SIMON STEVIN, A Quarterly Journal of Pure and Applied Mathematics Volume 60 (1986), Number 4 (December 1986)

CHARACTERIZATION OF THE FREE σ-HOMOTOPY GROUPS OF COXETER COMPLEXES

H. Van Maldeghem * communicated by J.A. Thas

J.Tits introduced in his work on local characterisations of buildings [4] the notion of a σ -homotopy group of an arbitrary chamber system. In [6], we gave a method to calculate some σ -homotopy groups for arbitrary Coxeter complexes. The purpose of this paper is to give a creterium whether such a group is free.

INTRODUCTION

We can concieve any Coxeter complex as a connected chamber system Σ of rank n, for some $n\in \mathbb{N}^{\bigstar}$ (for general definitions see Tits [4] and Ronan [2]). Let $\Delta = \{1,2,\ldots,n\}$ and $\sigma \subseteq 2^{\Delta}$, then we call two galleries γ and γ' elementary σ -homotopic (notation : $\gamma = \gamma'$) if and only if they can be written as the juxtaposition of three galleries $\gamma = \alpha \delta \beta$ and $\gamma' = \alpha \delta' \beta$ where α and δ , resp. α and δ' are i-adjacent and δ and β , resp. δ' and β are j-adjacent (i,je Δ , α and/or possibly empty) and δ and δ' lie in a same cell of cotype J, Je σ and have the same extremity chambers. Two galleries

^{*}The author's research was supported by the National Fund for Scientific Research (Belgium)

 γ and γ' are called $\sigma\text{-homotopic}$ if and only if they can be connected by a sequence of elementary $\sigma\text{-homotopics}$ (notation $\gamma = \gamma'$).

Let us denote by $[\gamma]_{\sigma}$ the σ -homotopy class of galleries containing γ . Then by definition $\mathfrak{n}^{\sigma}(\Sigma)$, the σ -homotopy group of Σ , is the group whose elements are all σ -homotopy classes of galleries of Σ based at a chamber c of Σ (which means : galleries with extremity chambers the chamber c) and with binary operation $[\alpha]_{\sigma}[\beta]_{\sigma}=[\alpha\beta]_{\sigma}$ ($\alpha\beta$ is the juxtaposition of α and β). This group is unindependant on the choice of the chamber c (Σ is connected) (see also [2] and [4]).

DEFINITIONS AND NOTATIONS

We denote always the cardinality of a set A by |A| By Σ_n , we denote always a Coxeter complex of rank n, $n \in \mathbb{N}^{\bigstar}$. Its diagram is in fact a set $\Delta_n = \{1, 2, \ldots, n\}$ together with a map $f: (\Delta_2^n) \to \mathbb{N}^{\bigstar}$. We denote this diagram also by Δ_n . If $J \subseteq \Delta_n$, we denote by J the set J, and by $J \cap \Delta_n$ the diagram with set J and map $f/(J_2): (J_2) \to \mathbb{N}^{\bigstar}$. If Σ_n is a Coxeter complex (reducible or not) of rank n, $n \in \mathbb{N}^{\bigstar}$, with diagram Δ_n , then Σ_n^J is the set of flags of type J of Σ_n , $J \subset \Delta_n$ and $\Sigma_n^{(i)}$ is the set of flags of

rank i, 1 \leq i \leq n. Hence $|\Sigma_n^{\Delta n}| = |\Sigma_n^{(n)}|$ is the number of chambers of Σ_n . Since a Coxetercomplex Σ_n of rank n

defines a triangulation of the hypersphere $S^{n-1} = \{(x_1,\ldots,x_n) \in \mathbb{R}^n | \sum_{k=1}^n x_k^2 = 1\}$, we have by the Euler-Poincaré formula the equation

$$\sum_{k=0}^{n} (-1)^{k} \left| \sum_{n=0}^{n-k} \left(-1 \right)^{k} \right| = \sum_{J \subseteq \Delta_{n}} (-1)^{\left| J \right|} \left| \sum_{n=0}^{\Delta_{n}-J} \right| = 1$$

If $J\subseteq \Delta_n$, then we denote by Σ_J the Coxetercomplex of rank |J| and with diagram $J\cap \Delta_n$ and we notice the equation (see also [6]):

(E)
$$|\Sigma_n^{\Delta_n - J}| \cdot |\Sigma_J^{J-L}| = |\Sigma_n^{\Delta_n - L}|$$
 $L \subseteq J \subseteq \Delta_n$

Suppose now $\Delta_n \subseteq \sigma' \subseteq 2^{\Delta_n}$, then it follows by [6] (remark 2) that there exists σ , $\Delta_n \subseteq \sigma \subseteq \Delta_n \cup \binom{\Delta_n}{2}$ and $\pi^{\sigma'}(\Sigma_n) = \pi^{\sigma}(\Sigma_n)$. ({i,j} $\in \sigma \Rightarrow \{i,j\} \subseteq K \in \sigma'$). So we consider only σ with $\Delta_n \subseteq \sigma \subseteq \Delta_n \cup \binom{\Delta_n}{2}$. But then we can concieve σ as a linear graph $(\Delta_n, \sigma - \Delta_n)$, which we denote by $\overline{\sigma}$, and we define $\overline{\sigma}^* = \text{flag}\sigma$. If E is the set of simplices of $\overline{\sigma}^*$, then we denote $\sigma^* = E \cup \phi$.

If $\sigma = \Delta_n$, then $\pi^{\sigma}(\Sigma_n)$ is a free group with rank

$$1 - \Sigma_n^{(n)} + \Sigma_n^{(n-1)}$$

(see [6]) and we denote this rank by $X(\Sigma_n)$, which is in fact the Euler-Poincarré characteristic of the chambergraph of Σ_n (see [6]).

Finally , we define the family \overline{S} of linear graphs with set of vertices Δ_n , for some $n \in \mathbb{N}^*$ inductively as follows :

1) Each complete linear graph belongs to \overline{S}

2) If two lineair graphs of the class \overline{S} have a common complete subgraph as intersection, or have an empty intersection, then their union belongs to \overline{S} . From theorem 2 in [6], it follows that if $\overline{\sigma}$ is a complete subgraph, then $\pi^{\sigma}(\Sigma_n)$ is trivial, (and hence free). From theorem 4 in [6], it follows that if $\sigma = \sigma_1 \cup \sigma_2$ and $\overline{\sigma}_1, \overline{\sigma}_2 \in \overline{S}$, $\overline{\sigma_1 \cap \sigma_2}$ is a complete subgraph, than $\pi^{\sigma}(\Sigma_n)$ is a free group. Hence $\overline{\sigma} \in \overline{S}$ is a sufficient condition in order that $\pi^{\sigma}(\Sigma_n)$ is a free group. The purpose of this paper is to prove that it is also necessary. Thus we have to prove:

THEOREM: $\overline{\sigma} \in \overline{S} \Longleftrightarrow \pi^{\sigma}(\Sigma_n)$ is a free group. In this case, the rank of the free group is given by

$$1 - \sum_{J \in \sigma^{+}} (-1)^{\left|J\right|} \left| \sum_{n}^{\Delta_{n} - J} \right| \tag{1}$$

Suppose we have proved the first part of the theorem. Then by remark 3 of [6] we know that the rank of $\pi^\sigma(\Sigma_n)\,,\;\overline{\sigma}{\in}\overline{S}\,,\;\text{is}$

$$X(\Sigma_n) - \sum_{\substack{J \in \sigma^+ \\ |J| \ge 2}} (-1)^{|J|} |\Sigma_n^{\Delta_n - J}|$$

Applying the definition of $X(\Sigma_n)$, we obtain (1). So the second part of the theorem follows from the first part. To prove the theorem, we need some lemma's.

LEMMA 1. Suppose $\triangle_n \subseteq \sigma \subseteq \triangle_n \cup \binom{\triangle_n}{2}$ and suppose $\nexists J \subseteq \triangle_n$ with |J| > 3 such that $\binom{J}{2} \cap \sigma$ is a cycle of length |J| (or $\overline{\sigma}$ contains no minimal circuit of length m>3). Then we have $\overline{\sigma} \in \overline{S}$.

PROOF.

If n=1, the result follows immediately (also for n=2,3) since there exist no cycles of length m, m>3 in this case, and each linear graph with set of vertices Δ_1, Δ_2 or Δ_3 belongs to S.

We complete the proof by induction.

Let n>1 be arbitrary. Assume $\overline{\sigma}$ is not connected . Then $\sigma = \sigma_1 \cup \sigma_2$ with $(\cup \sigma_1) \neq \phi$, i=1,2 and $(\cup \sigma_1) \cap (\cup \sigma_2) = \phi$. It is clear that neither $\overline{\sigma}_1$ nor $\overline{\sigma}_2$ contains a minimal circuit of length m>3. By induction we have $\overline{\sigma}_1$ $\overline{\sigma}_2 \in \overline{S}$ and since their sets of vertices are disjoint, $\overline{\sigma}_1 \cup \overline{\sigma}_2 = \overline{\sigma} \in \overline{S}$. Let σ be connected . We denote by G_K the complete graph with as set of vertices $K \subseteq \Delta_n$. Let G_J be a maximal complete subgraph of $\overline{\sigma}$. We define for each $X \subseteq J$

 $\begin{array}{l} \mathbb{Q}_X = \{\, t \in \Delta_n - J \, \| \, t \sim x \,, \ \forall x \in X \ \text{and} \ t \not \sim y \,, \forall y \in J - X \,\} \\ \\ \text{where} \sim \text{denotes the adjacency relation in the graph} \ \overline{\sigma} \,. \end{array}$

Notice that $Q_J = \phi$, otherwise $G_{J \cup Q_J}$ is a greater complete subgraph than G_J . Suppose $X_1 - X_2 \neq \phi$, $X_2 - X_1 \neq \phi$, X_1 , $X_2 \subseteq J$, and Q_{X_1} , $Q_{X_2} \neq \phi$. Take $x \in Q_{X_1}$, $x \notin Q_{X_2}$ and suppose $x_1 \sim x_2$. Then $x_1 \sim t_1 \in X_1 - X_2$ and $x_2 \sim t_2 \in X_2 - X_1$, so $x_1 \sim t_1 \sim t_2 \sim x_2 \sim x_1$ is a cycle of length 4 since $t_1 \not \sim x_2$, $t_2 \not \sim x_1$. Hence $x_1 \not \sim x_2$. We define now for each $X \subseteq J$

 $\mathsf{R}_{X} = \begin{cases} \phi \text{, if } (\exists Y \subseteq J) \, ((X \subseteq Y) \text{ and } (\mathbb{Q}_{Y} \neq \phi) \\ \mathbb{Q}_{X} \cup \{t \in \Delta_{n} - J \parallel \, (\exists Y \subseteq X) \, (t \in \mathbb{Q}_{Y}) \text{ and } ((\exists x \in \mathbb{Q}_{X}) \, (t \sim x) \} \text{, otherwise .} \end{cases}$

From that definition, it follows that if $Q_X = \phi$, then $R_X = \phi$. Suppose R_{X_1} , $R_{X_2} \neq \phi$ and $X_1 \subsetneq X_2$, then $Q_{X_1} \neq \phi$ and so $R_{X_2} = \phi$ and we conclude that $X_1 - X_2 \neq \phi$ and $X_2 - X_1 \neq \phi$. Suppose now $R_{X_1} \cap R_{X_2} \neq \phi$. Then $\exists z \in R_{X_1} \cap R_{X_2}$. If $z \in Q_{X_1}$, then $z \notin R_{X_2}$ since $X_1 \not\subset X_2$, thus $z \in Q_Y$ with $Y \subset X_1 \cap X_2$ and $\exists x_1, x_2$ with $x \in Q_{X_1}$ and $x \in Q_{X_2}$ such that $x_1 \sim z \sim x_2$. Take $t_1 \sim x_1$, $t_2 \sim x_2$; $t_1 \in X_1 - Y$, $t_2 \in X_2 - Y$, then $t_1 \sim x_1 \sim z \sim x_2 \sim t_2 \sim t_1$ is a cycle of length 5, since $t_1 \not\sim z \not\sim t_2$ $(t_1, t_2 \not\in Y)$, $x_1 \not\sim x_2$ (by (1)), $x_1 \not\sim t_2$ and $x_2 \neq t_1$. Thus $R_{X_1} \cap R_{X_2} = \phi$. Suppose now that $x \in R_{X_1}$, $x_2 \in R_{X_2}$ and $x_1 \sim x_2$. Assume first $x \in Q_{X_1}$, then $x \notin Q_{X_2}$ and thus $(\exists Y \underline{\subset} X_2) \, (Y \underline{\not\subset} X_1) \, (x_2 \underline{\in} Q_Y) \, . \ \text{If} \ t_1 \underline{\in} X_1 - X_2 \, , \ t_2 \underline{\in} Y - X_1 \, , \ \text{then}$ $t_1 \sim x_1 \sim x_2 \sim t_2 \sim t_1$ is a cycle of length 4, since $t_1 \neq x_2$ and $x_1 \neq t_2$. Assume now $x_1 \notin Q_{\chi}$, then for the same reason $x_2 \notin Q_{X_2}$ and we have $(\exists y_1 \sim x_1) (y_1 \in Q_{X_1})$ and $(\exists y_2 \sim Q_2) (y_2 \in Q_{X_2})$. If $t_1 \in X_1 - X_2$, $t_2 \in X_2 - X_1$, then $t_1 \sim y_1 \sim x_1 \sim x_2 \sim y_2 \sim t_2 \sim t_1$ is a cycle of length 6. We conclude $x_1 \neq x_2$ (2). We define : $\lambda = \{X \subseteq J \mid R_X \neq \phi\}$ and for each $X \in \lambda$

 $S_X=\{t\in\Delta_n-J\,\|\,\exists\,\mbox{ gallery }\gamma\mbox{ who's extremity vertices}$ are t and to for some $t_0\in R_X$ and with $\gamma\subseteq\Delta_n-J\}$

Notice that $J \notin \lambda$.

Suppose $X_1, X_2 \in \lambda$, then we prove that no element of S_{X_1} is adjacent to any element of S_{X_2} (or that $S_{X_1} \neq S_{X_2}$). Suppose therefore $x_1 \in S_{X_1}, x_2 \in S_{X_2}$, $x_1 \sim x_2$. Let γ_i be a gallery of minimal length between R_{X_i} and x_i , i=1,2. We proceed by induction on $k=|\gamma_1|+|\gamma_2|-2$. If k=0, then $x_i \in R_{X_i}$, i=1,2 and we proved this in (2).

Suppose now k>0. By induction, no element of γ_1 is adjacent to any element of γ_2 , except $x_1 \sim x_2$. Let $t_1 \in X_1 - X_2$, $t_2 \in X_2 - X_1$ then $t_1 \sim \gamma_1 \sim \gamma_2 \sim t_2 \sim t_1$ is a cycle of length k+4>4, so $x_1 \not \sim x_2$ (3)

To complete the proof, we concieve two cases:

- 1) $|\lambda| = 0$ Then $\sigma = \Delta_n \cup {\binom{\Delta_n}{2}}$ since $\overline{\sigma}$ is connected and $\overline{\sigma} \in \overline{S}$.
- 2) $|\lambda| > 0$. Suppose $X_0 \in \lambda$, $X_0 \neq J$ since $J \notin \lambda$. We denote by $\overline{\sigma}/_P$, where $P \subseteq \Delta_n$, the restriction of $\overline{\sigma}$ to P (Thus $\overline{\sigma}/_P$ is the graph $(P, \sigma \cap \binom{P}{2})$). If $\overline{\sigma}_1 = \overline{\sigma}/_{X_0 \cup S_{X_0}}$ and $\overline{\sigma}_2 = \overline{\sigma}/_{\Delta_n S_{X_0}}$. Since $X_0 \neq J$, $X_0 \cup S_{X_0} \neq \Delta_n$ and since $S_{X_0} \neq \phi$, $\Delta_n S_{X_0} \neq \Delta_n$, so we can apply induction : $\overline{\sigma}_1 \in \overline{S}$, $\overline{\sigma}_2 \in \overline{S}$. But we have : $\sigma_1 \cap \sigma_2 = \binom{X_0}{2}$ and $\sigma_1 \cup \sigma_2 = \sigma$ since no element of S_{X_0} is adjacent to any element of $\Delta_n (X_0 \cup S_{X_0})$. We conclude $\overline{\sigma} \in \overline{S}$.

LEMMA 2. Let v be an idempotent endomorphism of the Coxetercomplex Σ_n with diagram Δ_n , then for each σ , $\Delta_n \subseteq \sigma \subseteq \Delta_n \ \binom{n}{2}$ we have :

$$\pi^{\sigma}(v(\Sigma_n)) \leq \pi^{\sigma}(\Sigma_n)$$

<u>PROOF</u>. It is sufficient to prove that $([\gamma]_{\sigma} = [C]_{\sigma}$ in $v(\Sigma) \Leftrightarrow ([\gamma]_{\sigma} = [C]_{\sigma}$ in Σ_n , with γ a gallery in $v(\Sigma_n)$ based at some chamber C in $v(\Sigma_n)$.

- If [γ] $_{\sigma}$ =[C] $_{\sigma}$ in $v(\Sigma_n)$, then of course [γ] $_{\sigma}$ =[C] $_{\sigma}$ in Σ_n

- If $[\gamma]_{\sigma}$ =[C] $_{\sigma}$ in Σ_{n} , then there is a sequence

$$[\gamma] \stackrel{\overset{\ \ }{=}}{\scriptscriptstyle [\delta_1]} \stackrel{\overset{\ \ }{=}}{\scriptscriptstyle [\delta_2]} [\delta_2] \stackrel{\overset{\ \ }{=}}{\scriptscriptstyle [\delta_1]} \dots \stackrel{\overset{\ \ }{=}}{\scriptscriptstyle [\delta_1]} [\delta_1] \stackrel{\overset{\ \ }{=}}{\scriptscriptstyle [C]} .$$

But then we have

$$[\gamma] = [v(\gamma)] = [v(\delta_1)] = \frac{\varepsilon}{\sigma} ... = \frac{\varepsilon}{\sigma} [v(\delta_1)] = [c].$$

and so $[\gamma] = [c]$ in $v(\Sigma_n)$ or $[\gamma]_{\sigma} = [c]_{\sigma}$ in $v(\Sigma_n)$.

 $\frac{\text{PROPOSITION 1. }\underline{\text{If }} \text{ }\underline{J}\subseteq \Delta_n, \text{ } \Delta_n\subseteq \sigma\subseteq \Delta_n \cup (\frac{\Delta_n}{2}), \text{ }\underline{\text{and }} \overline{\sigma'}=\overline{\sigma}/J \text{ ,}\\ \underline{\text{then we have}}$

$$\pi^{\sigma'}(\Sigma_J) \leq \pi^{\sigma}(\Sigma_n)$$
.

<u>PROOF.</u> Σ_J is a convex subcomplex of Σ_n and contains at least one chamber. So by theorem 2.19 pp.24-25 [5], Σ_J is the image of an idempotent endomorphism. But, since no i-adjacent chambers appear in Σ_J , for $i{\in}\Delta_n{-}J$, we can restrict $\overline{\sigma}$ to J and so the result follows by lemma 2.

LEMMA 3. If Σ_n is a Coxeter complex of rank n with diagram Δ_n , and $\overline{\sigma}$ is a circuit of length n, n>3, then $\pi^{\sigma}(\Sigma_n)$ is the fundamental group of an orientable surface without boundary. Moreover, $\sigma^* = \sigma \cup \{\phi\}$ for n>3, and we have

<u>PROOF.</u> We define the 2-dimensional complex $\Gamma_{\sigma}(\Sigma_n)$ (for general definition see Ronan [2]). The vertices of $\Gamma_{\sigma}(\Sigma_n)$ are the chambers of Σ_n , the cells of codimension 1, and the cells of cotype {i,j}, where {i,j} $\in \sigma$. In this proof c and c_i , $i\in \mathbb{N}$ denote always chambers; s and s_i , $i\in \mathbb{N}$ denote always cells of codimension 1, and t and t_i , $i\in \mathbb{N}$ denote always cells of cotype {i,j}, {i,j} $\in \sigma$. Then we define :

$$\begin{aligned} \{c,s\} &\in \Gamma_{\sigma}(\Sigma_{n}) \Longleftrightarrow c \in s \\ \{c,t\} &\in \Gamma_{\sigma}(\Sigma_{n}) \Longleftrightarrow c \in t \\ \{t,s\} &\in \Gamma_{\sigma}(\Sigma_{n}) \Longleftrightarrow s \subseteq t \\ (c,s,t) &\in \Gamma_{\sigma}(\Sigma_{n}) \Longleftrightarrow c \in s \subseteq t \end{aligned}$$

We claim that $\Gamma_{\sigma}(\Sigma_n)$ is a triangulation of an orientable surface. We first prove that every 1-simplex (i.e. every edge) lies in exactly two 2-simplices. There are three cases :

- 1) $\{c,s\}\in\Gamma_{\sigma}(\Sigma_n)$ with ces, cotyps= $i\in\Delta_n$. Then, there are exactly two 2-sets of σ which contain i. So we have $\{i,j_1\}$, $\{i,j_2\}\in\sigma$. By definition of a chamber system , s is in exactly one cell of each cotype.
- 2) $\{c,t\}\in\Gamma_{\sigma}(\Sigma_n)$, thus $c\in t$. Suppose cotypt= $\{i,j\}\in\sigma$. There is exactly one cell s_i of cotype i for which $c\in s_i$. Similar $c\in s_j$, cotyps $_j=j$. By definition of a chamber

system $\{c,s_i,t\},\{c,s_j,t\}\in\Gamma_\sigma(\Sigma_n)$. If s_k is a cell of cotype k, k≠i, k≠j then $s_k\not\subset t$.

3) $\{s,t\}\in\Gamma_{\sigma}(\Sigma_n)$ and $s\subset t$. Since a Coxeter complex is a thin chamber complex, there are exactly two chambers c_1 and c_2 with $c_1,c_2\in s$.

So, $\Gamma_{\sigma}(\Sigma_n)$ is a triangulation of a surface without boundary. We prove now that every orientation of this complex is a coherent orientation. Let C_i , i=1,2, be the free Z-module with base the set of i-simplices. Then we have to define a map $\vartheta:C_2\to C_1:w\to \Sigma$ $(-1)^k v_i^w$ such that $v_i\subseteq w$

if $w_1,w_2\in C_2$ and $v\in C_1$ with $v\subseteq w_1$, $v\subseteq w_2$, then v appears with different signs in ∂w_1 and ∂w_2 (*). To define ∂ , we take an arbitrary chamber c_0 and we define $m_c=d(c_0,c)$ for c a chamber of Σ_n . If $c_1\sim c_2$, then $|d(c_0;c_1)-d(c_0,c_2)|=1$ (see Carter [1]) and so we have $m_{C_1}=m_{C_2}+1$ or $(-1)^{m_{C_1}}(-1)^{m_{C_2}}=-1$. We now write Δ_n as $\Delta_n=\{i_1,i_2,\ldots,i_n\}$ with the property that $\{i_k,i_{k+1}\}\in \sigma$ $k=1,\ldots,n-1$, and $\{i_1,i_n\}\in \sigma$. Then we define

$$k_{\{c,s\}}^{\{c,s,t\}} = \begin{cases} +1 \text{ if cotyp } s=i_k \text{ and cotyp } t=\{i_k,i_{k+1}\} \\ \text{ or cotyp } s=i_n \text{ and cotyp } t=\{i_n,i_1\} \\ -1 \text{ otherwise} \end{cases}$$

$$k_{\{c,t\}}^{\{c,s,t\}} = k_{\{c,s\}}^{\{c,s,t\}}$$

$$k\{c,s,t\} = m_{c}$$

It is clear that the property (*) holds with that definition of ϑ . So, we only have still to determine the genus of the orientable surface. But if m is the genus, then 2m-1=X is the Euler-Poincaré characteristic of $\Gamma_{\sigma}(\Sigma_n)$. Thus we only have to compute this characteristic and it follows that the genus m is $1+\frac{1}{2}X$. We first count the 2 simplices (c,s,t). There are Σ $\Sigma_n = \{\Sigma_n\} \in S$

cells t of codimension 2. Each cell t of cotype{i,j}

contains $|\Sigma_{\{i,j\}}^{\{i\}}| + |\Sigma_{\{i,j\}}^{\{j\}}|$ cells of codimension 1. Each cell of cotype i contains $|\Sigma_{\{i\}}^{\{i\}}| = 2$ chambers. Thus the number of 2-simplices k_3 of $\Gamma_{\sigma}(\Sigma_n)$ is

$$k_{3} = \sum_{\substack{\{i,j\} \in \sigma \\ i \neq j}} |\Sigma_{n}^{\Delta_{n}^{-\{i,j\}}}| (|\Sigma_{\{i,j\}}^{\{i\}}| \cdot |\Sigma_{\{j\}}^{\{j\}}| + |\Sigma_{\{i,j\}}^{\{j\}}| \cdot |\Sigma_{\{i\}}^{\{i\}}|)$$

Similar, there are $k_{2,1}$ 1-simplices of type {s,t}; $k_{2,2}$ 1-simplices of type {c,t} and $k_{2,3}$ 1-simplices of type {c,s}with

$$k_{2,1} = \sum_{\substack{\{i,j\} \in \sigma \\ i \neq j}} \sum_{n}^{\Delta_{n} - \{i,j\}} .(|\Sigma_{\{i,j\}}^{\{i\}}| + |\Sigma_{\{i,j\}}^{\{j\}}|)$$

$$k_{2,2} = \sum_{\substack{\{i,j\} \in \sigma \\ i \neq j}} \sum_{n} \sum_{n} \sum_{n} \sum_{j=1}^{n} \sum_{n} \sum_{n} \sum_{n} \sum_{j=1}^{n} \sum_{n} \sum_{n}$$

$$k_{2,3} = \sum_{i \in \Delta_n} |\sum_{n}^{\Delta_n - \{i\}} |.|\sum_{\{i\}}^{\{i\}}|$$

Finally, the number of vertices is

$$k_{1} = \left| \sum_{n}^{\Delta_{n}} \right| + \sum_{i \in \Delta_{n}} \left| \sum_{n}^{\Delta_{n} - \{i\}} \right| + \sum_{\substack{\{i,j\} \in \sigma \\ i \neq j}} \left| \sum_{n}^{n - \{i,j\}} \right|$$

and if $k_2=k_2$, $1+k_2$, $2+k_2$, 3, then $X=1-k_1+k_2-k_3$. Using the equation (E), we have :

$$k_3 = 2n | \Sigma_n^{\Delta_n} |$$

$$k_{2} = 2 |\Sigma_{n}^{(n-1)}| + n |\Sigma_{n}^{(n)}| + n |\Sigma_{n}^{(n)}|$$

$$= 1 - |\Sigma_{n}^{(n)} - \Sigma_{n}^{(n-1)}| - \sum_{\substack{\{i,j\} \in \sigma \\ i \neq j}} |\Sigma_{n}^{n-\{i,j\}}| + 2 |\Sigma_{n}^{(n-1)}| + 2n |\Sigma_{n}^{(n)}|$$

$$=1-|\Sigma_{n}^{(n)}|+|\Sigma_{n}^{(n-1)}|-\sum_{\substack{\{i,j\}\in\sigma\\i\neq j}}|\Sigma_{n}^{\Delta_{n}-\{i,j\}}|$$

$$=1-\sum_{\mathbf{J}\in\sigma\cup\{\phi\}}(-1)|\mathbf{J}||\mathbf{\Sigma}^{\Delta}\mathbf{n}^{-\mathbf{J}}|$$

- If n=3, then $\sum_{\substack{J \in \sigma \cup \{\phi\}}} (-1)^{\left|J\right|} \left|\Sigma_3^{\Delta_3} - J\right| = 1 - (-1)^{\Delta_3} \left|\Sigma_3^{\Delta_3 - \Delta_3}\right| = 2$ since $\sigma \cup \{\phi\} = 2^{\Delta_3} - \{\Delta_3\}$.

Thus X=-1 and m=0 (This is in conformity with theorem 2 [6], after all $\overline{\sigma} \in \overline{S}$).

- If n>3, then
$$\sigma^*=\sigma\cup\{\phi\}$$
 and $\chi=1-\sum_{J\in\sigma}*(-1)^{\left|J\right|}\left|\Sigma_n^{\Delta_n-J}\right|$
$$m=1-\frac{1}{2}\sum_{J\in\sigma}(-1)^{\left|J\right|}\left|\Sigma_n^{\Delta_n-J}\right|.$$

But since n>3, there exist $i,j\in\Delta_n$ with $\{i,j\}\notin\sigma$. Applying proposition 1, we have

$$\pi^{\{\{i\},\{j\}\}}(\Sigma_{\{i,j\}}) \leq \pi^{\sigma}(\Sigma_n).$$

Since $Z_{+}=\pi^{\{\{i\},\{j\}\}}(\Sigma_{\{i,j\}}).,\pi^{\sigma}(\Sigma_{n})$ is not trivial and $m \ge 1.$

<u>DEFINITION</u>. Let F_k be the free group generated by a_1 , a_2, \ldots, a_k . If $w=w(a_1, \ldots, a_k)$ is a word (reduced or not), then L_w (a_i) denotes the sum of the exponents of a_i in w, $i \in \{1, 2, \ldots, k\}$.

<u>LEMMA 4. If G is a one relator-group</u>, $G=\langle a_1,\ldots,a_k || R(a_1,\ldots,a_k) \rangle$ and if $(\forall i \in \{1,\ldots,k\}) (L_R(a_i) \in 2z)$, then G is not a free group.

<u>PROOF.</u> It has been proved by J.M.C. Whitehead [8] that a one relator group is free if and only if the cyclic word R (which is the only relation) is simple. We recall that a word R is simple if and only if R can be derived from a letter (a generator) by a sequence of simple transformations [7].

Finally, a simple transformation is one of the three following

- 1) Replacing x by xy and x^{-1} by $y^{-1}x^{-1}$ ($x\neq y$), x and y are generators
- 2) insert xx^{-1} , x generator
- 3) omit xx^{-1} , x generator

see [7].

Now let 1 be the length of a minimal sequence of simple transformations to obtain $R(a_1,\ldots,a_k)$ from a certain letter a_i , $i\in\{1,\ldots,k\}$. If 1>0, then we denote by $R'(a_1,\ldots,a_k)$ the word we obtain by applying exactly the same sequence of simple transformations on a_i , except the last, which is dropped.

We prove by induction on 1 that for every simple word $w(a_1,\ldots,a_k) \text{ there is a } j{\in}\{1,\ldots,k\} \text{ for which } L_w(a_j){\in}2Z{+}1.$ Then it follows that R is not simple and G not free If 1=0, $1_w(a_i){=}1{\in}2Z{+}1$

If 1>0, then suppose for $j \in \{1, \ldots, k\}$, $L_{w'}(a_j) \in 2\mathbb{Z}+1$. An insertion or an omission of xx^{-1} changes nothing at the $L_w(a_m)$ $\forall m \in \{1, \ldots, k\}$. Suppose in w', we replace a_p by $a_p a_q$ and a_p^{-1} by $a_q^{-1} a_p^{-1}$ for $j \neq p, q$. Then $L_w(a_j) = L_{w'}(a_j) \in 2\mathbb{Z}+1$. If p=j, then again $L_{w'}(a_j) = L_{w'}(a_j) \in 2\mathbb{Z}+1$.

If q=j, then $L_w(a_j) = L_w(a_p) + \cdots$. If $L_w(a_p) \in 2\mathbb{Z}$, then again $L_w(a_j) \in 2\mathbb{Z} + 1$. If $L_w(a_p) \in 2\mathbb{Z} + 1$, then $L_w(a_p) = L_w(a_p) \in 2\mathbb{Z} + 1$ and so every simple word has some letter a_m for which $L_w(a_m) \in 2\mathbb{Z} + 1$, $m \in \{1, \dots, k\}$.

COROLLARY 1. The fundamental group of a surface is either trivial or not free. In particular, if $\overline{\sigma}$ is a circuit of length n, $\pi^{\sigma}(\Sigma_n)$ is not free for n>3.

<u>PROOF</u>. The fundamental group of a surface (without boundary) is either trivial or is of the following type [3]: $G=\langle a_1,b_1,\ldots,a_m,t_m\|\,a_1b_1a_1^{-1}b_1^{-1}\ldots a_mb_ma_m^{-1}b_m^{-1}\rangle$

or
$$G=\langle a_1, ..., a_m | a_1^2 a_2^2 ... a_m^2 \rangle$$

In both last cases, the sum of the exponents of an arbitrary generator in the generator is even. Applying lemma 4 gives us the first part of the corollary. The second part follows immediately with lemma 3.

PROOF OF THE THEOREM.

Suppose $\overline{\sigma} \notin \overline{S}$. Then by lemma 1, $\overline{\sigma}$ contains a circuit of length m>3. Suppose $\overline{\tau}$ is such a circuit with set of vertices $J \subseteq \Delta_n$. By proposition 1, $\pi^{\mathfrak{T}}(\Sigma_J) \leqslant \pi^{\sigma}(\Sigma_n)$. By lemma 3 $\pi^{\mathfrak{T}}(\Sigma_J)$ is the fundamental group of an orientable surface and not trivial since |J| > 3) which is, by corollary 1, not free. Since a subgroup of a free group is always free, π^{σ} (Σ_n) cannot be free. Hence the theorem is proved.

REMARK. One can easily prove directly from the definition, that if $\overline{\sigma} \in \overline{S}$, than $\overline{\sigma}$ contains no circuits of length n>3, but using our lemma's , the proof can be very short. If $\overline{\sigma} \in \overline{S}$, then $\pi^{\sigma}(\Sigma_n)$ is free and admits no non-free subgroup, hence by corollary 1 and proposition 1 $\overline{\sigma}$ cannot contain a circuit of length m>3. So the conversion of lemma 1 is also true.

REFERENCES

[1] R. Carter: "Simple groups of Lie Type". Pure and Applied mathematics, London, New York, Sydney, Toronto.

- [2] M.A. Ronan: "Coverings and Automorphisms of Chamber systems". Europ.J.Combinatorics (1980) 1, 259-269.
- [3] E. H. Spanier: "Algebraic Topology" New York,
 McGraw-Hill (1966)
- [4] J. Tits: "A local approach to Buildings", in "The Geometric Vein", the Coxeter festschrift (Springer Verlag, Berlin) 1981
- [5] J. Tits: Buildings of Spherical Type and Finite BN-pairs", Lecture Notes in Mathematics 386 (Spinger Verlag, Berlin, 1974)
- [6] H. Van Maldeghem: "\sigma-Homotopy groups of Coxeter complexes", Simon Stevin, Vol.58 (1984), Number 1-2 (Jan.-Apr. 1984)
- [7] J.H.C. Whitehead: "On certain sets of elements in a free group" Proc.L.M.S., 41 (1936), 48-56
- [8] J.H.C. Whitehead: "On equivalent sets of elements in a free group". Ann.Math.37 (1936), 782-800.

Seminar of Geometry and Combinatorics (received January 1985)
Krijgslaan 281
B-9000 Gent
Belgium