(2), or later on also for Γ isomorphic to T(2, 8),
the following will lead to a contradiction and we will be able to conclude that these geometries are non-extendible
under the given assumption.

Let us first assume Γ to be isomorphic to H(2) and suppose, by way of contradiction, that the point c does belong
to the ideal line aa2 and denote {a, b, c, d} by B. Let a1 ⊥ a2 ⊥ d ⊥ x ⊥ y ⊥ a ⊥ a1 be the points of an ordinary
hexagon. The points x and y depend on the choice of line through a. As c is on an ideal line with a and a2, every such
a line L through a determines a line regulus with a2d with as third line, N , a line incident with c. Call z the point on
N that is collinear to x .

Within Sd we obtain the following path (with u/v meaning either u or v)

abc I a I ay′(z/pxz) I z/pxz I (z/pxz)(pxz/z)pdx I pdx I pdx ypxy

where y′ is a point collinear to y and the first and second line of this path correspond with blocks of the third type,
while the third and fourth correspond to Vee-blocks. Now, as c and d also define a block with either y or pxy we
obtain a pentagon in Sd , a contradiction and we are done.

To complete the construction of the extension of Γ we used the regulus R(L , a2d) to exclude the point on N
collinear to a1 from this type of blocks. However, in H(2)D , opposed to the situation in H(2), that point depends
on the choice of L and therefore none of the points collinear to a1 can be in a block with a and b. In other words
there does not exist a one-point extension of H(2)D under the assumption of the distance property, while in H(2) the
extension is unique.
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When dealing with T(2, 8) we have to be a bit more careful. Let {a, d, x ′, y′} be a block of the extension, where
x ′ and y′ are points collinear to x and y, respectively. Applying the exact same technique as above we rule out the
point m0 collinear to a1 that is collinear to x ′ (if d(a1, x ′) = 4) or is at distance 4 from x ′ (if d(a1, x ′) = 6). Indeed,
replace (z/pxz) by x ′ and (pxz/z) by pxx ′ in the above path to obtain a pentagon in Sd . Now, consider that mi a point
collinear to a1 and incident with one of the regulus lines (of R(a2d, ay)) distinct of the one through m0 and suppose
that this point is in a block with a, b and d.

Inside Sd we then obtain an n-gon, with n ≤ 5

abmi I a I ax ′ I x ′ I pdx x ′ I pdx I pdx x ′′

where x ′′ is in a block of the third type with d and mi . Hence none of the points mi , i = 0, . . . , 6, collinear to a1 and
on a line of R(a2d, ay) \ {a2d, ay}, can be in such a block. However, for every point li 6= a1,mi , i = 0, . . . , 6, on
a1mi there exists a unique subhexagon of order 2 in T(2, 8) (which consequently is isomorphic to H(2)D) containing
li in addition to that fixed ordinary hexagon. This means that there is a unique third line M through a (namely within
that subhexagon) that determines a line regulus with a2d having a regulus line incident with li .

Summarizing all of this, we can exclude all points collinear to a1 from a block through a and b, which is in
contradiction with previous findings and we are done.

3.3. Some consequences

In this section we reprove an older result of the first author using the results of the previous section. The motivation
to do so is two-fold. We first want to tell what kind of characterization was previously known. Secondly, we want to
show that the current one is slightly more general and entails the one mentioned below.

Lemma 11. If in a one-point extension S of a generalized hexagon Γ of order (2, t) every pair of meeting lines in
every derivation defines a Vee-block (by symmetric difference), then it satisfies the distance property.

Proof. To prove the lemma we have to show that for all x, y, z in S

dx (y, z) = dy(x, z).

Without loss of generality, we may assume x to be the point α of S . It now suffices to prove that if y and z have
distance d ∈ {2, 4} in Γ , then α and z have distance d in S y (and consequently the case d = 6 follows). First, suppose
that y and z are collinear points of Γ . Then α, y and z are in a line block of S and hence α and z are collinear in S y .
If, on the other hand, y and z are at distance 4 from one another, then they belong to a unique Vee-block yuzv of S .
Within the derived generalized hexagon S y we now have a path

z I zuv I u I uα I α

of length 4 from z to α and we are done. �

The following theorem is an immediate consequence of Theorem 1.

Theorem 12. There exists a unique one-point extension of the split Cayley hexagon of order 2 under the assumption
that this extension satisfies the following block property: for every two blocks B and B ′ with |B ∩ B ′| = 2 the set
(B ∪ B ′) \ (B ∩ B ′) is the point set of a block of the extension.

Proof. Indeed, starting with this block property we can deduce that, considering two intersecting lines in the hexagon,
such an extension has to contain all Vee-blocks, as defined above. However, by Lemma 11 such a one-point extension
consequently satisfies the distance property and hence Theorem 12 is a direct result from Theorem 1. �

3.4. Proof of Theorem 2

Let Γ be a generalized octagon of order (2, 4). In this section we will prove that there exists no one-point extension
S of Γ satisfying the distance property. To prove this, we determine the consistence of all type of blocks in such
a hypothetical extension and finally encounter a contradiction. By previous findings we already know the exact
composition of three types of blocks in S . Namely, S contains Line-, Vee- and Wee-blocks, as described above.
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Moreover, since s = 2, a Vee-block is here, just as in Section 3.2, the symmetrical difference of any two intersecting
lines. We shall now describe the final type of blocks in S , i.e. a non-Wee-block on two points at distance 6.

Say B = {x, y, b0, b1} is a non-Wee-block on {x, y}, with d(x, y) = 6. Then, as we already mentioned above,
considering Sx and S y yields d(x, bi ) = d(y, bi ) = 8, for i = 0, 1. Within Sb0 we now have the line xyb1 and the
point α that is opposite to both x and y. Hence db0(α, b1) = 6 and consequently d(b0, b1) = 6. The distances within
this type of blocks are thereby similar to the ones within Vee- and Wee-blocks. Here the distance within a pair is 6
and otherwise 8 instead of 2 and 4, and 4 and 6, respectively.

An easy counting argument now shows that there are t+1 of these blocks on any two opposite points of Γ . Suppose
that B = {a, b, c, d} is such a block of S , with a and b opposite points of Γ and d(a, c) = d(b, d) = 6. Using the
same convention of notations as before, we will prove that there has to be a path γ = (a, a1, a2, a3, b) from a to
b such that the points c and d are collinear to the respective points a12 and a23. To prove this we will proceed in a
number of consecutive steps.

Step 1: d(b, ac) = 6
As b and c are (by definition) opposite points there is a unique point closest to b on every line through c. More in

particular, the point b is at distance 6 from either pcac or ca . This latter case immediately implies that d(b, ac) = 6 by
Step 2 (namely, by interchanging the roles of a and c) which we shall prove later on. On the other hand, assume b to
be at distance 6 from pcac (further on denoted by q to simplify notation). Suppose moreover, by way of contradiction,
that b and ac are opposite. Inside the derived geometry at c one finds a and b to be collinear (by definition). In the
mean time, we will show that within Sc the point q is at distance 4 from a, while it is opposite to b, a contradiction
and Step 1 is proved. Since d(a, q) = 6, there is a unique Wee-block on these two points containing a point, say x ,
collinear with ca = qa . Within Sq we thus obtain

a ⊥ x ⊥ c

and hence find that dq(a, c) = dc(a, q) = 4. The distance from b to c, again inside Sq , is obtained by looking at the
following path within Sq

b ⊥ y ⊥ pqbq ⊥ α ⊥ c

corresponding to the unique Wee-block on b and q, a Vee-block on y and q , with d(y, qb) = 2, and two Line-blocks
on q .

Hence b and c ‘inside Sq ’ and consequently b and q ‘inside Sc’ are opposite points and we are done.

Step 2: d(b, ca) = 6
If not, then Γ containing no heptagons together with b being opposite to c yields d(b, q) = 6 (q as defined above).

However, since we only made use of the path from a to c and the one from b to c to come to a contradiction in Step 1
(and these paths contained the same points as the ones now), the exact same arguments used above prove Step 2.

This step, together with Step 1, now forces d(b, pcaac ) = 4 and hence we may assume γ = (a, a1, a2, a3, b) to be
the path from a to b such that c is collinear to a12. We now prove

Step 3: ¬(∃c′|d(a12, c′) = 2 and {a, b, c′} ⊂ B ′ 6= B)
If there exists such a point c′, then the situation within Sa forces the set {c, c′, d} to be contained in a block of S

(as these points determine a Vee-block within Sa). However, the points c and d are opposite, as where c and c′ are at
most at distance 4 from one another, a contradiction.

A direct consequence of the previous step is that for every path γ = (a, a1, a2, a3, b) from a to b there has to be
a block of this type containing a, b and a point collinear to a12 and hence (interchange the role of a and b) also a
(distinct or same) block through a, b and a point collinear to a23.

With γ and c as before, we come to the final Step in which we delete the ‘distinct or’ of the previous sentence.

Step 4: d(a23, d) = 2
To prove this final step we include the path γ into an ordinary octagon (a = a0, . . . , a4 = b, . . . , a8 = a), suppose

that d is, in the same way as c is to a12, collinear to a56 and bring to mind that c and d are opposite points. We now
have one of two situation – namely c can be at distance 6 from a56 or at distance 6 from pa56d – each of which will be
shown to be contradictory.

Indeed, suppose that d(c, a56) = 6 and denote the path from c to a56 by (c = c0, c1, c2, c3 = a56). Let x be the
point collinear to c23 that is in a block of the yet-to-be-described-type with c and d . As b and d are at distance 6 and
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db equals a56, we know that these points determine a Wee-block containing a point y collinear to a56. This point y,
on its turn, is in a Vee-block with d and pa56d . Also, x and d are in a Wee-block with a point y′ collinear to a56(= dx )

and y′ is in a Vee-block with d and pa56d . All of this together with the fact that b, c and d are in the given block B
leads to a contradiction within Sd , namely

c ⊥ x ⊥ y′ ⊥ pda56 ⊥ y ⊥ b ⊥ c.

In this path the point y can be equal to (respectively collinear to or at distance 4 from) y′, in which case we obtain a
quadrangle (respectively pentagon or hexagon).

If, on the other hand, the point pa56d is at distance 6 from c, then one obtains a heptagon inside Sd , as we shall
show. Let x be the point at distance 4 from pa56d that is in a block of the yet-to-be-described-type with c and d; y be
the point collinear to pa56d that is in a Wee-block with x and d; and z be the point collinear to a56 that is in a Wee-block
with b and d. Then all of these blocks on d (note that d is in a Vee-block with z and pa56d ) give the following closed
path

c ⊥ x ⊥ y ⊥ a56 ⊥ pa56d ⊥ z ⊥ b ⊥ c

inside Sd , a contradiction and we are done.
Conclusion: if B should be a block of S , then c has to be collinear to a12 and d has to be collinear to a23 and this

for some path a ⊥ a1 ⊥ a2 ⊥ a3 ⊥ b from a to b. Note that a2 is the unique point of Γ that is at distance 4 from all
points in B and this point is uniquely determined by any one of the two couples in B that are at distance 6 from one
another.

To complete the proof of this theorem we consider such a block B = {a, b, c, d} of this final type, which will be
referred to as Xee-blocks, with c and d collinear to a12 and a23, respectively, and include γ into an ordinary octagon
(a = a0, . . . , b = a4, . . . a8 = a).

Suppose that the point c = (a12)a56 is in a block with a and b. Then c is also in a Xee-block with b and a point y
collinear to a6. This point y, on its turn, is in a Wee-block with b and a point z collinear to a5. In the mean time, a is
in a Xee-block with b and u (collinear to a56), which is in a Wee-block with b and a point, say z′, collinear to a5. It is
now easy to see that if z and z′ coincide, are collinear or are at distance 4 from one another, we respectively obtain a
pentagon, a hexagon or at most a heptagon inside Sb, a contradiction. Hence c cannot be this particular point.

Say c equals the second point on the line a12(a12)a56 and d ′ is the unique point that is both in a block with {a, b}
and is collinear to a56. If B ′ = {a, b, c′, d ′} denotes this block on {a, b, d ′}, then {c, c′, d, d ′} has to be a block of S
as well (within Sa or Sb these points are on a Vee-block). More in particular, as d(c, d) = 8 the block B ′ has to be a
Xee-block of S . We now have one of two situations, either the distance from c to d ′ is 6 or it is 8. We claim that both
these situations lead to a contradiction.

If d(c, d ′) = 6, then both d and c′ have to be at distance 4 from the point pxy , with x = cd ′ = pa12c and
y = d ′c = pa56d ′ . However, as d(x, d) = 8 the distance from pxy to d should be at least 6.

Suppose, on the other hand, that c is opposite to d ′ and denote the path from c to a56 by (c = c0, c1, c2, c3 = a56).
As c is also opposite to d , it has to be at distance 6 from c′. This point c′ is collinear to a67, which is at distance 6 from
c. Hence c′ = pa67u with u = (a67)c. In the mean time, by the definition of a Xee-block, the unique point x that is at
distance 4 from both c and c′, is also at distance 4 from d ′, a contradiction as we obtain a heptagon (xua67a6a56d ′xd ′)

within Γ . Hence the claim is proved.
In conclusion, the point c has to be opposite to a56 and this for every ordinary octagon O = (a = a0, . . . , b =

a4, . . . , a8 = a) containing the fixed path γ . For every such an octagon, c can now either be closest to a5 or to a6. In
the former case, however, we obtain a contradiction within Sb, as we shall show. First of all, c is in a Xee-block with
b and a point x collinear to b12, where (b = b0, b1 = a5, . . . , b4 = c) is the path from b to c containing the point
a5. The point x is in a Wee-block with b and a point y collinear to a5. On the other hand the point a is, next to being
in a Xee-block with {b, c}, also in a Xee-block on {z, b}, where z is a point collinear to a56. This point z is now in a
Wee-block with b and a point y′ that is collinear to a5. Both y and y′ are either in the same or in a distinct Vee-block
with b and a45. The former case yields a pentagon or a hexagon inside Sb, while in the latter case yields a heptagon
within this derived octagon, a contradiction.

Hence, we may conclude that for every such an octagon O on γ , the point c has to be at distance 6 from the point a6.
We can now choose coordinates in O(2) in such a way that a = (0, [0, 0], 0), b = (1, [0, 0], 0, [0, 0], 0), a12 = (∞)

and hence c = (K , B). After some tedious calculations we find that the point a6 (of (Γ4(a)∩Γ4(b)) \ {(1)}) is one of
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the following four points

vi j = (0, (0, 0), 0, (i, j), 0, (0, j), i), ∀i, j ∈ GF(2).

If d(c, vi j ) = 6, then the point c belongs to the trace (∞)vi j . However

(∞)(a,l,a
′,l ′,a′′,l ′′,a′′′)

= {(a)} ∪ {(k, a′′′ + aN (k)+ l0k1 + l ′′0 k0)|k ∈ GF(2)2}

and hence

(∞)v00 = (∞)v01 = {(0)} ∪ {(k, 0)|k ∈ GF(2)2}

while

(∞)v10 = (∞)v11 = {(1)} ∪ {(k, 1)|k ∈ GF(2)2}.

Obviously these two traces share no points and hence there exists no such a point c in O(2) and we are done.

3.5. Flag-transitive one-point extensions

Suppose that S is a one-point extension of a classical generalized hexagon or octagon of finite order (s, t) admitting
a flag-transitive automorphism group G. That is an automorphism group which is transitive on the set of all incident
point-block pairs of S .

Let x be a point of S . Then by Gx we denote the subgroup of G stabilizing x . Clearly, Gx induces an action on
the set of points and the set of lines of the generalized polygon Sx . As the group G is flag-transitive, the group Gx is
transitive on the set of lines of Sx .

A point orbital of Gx is an orbit of Gx in its induced action on Px × Px . A point orbital O is called self-paired if
for all (y, z) ∈ O we also have (z, y) ∈ O.

Lemma 13. A point orbital O of Gx is self-paired if and only if for each (y, z) ∈ O there is a t ∈ Gx with yt
= z

and zt
= y.

Proof. Obvious. �

Lemma 14. Suppose that p is a point of S . If all point orbitals of G p are self-paired, then S has the distance
property.

Proof. Suppose that x, y, z are three points of S . Since G is transitive on the points, we may assume that for p equal
to x, y or z, all G p point orbitals are self-paired. This implies that there are tx , ty and tz in G with

x tx = x, ytx = z, ztx = y;

yty = y, zty = x, x ty = z;

ztz = z, x tz = y, ytz = x .

The subgroup 〈tx , ty, tz〉 of G induces the full symmetric group on {x, y, z}. As a consequence we have

dx (y, z) = dy(z, x) = dz(y, x).

So, S has the distance property. �

Theorem 15. Suppose that S is a one-point extension of a classical generalized hexagon or octagon of order (s, t).
If S admits a flag-transitive automorphism group G, then S is isomorphic to the unique affine extension of H(2) and
G is isomorphic to 26

: G2(2)′ or 26
: G2(2).

Proof. Let x be a point of S . Then the group Gx induces a line-transitive action on the classical generalized hexagon
or octagon Sx .

The automorphism group of Γ = Sx is contained in the automorphism group of one of the following groups G2(q)′

(in case Γ is H(q) or H(2)D), 3D4(q) (in case Γ is T(q3, q) or its dual) or 2F4(q)′ (in case Γ is O(q) or its dual),
where q is equal to either s or t . By the classification of the maximal subgroups of these groups as given in [1,6,7], it is
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easily seen that Gx in its action on Sx has to contain the simple group G2(q)′, 3D4(q) or 2F4(q)′, respectively. As each
of these groups, except for G2(2)′ and 2F4(2)′ acts distance transitively on the points and lines of the corresponding
classical polygon, see [11, Section 4.8], we find, except possibly in the two exceptional cases, all Gx point orbitals
to be self-paired. So in all cases, except when Gx induces G2(2)′ or or 2F4(2)′ on Sx , we find that S satisfies the
distance property. If Gx induces G2(2)′ or 2F4(2)′, then there are only two non-self-paired orbitals, both consisting of
pairs of points (y, z) at mutual distance 6, or 8, respectively, in Sx . Indeed, from the information in [3], Gx acts as a
rank 5 group or rank 6 group, respectively (on the point set of the dual of H(2) or the dual of O(2), respectively), and
since the full automorphism group of the generalized polygon acts as a rank 4 group or a rank 5 group, respectively,
then the non-self-paired orbitals have the same size. Moreover they must occur with points at maximal distance as
otherwise there would be more non-self-paired orbitals with points at larger distance. So the only situation to rule out
is the case where dx (y, z) = 6 or 8, respectively, and dy(x, z) < 6 or 8, respectively. If we consider the group Gx,y ,
then in Sx , the length of the orbit of z under Gx,y is a power of 2 (being half of the number of points of Sx opposite
to y), while this is certainly not true for the size of the orbit of z under Gx,y in S y . This contradiction shows that the
distance property is also satisfied in these exceptional cases.

The theorem follows easily from Theorems 1 and 2. �
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