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AN ALGEBRAIC CHARACTERIZATION
OF
AFFINE BUILDINGS OF TYPE Cop

H.VAN MALDEGHEM *

We show that every (symmetric) affine building of type 62 is uniquely
and completely determined by any coordinatizing quadratic gquaternary

ring with valuation of its generalized quadrangle at infinity.

INTRODUCTION

This paper is the last one in a sequence of four which have as purpose
to characterize the class of affine buildings of type 62, the first

three papers of this sequence being [9],[10] and [20].

Let us briefly describe the situation. In 1984, J.Tits classified all
affine buildings of rank 24 by showing they all arise from algebraic
groups over a local field (see [3],[16]). But counter examples to this
statement were known for affine buildings of rank 3 (see e.g. [ll];[13],
[17] and recently [20]). They were called non classical buildings. Now
there are three classes of affine buildings cof rank 3. They correspond

to the following diagrams.

* The author was supported by the National Fund for Scientific Research
(N.F.W.0.) of Belgium.
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An algebraic characterization of affine buildings of type iz is given in
[17] and [18], by means of the notion of a planar ternary ring with
valuation. The present paper presents the analogue for affine buildings
of type 52. In [20], we introduced the notion of a quadratic quaternary
ring with valuation and showed that every such algebraic structure R
gives rise to an explicitly defined (symmetric) affine building A of
type 52. In this paper, we prove that there is a reverse procedure and
that both operations are mutually inverse. In fact, R coordinatizes the

generalized quadrangle at infinity of A. This leads us to the main

result of this paper :

MAIN THEOREM. Any coordinatizing quadratic quaternary ring of the
generalized quadrangle at infinity of a (symmetric) affine building of
type 62 is naturally endowed with a valuation, which determines the

building up to isomorphism.
The proof of this theorem will be completed in section 4.
The motivation for our research, as explained in [10], lies beyond the

pure construction of new explicitly defined affine buildings of type 62.

What we want in the first place is a deeper geometrical insight in

o]

affine buildings of rank 3. The case A, was "easy" enough (because of
the symmetric diagram and the fact that there are only projective planes
around) to get us started and we believe that the case 62 is general
enough to gain the desired insight (that is the reason why we consider
the case éz as uninteresting). In our opinion, a better geometrical
understanding of affine buildings of rank 3 could be kelpful to
approach other types of buildings (starting with rank 2) which are not
understood well yet. Of course we also aim at direct applications :

the explicit description of certain buildings of types A, and C, might

e.g. lead to new GABs or to another description of existing GABs.



The paper is organised as follows. In a first section, we recall the
definitions of Hjelmslev quadrangle of level n, a quadratic quaternary
ring with valuation and a symmetric affine building of type 62. In
section 2, we state some main results which are proved in section 3. 1In
fact, by previous results in [9],[10] and [20], it will basically suffice
to show how one can put a valuation on any coordinatizing quadratic
quaternary ring of the generalized quadrangle at infinity of an
arbitrary affine building of type 62. In sectibn 4, we finish off the

proof of our main theorem. Section 5 finally deals with some examples.

REMARK. One will find most definitions in section 1 éuite long and
rather difficult to work with when one is not accostumed to them. It
will be surprising that relatively simple examples can be found. But in
order not to overload this paper, we will only give examples of the most

important notion : the quadratic quaternary rings.
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1. DEFINITIONS AND NOTATION

1.1. Definition of a Hjelmslev quadrangle of level n.

1.1.1. Notation.

Suppose X= (P(X),£(X),I) is a point-line incidence geometry with point
set P(X) and line set £(X). We denote the set of points incident with a
given line £ by o(£) and call it the shadow (of £) (see Buekenhout[4]).
Suppose Zl and Zz are two distinct lines of X. If there is a point
incident with both £, and €,, then we call &, and £, concurrent and we
denote "€, 1 12" . Suppose P, and P, are two distinct points of X. If

there is a line incident with both P, and P,, then we call P, and P,



collinear and we denote "P, 1 P,". A flag in X is an incident point-
line pair of X. The set of flags of X is denoted by ¥(X). A morphism
from X to some other point-line incidence geometry X' = (P(x"),€(x"),I)
maps P(X) to P(X'), £(X) to £(X') and the map induced on ¥ (X) maps F(X)
to F(xX'). An epimorphism is a morphism which is surjective on the. set
of flags. The geometry X is called thick if every line is incident with
at least three points and every point is incident with at least three

lines.

Suppose 4 is an arbitrary set and P, (4) and P, (d) are two arbitrary
partitions of 4. then we say that P, (d) is properly finer than P, (d) if

every class of Pz(ﬁ) is the union of at least two classes of P

that case, we denote
P, () /P, (d) ={{€ep, ()| cD}IDep, (4},

which is a partition of P, (4). If DeP,(d), then we call {€eP, (4)1¢cD}

the canonical image of D in P, (4) /P, (4).

1.1.2. Generalized gquadrangles.
Let & = (P(b),£(4),I) a be point-line incidence geometry. Then we call 4
a generalized quadrangle if there exist positive integers 421 and 21

(s and/or ¥ may alsc be infinite) such that the following axioms hold.

(Q1) Every point of b is incident with 1+%f lines and two

distinct points are incident with at most one line.

(Q2) Every line of & is incident with 1+3 points and two

distinct lines are incident with at most one point.

(03) If Pe?P(b) and £ €€ () are not incident, then there
exists a unique flag (Z,H#) €F (&) such that P I M T 2 I K.
P
Generalized guadrangles were introduced by J.Tits in his celebrated
paper [14). More information about generalized quadrangles can be found

1 he
in ne

urvey paper of W.M.Kantor [11]. In
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this paper, we will always assume that every generalized quadrangle is

thick.

1.1.3. Definition of a Hjelmslev gquadrangle of level n.

Throughout, n,{,4 and A denote positive integers.

We define a Hjelmslev quadrangle of level a2 by induction on n. The
induction will start with n=1. We give a separate definition for level

0. We abbreviate “Hjelmslev quadrangle of level a” by “level n HQ”".

A level 0 HQ is any trivial geometry ‘Vo = ({*},{*},=), where * is any

arbitrary (but twice the same) symbol.
A level 1 HQ is any 6-tuple
Vl = (?(Vl)li(yl ) III (P‘ (Vl))isl ’ (L[ (Vl)) i<17 (WO (Vl I{?})I{?})?e?(y ))l
1

where (?(Vl),ﬁﬁ(‘Vl),I) is an arbitrary generalized quadrangle ; P (V) is

the partition of V| determined by: every-class is a singleton ; P, (V)
is the partition of P(¥,) consisting of one class ; similar for
(L, (V,)) ;<1 » and for every PeP V), ¥ (V. {P}) = (P}, {P},=). The last

three elements of ¥, do not add more structure to the generalized
quadrangle, but they are necessary to start the induction. So in fact,
a level 1 HQ “is” a generalized quadrangle.
Now suppose n2 2. Let (P(¥V,),£(V,),I) be a thick incidence geometry.
Suppose (P, (¥,)) <, resp. (L,(V,)),c, is a family of partitions of
PV,),resp. £(V,) satisfying

(ps1) p (V) ={{PH1PeP(V,)} ; B, (V,) ={P(V)},

(PS2) L (V) ={{£}1Lel(V)} ; L (V) ={L(V,)},

(ps3) P, (¥,) is properly finer than P, , (V,), for all i<n,

- (PS4) L, (V) is properly finer than L, , (¥,), for all i<n,



The elements of P, (¥,), resp L, (V,) are called {(-point-neighbourhoods,
resp. (-line-neighbourhoods (of their elements). An {-point-neighbour-
hood is also called a point-neighbourhood, an {-neighbourhood or briefly
a neighbourhood. Similar definitions for {-line-neighbourhoods. If Pe€
P(¥,) and L€ £(V,), then we denote by 05(?), resp. Oi(i) the unique

i{-point-neighbourhood of P, resp. {-line- neighbourhood of £.

Suppose for every €€ P,_,(V,), we have a level (m-1) HQ, denoted by
€) (this is an element of a well-defined class of objects by
induction) and select in every ¥ _, (¥,,¥) an (n-2)-point-neighbourhood

%%. Then we call the, 6-tuple

.
~

V, = (P, LV,), I, B, (V,)) <, (L, V) <, (¥

-1

’ 4
(Vl. I(é) Iﬂ(g)(ﬂepn—l (V,; ) )

a level n HQ if ¥, satisfies the axioms (IS),(GQ) and (NP) below. The

geometry (P(V,),£(V,),I) is called the base geometry of ¥, . Before

stating the actual axioms, we need some preliminaries.

We first define the canonical (n-1)-image of V; by induction on n. The
canonical 0O-image of a level 1 HQ ¥, is by definition the triviai
geometry (P )}, {PV)},=). Now let n2 2. Define the geometry
(P, (V,), (L, (V,),I) as follows. If $eP, (V) and De (L, (V,), then € I D
if and only if there exist Pe ¢ and £e 9 which are incident in
(PW,),£V,), . Furthermore, denote by %;_2(7;,%) the canonical
(n-2)-image of u;_l(v;,%) (well-defined by the induction hypothesis).
Denote by N% the canonical image of W% inp, _, W, _,(V, ,€))/p, (H, _, (V, )
if n>2 and ﬂ%=={?(W1(V2,%))} if n=2. Obviously, there is a bijective

correspondence between P (¥,) and p,_,(V,)/p, (V,) and the unique

-1

element of P, _, (¥,)/P, (¥,) corresponding with the element ¢ of P, _, (V)

is denoted by ¢*. In particular, all elements of P,_, (V,)/P, (V) are

denoted with a *. We define the canonical (n-1)-image of ¥, as the 6-

tuple

Vo= By V) (L V) I (R V) /P (V) gy r (T VT (V00 <, s
W _, 6., P I
ST ! (b B*EP,'_l (VI.J/PI (1{7.)



We can now state the very natural axiom (IS).

(IS) The canonical (n-1)-image V,_, of V, is a level n-1 HQ.

7

Using a similar notation for ¥, _, as for ¥,, (IS) implies e.g. P, ('V,__l)

=P,,, (¥,)/P, (V,) and similarly for the line-partitions.

Define inductively the canonical (n-4)-image of ¥V, (0< 4< n) as the

canonical (n-4)-image V,,-,' of the canonical (a-4+1)-image V,-,-,-'+1 of V,,
or as V¥, (for 4= 0). Note that O' defines a mapping from P(¥,) to
PW,_,) and from £(¥,) to £(¥,_,). By the definition of the incidence

relation in ¥, _,, we can see that this mapping is an epimorphism from
(PW,),LWV,), 1) onto (P, (¥V,), (L, (V,),I). We denote this epimorphism by
Ii:_l . By the induction hypothesis, a similar epimorphism exists from

the base geometry of V;. onto the base geometry of ‘V,'_. and we denote

-1 ¢

. =41 . ,
it by I‘g_; . By induction, we can put
e ! :
Ii._j—ﬂ;_oi © n:.—/u-
From now on, we denote the canonical jf-image Vf. of ¥, by

1ty
for all /4, 0< 4<n. The epimorphism H; is called the projection. We
define the valuation map « : (P(V,) ud(V,)) x (PV,)uvd(¥,)) » N as

follows. Let X,y be either both points or both lines of ¥,, then
wix,p) = sup{d<niIf (x) =1L (1) }
I1f PeP(V,) and £ €4 (V,), then
u(P, L) =uw&,P) = w (P9, u, (P.L)

with

'Ual (?,Z) =U—1 (xl?)

I
il

sup{4<n|30 1€ such that IT, (Q)=IT, (), 0eP¥,)},

u, (P, ) =u, (£,P) = 2up{4<n|3M I P such that If/ (M =I]; £), MeL(V,)}.



We now write down the axiom (GQ), consisting of two statements (GQl) and
(GQ2) .
(GQ1) If P,0e®(V,), L, Mel(V,), 0T L I P I M w@ Q=0 and £z M,

040 noh) 28 = 2.4<u&, M

(602) If PeP(V,), LeL(V,) and u(P,L) = (k,2k) for some ASZ, then
there exists a unique Med(V,) such that P I M + L. Moreover,

wlg M =245 and w{P,0) =0, for alil geci{¥) ne(M). If k=0, then

We now define an affine structure on level 4 HQs. Suppose X‘; is a level 4
HQ, 0<4<n, with

X; = (PX) LX) Ty (B gy (g (X)) cpr B,y (X, ) ).

)
‘éer_l (X,)

Let X, = (P(X;),...) be its canonical 1-image. Let D€ P, , (X;) be

arbitrary. We denote:

*

sﬁ;={zesﬂ(xj)to(szb¢¢},
?i)={?e?(xj)13$efii)
A?(XJ,ED) =$P(xj) _?i)'
4L(x,,D) =£(x,) -sc;;’.

*

such that P 1 £},

*

*

We call the elements of .Jf?(xj,i)) the affine points (of (Xj,i)), if there

is confusion possible) and the elements of .di(xj,fb) the affine lines

(of (Xj,i))). The elements of 3’;—-3), resp. of i; are called the points,
resp. the lines at infinity (of (Xj,i))). The elements of 2 are the
hyperpoinfs (of (X},i'))). The pair (Xf.,i)) is called an affine HQ (of
level n). The following lemma is proved in [9].

LEMMA(1.1.3.1). Let (X/-,SD) be as above. Every element of the (j-1)-
point-neighbourhood of any affine point is again an affine point. Hence
every element of the {f-1)-point-neighbourhood of any point at infinity,

resp. hyperpoint, is again a point at infinity, resp. hyperpoint.



This lemma will give sense to axiom (NP) below.

We now introduce the notion of a “strip of width ¢” in an affine HQ
(Xj,.‘D). Suppose Pe P(X;) is a point at infinity of (Xj,fD) and ZEZ(XJ.)

is an affine line incident with P. If i<4#, then we call the set
{oedP(x,, ]| 0 I M IP for some HeO' ()}
a strip of width ¢ (in (Xj,i))). If (>4, then the set
{oeP(x,, D)1 0 L 7}

is called a strip of width ( (in (Xj,fi))). In every case, we call ? a
base point (of the strip). It is not necessarily unique, even if the

strip has width > 0 (cp.[9],property(2.26)).
We can now state the first part of (NP).

(NP1) If €€P,_,(V,), then AP (¥, _, (V,,6) ,/L’%) =¢. Moreover, the (-

point-neighbourhood of any point Pe€€ in ¥ _, (V, ,€) coincides

with the (-point-neighbourhood of P in V,, for all (< n-2.

7

Suppose %7.—5;‘ €P,_; (V,) and let ¢,_, be the unique element of P, _, (V)

containing €¢,_, as a subset, 0<A</<n. By (NPl),

4

¢
¢

€ Pr.— (wr.—l (Vz.’%l.—l))'

ep . (¥

=3 7-3 -2

7n=-2 2

(w ’(VI.’(@I.-I)’%;,_Z))I etC..}..

-1

This way, we justify the following notation.

€, _,) =W _,# (... _(, ¢

-4 n-4+1 r-1 n 7.—1)""

WV, .6 _,) )

! -4

Moreover, ‘fi,._j = AEP(W,’_}

The axiom (NP1l) was about points of the point-neighbourhoods. The last

axiom, (NP2), which we call the strip axiom, says something about the



_10_

lines in the affine HQs corresponding to these neighbourhoods.

(NP2) If PeP(V,), LeL(V,), 0<4<n and 6(£) NG" 4 (P) #@, then the

set

s, @8 =00 (P

is a strip of width 4 in (Wi_/ (‘VL,G"_" ). . (?)). Every
. . . 7 ~-1
strip of width 1 in (W, _, (V .0 (?)),-ﬂ/(j,._l (?)) can be
obtained in this way (putting j#=1)
This completes our list ¢f axioms for a level n HQ.
We keep the same notation as above. Suppose M is an affine line of
7= F + . . .
o,_,v,.,0 (?))’/LO"‘{ (?)) such that the set of affine points of # is

a subset of o(€)n & ¢ (P) (with the notation of (NP2) above), then we

call M a component of £, or a component of the strip S; (P,£) and we

denote M# < Z£. The set of all components of S; (P,£) is denoted by
C; (P, 2). The set of affine points of # is called the affine shadow of
M. As an extension, we call every point of ¥, incident with £ a

component of &£.
Now let ¥} = (PW})),L¥}!),...) be a second level n HQ and suppose
Y: W), L), » FPWH, LV, 1)

is an isomorphism of incidence geometries mapping the affine shadow of
every component of any line £ onto the affine shadow of a component of
Y() and mapping {(-neighbourhoods onto {(-neighbourhoods, for all ¢,
0< i<n, then we call ¥, and V] equivalent. This way, we can extend ¥
to the set of all components of all lines of 'VL and this extended map,
which we also denote by ¥, preserves “being component of”. We call ¥
an equivalence.

We now define by induction the notion of an isomorphism between ¥, and
Vi=@®WVH,LW¥}),...). If n=1, thenV, and V] are called isomorphic if

their base geometries are isomorphic generalized gquadrangles. Now let
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n>2, then we call ¥, and V] isomorphic if they are equivalent (denote in
that case the corresponding equivalence by ¥ and if for all $e
Pp,_,(V,), W _,(V,,) is isomorphic with W _,(V!,¥%)) and this iso-
morphism ‘I‘% coincides with ¥/% over ¢. We can now extend ¥ with every
‘I:1g and if we denote this extension still by ¥, then we call ¥ an

isomorphism. Obviously, isomorphic level n HQs are also equivalent.

Recall that 1'(:_1 is the projection mapping the base geometry of ¥, onto
the base geometry of the canonical (n-1)-image V,_, = (P, _,),...). We

can extend H:_l to all “W,'_j V,,¢), €e P, _,(V,) and 0<4<n, with the

¢ 13

projection of ‘W,’_J (V,,¢) onto ¥, _ v, 1 ,D:_l (%)) . We denote that

s-1
extension still by I'l:_1 .  Suppose now that V;;-1 is isomorphic with some
level n-1 HQ X, _, and call the corresponding isomorphism Y. Then we
call ¥ o I'(:_l a HQ-epimorphism. Suppose now that (X,;,V:”),'GN is an
infinite sequence with X, a level n HQ and V,:” an HQ-epimorphism from

s+ 1
X onto X , then we call (X,;,V; )

1 an HQ-Artmann-sequence. This

7. EN
name is inspired by the work of Artmann [l1], who studied similar
sequences of level n Hjelmslev planes, giving rise to affine buildings

of type ZXZ (by [8]1,[17])..

If z, is the base geometry of X,, for all ne€e N, then we call the

, sequence (Z,, V,+ 'z the base sequence of (X, , V, o ) The

7.+1)7.€N 7. EN "
inverse limit of the base sequence of an HQ-Artmann-sequence ¥ is also

called the inverse limit of ¥.

THECREM(1.1.3.2) (Hanssens-Van Maldeghem [9]). Every HQ-Artmann-seguence

gives rise to an explicitly defined affine building of type Ez .

We now mention some more results of [9] that we will need in the proof

of our main results. Therefore, suppose ¥V, = (P, ),L(¥,),1,...) is a

level n HQ, n€ N*. We denote by ‘V[j= (P, (VJ),Sﬁ‘.(Vj),I, (P[(V}))[S/,...)

a level /c/' HQ, isomorphic to the canonical jf-image of ¥,, 0<4<n. The

corresponding projection map is denoted- by rl; Furthermore, we denote
. . . A .

the valuation map in ¥,, resp. V;r W, (V,,0° (P)) (for arbitrary Pe P (V)

and k&, 0< A< n) by u«, resp. ulf,fl,uln,k] (to be in conformity with

[9]). Throughout, we assume that 4,4A,{ € N, all smaller than or equal
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to n and ?,Q € ?(Vn)l ZIM € Z(VI.-)'

PROPERTY (1.1.3.3). 4, (P, %) < ¢, (P, %) < 2.4, (P, L) .

PROPERTY (1.

[y
w

.4)y. If ®P and Q lie in one anothers f-point-neighbourhood,
then

o‘. - u[nl,j] (?IQ) = n - U*(?IQ) .

PROPERTY(1.1.3.5). IfF QI L 1P 1 M, w(P,Q =0 and £ # M, then

ll(Qi'A"!) = P el
2

PROPERTY (1.

[

.3.6). If P and Q are both incident with both lines £ and M,
and w(P,Q) = 0, then £ = M.

PROPERTY(1.1.3.7). Suppose G(£) n o) n O @ = ¢ and C_,(PL) N

C:_j(?,M) # @, then w(€ M) > 4 and if 4 is odd, equality does not occur.

PROPERTY(1.1.3.8). If u[;,;]l(rg(?),rg&))s i< n, then w(® ¥ =
wld 41 (P T (E))

PROPERTY(1.1.3.9). If 2.u, (P,€) </4<n, then ulf, 4] (n;'. (P), T (€)) = w(®,g) .
PROPERTY (1.1.3.10). «, (P,€) = sup{i<a| I, (?) I IT,(£)}.

PROPERTY (1.1.3.11). Suppose «(P, &)= (£, %) with 24 < n. For every
component £' of £ in %&_i(V;,GL_i(?)), with { £ 2k-%, we have (k-§,8-%)
=uln,n=-L] (P, L") .

PROPERTY(1.1.3.12). I1f u,M24 and £ I P I M, then the lines £ and M

have a common component in ﬂ;(V},GJ(?)) incident with P.

PROPERTY (1.1.3.13). Suppose «(P. &)y = (4, %) with- 2k < n. Then there
exists a line M and a point Q such that P I M 1 Q@ 1 £. Moreover, there
holds

(1) w(&, 4 = 20L-24,
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(2) w(P, Q) = 24k-%,

(3) If M' € L(V,) and Q' € P(V,) and P T M' I Q' T ¥,
then : (3a) aM, M) = n-4k+2L,
(3b) w(Q, Q") = D+A-2.
2

1.2. Quadratic quaternary rings with valuation.

Quadratic quaternary rings are in fact the coordinatizing algebraic
structures of a generalized quadrangle (see [6]). But for the purpose

of this paper, we do not need the full background of this theory.

1.2.1. Quadratic quaternary rings.
Let ®, and ®, be two sets intersecting in the set {0,1} of distinct
elements 0,1 and both not containing the symbol e. Let O, and Q, be two

quaternary operations with

0, : R, xR xR, xR R,
0, : B XR, xR xR, - R,.

The quadruple (®,,R,,0,,0,) is called a quadratic quaternary ring if it
satisfies (0), (0), (1), (1), (A), (&), (B), (B) and (C) below.

(0) Q (£,0,0,a") =a' = Q (0,a,k,a").

(0) Q,(@,0,0,k") = A" = 0,(0,k,a,k").

(1) ¢, (1,4,0,0) = a.

(1) Q,(1,4,0,0) = k.

(A) There exists exactly one x€R, such that Q, (k,a,%,x) = b.
(X) There exists exactly one p€R, such that Q,(a,k,b,p) = L.
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(B) If k21, there exists exactly one pair (x,y) € R XR, such that

O (h,x, 0, (x,k,a, k"), 1)

O (&,x,0, (x,k,a, k"), p)

|
8

I
?.

(B) If a#ly, there exists exactly one pair (p,q) € R, XR, such that

Q2 (O'-,P,Ql (P,a,/:,a’)/l}') = k/
Qz (b,P,Ql (Plalk:a')/q)

(C) If ©Q (k,a,k,at) b (C1)
Q, ak, by k') =2 & (C2)

then there exists a unique quadruple (x,x',p,p') €®R XR XR, xR,

such that

Q) (k% 0, (X, kb k7Y, x")
Q) (Prx, 0, (X, kb, k") ;x")

1
L,

o, (prast,a"),

17 (C‘«IP’QI (,7‘5."1:2-;@!):73!:' = Kk,

Q, (X, £, Q) (pra,L,a"),p") = Q, (x, kL, k).

If exactly one of the conditions (Cl) or (C2) holds, then there

exists no quadruple (Xx,Xx',p,p') having the above properties.

We abbreviate the teérm quadratic quaternary ring by QQR. Examples can

be found in [5] and [7] and also in section 5.

THEOREM(1.2.1.1) (Hanssens-Van Maldeghem [6]). Let (® ,®,,0 ,0,) be a
QOR. The following point-line geometry & is a generalized quadrangle.
The points of b are the elements of R, UR, xR U R XR, xR, denoted
with round brackets, together with the symbol (~). The lines of b are
the elements of R, UR, xR, UR, xR XR,, denoted with square brackets,

together with the symbol [«]. Incidence is defined as follows.

]
o~

(@,8,a"') I [k,b,k'] if and only if Q, (k,a,%,a')

and Q, (a,k, L, k")

|
)
~

(a,L,a') I [a,t],

(k,ay I [h,0,k"),
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(k,@) I [K],

(@) I [a,k],

(@) I [e],

() I [K],

() I [0, for all a,a’,lb € R; k,k',L € R,.

There are no other incidences.

Let 4 be any generalized quadrangle. We now show (following [6]) how X4

may be coordinatized by a QQR.

Suppose (3,%) is the order of 4 and let R, resp. ®, be a set of
cardinallity & resp. 7 containing the symbols 0 and 1 but not the symbol
. We choose any ordinary quadrangle in & and starting with one point
of that quadrangle, we coordinatize its elements by (e I [e0] I (0) I
fo,01 r (0,0,0) r [0,0,0] I (0,0) I [0] I (). We choose an arbitrary

bijection from R, to the set of points incident with [e] and distinct

from («) with the only restriction that 0 is mapped to (0). This way,
every point on [e«] gets a coordinate (a), where a€ R U e}. Similarly,
we assign to every line through (=) a coordinate [k], k€ R, fe}. The

unique point incident with [0,0,0] and collinear with (a), ae€ 321, is
given the coordinates (a,0,0). We assign to the unique point incident
with [1] and collinear with (a,0,0) the coordinates (1,a). Next, the
uniq\ue point incident with [0,0] and collinear with (1,a) is given the
coordinates (0,0,a) and finally we assign to the unique point incident
with [A] and collinear with (0,0,a) the coordinates (k,qa). In a
complete dual way, we obtain 1lines with coordinates [k,0,0],([1,4k],
[0,0,k),[a,k)], ae R ,k€eR,. Now, the unique point incident with [a,£]
and collinear with (0,a') gets the coordinates (a,%,a'), a,a'e®R ,LeR,
and dually, the unigue 1line incident with (4,4) and concurrent with
[0,k'] gets the coordinates [k,0,k'], Le R A, k'€R,. Now every point
and every line has recieved coordinates and every #n-tuple of the form
(), [], (@), [K), (k,a), [a, k), (a,&,a") or [k,L,A'), a,a',beR kL', LeR,
corresponds to exactly one point or line in &. We can define two
quaternary operationys Q, and Q, as follows. Let a,a',LeR A k',LeR,,
then

Ql (klalzlq‘) =b = (a,i,a')_l_(k,b),
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0, (a,k, Ly hY) =% = [k L, k') La,L].
One can check that this implies

( Ql (k,a,2,a') =L ,
— (a,l,a'y I [A,b,k"].
Qz (a, kb k?) =2
THEOREM(1.2.1.2) (Hanssens-Van Maldeghem [6]). Let b any generalized
quadrangle and suppose we coordinatize 4 by the quadruple (% ,%,,0,,0,)

as described above. Then (R ,R,,0,,0,,7) is a quadratic quaternary ring.

The quadrangle (o) I [e~] I (0) I [0,0] I (0,0,0) T [0,0,0] T (0,0) I [0O]
I (=) will be called the base gquadrangle of coordinatization. The point

(1), resp. the line [1] will be called the unit point, resp. unit line.

1.2.2. Quadratic quaternary rings with valuation.

Let (R ,%,,0,,0,) be a QQR and v a map from R, xR UR, xR, to 2u{+e}.
Then we call (R ,®,,0 ,0,,v) a OQR with valuation if (R ,%,,0,,0,) and v
satisfy

(vl) v(x,p) =e if and only if x=p, for all suitable (x,p).

{(v2} For all suitable X%, 3 and g, viX,;#} 2 inf{vi{x,p),vig,p)} and if

vixX, ) # v($.p), then eguality holds.

(v3) v/R xR and v/R, xR, are both surjective.

(v4) If
0, (k0,8 ,0)) = Q (k,a,,L,,a}) = by,
Q, (Gy Ay by R]Y = O, (0, A, by k) = &y,
Q k0, 8y af) = 0 ka0 8y ,a)) = by,
Q, 0y hy by k)) = O, (A hy by, k) = Ry,
0 th,ay,85,03) = 0 (ky,a,,0,,a0) = by,
0, (k3 by k3) = Q) (ay ko by R)) = Ly,
then

vk, k) Y UR]LR]) = vk k) YUk, k) tuia,,a).
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(v5) If
Q (ka8 ,al) = 0 (kysay, 8, ,a5) = by,
Q, (@) cky Ly RY) = 0y (e ky by k) = &y,
Q) (hyray 8y ,a5) = 0 (ky,ay,8,,a5) = by,
Q, @y rhy by hy) = Q) (ay ki by k) = &y,
then
vk R = vk k) tuiag,a,),
raf,ay) = via,,a,) +2.v(k k).
(ve) If
Q tk,a,L,af) =L, and 0 (k,a,8,a;) = by,
then
v(al,ay) = viby ,b,).
(v7) If
0, (a, k,b,k) =4, and Q,(ak,b,k)) = £,,
then

vk k) = v(L,L,).

We call (v2) sometimes the triangle inequality.
We abbreviate QQR with valuation by V-QQR. Let (& ,®,,0,,0,,v) be a V-

QQR, the we can define the following metric in &, .

v (X, §)
8, : R xR R : (x,p) - e S
where e € R denotes the natural exponential base number. Similarly, one
can define
- (x
8§, : By xR 29 R : (x,p) 2 e v 'y).

2

We call (R ,%,,0 ,0Q,,v) complete if (R ,8,) en (R,,8,) are complete
metric spaces, i.e. every Cauchy-sequence converges. We abbreviate a

complete V-QQR to CV-QQCR.

We usually write v(x,0) as v(x). It is shown in [20] that v is symmetric
and hence v(x) = v(0,x) = v(x,0), for all x € R UR,. We postpone our

examples to sectiocn 5.
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THEOREM(1.2.2) (The author in {20]). Let & be a generalized quadrangle
coordinatized by a V-QQR (R, ,R,,0,,0,,v). Then & defines in an explicit
way an HQ-Artmann-sequence H# and hence an affine building of type 52 by
theorem(l1.1.3.2). Moreover, & is isomorphic to the inverse limit of H,
provided that (R ,R,,0,,0,,v) is complete. If not, b is isomorphic to a

subquadrangle of this inverse limit.

1.3. ARffine buildings of type Ez.

1.3.1. The standard apartment.

Let A be the real Euclidean plane provided with the usual distance map
dA. Denote by T a solid triangle with respective angles 45°, 45° and
90°. The length of the two shortest sides is 1. We denote the lines
supporting the sides of 7 by €,, i=1,2,3. Let ¥ be the group cf auto-
morphisms of A generated by the reflections about the lines Zi, i=1,2,3.
The group W is called the Weylgroup of type 62. The image of J under an
arbitrary element of ¥ is called a chamber. The set of all chambers
determines a tessellation T of A in congruent isosceles right triangles.

We call (A,1) the standard apartment of type 62. The vertices of the

triangles of 1T are briefly™ called vertices and the sides of these

triangles are called panels. Vertices, panels and chambers are also
called simplices. Two vertices are called adjacent if they lie on a
common panel. Panels of length 1 are called short panels, the other

ones are called long. The lines supporting the panels are called walls.
A vertex X 1s called special if for every wall #, there exists a wall M=
parallel to M and incident with x. So x is special if and only if it
lies on exactly four walles or eight panels. . Now note that ¥ defines
two orbits in the set of walls. One orbit consists of all walls
containing only special vertices and long panels. We call such walls
straight. The walls of the other orbit, called diagonal walls, contain
both special and non special vertices, but they contain only short
panels. Now let X be a special vertex and denote by Qx the set of all
walls through x. The closure of any connected component of A—r\ﬂy
{where A and the elements of Ex are considered as sets of points) is

called a sector (with source x). The closure of any connected component
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of rﬁﬂk—(x} is called a sectorpanel (with source X).

All definitions (most of them are standard concepts ; see Bourbaki {2])
above are illustrated in figure 1, where we picture the standard
apartment (it is in fact the geometric realization of the Coxeter

complex of type EZ).

1.3.2. Discrete systems of apartments of type Ez-

An affine building of type Ez, also called a discrete system of
apartments of type 62, is by definition a pair (A,¥), where A is a set
and ¥ is a family of injections from A in A satisfying the axioms (SAl),
(SA2), (SA3) and (SA4) below. The building (A,¥) is called symmetric
(resp. complete) if it also satisfies (SA5) (resp. (SA6)). The image of
A under an arbitrary element of ¥ is called an apartment. We suppose

that A is provided with the tessellation T and we call the image of a

chamber, panel, vertex, wall, etc... under the action of any element of
¥ also a chamber, resp. a panel, a vertex, etc... In particular, the
elements of A are called points (just like the elements of A). Here are

the first four axioms.

o I ST S S S e e g R Vi

>
|
|
~
>
>

\/ @ = Sector with source > ..

_X'i M= Strasght wall.

W, = Diagnnal wall.

1I',= Long pan<l.

.= Short parci.

/ 7/1 7.= Diagonal sectorpanel with

(]2

\<><
>

J SN S N

/f\/f\/
FIGURE 1
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(sal) ¥ - # =7.

-1 .
(SA2) Let f,f* € F. The set B = (£ ~- £)(B) is a (not
necessarily finite) union of simplices, it is closed and
convex (with respect to dA and the topology induced by

dA) and there exists weW such that £/8B = £'. w/B.

(SA3) Every two points of A lie in a commom apartment.

(sa4) If f€¥F and x is an arbitrary point of f£(A), then there
exists a retraction (i.e. an idempotent surjection) p :
A —/ (A) such that the restriction to every apartment
diminishes distances (i.e. Z_l-p~ﬂ' diminishes distances

A, for every f£'€¥%) and such that p_l(x)=={x}.

A germ of sectorw is an equivalence class in the set of all sectors of A
with respect to the equivalence relation “Q, and Q, are equivalent if
Q, MQ, contains a sector”. We say that a germ of sectors lies in an
apartment if at least one (and hence infinitly many) representative

does.
(SAS) Every two germs of sectors lie in a common apartment.

This set of axioms was introduced by J.Tits in [16]. Note that by the
saying “x lies in the apartement I” we really mean “there exists f€ 7

such that X is an element or a subset of L = £ (B)".

J.Tits [16] shows that, in view of our slightly modified axiom (SAZ),
this definition is equivalent to the definition of an abstract building
of type 52. The way to go from a discrete system of apartments to an
abstract building is symply by ignoring all points ‘which are not

vertices. Hence there exists a type map Tpp from the set of vertices

(@]

of any affine building A of type C, to {1,2,8} turning A into a

Buekenhout-Tits geometry of rank 3 with Buekenhout-diagram (see [4])
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There exists a similar type map tyﬁA defined over the set of vertices of
(A,7T) and Typ can be considered as the image of tygk under the action of
the maps £€%. This is well defined by (SA2). The vertices of type 1
and 3 are special. The residue (cp. Buekenhout [4]) of such vertex is a
generalized quadrangle and the residue of a non special vertex (a vertex

of type 2) is a generalized digon.

Now, the set of apartments of an affine building of type 62 is not
uniquely determined, but Tits proves that it always contains a maximal
set of apartments (see Tits [16],théorémel ). Hence the following
axiom :

(SA6) The set {f(A)|f €F} is a maximal set of apartments for A.
BhH Tits [16], every complete building is symmetric.

Throughout, we will always assume that every affine building of type 62
is thick, i.e. every panel is contained in at least three chambers.

This conforms to the notion of building in Tits [15].

1.3.3. The geometry at infinity.

In this paragraph, we define for every symmetric affine building of type
Ez a geometry at infinity. Our definition is equivalent to Tits'
building at infinity (cp.[16]).

Let A be a symmetric affine building of type 52. By (SA2) and (SA3), dA
induces a well defined metric dA in A (in the obvious way, see also Tits
[16]). Now, two sectorpanels p and ¢ are called parallel if they are at
bounded distance from one another, i.e. the sets {dA(x,q)lxe r} and
{dA(y,p)lye q} are bounded (where dA(x,q) = inﬂ{dA(x,¢)| g€ q} and
similarly for dA(y,p)). This relation is apperently an equivalence
relation and we denote the equivalence class of a sectorpanel p by ¢ (p).
One can easily see that such a class contains either straight or
diagonal sectorpanels (see also [19]).

We can now define the following point-line incidence geometry A, =
(PAD ,L(AJ,I) : the points (elements of P(A,)) are the parallel

classes of straight sectorpanels ; the lines (elements of £ (A,)) are the

parallel classes of diagonal sectorpanels and a point ¢ (p) is incident
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with a line ¢ (f) if there exists a sector containing at least one
representative of both ¢ (p) and c(%). By [16],proposition 5, we can
identify the set of incident point-line pairs (the flags) with the set

of germs of sectors.

In every generalized quadrangle, we call two points (resp. lines)

opposite if they are distinct and not collinear (resp. concurrent).

THEOREM(1.3.3)  (Tits [16]). The geometry A, as defined above is a
generalized gquadrangle. The eight germs of sectors in an arbitrary
apartment XY define eight flags in A, which determine a customary non
degenerate qﬁédrangle Zo in A. The map X - X, 1s a bijection from
the set of apartments of A to the set of customary non degenerate

quadrangles in A.. The "trace at infinity" of a straight (resp.

diageonal) wall of A is a pair of opposit points (resp. lines) in A..

We call A, the geometry at infinity of A or also the generalized

e —— -~ P o P <7 A
quadrangle at infinity of A.

1.3.4. The nth floor of A with basement ».
Let A be an affine building of type 62 and 3 a special vertex of A. We

denote

Jo(A) = de verzameling van alle toppen van A.

AP (A, )

de verzameling van alle sektorpanelen van A met bron 3.

We define the point-line incidence geometry ¥, = (P(W,),L(¥,),I) for

every n €N and every special vertex 3 of A as follows.

PH ) ={P eTo(A)|Pepe (A3, pis straight and d, (P, 2)=n}.

A
{€£ e To(A) 1L € L € MP(A,3), p is diagonal and dA(?,A)==¢2.n},

W)

VPe PW,), VEe LW,)): PT1ZL < P, 5 lie is a common apartment.

We call ¥, the nth floor of A with basement 5, or briefly the nth floor

of (A,3). Note that the first floor of (A,3) is nothing cther than the
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residue R(3) of s with a predestinated prescription of what will be

called points or lines. It is a generalized quadrangle.

Suppose P e P(¥,), then the vertex P' adjacent to P at distance n-1 from
2 (assuming n21) is a point of W,_, and we denote ¥'= rﬁ_l P . A
similar definition for 1'(:_1 (£) holds if L£e L(W,). Apparently, 1']:_1

defines an epimorphism from ¥, onto W,_, in the sense of (1.1.1).

1.4. Some more known results.

THEOREM(1.4.1) (Hanssens-Van Maldeghem [10]). Given A and 3 as in the
previous paragraph, then the sequence ('W,',I'QH)LE,r is the base sequence
of some canonically defined HQ-Artmann-sequence #H(A, ). The building
defined by H(A,3) as in theorem(1.1.3.2) is canonically isomorphic to A
and the geometry at infinity of A is isomorphic to a subguadrangle of
the inverse limit of H(A,?) . Conversely, given an HQ-Artmann-sequence
H, denote by A the corresponding building\ (cp. theorem(1.1.3.2)). There
is a well defined special vertex & (corresponding to the level (0 HQ of
#) in A such that tﬂe sequence (WL,H:”),'E“ defined above is the base

geometry of ¥ and moreover K is equivalent to H(A,3).

THEOREM(1.4.2) (Van Maldeghem [20]). Let & be a generalized quadrangle
coordinatized by a V-QQR. Let A be the corresponding building as in
theorem(1.2.2) (provided with a suitable set of apartments ; see [0]).

Then b is isomorphic to the generalized quadrangle at infinity of A.
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2. MAIN RESULTS
THEOREM(2.1) . Every coordinatizing QQR (R ,R,,0,,0,) of the generalized
guadrangle at infinity of any symmetric affine building A of type Ez is

a V-QQR. Moreover, if A is complete, then (®,,R,,0,,0,) is a CV-QQR.

THEOREM(2.2). Suppose b is a generalized quadrangle. Then the following

statements are equivalent.
(2.2.1) b can be coordinatized by at least one CV-QQR.

(2.2.2) All coordinatizing QQRs of b can be structured in a

natural way to CV-QQRs.

(2.2.3) & is isomorphic to the generalized quadrangle at infinity

of some complete affine building of type Ez.

If one of these conditions is satisfied, then there 1is a natural and

unique way to recover the valuation from the building and vice versa.

THEOREM(2.3). Suppose b is a generalized quadrangle. Then the following

statements are equivalent.
(2.3.1) & can be coordinatized by at least one V-QCR.

(2.3.2) All coordinatizing QQRs of b can be structured in a

natural way to V-QQRs.

(2.3.3) & is isomorphic to the generalized quadrangle at infinity

of some symmetric affine building of type C,.

If one of these conditions 1is satisfied, then there is a natural and

unique way to recover the valuation frem the building and vice versa.

The proofs of these theorems will be given in the next section. They

will unable us to show our main theorem, stated in the introduction.
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3. PROOFS

3.1. Definition of the valuation and first properties.

3.1.1. Definition of the valuation map.

Throughout, A is a symmetric affine building of type 52, A, is the
generalized quadrangle at infinity of A and (®,®,,0,,0,) is a
coordinatizing QQR of A..

Let & be a special vertex in A, then we can project down the points (),
(0),(0,0),(0,0,0), (1) and the lines [}, [0],[0,0],[0,0,0],[1] onto R(3),
the residue of 3 in A by intersecting R(3) with the sectorpanels with
source & corresponding to these points and lines. Recall that R(3) is a
generalized quadrangle. If all points and lines abover are mapped onto
pairwise distinct varieties, we call & a basement for (% ,®,,0,,0,), or

briefly a basement.

THEOREM(3.1.1.1) With the above notation, there exists a unique

basement & for (R, ,%,,0,,0,).

PROQCF. Suppose 3 is a basement. By [10]),corollary(2.2.11), & must lie
in the apartement Z of A determined by the basequadrangle of

coordinatization. By the same token, 3 must lie in the apartement 2(1)

determined by the quadrangle (e) I [e}] I (1) I [1,0) I (1,0,0) I [0,0,0]

I (0,0) I [0] I (e). But X meets Z(l) in a half apartement bounded by a

wall % with trace at infinity {[e],[0,0,0]} (see Tits[16],58). The

apartment [ (ZUZ ) = (ZnNZX -9 corresponds to the quadrangle (1) I

(1) 1)
(e T (0) I [O0,0} I (0,0,0) I [0,0,0] I (1,0,0) I [1,0] I (1) and hence
3 must also- lie in this apartement. These three apartments meet in #.
So » must lie on . Note that M is a straight wall. ©Now let Z[l] be
the apartement of A determined by the gquadrangle (o) I [e0] I (0) I [0,0]
I (0,0,06) 1 [1,0,0] I (1,0) I [1] I (o) and let }:m}:[“ be bounded by
the wall #'. Then similarly as above, -2 must lie on #'. But ' is a
diagonal wall. Both walls % ans M'lie in X and hence they meet. So 2
must be the meeting vertex of % and M'. Conversely, the meeting point

of ¥ and ' satisfies the regquired conditions. []
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Throughout, we denote by 3 the unique basement of (®,,%,,0,,0,). We
denote the set of points of A, by P(A,) and the set of lines of A, by
£ (A - Consider H(A, 3) (with the notation of theorem({(l.4.1)) and

denote the level n HQ of M(A,3) by

W, =@FW),LW), 1, P, (¥ )),<, (L, W), <, &, _1H 6 ,/V%)%ePI_l ) )

for all positive integers n. Let « be the valuation map in ¥, (for all
n) and extend ¢« to the inverse limit W, of H(A,s) in the obvious way.

Note that &4 is a subquadrangle of W, by theorem(1.4.1) and hence U is
also defined in 4. Denote by Il the projection of & ontc ¥, (it is the
restriction of the natural projection of the inverse limit onto one of
its constituents). Then we define the valuation v in (® ,%,,0 ,0,) as

follows.

Let a,LeR , then v(a,b) =

[T ((a))#IL ( (o))

wi(a)y, (b)) if ,
IT (L)) =IL ( (o))

((a))=IL ( (o))

—u (@), (=) if {Hl E ,
IL ( (L)) 2IL ( (o))

IT ((a))#IL {{e9))

(L), () if * ,
IT ( (L)) =IL ((o))

TL ((a))=TL ((c))

u((a)y, (b))y-wu((@a), (o)) = ((b), (=)) if {nl Hl .
AL (b)) =IL ((e0))

And dually for elements k,£ €R,, we define 2.v(4, L) =

(A1) =TT ([e=])

,Hi
w{lk}, (L) if <~
([L1) =1L ([=])

=i {[==
~w(TA], [=]) AN =)

vV TT s r S EAY
(Lo )

’,J

H
TS
=

,..
-
&
s
H
[ohs
-
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IT ([A])=IL ([e])

L ([£])=T] ([es])

IT ([A))=IL ([e])

W(lh), [R)) ~w ([A], [eo]) ~u([R], []) if { :
L ([£])=IL ([e])

Note that the valuation of a pair of concurrent lines is even and hence

v(k,R) €2 is well defined.

3.1.2. Properties of the valuation map.
THEOREM(3.1.2.1). The map v as defined above satisfies the axioms (vl),

(v2) and (v3).
PROOF. The proof is a copy of the one in the }Kz—case, see [18],4.5.4. D

LEMMA (3.1.2.2). Suppose P,0eP(A), £, Med(Ay) and P I M 1T 01 €. Put

u(P, L) = (k,%), K, L EN. Then we have :

(a) U(T,Q) +U¢($1M) = 2/
(b) IL(P) I1I, (%) & i<L.

PROOF . Let n> 2k. Similarly to property(1.1.3.9), «dl (® ,T] (£)) =
(k,2). By property(1.1.3.13), (Il (®,I] (0)) = 2k-L and «(IT (£),II (#)) =
2£-2k and hence u(P,Q) = 2k-L and w({,M) = 28-2k. Hence (a). Claim (b)

follows from property(1.1.3.10). D

PROPOSITION(3.1.2.3). Let P,,0, € P(A) and &, , M, € L(A), ¢=1,2.
Suppose P, 1 M, I 0, T £ 1 P, I M 1 0 1 & I P, (non-degenerate
quadrangle) and «u(P,,0,) =uw(®,,0,) =w (P, ,0,) =0. Then :

(@) w@ M) =uwlE, M) +u® ,0,),
(b)  w(,, M) = u® ,0) +ul& M) .

PROOF. Let the left, resp. right hand side of (a) be equal to k&, resp.
£. By the preceding lemma, I (Q,) I I, (£,). But by (GQ2) and property
(1.1.3.6), ITL (£.) =Tk (#). Hence £k2L. We project everything down onto
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W, . If I, (Q,) is not incident with IL (£,), then IL (£)),I} (£,) and
I, (#,) are pairwise distinct. But by (GQ2), property(1.1.3.5) and the
fact that « (Il (P,),T, (Q,)) =0, we have I (£,) =IL (£,), a contradiction,
hence IL (0,) I I (£,) and by the preceding lemma £<%, hence A=£{. This
shows {a}. The proof of (b} is similar. Note that (b) can also be

derived from (a) by interchanging £, and £,, 0, and $, and P, and Q,. D

PROPOSITION(3.1.2.4). 1ILet P,0 € P(AY), ¢ € L(AY, ulP, Q0 =4< n and
suppose P I £ I Q. Then, in W,, the component of Il (£) through I (¥) in
¢" "¢ (P) is the same as the one through Il () in g P =6¢.

PROQOF. Let 3' be the vertex in A corresponding to Hj (P) = I'Ij (@), then
the 1line structure in " 7 (P) is by definition determined by the
projection H,"_j of A, onto the (7:—(;')th floor of (A,3"). It even 1is
trivial to see (lock in the sector with source 3 and "trace at infinity"

{?,£}) that this projection maps £ ontoc a component of I (£). The

; (O D

PROPOSITION(3.1.2.5). Let P,,0, € P(AL and &, M, € L(A, i=1,2.

latter is certainly incident with IT (P) =I'I;_j (P) and IT (Q) =11 _
Suppose P, T M, 1 0, T & T P, 1 M 1 9 I £, I P, (non-degenerate
quadrangle) and «(P,,Q) =w(®,,Q,) =0. Then

(a) u(il Im“l) = u(xz IM?_) +u(?llQ2) +U(?1,Q1)_,
(b) u(zz fMl) +u(?1IQ1) = u(?l’QZ) +LL(Z1 IMZ) -

PROOF. By lemma(3.1.2.2), «(L,, M) +wu(® ,0 ) =2 4 if and only if Hj (F)H

I Hf. (#,). But since u(P,,0Q,) =0, we have either I—Ij &, = Hd‘. (M), oxr we
apply (GQl), get 2.4, (P,, M) = u, (P,,M,) and conclude with (GQ2) that
Hj (M) = Hf (€, . In both cases Hj ) I H} (£,) and hence w«w(P,,0,) +
@, ,M,) 2 j. Similarly (or by a suitable permutation of the indices)

also the converse holds, proving (b).

The proposition is symmetric in «(P,Q,) and « (P, ,0,). So we.can assume

without loss of generality that (P ,0 )< «(®,0,) and we put A=
w(® 0. Also denote 2'= TIL(P;) and let ¥' be the level n HQ
determined by the »th floor of (A,3'). Denote by IL the corresponding

projection map from A, onto ﬂ'; . Choose n arbitrary but bigger than 0.
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We have W! = Z, (”‘,_+k,0" (I, , (P,)) by construction. By assumption on %,
It (®,),IT (@) and II'(Q,) are affine points of W' (with the natural
definition of 'affine'). Now since «(®,,0,) = 0< A&, i=1,2, the point
IT (P,) cannot be affine. Hence it is a point at infinity. So in ¥}, we
have a quadrangle IT'(P,) I I (4,) T IT(Q,) I (L) I IT(P,) T I M) I
) 1 I&,) 1 I'(P). If «' denotes the valuation map in ¥}, by
construction and since II,:(?Z) is a point at infinity, we have that
u' (IT (P,) , 11 (0,)) =u' (IT (P,) ,IT (Q,)) =w«' (IT () ,IT (Q;)) = 0. Now choose
n big enough such that the quadrangle above is non-degenerate in ‘W,: . By
proposition(3.1.2.4) and its proof, IT' (£,) is a component of Il , (£;)
and similar for the other 1lines. Hence by property(1.1.3.4),

@' (I (P,) T (0,)) =«(TL, , (P,),TL,, (0,)) -4 and so :
u' (?1102) = u(?lloz) _k (1)

By properties (1.1.3.7) and (1.1.3.12), it follows immediately that
' (IL (L), I0 (y)) = «ddl, , (£), L, , (#;)) and so :

w (&, M) = ulE, M) (2)

Consider the sequence Il ,,(Q,) I I, , () 11T, ,(P,) I 1, , (#). There
holds «(Il,, (P,),I],,(0,)) = 0 and hence &(Il, ,(£), I, )) =
2.u; (TL , , Q) IL ., (M) . By property(l1.1.3.11) (all conditions are
satisfied), «, (IT,,(Q,), Il ., )) - & = «! (I (Q,), I (M)). Since also
m,) 1 I (&,) 1 I, 1 II'@) and «'(IT(Q,),IT (P,)) =0, we have by
(GQ1), w' (I (L), IT (4)) 2.4 (I (Q,) , IT (M) . Combining the last
three equalities, we get «'(IT (£),IT (M)) = «(I] (L), 1T, (#)) - 2.

Hence :

u' (& M) = uw@ M) -2k (3)
Since u' (P, ,0,) =0, we have by proposition(3.1.2.3)
ul (21 IMl) = u' (ZZ IM2) +u' (?1 le) (4)

Substituting (1), (2) and (3) into (4), we abtain (a). D
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PROPOSITION(3.1.2.6). Suppose £,,%4, € £(A), P,,P,,0,,0, € P(AY and P,

¢, 0o, 1£,, 1%, 0, 1Lo,, é=1,2. If 1L (£,) and I (£,) have no

4

point in common, then «w(®?,,Q,) =u(P,,0,).

PROOF. First note that «({,,%,) =0. Put a=wu(® ,Q ) and consider ¥

n*

If o I (P, I (&,))# 0, then IL(P;) I II (£,), contradicting our
assumptions. Hence « (I (?,),IT (£,)) = (0,0) (cp. property(l.1.3.3).
Conseqguently, by (GQ2), the 1lines joining IJ (P,) and IT (¥,), resp.
IT (Q,) coincide. Call that unique line #,. Suppose /= u«(®,,0,) < n.
Consider Z,_, (W,,6" (I (,))) and let #_

resp. M2, be the unique

F #
component of #, in Z,'_/ (W,;,C)"-“J (IT, (#,))) through I (,), resp. II (Q,).
Let ff'fPQ be the unique component of Il (£,) through both IT (,) and IL (Q,)
in Z,_, (W, ,O" 71 (P,))) (cp. proposition(3.1.2.4)). Denote by 7T, a
base point of the strip determined by #, and Z, _, (¥, ,07'_'f (IT. (?,))), then

7, 1M, 1T @P,) I Lo TTL(0) T M2, I7,. since uln,n—41(T,, T, (P,))

¢
=0, by (GQ) we have /lé.)_l; /Mﬁ?_f. (uln,n-£1 is the valuation map in the HQ

L, 0,01 @) . But uln,n-41 (Il (P,), 1 (Q,)) = 0, hence by
property(1.1.3.6), Ilﬁ'_j: /iribQ_j= £

7

PO By property(1.1.3.7), we have then
u(Il (£,),M,) >0 and so IL (P,) I T (£,), a contradiction. Hence u(%P,,0,)

>2u(P ,0,). Similarly or by symmetry, «(P;,0,) 2u(® ,0,). ‘ D

PROPOSITION(3.1.2.7). Suppose P, ,P, € P(A, &, , L, , M M, € LA, £, T
P, M, T P,, £ 1L, and M LM, i=1,2. If IL(P,) and Il (P,) are not

4

collinear, then w(¥, M) =uw(@,, M).

PROOF. Let Q, resp. Q, be the intersection point of £, and &, resp. #;
and #,. By the assumption, «(P ,Q) =« (P ,0,) =u®,,0)=u®P,,0) =0
and so by proposition(3.1.2.3), «(£, M) =u(&,, M) . D

As usual, we denote r(x,0) =v(0,x) as v(x), for all x in & or ®,. We

also define

+ - +
R ={aeR (v(a) 20} and R =R -%,
ot = L =D tEY >0 ana @ D _ﬁ>+
Je, AR E G, (U(R) 20 and i, ey T Ty .
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PROPOSITION(3.1.2.8). If a,b €®R, then

w((a), (), (1)
_ w((a,0,0), (L,0,0)), (2)
vab) w((p,a), (P b)), (3)
w((x,pra), (x,0,0)), (4)

for all xefR; and all pe?;.
PROOF. By definition, v(a,f) =u((a), (L)). Now u&([«],[0,0,0]) =0 by the
construction of 4, so from proposition(3.1.2.6) follows (2). Similarly,

v(a,b) =wu((l,a),(1,4)) =w((0,0,a),(0,0,4)). But by definition, IL ([e]) #
IT ([p)) and so from proposition(3.1.2.6) follows v(a,b) =u((p,a), (p, b))
since (0,0,a) L (p,a) and (0,0,4) L (p,b). If IL ([x,p)) LIL ([0]), then
IT ((e0)) I IL ([x,p]) since ¥, is a generalized quadrangle and [x,p] meets
[e].  But then IL ((x)) =1L ((«)) since IL ([x,p]) # IL ([e]) (after all,
Il ([x,p]) =1IL ([e]) would imply II ([0,0,p)) =1IL ([0,0])), thus IL ([1,p]) =
IL ([e]), thus I ([p,0,0]) = IL ([0,0]), hence IL ([p)) = T ([])

contradicting v (p) 2 0) which contradicts v(x) = 0. Hence II ([x,p]) 1is
not concurrent with IL ([0]). Since (0,a) L (x,p,a) and (0,4) L (x,p,0),
(4) follows from proposition(3.1.2.6). D

PROPOSITION(3.1.2.9). If k, €R,, then

w(lkl, [L]), (1)
w([k,0,0],[%,0,0]), (2)
2.v(k, k) =

AR u(lx, A1, [, 41) (3)
U'([Pix,k]/ [Plxlz])l (4)

for all xefRI and all pe?;.
PROCF. Similarly and dually to the preceding proposition, now using
proposition(3.1.2.7) in stead of proposition(3.1.2.6). D
PROPOSITION(3.1.2.10). Let £e€¥(A)) and suppose £ = [k, L,A'] with v(k),
v(b),v(k"') 20. Then I (£) and Il ([«]) are not concurrent. If moreover

P, = (a,,,,a}) 1 £ with v(a,),v(X,),v(a}) 20, ¢=1,2, then u(® ,?P,)

{

zr(c;.1 ,az) .

PROOF . From the proof of proposition(3.1.2.9), dual to the one of
proposition(3.1.2.8), there follows IL ((4,0)) #IL (()). Since IL ([A"']) #
IT ([«]), we have successively IIL ([£',0,0])# IL ([0.0]), IL ([1,k']) #
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Il ([e)), IL ([0,0,A')) #IL ([0}), IL ([0,A']) #IL ([=]) (by the construction

of the coordinates, the fact that W, is a generalized quadrangle and the

definition and construction of 3). Hence IL (£) can not meet IL ([e]),
nor these two lines can coincide. Now (a;) .LfP‘.,. {=1,2, and hence the
result follows from proposition{3.1.2.6). D‘

PROPOSITION(3.1.2.11). Let Pe P(A,) and suppose P= (a,L,a') with v(a),
vy, v(at) 2 0. Then Il (P) and II ((=)) are not collinear. If moreover
£, = (kb k}) I P with vik,),vib,),v(k])20, =1,2, then u(,,L,) =

vk, k).
PROOF. Similarly and dually to proposition(3.1.2.10) D

THEOREM(3.1.2.12). The 5-tuple (R, ,®,,0,,0,,v) satisfies (v4), (v5), (v6)
and (v7).

PROOF. We show (v4). Given :

O (ky,a, dy,al) = 0 (A ,0,,8,,0)) = by,
Q) (ay s hy by RY) = 0y (ay hy by k) = Ay,
0 hy,ay,hy,a]) = 0 (a5, 85,a)) = Ly,
O, (ayrhy iy i ky) = 0, (Ay, Ay, by ky) = 45,
Q) (k3r05,85,a7) = 0 (hy,a,,8,,a) = by,
Q, @y rky by Ry = 0y (Gy ky by R)) = X,

put P, =«(a,, L, ,a}l), £, =1k, L, ,k}), i=1,2,3, P, = (kL)) and finally &, =
(£, ,0,,k}1. Then by assumption and the coordinatization of 4, P, I & I
P, 14, 1P, 14, 1P, 1% 1P . Since Il () is not collinear with
Il ((«)) by proposition(3.1.2.11), we have «(? ,?,) = 0. By the same
token, «(?,,?,)= 0. Hence by proposition(3.1.2.5) (except if the
quadrangle above degenerates in which case the assertion is trivial

since both sides of the equality to prove are +«)

a&, L) = uwl,, L) +a@ ,P) +u®P,,?;) (1)
wld, L)) +w(®P Py = wild,, L) +u®,,.P,) {2)
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But by proposition(3.1.2.9), «(¥,,%,)= 2.v(k{,k]) ; Dby proposition
(3.1.2.11), wu(&,,L;) = 2.v(k,,ky), u(d, , &)= 2.v(k,,k,) and u(&;,%,) =
2.v(ky, k) ; by proposition(3.1.2.10), w(®, ,?,) =v(a ,a;) and w®, ,?;) =

r(a,,a,). Substituting all these wvalues in (1) and (2), we obtain
2.0k} R]) = 2. vk, ky) Yv(a ,a;) +U(a,,a,) (3)
2.v(k, k) +v(a, ,ay) = 2.0k A)) tr(a,,a,) (4)

Adding (3) and (4) side by side and dividing by 2, we get
vk, k) YUk K] = vk k) Yk, k) tuia,ay),

proving the assertion. Similarly, one shows (v5),(v6) and (v7),

completing the proof of the theorem. D

The next theorem can be proved similarly to the case sz (see [181],

4.5.4). We will therefore only scetch the proof.
THEOREM(3.1.2.13). The 5-tuple (R ,R,,0,,0,,v) is a V-QQR.

PROOF . Consider the apartment X of A corresponding to the quadrangle
(e0) I [e0) I (0) I [0,0] T (0,0,0) I [0,0,0] I (0,0) I [0] I (o) in A..
We ccncieve X as the real Euclidean plane and define coordinates as
follews. The origin is the point s. The first base vector has its end
point in II ((=~)), the second base vector has its end point in IL ([e]).
Note that these points are special vertices and every special vertex of
Y can be obtained by an integer linear combination of the base vectors.
Now let &* be an arbitrary special vertex in ZX. Suppose 3* has
coordinates A{a,B). As in the case 212, one shows that there exist a
point (x) and a line [p] such that, if we recoordinatize A, with respect
to the same base gquadrangle of coordinatization, but taking as unit
point, resp. line, tﬁe point (x) resp. the line [p], then 2* is the
basement for the new coordinatizing QQR (3?.;,32;, ¥,0%) of A,. Denote the
corresponding valuation map as defined in 3.1.1 (replacing (% ,%,,0,,0,)
by (R,%),0,0))) by v*. Then theorem(3.1.2.12) is valid for (R, %},07,

* . . .
O, U*). Denoting the new coordinates between two stars, we can define
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the following bijections.

i
;P R —)33: : a—)anl where (a) =*(a 1)*,

T T
7'52 : ﬁl - %* s a9 ai"z where (0,a) =*(O,a--2)*’

SR ko ./txl where [A] =*[kk1]*,

R, - R : £ - /tlz where [0,4k] = *[o,kxz]*'

There holds

2
0, (ko t,an™ = of kM, 6™, 1t 0Ty (0Q*)
b - b b "
0, (G, k, by kY2 = oF (@™ k1, b2 p 72y (00*)
And as in the case iz! one can show here that
Ux (anl,bnl) = v(a,b) +a, (vv*)
v (k)‘l,27‘1> = v(k,2) +B, (vv™)
v* (anz,bnz) = va,b) +a+ 2B, (Vv™)
v*(kkz,’l}”z) = vk, L) +a+B. (vv™)

0 (hysay .8y ,af) = 0 (ky,0,,8,,07) = by,
Q, (G rky Ly RY) = 0y (Qy ky Ly ky) = Ry
0, (kyrap &y a)) = 0 (ky,ay,8;,a5) = by,
0 (g ky ik ky) = 0 (@y ks by kD) = Ay
O (Ry,ay,85,a5) = 0 (ky,0,,%,,a5) = by,
Qp (G rhy by RY) = 0, (ay , hy Ly k) = &,
Let 4= inf{v(a,),v(a,),v(a,),v(@]),...,v(L;)}. If 4> 0, then (v4)
follows from the previous theorem. Suppose now £<0. We choose (¢,B) =
(1i1,141) and remark that 0% = 072 = 0™ — 0*2 — 0.  hence the formulas
(Vv*) yield
vr(al) = v(a) + t 1
v* (kkl) = (k) + 141,
pr(a"?) = v(@) + 3141,
A

px(R72) = up(k) +2141.

We rewrite the assumptions of (v4) by means of the formulas (Q0™)
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A, mo LA T, _ %

Q;(kz\'lla?llz:LZ,aénZ) = Q:(klllazllzzzlaz' ) = blzl
A A A 8 A

G eSS I SE DR CUC SO S D R ME
A, W LA T * (A T, A T T

Qf(kzl,all,f.lz,a_l‘ 2) = Ql (k211a3 %2-3210'3' 2) = bzzl
A A A

oF (@™ kM B2 kit o or @ a6 sty < 0l
A A T A A n T

Qf(/:31,a?1,232,a3' 2y = Q;(k311a‘§1!2’221a5 2) = by,

R AL S SR g S BB S Lo S R Y

But now all elements in these expressions have positive w*-valuation.
Hence we can apply theorem(3.1.2.12) and obtain

e L S LRI T N7 Al LR PP R

Using (VV¥) we get the result. Similarly, one shows (v5), (v6) and (v7).

This completes the proof of the theorem. D

3.2. Proof of theorem(2.1).

We use the notation of the preceding paragraph.

In A, a convex (with respect to the metric dA) subset of a straight wall
bounded by vertices 2, and 3, is called a straight interval and is
denoted by [2,,3,].

There clearly only remains to show that, if A is a complete building,

then (R ,R,,0,,0,,v) is complete. We show that R, 1is complete with
respect to v. Things are similar for ®,. So let (a;) ;ex be a Cauchy-
sequence in R, . Hence there exists a p€ N such that, for all g> p,
v(ap,aq) 2 0. There are two possibilities now.

>
(1) v(a}.)) >0.
By the triangle inequality, U(aq) 20 for all @2 p. We define a vertex

s, for neN, as follows. Let 4 be such that for all A2/, via,,a,) 2n.
Then &, = HL((aJ)). This 1is independent from the choice of a, since

another choice a‘} yields a point (aa".) with via,,

u((a}), (aﬂ;)) 2n. So if m<n, then also 3 =1'1,1((0L,)) and hence [3,3,] is

ad;) 2 n and hence



-36-

a straight interval containing 2, for all m<n. By [10],corcllary(2.2.8)
U{[2,3,]11n €N} is a sectorpanel . Let P be the point of A, determined
by . If P is not incident with [e], then «, (P, []) =% is finite. If
nz 2%, then u, (I (F),I] ([«])) =L (cp. property(1.1.3.8)). But I (P) =

Yy a contradiction, hence P is incident with [=]. Set P= (a). Then

(4
IT ((a)) = 3, and hence there exists 4 such that v(a,a;) 2n for all A2 /.

Hence a is the limit of (a;) jen-

(2) v(ap) <0.

In this case, lf(aq) = v(ap) = ¢ constant for all g2 p. We define 3,
exactly the same way as in (1), Then the result follows similarly,
taking into account u((a(),(aj)) =w(a(.,aj) = v(a‘.,aj) -v(a;) - v(aj) =

v(a[,aj) -2¢c > v(a[,aj), for all ¢,4 2 p.

This completes the proof of the theorem D

3.3. Procf of theorem(2.2).

(2.2.3) = (2.2.2). This is theorem(2.1).
(2.2.2) = (2.2.1). This i3 trivial.

(2.2.1) = (2.2.3). This is theorem(1.4.2).

3.4. Proof of theorem(2.3).

(2.3.3) = (2.3.2). Follows from theorem(2.2) by completing the set
of apartments of the given building to a complete set of apartments.
So given generalized quadrangle 4 is a subquadrangle of a generalized
guadrangle which can be coordinatized by means of a CV-QQR. This ring

restricts to a coordinatizing V-QQR of A.
(2.3.2) = (2.3.1}. This is trivial.

(2.3.1) = (2.3.3). sSimilar to the the case of buildings of type A,
(see [18],Remark(6.2.3)). D
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4. PROOF OF THE MAIN THEOREM

We first proof the result for complete buildings :

THEOREM. Every complete affine building of type 62 is unigquely and
completely determined by any coordinatizing quadratic quaternary ring

with complete valuation of its generalized quadrangle at infinity.

PROOF. By theorem(1l.4.1), it suffices to show that, if (R ,R,,0, ,0,,?)
is an arbitrary CV-QQR coordinatizing A, and & is a basement for
(R, ,R,,0,,0,), then the level n HQ ¥, determined by the n-th floor of
(A,3) is isomorphic to the level n HQ ¥, determined by (® ,®,,0,,0,,v)
as meant in theorem(l.2.2) (see [20]). We assume here that the reader

is familiar with that construction.

By the definition of the wvaluation map ¥, it is straight forward to
verify that one can identify the sets P(V,) and P(¥,), resp. £(V,) and
£(W,) as follows. Suppose P, € P(¥,) and let P be any sectorpanel with
source & containing P, . Then P can be viewed as a point of A, and since
W,  is defined as a quotient geometry of A, by identifying suitable
points and lines, it is clear that we will identify P, with the class of
points containing . We denote that class (which is a point of ¥,
called the projection of P onto ¥,) by ®(P). Similarly for lines. If
P, 14 in V,, consider a sector §) with source & containing both P, and
£, . The trace at infinity of £ is an incident point-line pair (?,£) of
A,. The projection onto ¥, of this pair is (®(®,),®(,)) and this is by
construction an incident point-line pair in W, . Similarly for the
converse. Hence ® is an isomorphism from the the base geometry of ¥, to

the base geometry of ¥, .

Now consider an (n-1)-point-neighbourhood ¢ of ¥, and denote 9= ®(¢).
In fact, ¢ can be identified in an obvious way with a vertex of A
adjacent to 3. We recoodinatize A, as done in [20] to define £, _, (¥ ,9)

(see 3.1.1). By projecting the new base quadrangle of coordinatization a
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nd the new unit point and unit line onto the residue of ¢, we see that ¢
is a basement for the new coordinatizing CV-QOQOR. With an inductive
argument, we see that W, _, (V,,€) is isomorphic to Z,_, (¥, ,D) and the

isomorphism coincides with @ over ¢ in view of the connection between

the partial valuation (see [20]). With a second inductive argument,
this is also true for every j-point-neighbourhood, 0< /< n. Hence v,
and ¥, are isomorphic. D

In the same way as theorem(2.3) follows from theorem(2.2), the main

theorem follows from the above theorem.

5. EXAMPLES

All examples are taken from [20], where one also can find proofs and

further comments.

Example 1.
Let R =R, =GF(g)(T)) with q=2h, Ah>1. Let A ,h, €N be such that @-1
and 21+h1+h2-1 are relatively prime (e.g. A=3, A =1, Ah,=0 ; h=4, h =1,
h,=1 etc...) with (A ,h,) # (0,0). We first define the finite OQOR
(GF (q) ,GF (@) ,Q,,Q,) as follows. Put 6, = 2hi en define

o (k,a,l,a") = kzel.a+a‘,

0, (@ kb k') = aO2 k+ht,

We extend O, to R, as follows

N 0, .
(Xx,t")7¢ = Ix, (2", i=1,2.
Then 6, is a field automorphism of ®,. We define new multiplication
laws as follows
xQ® p = xzel R
0
xX® p=x 2.3
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for all x,pe GF(qg) ((T)) . Let v be the standard valuation of GF(g) ((?)),
then (R ,®,,0;,0),v), where

or (k,a,&,a")
0y (ak, L, k)

A® a+ta',
a® k+hi',

is a CV-QQR.

Example 2.
Let R =R, = GF(g)(?)) with g= 2h, hA>1. We define (R ,R®,,0,,0,) as
follows

Qo (k,a,k,a") = k2a+a',

0, (@ k byk') = ak + k7,

where (Xx, t")e = Xx, (1Ttt)". Similarly as above (® ,®,,0,,0,,v) is a CvV-
QOR.

Example 3.

Let F be a field with valuation v and suppose F is complete w.r.t. v.
Let 6 be an arbitréry element of F with valuation 1. Let ¥ be any field
automorfisme leaving invariant the valuation v. We put ® =FXF, R, =F

and (with x=(x,,x,) € R, ) define

0 (k,a,8,a") = (a,k+a , azkw+a2'),
0, (a kb k') =ik +0a’kY+ k' - 2a b, - 200,b, .

We extend the valuation v to ® by defining for all a= (a,,qa,) €R
L2 2
v(a) = v(a; +6a,).
This defines again a class of CV-QQRs. In the case F=GF(g) ((f) , one
can omit the codition v(B) =1 and replace it by : -0 is a non-square in

GF (q) . This way, one obtaines buildings with Kantor's bad egés as

residues.
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Example 4.

Let K be an arbitrary field of characteristic 2 and put F=K((?)). Let
6,, ¢=1,2,3, be arbitrary elements of F((Z)) such that »(6,) =1 and
v(6,+7) > 1 (v is again the natural valuation on F((Z))}). Define the

field automorfisme
v, : FoaF: (XY =30, i-1,2,3.

. . . . 2
We define three new multiplication laws as follows : for all a,LeF,

a®, b= (ay,a,) ® (by,by) = (o, .by +2.aY¢.bY , a by +a,.b),
{=1,2,3. Finally, the quaternary operations are

o, (k,a,l,a') =k a + a’,
0, (a, kb, k') =(a® a) & A + A'.

This defines again a large class of CV-QQRs and correspondingly a large

class of non-classical affine buildings of type Ez-
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