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A Configurational Characterization of the Moufang Generalized
Polygons

H. VAN MALDEGHEMT

We generalize Baer’s theorem on Desargues configurations in projective planes to all
generalized polygons, thus obtaining a common geometric characterization of all (finite and
infinite) Moufang generalized polygons.

1. INTRODUCTION

The notion of a generalized polygon was introduced by J. Tits in his celebrated paper
on trialities [14]. Ever since, they have become the research object of several
mathematicians (especially the finite generalized polygons). A generalized polygon is a
generalized n-gon for some n =2 (a point-line geometry where every two elements are
contained in a cycle of length 2n and there are no shorter cycles) and an important
theorem of Feit and Higman [1] states that, if the generalized r-gon is finite, then
ne{2,3, 4,6, 8}, provided that all lines contain at least three points and all points are
incident with at least three lines (the so-called thick generalized polygons). Another
important theorem, proved by Tits [15, 16], states that if a generalized polygon satisfies
the Moufang condition (i.e. it has ‘enough’ certain automorphisms, see below for the
exact formulation), then it is known. Such generalized polygons are called Moufang.
Finite Moufang generalized n-gons are the projective planes over a finite field (n = 3),
the geometries naturally associated with the classical Chevalley groups PSp(4, q),
PSU(4, q), PSU(5, q) (n =4), Gx(q), *D4(q) (n =6), *F4(2°) (n =38), g a prime power
and e a positive odd integer, and their duals (see e.g. [8] for an excellent survey on that
matter).

Now, a generalized 3-gon is nothing other than an ordinary projective plane, where
Baer’s theorem (see e.g. [7]) states a connection between a purely group-theoretical
property and a purely geometric property ((P, [)-transitivity being equivalent to
(P, l)-Desarguesian). As a corollary, one obtains a geometric characterization of all
Moufang projective planes. Recently, a similar theorem for generalized quadrangles
(generalized 4-gons) was proved by J. A. Thas and the author (see [12]). In the present
paper, we present a generalization of that result valid in all generalized polygons
(excluding the trivial generalized digons). As a corollary, this yields a common
configurational characterization of all Moufang generalized polygons providing in
particular the first geometric characterization of the known generalized octagons (see

[8]).
2. DEFINITIONS, NOTATION AND RESULTS

2.1. Generalized Polygons
A generalized n-gon, ne{3,4,5,...} of order (s,¢) is a point-line incidence
geometry & = (P, £, I) satisfying (GP1), (GP2) and (GP3):
(GP1) Two distinct lines have at most one point in common and there are exactly
1 + s points incident with every line.
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1t : 3 A cormmmnn lies omd fie oz awoadlss
(GP2) Two distinct points lie on at most onc common line and there are exacily
t

1+ ¢ lines incident with every point.

(GP3) Given two elements x,ye PUY, there exists at least one chain
xlzi1z1 . . . Izdy of minimal length such that j<#n —1 and there exists at
most one such chain of minimal length such that j <n — 1.
With the notation of (GP3), we call j + 1 the distance between x and y and we denote it
by d(x, y). If j <n — 1, then (GP3) says that z is uniquely defined and we denote z, by
IT(y). It is convenient to define also IT,"'(y) =y and IT}(x) = ¢. If d(x, y) =n, then
we call x and y opposite. The parameters s and ¢ can be infinite, but there are no
examples of generalized polygons with s (resp. ¢) finite and larger than or equal to 2
and at the same time ¢ (resp. s) infinite. In this paper, we will always assume s, ¢ = 2. In
that case, if # is odd, then s = ¢ and if # is even, then there are some strong restrictions
on s and ¢ in the finite case (s<t* and t<s’ifn=4or 8, s<andr<s’if n =6, stis
a square integer if n =6 and 2st is a square integer if n = 8 are the most important and
shortest to write down, see [1, 3, 6]). Also, if n =4 and s (resp. ¢) equals 2 or 3, then ¢
(resp. s) is finite by unpublished work of P. Cameron (case s or ¢t =2) and A. Brouwer
(case s or t =3).
Note that, if ¥=(2P, &, I) is a generalized polygon, then ¥* = (%, @, ) is also a
generalized polygon, called the dual of &.

2.2. Further Definitions and Notation

Let ¥=(2, £, I) be a generalized n-gon as defined above. If x and y are points or
lines in & at distance 2 from each other, then we say that x and y are collinear (if they
are points) or concurrent (if they are lines) and we write x 1 y. If d(x, y) = 3, then we
write x ~y. We will also use combinations of these symbols and their meaning should
be clear, e.g. x L L y means d(x, y) =4; x L~y means d(x, y) =5, etc.

A polylateral in & is a sub-n-gon of order (1, 1) in ¥. We have chosen that word in
anology to quadrilaterals in generalized quadrangles and to clearly mark the difference
between generalized n-gons and usual n-gons. Also, if n = 6, then a polylateral is called
a hexalateral. We will denote polylaterals by lower case Greek letters.

Suppose xiIx,I...Ix,_y, x;e PUZL If d(x;,x,_;)=n—2, then we call the
(n —1)-tuple (x4, x5, . . ., X,_1) a root. We usually denote roots by upper case German
letters.

2.3. Generalized Desargues Configurations

Let ¥ = (%, £, I) be a generalized n-gon, n =3 and suppose R = (x1, x5, ..., X,_;)
is a root in & Let mw=(yly,l...Iy,ly;) and ' =(yilyjl... Iy;.ly;) be two
polylaterals in ¥. We call # and &' in perspective from R if for every ie
{1,2,..., n—1}andeveryje{1,2,...,2n}:

| Gt 2 b

(GDC1) d(x;, y,)=d(x;, y})),
(GDC2) IL(y)=IL.(y)) ifd(x,y)<n

In this case, we call y; and y; corresponding elements and the whole configuration of
R, m, 7' and all shortest chains (if they are unique) from the elements of i to the
amounts to the usual Desargues configuration in a projective plane, for n =4, this
notion is the same as defined in [12]. Our main result now states that the existence of
‘enough’ such configurations will imply the existence of ‘many’ automorphisms of a
certain type. We now explain the terms ‘enough’, ‘many’ and ‘of certain type’.
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2.4. Root-Desarguesian

We keep the same notation as in the previous paragraph.

The generalized polygon & is called R-Desarguesian if for every polylateral
w=(yIy.1...Iy,ly;) (where without loss of generality we can assume that
d(x,, y1)<n) and every y e PUY, x,#ylIl, (y), there exists a polylateral s’ =
(yidyil . . . Iy},ly}) in perspective with & from R such that y; corresponds to y; (for all
ie{l,2,...,2n})and IT; (y1) = y. In this case, we say that s’ is in perspective with 7
from R via (y, y)-

If & is M-Desarguesian for all roots R in ¥, then we call & root-Desarguesian (for
more on terminology, see Section 5).

2.5. Root-Elations

An automorphism 60 of & is called an R-elation, R a root as above, if 6 fixes all
elements incident with x;, i=1,2,...,n— 1. It is easy to see that, if an R-elation 0
fixes an element at distance 2 from x,, then 6 is the identity. So if A is the set of all
elements distinct from x, and incident with any given element incident with x,, then
the group of all R-elations acts semi-regularly on A. If that group is transitive on A,
then we say that & is R-transitive.

Now, if & is R-transitive for all roots R contained in a given polylateral (and hence
for all roots), and if not at the same time » =4 and ¥ is infinite, then & is known
([2,15,16]). In that case, ¥ is called Moufang. Every finite Moufang generalized
polygon is classical or dual classical, and a complete list is given in the Introduction.

3. MaIN RESULT AND CONSEQUENCES

MAaIN THEOREM. The generalized polygon ¥ is R-Desarguesian for some fixed root
R iff & is R-transitive.

Proor. This will be given in the next section.

CorROLLARY 1. A generalized polygon & is root-Desarguesian iff & is R-
Desarguesian for all R contained in a given polylateral in &.

Proor. If & is M-Desarguesian for all R in a given polylateral, then by the main
theorem, & is R-transitive for all R in the same polylateral, hence ¥ is R-transitive for
all R in & and so & is root-Desarguesian by the main theorem again. The converse is
trivial. O

COROLLARY 2. A generalized polygon & is Moufang iff & is root-Desarguesian.

Proor. This follows immediately from the main theorem. |

COROLLARY 3. A finite generalized n-gon, n =3, 4, 6, 8, is classical or dual classical
iff it is root-Desarguesian.

Proor. This follows from Corollary 2 and the classification of all finite Moufang
generalized polygons (see [2, 15]). O

In particular, Corollary 3 yields a geometric characterization for the known finite
generalized hexagons and octagons.
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All these results are known i
(see Thas-Van Maldeghem [12]

In the last corollary, we combine our results with another beautiful characterization
of the Moufang generalized hexagons due to M. A. Ronan (see [11]). Note beforehand
that a generalized n-gon, n even but fixed, contains two different types of roots,
namely roots containing an odd number of points and roots containing an even number
of points. The next result characterizes a class of Moufang generalized hexagons by

using only one specific type of roots plus an extra condition.

case n =3 (

N 13

CoroLLARY 4. Suppose a generalized hexagon & is R-Desarguesian for all roots
R=(x1, x2, ..., xs) containing three lines (x,, x5 and xs) and two points (x, and x,).
Suppose that every such R and every pair of hexalaterals = (y,Iy,I . . . Iy, 1y,) and
n'=(yil...) which are in perspective from R satisfy the following two conditions:

() I (y;) = IT3(y)), forallie{2,3,4} and all j€ {1, 2, . .., 12} whenever this is well
defined,

(i) TI3,(y) = II3,(y}), for all je {1, 2, ..., 12} whenever this is well, defined, then &
is Moufang. If moreover & is finite, then & arises naturally from one of the classical
groups G,(q) or >Dy(q), q a prime power.

Proor. By the main theorem, & is R-transitive for all roots R containing three
lines. It is now readily seen that conditions (i) and (ii) imply that every R-elation (R
containing three lines) ¢ is in fact an axial automorphism (with the terminology of
Ronan [11]), i.e. 0 fixes all elements at distance two or three from the middle element
of R. The result now follows directly from [11]. O

4. PROOF OF THE MAIN THEOREM

A complete geometric proof of the main theorem in the spirit of the proof of Baer’s
result on projective planes (see e.g. [7]) is out of question in the general case (it is too
complicated). On the other hand, a complete algebraic proof would be too abstract and
almost unreadable. Therefore, one has to compromise between geometrical arguments
and algebraic ones. The algebra is brought in by abstract coordinatization along the
lines of Hanssens and Van Maldeghem [4] and Thas and Van Maldeghem [12]. We will
spend a few words on abstract coordinatization of generalized n-gons, n =35, in the
next paragraph.

ImMpORTANT REMARK. For the sake of clarity, we will put # = 6 in the main part of the
proof. By adding some dots in the middle of all chains and coordinate-tuples, one can
easily write down the general arguments, but going through the case n =6 (which is
already fairly general) first helps a lot. Moreover, n = 6 is the first and (together with
n = 8) most important case after n = 4. Since coordinatization plays a crucial role here,
we will expose that part in full generality (but restricting ourselves to the things we

eed for the actual proof).

4.1. Coordination of generalized polygons

Throughout, we abbreviate 0,0, . . ., 0 (k zero’s) by 0,. The method given below is a
generalization of the coordinatization method of generalized quadrangles of Hanssens
and Van Maldeghem [4].

Suppose that & = (2, &, I) is a generalized n-gon, n =3, of order (s, t), s, t=2 and
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possibly infinite. Let R, and R, be two arbitrary sets of elements (called the
coordinates) satisfying the conditions:

(Cl) |R1l =4, lRZI = t)
(C2) R,NR,={0,1} if nis even and R, =R, if n is odd,
(C3) neither R, nor R, contains the symbol .

In the coordinatization process, we use round brackets for coordinates of points and
square brackets for coordinates of the lines. If a coordinate-tuple represents some
element (point or line), then we write the coordinates between the signs ({...)).

We choose in & an arbitrary polylateral & and label its elements
() I[}I(0)I[0, OJL(0)I[04)1 . . . I[0,_4]I . . . I[0JI(») (with the above conventions).
Note that the point (0,_;) comes either on the left (n even) or on the right (rn 0dd) of
the line [0,_,] in the above chain. We now label the points on the line [] (resp. [0:])
except for the point (0) (resp. (0x—1)) by (a) (resp. (0, a), I =inf{k, n —2}), a €R,, in
a bijective (i.e. every element of R, is used exactly once) and consistent (i.e. the new
(0,, 0) coincides with the old (0,,;)) manner. Similarly, one coordinatizes the lines
through the points (®), (0;), k<n, by using elements of R,. We now impose the
following conditions on the previous assignments of coordinates:

(C4) If x and y are opposite elements of 7 in & and zIx is not contained in 7, then
z has the same unique non-zero coordinate as IT(z).

(C5) Let x be the unique element of 7 opposite to () in ¥ and let zIx be such that
its unique non-zero coordinate equals 1. Then IT}((a)) = IT:((0, a)), for all
a€R,.

Condition (C4) is necessary for the further coordinatization, whereas condition (C5) is
only needed to symplify the algebra we need (it is a kind of normalization, see e.g. [5]
for the case of generalized quadrangles).

Points at distance 2k + 1 from [] are coordinatized by a (2k + 1)-tuple except if they
lie closer to (=), in which case they are at distance 2k from («) and they are
coordinatized by a 2k-tuple. Dually for the lines. Inductively, we define the element

{ay, as, ..., a), 2<k<n-—1, as follows. Let x={ay, ..., ar_,) and let y be the
unique element of 7 opposite to {0,_;) in &. One can easily check that y is also
opposite to x (since it will follow that xI{a,..., aro)I{ay, ..., ar_apl. ..

[{a,)I{=~)). Denote by u the unique element incident with y not having less
coordinates than y has and having as last coordinate exactly a;,. Then
€ay, az, ..., k)= mwl(u). By condition (C4), this is consistent with the earlier given
coordinates. By this method, all elements of ¥ are coordinatized. Note that a
coordinate-tuple of a point or a line consists alternately of elements of R, and R,.
Suppose x € P, y € Lor x € £, y € P and suppose at least one of them is not opposite
to («) or to []. Then xIy iff x has the coordinates {ay, a,, . .., a,) and y has the
coordinates {ay, ..., a,_,) or vice versa, or one of them is {~) and the other one
has only one coordinate. If x and y both have n — 1 coordinates, then it depends on the
geometrical structure of & whether or not x is incident with y. A way to put this
incidence relation in an algebraic form is by introducing the following n — 2 algebraic
operations My, . .., M, _:

Alj(al, Az, .« ., a]-, kl’ kz, e ey kn—j) =aj+1

lf d(((al, « v ey aj+1>>, <<k1, « e ey kn__j>>)=n_2, 1$]Sn '_‘3 and <<al, e ey a]>> iS a llne
when j is even and a point if j is odd. Alternatively, this is equivalent to

H%{al ..... a,-))(((kl) ] kn—j))) = <<a1) I ) aj+1>>‘
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Mn—Z(al) kl) k2’ R kn—l) =a,

if (ki ks, ..., k,_1) is incident with some element having coordinates
€ai,...,a,_,) (n—1 coordinates), where (k,,k,, ..., k,_.) is a line if n is even
and a point if n is odd. This is equivalent to

H%(kb ko ..., k,,_l))((lh)) = H%(kl, ks ..., k,,_,))((oy an—l))'

It is easy to check that a point (ay,a,,...,4a,_;) is incident with a line
ki, kyy ooy kyy_q] iff
Mjay, as, ..., a;, ki, ko, . . ., k,_;))=a;.1, forallje{1,2,...,n—3},

Mn—Z(al) kl; k2) L] kn—l) =0a,-1-

For n =3, there is only one, ternary, operation. The resulting structure is weaker than
a planar ternary ring (see e.g. [7]) since we only used the element (1, 0) to coordinatize
the axes and we did not use the point (1) as required.

For n =4, the resulting structure is again weaker than a (normalized) quadratic
quaternary ring (see e.g. [5]), since we did not use the line [1, 0, 0] to ask something
similar to condition (C5).

Let a, b € R,, then we define

a+b=M, 5(a,1,b0,0,...,0)eR,;.
By conditions (C4) and (CS5), this addition has the property
(ADD) a+0=a=0+a.
We can also define for a € R; and k € R, a multiplication
k-a=M, a, k 0,0,...,0)eR,.
Again by (C4) and (CS5), we have the properties

(MU1) 0-a=0=k-0,
MU2) l-a=a.

4.2. Proof of the Converse of the Main Theorem

Suppose & is a generalized n-gon which is R-transitive for some root N =
(X1, X2, « «, Xp_1). Let = (yiIyl. .. Iy;,Iy;) be any polylateral and suppose that
d(xy, y1) <n. Let y #x, be incident with IT} (y,). Consider the R-elation 6 mapping
IT; (y;) to y, then clearly (by definition) 7° is in perspective with 7 from % and
IT2 (y9) =y, which was arbitrary. Hence & is R-Desarguesian.

4.3. Explicit Form of an R-Elation in Coordinates

From now on we put n =6 (see the comment in the beginning of this section). We
denote the elements of R; by a, b, a’, B, c, . . . and those of Roby k, I k', ... and this
will be understood in the sequel. Hence an expression such as ‘for all a, k’ means “for
all a € R, and all k € R,’. Suppose R is a root in & and we coordinatize & in such a way
that o =((«), [=], (0), [0,0], (0,0,0)) (possibly by considering the dual of ).
Suppose that & admits an R-elation 6 mapping (0,0) to (0, B). Then one checks
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consecutively (similarly to the case n =3 [7] orn =4 [5D:
(0,0,0,0,0)°=(0,0,0,0, B),
[k]°= [k],
(k, 0)°= (k, B),
[1,0,0,0,0]°=[1, B, 0,0, 0],
[k, 0, k']°=[k, B, k'],
(k,0,k',b")°=(k, B, k', b"),
[k, 0,k',b', k"°=[k, B, k', b', k"],
0, b)?=(0, b + B),
0,0,0,0,5)°=(0,0,0,0,b + B),

and hence

[k, b, k', b', k"°=[k, b+B, k', b', k']

We now define some abbreviations of expressions we will frequently use. Put
Fi(a, b, k) =M,(a, 0, b, 0, 0, k),
E(a, b, k, ¢) = My(a, F(a, b, k),0,b,0, c),
FE(a, b, k, ¢, 1) = Ms(a, F(a, b, k), E(a, b, k, ¢), 0, b, ).
One can check the following equations step-by step:
(a)" = (a),
(0, 0,0, 0)°= (o, B, 0, 0),
[0, 11°=(0, 1],
[0,0,0,0,°=[0, B, 0,0, ],
[a, I]°=[a, F(a, B, )],
(a,1,a")°=(a, Fi(a, B, 1), E(a, B, 1, a')),
[a, 1, a',1'1°=a, F(a, B, 1), F(a, B, 1, a’), F(a, B, [, a’, I")],

and hence

(a) l’ a,) 1,7 an)B = (a; E(ax B’ l), F;Z(a) B) l) a,)’ Fg(a:' B; l: a’) l,); a"+ B)

Soif (a, I, a', ', N[k, b, k', b', k"], then
"y (a, Fia, B, 1), Ba, B,1,a"), B(a, B, L, a’, '), a"+ B)I[k, b+ B, k', b', k'],

for all a, a’, a", b, b', k, k', k", I, I'. Conversely, it is almost trivial that, if (*) holds
whenever (a,l,a',1', a")I[k, b, k', b', k"], then there exists an N-elation & mapping
(0,0) to (0, B). So from here on, we assume that & is R-Desarguesian and we will
show in nine steps that, whenever (a, [, a’,I', a")I[k, b, k', b', k"], then (*) holds for
every B. This will imply that & is R-transitive. For a given hexalateral 7, we will
always denote a hexalateral in perspective with 7 from R by 7’ and we abbreviate the
sentence ‘let 7' be the unique hexalateral in perspective with 7 from R via (x, y)’ by
‘define 7’ by (x, y)".
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4.4, Step 1

Suppose (a,f,a',1',a")I[k,0,0,0,0], k#0 and k+#1. By definition of the
coordinates and the multiplication, a”"=k-a. Consider the hexalateral
w=a, I, a,l'ya")11(0, a")LL (@", My(a, 1, 0,), My(a, 1, 04), Ms(a, 1, 0y),
a")I[1, 0,J1(0s)I(k, 0,](a, L, a’, I, a")) and let 7w’ be defined by ((0s), (04, B)). By
constructing one by one the elements of s’ using the definition of corresponding
elements, one sees that 7' looks like (0,4, B)I [1, B, O}/ (a",...,a'+B) L1 (0,a"+
B)lli(a,...,a"+B)=(a,..., My(a, k, B, 0, 0, 0))I[k, B, 03]. Hence

a”+B=M4(ay k) B, O) 0) 0) or k.a+B=M4(a’ k’ B’ O’ 0’ 0).

So M, is linear in the first three arguments in the sense of a linear planar ternary ring
(see e.g. [7]). Of course, this is trivial if k =0 or k = 1. Geometrically, this shows that,
whenever a hexalateral &t contains a point—line pair (a, ..., a"[k, 0,0,0,0], then =’
defined by ([k,0,0,0,0],(0,0,0,0, B)) contains @, ...,a"+ B) corresponding to
(a,...,a").

4.5. Step 2

Suppose p =(a, [, a’,l’,a") L1 (0s) and [0,] # IT;((05)) = [k, 0]. First assume k 0.
Consider the hexalateral x=(p 1L (0,a") L~ [k, 0,] ~p) and define x' by
([k, 0,], (04, B)). By step 1, &’ looks like [k, B, 0] 1~©0,a"+B)11(a,...,a"+
B) ~[k, B, 0;]. Now assume k=0. Let p L 0,a",...)=q 1 (0, a"). Consider the
hexalateral & defined by [0s]~p L g L ¢’ ~[1, 0,1/ (05)1[0s], then g' is well defined and
in fact ¢' = IT7([1,0,]) = (. . ., a"). In ' defined by ((0s), (04, B)), q' corresponds to a
point (..., a"+ B) by the case k # 0 above. Hence the point in 5’ corresponding to p
has also as last coordinate a”+ B. So we have shown that whenever a hexalateral 7w
contains the chain (a, . .., a')~[k, 0,], the hexalateral ' defined by ([k, 0,], (0,, B))
contains (a, . . ., a"+ B) corresponding to (a, . . ., a") (this is true if (a, . . ., a”) 1 (05)
by step 1). But now it is easy to see that whenever a hexalateral 7 contains the chain
(a,...,a") IL, where d(L, (0s)) =3 and d(L, [04]) =4, then 7’ defined by (L, (0,, B))
contains (a, . . ., a"+ B) corresponding to (a, . . ., a").

4.6. Step 3

Suppose p =(a, I, a’, l’, a") and assume first a # 0. Suppose also that p and (0s) are
opposite. Let k be arbitrary and consider the chain p ~ L 1 [k, 04]. Let p’IL such that
p'=(...,a") and consider the hexalateral 7 defined byp'L1(0,a’)Lllpllp’. By
step 2, the hexalateral 7’ defined by (L', (0,, B)) contains (0, a’ + B) corresponding to
(0, a") and hence to p there corresponds (g, . . . , a” + B). Note that the construction of
(@,...,a’ + B) only depends on the chain L ~p. Hence whenever a hexalateral n
contains a chain (a, ..., a")~ L, where a#0 and d(L, (05)) =3, d(L, [04]) =4, then
the hexalateral ' defined by (L, (0,4, B)) contains @, ...,a"+ B) corresponding to
(a,...,a"). Suppose now a =0. Denote M = IT ((0)) and N = ITi,(p). If N has five
coordinates, then we denote the first one by BAD(p), so N = [BAD(p), 04]. If = is
any hexalateral containing the chain N L~ p, and x’ is arbitrary, then it is impossible
to construct the element corresponding to p in &’ only by using the chain N L~ p, in
other words, the element corresponding to p’ in 7’ a priori depends on & and not only
on the chain N L~ p. Butif N’ # N and (05)IN, then the element corresponding to p in
any 7' where s contains N' L~p only depends on the latter chain. Hence, in the
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above property, one can drop the assumption a # 0 except in the case BAD((a, . . . , a"))
is well defined and L L [BAD((a, ..., a")),0,]. It is clear how to generalize the
properties in steps 1, 2 and 3 to n #6.

4.7. Step 4
Suppose p =(a,l,a’,1l',a"), I#0, p opposite to (0s). Let k+ BAD(p) (if well
defined) and suppose p L p; L p,I[k, 0,]. Furthermore, we denote
p Lpsllal],
p3 L psLpsI[Os],
p Lps L ps1[0s],
(04) L ps L polfa, I].

In the general case, all the points we just defined are distinct and the three hexalaterals

(1) (0s)Lp2ipilp 1psipr1(0s),

(72) p7ipeLlp LpsLipslpsLips,

(w3) PsLipalpslpoLpgl(0s)Lps
are also distinct and do not collapse. In 73 defined by ([0s], (04, B)), (04) corresponds
to (0, B, 0,0) and [0,, /] corresponds to [0, B, 0,0, []; hence [a, I] corresponds to
[a, M\(a, O, B, 0, 0, [)] = [a, Fi(a, B, )]. Hence in &, (defined by ([0s], (04, B)), ps
corresponds to a point (a, Fi(a, B,[),.) and so p corresponds to a point p'=
(a, F(a, B, 1), ..., a"+ B). Hence this is also true in m&; defined by ((0s), (0, B)).
Since k # BAD(p) if BAD(p) is well defined, we deduce from this that in the general
situation, whenever a hexalateral © contains the chain p =(a,l,...,a")~ L, where
d(L, (0s)) =3, d(L, [0,])=4 and L does not meet [BAD(p), 04] if BAD(p) is well
defined, then the hexalateral i’ defined by (L, (04, B)) contains (a, Fi(a, b, 1), ...,a"+
B) corresponding to p. In the special cases, such as p, =ps, and in the case [ =0, the
same property can be proved (in an easier way since some of the hexalaterals 7,, 7,,
75 collapse or coincide). Hence the above property, printed in italics, holds in full
generality.

4.8 Step 5

We keep the same notation and assumptions as in the beginning of step 4, except for
the fact that we no longer ask that / = 0. We define some more points by
p3iP10lP111[0, 0) 0]’
pLpi21pi3l[0, 0, 0].

In the general case, all of the points (0s), (0), p, p1, P2, P3, Pes P75 Pos P1o> P11> P12y
P13 are distinct and also the following hexalaterals are distinct:

(1) (Os)LpaLpilp LpelpsL(0s).
(7t4) P71peLip Lp12Lip13L(04) Lp,
(ws) p1i3lpilp Lpsipiolpiilpis.

Define m; as in step 4, w4, by ([0s]), (0, B)) (note that &, is also defined by
([0s], (04, B)) and x5 by [(0s], (0, B)). It is easy to check that a point lying in different
hexalaterals corresponds to the same point in the respective corresponding hexalaterals
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in perspective, €.g. p corresponds to a point p’ in 77, 74 and 5. By the prev1ous S[ep,
p'=(a, Fi(a, B, 1),...,a"+ B). The point p,;; = (0s, a) corresponds in 75 to pj; =

(0, B,0,a). By step 4, ps; corresponds to a point pj; with coordinates

(a, F(a, B, 1), a*). But since py; L1 p3, we have by definition

a* = My(a, Fi(a, b,1),0, B,0,a’')=F(a, B, 1, a")

Hence p' = (a, Fi(a, B, ), Fx(a, B,l,a’), ..., a"+ B). This can also be shown in all
special cases, such as k=0; pyo L p; ps L p3, a=0 and k# BAD(p), etc. Hence
whenever a hexalateral 7w contains the chain p=(a, !, ..., a")~ L, where d(L, (0s)) =
3, d(L, [04]) = 4 and L does not meet [BAD(p), 04] if BAD(p) is well defined, then the
hexalateral n' defined by (L, (04, B)) contains (a, Fi(a, B, 1), K(a, B,l,a’),...,a"+
B) corresponding to p.

49 Step 6

From now on, we can be more sketchy because all forthcoming arguments are
similar to one of the arguments of steps 1-5. So, similar to the property in step 5, the

reader can check that whenever a hexalateral w contains the chain n = (a. 1 u”\ ~

1vGReva: VQaa vaivvas waalGe FeC UTT 4 TeTnisviser v vu LU esRer Civaery gr Wy &y o0

L, where d(L, (0s)) =3, d(L, [04]) =4 and L does not meet [BAD(p) 04 if BAD(p) is
well defined, then the hexalateral nt' defined by (L, (04, B)) contains

(a, Fi(a, B, 1), F(a, B, l, a"), F(a, B,l,a’,1'),a" + B)
corresponding to p.

4.10. Step 7

We sketch the proof of the fact that whenever a hexalateral w contains the chain
p=(k,b)~ L, where d(L, (0s)) =3, d(L, [04]) =4 and L does not meet [k, 0,], then the
hexalateral n' defined by (L, (04, B)) contains (k, b + B) corresponding to p. One can
reconstruct the proof by using the following chains (in the case k#0 and b #0):
pLlpi1(o4, b)~LI(0,b) 1~ LIp,1p; p,~Ly1 Ly; py 1~ L,. The union of all these
chains form some hexalaterals (call a general one &). Now comnsider n’ defined by
(-..,(04, B)) and use step 3. It shows similarly as all proofs above, our claim. If
k=0, then the property follows directly from step 3 and if b =0, then the
property is obvious.

4.11. Step 8
Suppose that p =(a, [, a’, ', a"), d(p, (0s)) =3 and pI L=k, b, k', b’, k"]. Suppose
first that there exists k* #k, k*# BAD(p) if BAD(p) exists. This is certainly true
if ¢=3. Considering the hexalaterals pILI(k,b, k', b')L~[k*, 0,]J1~p and
(k, b, k', b")L(k, b) L~[k*, 0] L~ (k, b, k', b") and their perspective ones defined
by ({k*, 04], (04, B)), one can see that, since L corresponds to (k, b + B, k', b’, k") by
construction and by step 6.
(a, F(a, B, 1), Fa, B,1,a"), K(a, B,{,a’,1"),a"+ B)I{k, b + B, k', b', k"].
Now suppose =2 and k# BAD(p). Then, similarly to before, we can prove the
above equality by considering the hexalaterals
pIL~(k, b)~L,~p,1p, where L, = H[zk*,04]((k, b)),
plla, l,a', '} L1 [k*, 0,] L L, 1~p, where k* = BAD(p),
[k*, 04] L L1 ~pi1l~ [k, 04] 1 [k*, 04],
[k, 04) L~p,Lp L~ [k, 0,).

Note that the chain p L~ [k, 04] contains L since ¢ = 2.
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4.12. Step 9

Suppose that p=(a, [, a’',l', a")IL= [k, b, k', b’, k"], with d(p, (0s)) <6, then one
can show in the same way as above that (a, Fi(...),...)I[k, b+ B, ...], although we
would like to focus on on particular case which is not so straightforward, namely when
p 1[0,4]. If that is the case, then for all k, one can always find a chain p L po~ L L[k, 0,]
such that kK # BAD(p,) if the latter exists. Now one has to prove similar results.to steps
3, 4, 5 and 6 for the chain p 1~ L and then combine this with step 7 as done in step 8.
There is no separate argument for ¢ =2 since k is now arbitrary. But in all arguments,
there is an extra hexalateral since the chain connecting p to L is one ‘unit’ longer now.

So we showed that, whenever (a,l,a’,l',a")I[k, b, k', b', k"], then also
(a, Fi(a, B, 1), E(a, B, 1,a'), F(a, B, l,a’,1"),a"+ B)I [k, b+ B, k', b', k"]. Hence by
the discussion preceding the first step, the generalized hexagon & is R-transitive. This
concludes the proof of the main theorem.

5. SoME REMARKS
5.1. Flag-Desarguesian

Suppose we denote by & a flag of the generalized polygon ¥, i.e. an incident
point-line pair. Then we can define when two polylaterals are in perspective from ¥
just in the same way as for roots, only, ¥ has less elements than a root. We could call
the whole configuration of two polylaterals in perspective from a flag a flag-Desargues-
configuration. Then ¥ is called F-Desarguesian, & = {x,, x,}, if for every polylateral
a=(xI...), where we can assume d(x,x;)=n —1, and every element y such that
d(y, x;)=d(x, x;), i=1,2, and such that IT} (x)=II} (y), there exists a polylateral
a' =(y,...)in perspective with & from ¥. And we can call ¥ flag-Desarguesian if & is
&-Desarguesian for all flags § in &. Of course, for projective planes these definitions
coincide with the root-case. In [9], Gy. Kiss proves that every finite generalized
polygon contains a flag-Desargues configuration and there exist (infinite free-
constructed) n-gons (for each n) containing no flag-Desargues configuration (and hence
no generalized Desargues-configuration).

5.2. Generalized Quadrangles

In the case n =4, a lot more is known than the main result of the present paper. In
fact, S. E. Payne, J. A. Thas and the author show in [13] that a finite generalized
quadrangle & is root-Desarguesian iff & is M-Desarguesian for all roots R of one
arbitrary type (recall the definition of type in Section 3, discussion preceding Corollary
4). In [17], the same three authors show that & is root-Desarguesian iff & is
flag-Desarguesian. Other (local) results on the Moufang condition in generalized
quadrangles may be found in the monograph [10].

5.3. Other Generalizations

Note that a generalized Desargues configuration in a projective plane is nothing else
than a usual Desargues configuration (see e.g. [7]) where ‘center’ and ‘axis’ are
incident. A similar definition holds in projective planes for non-incident ‘center’—‘axis’-
pairs. Call this for a moment an anti-flag-Desargues configuration. A similar definition
for generalized quadrangles would lead to generalized quadrangles which are U-
Desarguesian or U-transitive with 11 an antiflag. It is easy to show that the only
collineation of a generalized quadrangle fixing all points on a given line L and all lines
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through a given point not incident with L is the identity. Hence, there is no
straightforward generalization of being U-Desarguesian, with 11 an antiflag, for
generalized polygons.

5.4. Weaker Hypotheses

In the definition of R-Desarguesian, we ask a property for all polylaterals. In fact,
this is asking too much. Indeed, our main result is also true if we require the condition
only for polylaterals for which the element nearest to % = (x1Ix,I...) is at least on
distance / =2 from x; (in the proof, we do not use other polylaterals). In fact, for n = 4
and n = 6, we can proof that it is sufficient to require the property only for polylaterals
for which the above defined distance / is exactly equal to 2, but this might not be the
case for n = 8. In any case, we think of these variants as minor details and therefore we
did not try to write down exactly the weakest possible hypotheses.

REFERENCES

1. W. Feit and G. Higman, The nonexistence of certain generalized polygons, J. Alg., 1 (1964), 114-131.
2. P. Fong and G. Seitz, Groups with a (B, N)-pair of rank 2, I, II, Invent. Math., 21 (1973), 1-57; 24
(1974), 191-239.

- W. Haemers and C. Roos, An inequality for generalized hexagons, Geom. Ded., 10 (1981), 219-222.

4. G. Hanssens and H. Van Maldeghem, Coordinatization of generalized quadrangles, Ann. Discr. Math.,
37 (1988), 195-208 (proceedings of ‘Combinatorics '86’).

5. G. Hanssens and H. Van Maldeghem, Algebraic properties of quadratic quaternary rings, Geom. Ded.,
30 (1989), 43-67.

6. D. G. Higman, Invariant relations, coherent configurations and generalized polygons, in:
Combinatorics, Reidel, Dordrecht, 1975, pp- 247-363.

7. D. R. Hughes and F. C. Piper, Projective Planes, Springer-Verlag, 1972.

8. W. M. Kantor, Generalized polygons, SCABS and GABEs, in: Buildings and the Geometry of Diagrams,
Springer Lecture Notes 1181 (Rosati, ed.), Springer-Verlag, 1986, pp. 79-158.

9. G. Kiss, A generalization of Ostrom’s theorem in generalized n-gons, preprint.

10. S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Research Notes in Mathematics 110,
Pitman, Boston-London-Meibourne, 1984.

11. M. A. Ronan, A geometric characterization of Moufang hexagons, Invent. Math., 57 (1980), 227-262.

12. J. A. Thas and H. Van Maldeghem, Generalized Desargues configurations in generalized quadrangles,
preprint.

13. J. A. Thas, S. E. Payne and H. Van Maldeghem, Half Moufang implies Moufang for finite generalized
quadrangles, preprint.

14. J. Tits, Sur la trialit€ et certains groupes qui s’en déduisent, Inst. Hautes Etudes Sci. Publ. Math., 2
(1959), 14-60.

15. J. Tits, Classification of buildings of spherical type and Moufang polygons: a survey, Atfi de Conv.
Lincei, 17 (1976), 230-276.

16. J. Tits, Non-existence de certaines polygones generalisés, I, Invent. Math., 36 (1976), 275-284.

17. H. Van Maldeghem, S. E. Payne and J. A. Thas, Desarguesian generalized quadrangles are classical or
dual classical, preprint.

w

Received 26 December 1989 and accepted in revised form 16 March 1990

H. VAN MALDEGHEM

State University of Gent,

Seminar of Geometry and Combinatorics,
Krijgslaan 281, B-9000 Gent, Belgium



