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CHARACTERIZATION OF THE FREE o-HOMOTOPY GROUPS

OF COXETER COMPLEXES

H. Vari Maldeghem *
commmnicated by J.A. Thas

J.Tits introduced in his work on local characterisations
of buildings [4] the notion of a o-homotopy group of an
arbitrary chamber system. In [ 6], we gave a method to
calculate some o-homotopy groups for arbitrary Coxeter
complexes. The purpose of this paper is to give a cre-
terium whether such a group is free.

INTRODUCTION

We can concieve any Coxeter complex as a connected cham-
ber system T of rank n, for some ney” (for general
definitions see Tits [4] and Ronan [2]). Let A={1;2,...,n}
and OEZA, then we call two galleries. y and vy’ elementary
o-homotopic (notation.: ygy') if and'ohly if they can be
written as the juxtaposition of three galleries y=0éB

and y'=a0s'8 where o and § , resp. o and &' are i-adjacent
and ¢ and B, resp. §' and B are j-adjacent (i,jeA ,a and/or

possibly empty) ahd § and ¢' lie in a same cell of cotype

J, J€o and have the same extremity chambers. Two galleries

*The author's research was supported by the National Fund for
Scientific Research (Belgium)
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v and y' are called o-homotopic if and only if they

can be connected by a sequence of elementary c-homotopics
(notation y;y').

Let us denote by [y]O the o-homotopy class of galleries
containing y. Then by deflfinition nO(E), the o-homotopy
group of Z, is the group whose elements are all o-homo-
topy classes of galleries of Z based at a chamber c of x
(which means : galleries with extremity chambers the
chamber c) and with binary operation [u}0[6]0=[a810

(aBis the juxtaposition of o and B). This group is un-
independant on the choice of the chamber c¢ (X is connected)

(see also [2] and [4]).
DEFINITIONS AND NOTATIONS

We denote always the cardinality of a set A by |A]

By z,, we denote always a Coxeter complex of rank n,

ney”. Its diagram is in fact a set An={1,2,...,n} together
with a map f:(%?)+N* . We denote this diagram also by

[ If JgAn, we denote by J the set J, and by JNA

the diagram with set J and map f/(g):(g)ey*

If Zn is a Coxeter complex (reducible or not) of rank n,

nEN* , with diagram ALs then Eﬂ is the set of flags

of type J of Zn, JC% and Eéi) is the set of flags of

A
rank i, 1<i<n. Hence IEnn|=|E£n)| is the number of

chambers of z - Since a Coxetercomplex Z of rank n
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defines a triangulation of the hypersphere st

n
{(Xl,...,Xn)ERn" z xi=1}, we have by the
k="

Euler-Poincaré formula the equation

n A_-J
2 (-1)k|z£n‘k)1= > (-1)|J||znn |=1

If JQAn, then we denote by EJ the Coxetercomplex of
rank |J| and with diagram JNA and we notice the

equation (see also [6] )

A_-J A_-L

n J-L,_ n

A
Suppose now Ango'gz n, then it follows by [6] (re-

) A
mark 2) that there exists 0, AngogAnU(;?) and

79" (2 )=n(2). ({i,j}€o={i,jlcKec"). So we consider
only o with AngoQAnU( ;J. But then we can concieve O
as a linear graph (An,o—An), which we denote by o,
and we define o*=flago. If E is the set of simplices
of G*, then we denote o*=EUp.

If =4 then nO(En) is a free group with rank

1_E(n)+2(n_1)
n n

(see [6]) and we denote this rank by X(En), which is

in fact the Euler-Poincarré characteristic of the
chambergraph of En (see [6]1).

Finally , we define the family S of linear graphs with
set of vertices An, fof some nEN” inductively as follows

1) Each complete linear graph belongs to S
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2) If two lineair graphs of the class S have a
common complete subgraph as intersection, or have
an empty intersection, then their union belongs
to S. From theorem 2 in [6], it follows that if
o 1is a complete subgraph, then WO(Zn) is trivial,
(and hence free). From theorem 4 in [6], it follows
that if o=0,Vo, and 0,,0,€S, o;N0, is a compléte
subgraph, than nc(zn) is a free group. Hence oeS
is a sufficient condition in order that 7° (En) is
a free group. The purpose of this paper is to

prove that it is also necessary. Thus we have to
prove

THEOREM : E€§¢»no(2n)'is a free group. In-thiS‘cése,

the rank of the free group is given by

P A_=J
. J|s n
1- = (-1)I = | (n
JEo+ n
Suppose we have proved the first part of the theorem.

Then by remark 3 of [6] we know that the rank of

m°(2), o€S, is

A =J
J| n
X(z.)- 2 (—1)I | = |
n JEU+ I
| J]|>2

Applying the definition of X(En), we obtain (1).
So the second part of the theorem follows from
the first part. To prove the theorem, we need

some lemma's.
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A
LEMMA 1. Suppose AngchnU( ;J and suppose ﬁJgAn with

|J|>3 such that (g)ﬂc is a cycle of length |J| (or

o contains no minimal circuit of length m>3). Then

we have o€eS.

PROOF.

If n=1, the result follows immediately (also for n=2,3)
since there exist no cycles of length m, m>3 in this
case, and each linear graph with set of vertices A;,A,
or A; belongs to S.

We complete the proof by induction.

Let n>1 be arbitrary. Assume ¢ is not connected

Then o0=0,Ug, with (uai)¢¢, i=1,2 and (Vo1 )N (Ugy,)=¢.

It is clear that neither o, nor o, contains a minimal
circuit of length m>3. By induction we have 51’E§§

and since their sets of vertices are disjoint, ¢,Uc,=0€S.
Let o be connected . We denote by GK the complete graph

with as set of vertices KgAn. Let GJ be a maximal com-

plete subgraph of o. We define for each XcJ
QX={teAn—JHt~x, ¥xeX and tty,¥yeJ-X}

where ~ denotes the adjacency relation in the graph o.

Notice that QJ=¢, otherwise G is a greater complete

JuQy
subgraph than GJ. Suppose X;-X,#¢, X,-XF#¢, X, ,X:CJ,
and Qx, ,Qx,#¢ . Take XEQXI, ngXZ and suppose X;~X,
Then x;~t;€X;-X, and Xx,~t,€X,-X;, SO0 X;~t;~t,~X,~X;

is a cycle of length 4 since t;#x,,t,#Xx;. Hence x;#x,

We define now for each XcJ (1)
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¢, if (3YCJT) ((XCY) and (Qy#9)
Ry=
X QXU{tEAn—J"(aYCX)(tEQY) and ((BXEQX)(t~x)}, otherwise

From that definition, it follows that if Qx=¢, then RX=¢'
Suppose Ry;,Ry,#¢ and X1GX,, then Qx,#¢ and so Rxz¢ and
we conclude that X;-X,#¢ and X,-X;#¢. Suppose now
Rx,MRx, #¢. ThenzxzeRy NRy . If z€Qyx,, then z¢Ry, since
X,¢X,, thus zeQy with YcX;nX, and 3x;,X, with xﬁQXI

and ggQXZ such that x;~z ~x,. Take t;~x;,t,~Xx,; t.:€X;-Y,
t,€X,-Y, then t;~x;~z~x,~t,~t; is a cycle of length 5,
since t;7z#t, (ti,t¢€Y), xi17x, (by (1)), x,#t, and
x,7#t,. Thus RXIHRX2=¢. Suppose now that X?RXI’ xzeRX2
and x,~x,. Assume first xgQy , then &?QXZ and thus
(BYQXZ)(YQXI)(XZGQY). If t,eX,-X,, t,&-X,, then

t,~x,~x,~t,~t, is a cycle of length 4, since t, 7%,

1
and xlftz. Assume now x1¢QX , then for the same reason
x2¢#Qx,and we have (3y1~x1)(;i€QXi) and (3y2~Q2) (y2€Qx,) »
If t;€X;-X,, t2€Xp-X;, then Tt~y ~X1 XYY"t~y is

a cycle of length 6. We conclude x17x, (2).

We define : )={XCJIRy#¢} and for each Xe)\

SX={tEAn-JH3 gallery y who's extremity vertices.
are t and t, for some toeRX and with

yeA =J}
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Notice that J¢&X.
Suppose X;,X€EA, then we prove that no element of SXl is
adjacent to any element of Sy, (or that Sy #Sx,). Suppose
therefore XlESX1’X2€SX2 , X1~X2. Let Y; be a gallery of
minimal length between RXi and X, i=1,2. We proceed by
induction on k=|vy;|+|y2]|-2. If k=0, then x;€Ry;, i=1,2
and we proved this in (2).
Suppose now k>0. By induction, no element of y; is ad-
jacent to any element of y,, except x;~X». Let t;€X,-X,,
t,€X,-X; then t;~y;~y, ~t,~t: is a cycle of length k+4>4,
so x17#x2 (3)
To complete the proof, we concieve two cases
1) |A|=0 Then 0=Anu(€?) since o is connected and o€S.
2) |A|>0. Suppose Xo€A, Xo#J since J¢A. We denote by

E/P, where PCA , the restriction of o to P (Thus

G/p is the graph (P,on(5))). If 61=6/X0USX and

0

32=5/A -5, . Since X #J, Xousxjﬂn and since SX°¢¢ An-SX,#b, >
n 0

so we can apply induction : 0,€S, 0,€S. But we have
01002=(%;) and o;Yos =0 since no element of SXo is
adjacent to any element of An-(XOUSXO). We conclude

OES. =

LEMMA 2. Let v be an idempotent endomorphism of the Cox-

etercomplex Zn with diagram Ay s then for each o,
A
n .

AngogAn ( 2) we have

‘HG(V(ZD))<WO(ZH)
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PROOF. It is sufficient to prove that ([Y]0=[C]O in

V(Z))cé([yh;[C]Oin Zn), with v a gallery in V(Zn) based
at some chamber C in V(Zn).
- If [y]0=[C]O in V(Zn), then of course [Y]o=[C]0in z,

- If [Y]o=[c]c in I then there is a sequence

e & e & 3
[¥1=[8115[821=...2[8;1=[C].
o g
But then we have
£ £ = <
[Y1slv(VI=[v(8)Iz...5 [v(§)Islv(c)l=[c].

and so [Y]g[c]in v(z,) or fy]0=[c]gin v(z ). =

A
.n —_— —_—
PROPOSITION 1. If JCA , A CoCA U (,), and 5'=6/3 ,

then we have

nc'(zJ)<n0(zn).

PROOF. b is a convex subcomplex of z, and contains

at least one chamber. So by theorem 2.19 pp.24-25 [5],

Zy is the image of an idempotent endomorphism. But,
since no i-adjacent chambers appear in Iy, for iEAn—J,
we can restrict o to J and so the result follows by

lemma 2. =

LEMMA 3. If z is a Coxeter complex of rank n with diagram

A and o is a circuit of length n, n>3, then ﬂg(in) is

the fundamental group of an orientable surface without

boundary. Moreover, o¥=0U{¢} for n>3, and we have
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n=3 : ﬂo(z3) is the trivial group of one element

n>3 . m (Z ) is the fundamental group of an orlentable

surface with 1——( r (- 1)‘J“Z [) (#0)
Jeo*

hgndles.

PROOF. We define the 2-dimensional complex Fg(zn)(for

general definition see Ronan [ 21). The vertices of
PO(Zn) are the chambers of Zn, the cells of codimension
1, and the cells of cotype {i,j}, where {i,j}€c. In this
proof c and Cso i€EN denote always chambers; s and S;
iey denote always cells of codimension 1, and t and t; ,
iey denote always cells of cotype {i,j}, {i,j}€oc . Then
we define

{c,s}ero(zn)¢=ces

{c,t}ero(zn)¢=cet

{t,s}EFO(Zn)¢=sgt

(c,s,t)€r (5, ) =>cesct

We claim that Pc(zn) is a triangulation of an orientable

surface. We first prove that every 1-simplex (i.e. every

edge) lies in exactly two 2-simplices. There are three

cases

1){C,S}EPO(ZH) with-ces, cotyps=i€An. Then, there are

exactly two 2-sets of o which contain i. So we have {i,311,

{i,j2}€0. By definition of a chamber system , s is in

exactly one cell of each cotype.

2) {c,t}EPO(Zn) , thus c€t. Suppose cotypt={i,jl}€o.
There is exactly one cell s, of cotype i for which c€s;.

Similar c€s., cotyps.

jo J=j. By definition of a chamber
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system {c,s-,t},{c,s-,t}EFO(zn). If Sy is a cell of

- J

cotype k, k#i, k#j then sk¢t.

3) {s,t}eﬂgzn) and sCt. Since a Coxeter complex is a thin
chamber complex, there are exactly two chambers c; and

Cy, with c¢j;,CrES.

So, FO(Zn) is a triangulation of a surface without
boundary. We prove now that every orientation of this com-
plex is a coherent orientation. Let Ci’ i=1,2, be the

free z-module with base the set of i-simplices. Then

. W
we have to define a map 9:C>Cy:w> X (—1)kﬁ; such that
ViEwW V'i

if w,,w,€C, and veC; with vCw,;, VCw,, then v appears with
different signs in 9WwWi and 3w, (*). To define 9, we take an
arbitrary chamber c, and we define mc=d(co,c) for c a
chamber of £ . If ci~co, then |d(coj;ci)-d(co,c2)|=1

(see Carter [1]) and so we have mcl=mC211 or (—1)mC1(_1)mCz=_1,
We now write A ~as An={il,iz,...,in} with the property
that {ik,ikx+,}€0 k=1,...,n-1, and {i,,ipl}€o ; Then we

define _
+1 if cotyp s=iy and cotyp t={ikx,ik+:}

{c,s,t} _ or cotyp s=ip and cotyp t={ij,ii}
{c,s}

-1 otherwise

k{c,s,t} _ k{c,s,t}

{c,t} {c,s}
{c,s,t} _
k{s,t} - e
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It is clear that the property (*) holds with that

definition of 3. So, we only have still to determine

the genus of the orientable surface. But if m is the

genus, then 2m-1=X is the Euler-Poincaré characteristic

of rc(zn)’ Thus we only have to compute this characteris-

tic and it follows that the genus m 1is 1+%X. We fir§§. -y

count the 2 simplices (c,s,t). There are oz IZnn o
{i,j}€o

cells t of codimension 2. Each cell t of cotype{i,j}

{1} {

contains |Z;: . |+]|Z ?}. |cells of codimension 1. Each
{i,5} {1,313

cell of cotype i contains |Z£;§|=2 chambers. Thus the

number of 2-simplices ki3 of FO(Zn) is

Aytadh ) SIINIRE) (i)
ko= ® |z ™ I3 N P E T DA RN N b )
{i,3}eo n {i,j} {3} {i,j} {i}
i#]
Similar, there are k, , 1-simplices of type {s,t};
kz’2 1-simplices of type {c,t} and kz’3 1-simplices of

type {c,slwith

A -{i,j} : :
o n ? {i} {i}
207 Siee -Uzgs 5y 175D
i#j
A -{i,j} .
k, .= s =0 etisgl
2,2 {i,jteo n l {1,J}l
i#j
A_-{i} :
- n {i}
kz,s_iéAnl n "‘z{i}l

Finally , the number of vertices 1is
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A A_-{i} -{i,j}
k=lz "+ x| " 1+ = |zt
ieA {i,jleo
n . , %
1#]

and if k;=k, ,+k, ,+k, 3, then X=1-k;+k,-ks.

Using the equation (E), we have

A

_ n
k3—2n|}:n |

k=228 a2 (M) an )2 (M)

-{i,j}
- (n)_ s(n-1) n (n-1) (n)
=1-]z:"/- ¢ - =z by +2|Z +2n |z
R N L |+21z" ) [s2n 2 (M)
E£]
-2n|£§n)|
() |5 @1 Apmtisd)
SR EI N RN bl T S E |
{i,jl€o
i#j
A-
- = (_1)|J||Z n JI
Jeou{e} n
| 7| he-d Ay Lohe
- If n=3, then X (-1 " hE3d T =1-(-1) 3 2, | =2
- Jecu{s}

since GU{¢}=2A1{A3}.

Thus X=-1 and m=0 (This is in conformity with theorem

2 [6], after all o€S).

* 17] 2ad
- If n>3, then o =cY{¢} and X=1- T ,(-1) |z, ]
JEo
A _-J
1 J n
m=1-5 % (—1)l hzn | .

JEo

But since n>3, there exist i,j€A  with {i,j}¢o. Applying

proposition 1, we have
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{ir, {31} o
m ] (z{i,j})gﬂ (Zn)

Since Z,ﬁL:Tr{{i}’{j}}(%l j}).,ﬂo(zn) is not trivial and

m>1. =

DEFINITION. Let Fk be the free group generated by a;,
d2,...,8y. IF w=w(al,...,ak) is a word (reduced or not),
then Lw (ai) denotes the sum of the exponents of aj in w,
ie{1,2,...,k}.

LEMMA 4. lﬁ G is a one relator-group, G=<a;,...,aklR(a;,...,ax)>

and if (V¥ie{1,...,k})(Lp(a;)€22), then G'ié‘hdt 5'ffée

group.

PROOF. It has been proved by J.M.C. Whitehead [ 8] that a

one relator group is free if and only if the cyclic
word R (which is the only relation) is simple. We recall
that a word R is simple if and only if R can be derived
from a letter (a generator) by a sequence of simple trans-
formations [ 7] .
Finally, a simple transformation is one of the three
following

1) Replacing x by xy and x~! by y~!x~! (x#y), x and

Yy are generators
2) insert xx~!, x generator

1

3) omit xx~ ', X generator

see [7].
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Now let 1 be the length of a minimal sequence of simple
transformations to obtain R(al,...,ak) from a certain
letter a,, ie{1,...,k}. If 1>0 , then we denote by
R'(al,...,ak) the word we obtain by applying exactly

the same sequence of simple transformations on a;, cxcept
the last, which is dropped.

We prove by induction on 1 that for every simple word
w(al,...,ak) there is a je{1,...,k} for which Lw(aj)€2Z+1.
Then it follows that R is not simple and G not free

If 1=0, 1W(ai)=1622+1

If 1>0, then suppose for j€{1,...,k}, LW,(aj)EZZ+1. An
insertion or an omission of xx~! changes nothing at the

Lw(am) vyme{1,...,k}. Suppose in w', we replace ap by

“'a”!' for j#p,q. Then Lw(aj)=Lw.(aj)EZZ+1.

-1
da b :
an y aq D

“p%q p
If p=j, then again Lw(aj)=Lw'(aj)GZZ+1.

If g=j, then Lw(aj)=LW(ap)f... . . 4 LW,(ap)EZZ; then again
Lw(aj)€22+1. If Lw,(ap)€22+1, then Lw(ap)=Lw.(ap)€ZZ+1

and so every simple word has some letter aj for which

Lw(am)EZZ""] 5 mE{T,...,k}.

COROLLARY 1. The fundamental group of a surface is either

trivial or not free. In particular, if o is a circuit of

length n, ﬂc(Zn) is not free for n>3.

PROOF. The fundamental group of a surface (without boun-

dary) is either trivial or is of the following type [ 3]:

G=<a1,b1 9 e o ,am,tm"alblazlbIl e o .ambmal;llb];ll>
2 2 2
or G=<a;,...,apla;az...a_>
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In both last cases, the sum of the exponents of an
arbitrary generator in the generator is even. Applying
lemma 4 gives us the first part of the corollary. The

second part follows immediately with lemma 3.

PROOF OF THE THEOREM.

Suppose o#S. Then by lemma 1, o contains a circuit of
length m>3. Suppose T is such a circuit with set of
vertices JgAn. By proposition 1, WT(ZJ)<HG(ZH). By

lemma 3 wf(ZJ) is the fundamental group of an orientable
surface and not trivial since |[J|>3)which is, by corollary
1, not free. Since a subgroup of a free group is always

free, 70 (zn) cannot be free. Hence the theorem is proved.

REMARK. One can easily prove directly from the definition,
that if €S, than o contains no circuits of length n>3,
but using our lemma's , the proof can be very short.

I1f 0€S, then ﬂo(zn) is free and admits no non-free sub-
group, hence by corollary 1 and propositidn 1 o cannot
contain a circuit of length m>3 . So the conversion of

lemma 1 1is also true.
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