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Topological Polygons and Affine Buildings
of Rank Three (++*).

Sunte. — St introduce la nozione di m-gono gemeralizzato topologico e si mostra
che il building all’infinito di ogni building affine, localmente finito, di
rango 3 é un n-gono compatle, totalmente disconnesse, con n €{3, 4, 6}. Di
consequenza, tutti © piani proiettivi finiti di ordine fissato sono immaging
epimorfe continue di un qualche piano proiettivo compatlo, totalmente discon-
nesso (ed analogamente per i quadrangoli e gli esagons).

Affine buildings of rank at least 4 are «classical », see Tits [38].
Many examples of non-classical affine buildings of rank 3 have been
constructed, see Ronan [28], Kantor [24], [40]. Here we investigate
affine buildings of rank 3 and establish some connections with topo-
logical polygons. The concept of topological polygons is introduced
as a generalization of topological projective planes. Special attention
1s given to compact totally disconnected polygons and inverse limit
representations. By (3.4.3) the geometry «at infinity» of every
locally finite affine building of rank 3 is a compact totally disconnected
n-gon with n e {3, 4, 6}. Together with a strong existence theorem
of Ronan [28] this yields the following result (4.2): for every natural
number % there exists a compact totally disconnected projective plane
which admits continuous epimorphisms onto all projective planes of
order n; there are analogous results for generalized quadrangles and
generalized hexagons.
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1. — Definition of topological polygons.

An incidence structure (of rank 2) is a triple (P, £, I) of non-empty
sets with I C P X and PN £ = ¢. Every incidence structure (P, £, I)
gives rise to a graph (V, %) with vertex set V = P U { and adjacency
relation % defined by

X% y<>(@=1vy or wly or ylx);

hence = is reflexive and symmetric (unlike I). Let d: V*— Ny U {oo}
be the path metric of (V, %), i.e. d(x, ) is the smallest integer k € NN,
such that there exists a chain of elements «y,...,2,,€V with
X% By % By % ..o %k g %k Ty % Y, and d(x,y) = oo if # and y are not
connected by such a path.

Let »>2 be an integer. A generalized n-gow is an incidence struec-
ture § = (P, £, I) satisfying the following axioms:

(i) » = max {d(x,y): »,y € P U L}; in particular, (V, %) is
connected.
(ii) If d(x, y) = k < m, then there is a unique chain @,, #a, ..., T3

such that @ # @, % @, ... Ty % Ty % Y.

Furthermore we always assume that S is thick, i.e.

.

is incident with at least three

e

(iii) Every element of P U

elements.

Cp. Tits [36] § 11, Kantor [24].

The axioms for a generalized n-gon 8 = (P, £, I) can be expressed
by saying that (V, %) is a connected bipartite graph of diameter n»
and girth 2n such that every vertex has valenecy at least three, cp.
Kantor [24]. Up to duality, the generalized n-gon § can be recon-
structed from the graph (V, ).

Every line of a generalized n-gon S carries the same (possibly
infinite) number 7 of points; dually, every point is incident with the
same number s of lines. The pair (r, s) is called the order of §.

REMARKS. (1) A generalized 2-gon (digon) is a trivial incidence
structure, every point being incident with every line; the correspond-
ing graph (V, %) is a complete bipartite graph.
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(2) The generalized 3-gons are exactly the projective planes.
Later on we shall deal also with generalized 4-gons (quadrangles)
and generalized 6-gons (hexagons).

(3) By the Feit-Higman theorem, finite (thick) generalized
n-gons exist only for ne {2, 3, 4, 6, 8}, see Feit-Higman [12], D. G.
Higman [22] 3.2, Kilmoyer-Solomon [25].

Let (V, %) be the graph determined by a generalized n-gon S.
If ¢, y € V with d(z, y) = k and 2<k<m— 1, then there exist uniquely
determined elements @y, ..., 2, € V such that @ s x; % @, % ... % 2,1 * ¥.
Hence we have a map

-Flc: {(w, y) e Ve: d((l/‘, y) — k} — pE-1

with F(z, y) = (@, @2y ..., X,—1). The maps F, may be regarded as
the « geometric operations » of §; e.g. for n = 3, the map F, combines
the two operations of joining distinet points and intersecting distinct
lines in the projective plane 8§.

(1.1) DErFINITION. A topological wn-gon is a generalized n-gon
S = (P, £, I) with non-discrete Hausdorff topologies on P and £ such
that the topological sum V = P U £ satisfies

(TOP) all maps Fy: {(», y) €V2: d(w, y) = k} — V** as defined above
with 2<k<n— 1 are continuous.

(1.2) CoMmmENTS. (1) Let 8= (P, L,I) be a generalized digon.
Then all non-discrete Hausdorff topologies on P and £ render § a
topological digon.

(2) Let » = 3, i.e. let S be a projective plane. Then condition
(TOP) means that joining distinet points and intersecting distinct
lines are continuous operations ; this is the usual requirement in the
definition of a topological projective plane, c¢p. Salzmann [29], Salz-
mann [30]. We remark that non-trivial topologies on the point set P
and on the line set £ of a projective plane are automatically Hausdorff,
if (TOP) is satisfied, cp. Salzmann [29], p. 492, Salzmann [30] (1.7).

(3) Let m = 4, i.e. let § be a generalized quadrangle. The de-
finition of a topological quadrangle used in Forst [13], [17] requires
only continuity of the map F,; however, this implies continuity of #,,
ep. [17] (2.3), and is therefore equivalent to (TOP).
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Every locally compact (connected) Laguerre-plane of topological
dimension 2 gives rise to a compact (connected) quadrangle of
topological dimension 3, see Forst [13] 5.10; in fact, a beautiful result
of Schroth [32] says that every compact quadrangle of dimension 3
arises in this fashion. Thus many examples of non-classical compaet
(connected) quadrangles are obtained from the non-miquelian La-
guerre-planes constructed in Groh [15], Artzy-Groh [3], Lowen-Pfiil-
ler [27], Steinke [34], [35].

(4) There exist strong connections between the maps F,, and
it is conceivable that continuity of £, implies continuity of the other
maps I, cp. (3).

(6) Burns-Spatzier [6] define topological buildings by only re-
quiring the set of (ordered) flags of fixed length &k to be closed in V*
(henece for topological polygons they only require that the adjacency
relation is closed in V2). This conecept seems to be too weak in general,
as the following examples show. Let F be a field with a ring topology;
then in every preojective space PG(m, F) of finite dimension m over Z,
every such set of flags is closed with respect to the natural topology
of PG(m,F) (obtained from the quotient topology of Fm+n\ {0} —
— PG(m, F)). But there exist ring topologies on the field @ of rational
numbers which are not field topologies, see e.g. Weber [42] (1.9), (3.4);
with these topologies, PG(m, ) is not a topological projective space
in the usual sense.

Burns-Spatzier [6] use their definition only for compact topologies
on V; ep. (2.1) and Burns-Spatzier [6] 1.12 for this special case. One
of the main results of Burns-Spatzier [6] says that the topological
automorphism group of every irreducible eompact metric building
of rank at least 2 is loecally compaect in the compact-open topology.

2. — Compact polygons, inverse limits, examples.

This section contains some simple criteria for compact topological
polygons, leading to large classes of classical and non-elassical compact

polygons.

f» 11\ [ Vo] A v 4 {f T 0 T\ i AN NN O M - PR T | s R
LYY i i Y ¥ I F AT L i g 7. N
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compact topologies on P and on f. Assume that the incidence rela-
tion I is closed in P xXf. Then the following hold:

(@) (P, £, I) is a compact topological n-gon.
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(b) The distance function d: (P U £)2—{0,1,...,n} is lower
semi-continuous, i.e. the sets d-*({i, ¢ 4 1, ..., n}) are open in (P U £)2
for every «.

(¢) The topology of P (and the topology of L) is determined
uniquely by the topologies induced on a line and on a pencil of lines.

ProoF. P,f and V = P U { are non discrete Hausdorff spaces
(being compact), and % = I U Id, U I°"*® ig closed in V2.

(@) Concerning continuity of F,: d-*({k}) — V*1, it suffices to
show that the graph of F, is closed in X := d-'({}) x V*1, ¢p. Du-
gundji [10] XT1.2.7. This graph can be written as

{(, Yy X1y By vvy Byg) €E X2 T 5% Ty % @y % ... Bpyg % Y}

and is therefore closed in X.

(b) The set d—*({0}) =id, is closed in V?, as V is a Hausdorff
space. For 7> 0, we have

a-({0,1,...,4}) = {(z, y) € V?: d(», y)<i} =

= (Po XD ) {( @0y B1y vvy @) € Vi1 ;3 w54, for 0<j < Y],

where p,: Vi+1— V denotes the (continuous) projection onto the
coordinate indexed by k. The square bracket [...] is closed in Vi,
hence compact. Therefore d-*({0,1,...,4}) is compact, hence closed
in V2

(¢) Pick an ordinary (non-degenerate) w-gon in (P, £, I), and
denote by =y, ..., z, its points (for » even) resp. its lines (for » odd).
Then

P :.KJ {v e P: d(x, x;) = n},

=1

and each set {x e P: d(w, #;,) = n} is open in P by (b), hence P has
the weak topology determined by these sets, ¢cp. Dugundji [10] 111.9.3,
VI.8. Each set { € P: d(x, x;,) = n} is geometrically and topologically
a product of «punctured » lines and «punctured » pencils, i.e. lines
minus a point resp. pencils minus a line (for generalized quadrangles
see Forst [13], [18], [17] 2.7). Finally, any two lines (or pencils) are
homeomorphic via projectivities (ep. Tits [36] p. 59, [26]). Q.E.D.
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(2.2) Examples. Let K be a non-discrete locally compact skew
field. The point set of the projective space PG(n, K) of finite dimen-
sion % over K is compact (with respect to the quotient topology ob-
tained from K\ {0} - PG(n, K)); furthermore every GraBmann
manifold G, consisting of all subspaces of H»*+! of fixed dimension d
is compact as well,

Hence every generalized polygon embedded into PG(n, K) as a
closed subset (of G, X G,;, with natural incidence) is a compact topo-
logical polygon by (2.1). This observation yields large classes of com-
pact polygons, connected ones as well as totally disconnected ones.

1 3 4+ - 4
We indicate a few conecrete instances.

The desarguesian projective plane PG(2, K) in its usual represen-
tation (G, G5, C) by subspaces of K3 is the most familiar example of
this type. The projective Moufang plane over the real Cayley division
algebra (octonion algebra) may be represented by closed subsets of Gy
and G, in PG(26, R), cp. Freudenthal [14] § 7, Springer [33] p. 82,
Faulkner-Ferrar [11] p. 258.

Every continuous polarity of PG(n, K) of Witt index 2 yields a
compact topological quadrangle (except if » = 4 and the polarity is
orthogonal); by Dienst [9] every generalized quadrangle embedded
into PG(n, K) is in fact embedded into a polarity.

Let K be commutative. The generalized hexagon belonging to
the split Cayley algebra over K is a compact topological hexagon,
since it can be realized by closed subsets of G, and @, in PG(7, K),
see Scheliekens [31] p. 202.

In the sections to follow we shall use limits of inverse systems.
An inverse system is a sequenece X,, ¢ € N,, of sets with « bonding
maps» f;: X;— X,, for 1€ N. Its inverse limit X, is defined by

(

v s YV Riemn TV EN _ da o~ T

A= lim; A ;= lim; \Ai,”)——iwtll
- <

fom—"

The inverse limit of an inverse system X, 7 € IN,, of topological spaces
with continuous bonding maps f; is the set X, endowed with the
product topology (ep. Hocking-Young [23] p. 91, Christenson-Vox-
man [7] 6.8, Dugundji [10] p. 427). Let 8,= (P, L;, I,), i € IVy, be
an inverse system of incidence structures with bonding maps
f:: 8;— S;—; which are incidence preserving, i.e. f;, is a pair of map-
pings (g;, ki): P;XL;— P,y XL,y such that (g;, h;)(L;)CI, ;. The
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inverse limit is then defined by
Seo=1im; 8;:= (P Lcos Loo)
<
with P, = lim; (P;, ¢:), Lo= lim, (£;, h;) and
<~ <

Ioc,: limz (IZ7 f‘i) - (.Pooxgoo) N HIZ .
<

4

If I' is a locally compact local field, i.e. a finite extension of the p-adic
field Q, or of the Laurent series field F,((x)), then the natural valuation
ring O of F with maximal ideal § can be written as an inverse limit
of finite rings:

O = lim; O/F¢ .
<

This implies that the projective plane over F, which coincides with
the ring plane over O, can be written as the inverse limit of the finite
Hjelmslev-planes coordinatized by the rings O/F? (ep. Cronheim [8]
p. 216).

For n = 3, the following lemma is contained in [16] (1.1).

(2.3) LemmA. Let (P, L, I) be an infinite generalized n-gon which
(as an incidence structure) can be written as an inverse limit of a
sequence of finite incidence structures (P, L,, I;), ¢ € N:

(P, Q, I) — limz (P‘i7 Qi’ I;L) .
<—

Endow P and { with the inverse limit topology derived from discrete
topologies on P; and £;. Then I is closed in PX¢£, and (P, £, I) is
a compact totally disconnected topological n-gon; in fact, P and £
are homeomorphic to the Cantor set. The projections of the cartesian
product [] (P;, L;, I;) yield continuous homomorphisms of (P, £, I)

into (P,, L;, I;); these homomorphisms are surjective on points (lines,
flags) if all bonding maps of the inverse system (P;,L;,I;), ¢2€ N,
are surjective on points (lines, flags).

Proor. The cartesian products || P; and []£; as well as P and £

are compact and totally disconnected. Furthermore I = lim; I, is
<
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compact, hence closed in P x£. Therefore (P, £, ) is a topological
n-gon by (2.1). In fact, P and £ have no isolated points, since the
projectivities of a line onto itself act transitively on this line (ep.
Knarr [26] 1.2). Hence P and £ are homeomorphic to the Cantor
set by a result of Brouwer, see Hausdorff [21] § 29, X VI, p. 99 and
§ 35, V, p. 197, Hocking-Young [23] 2-97 and 2-98, or Christenson-
Voxman [7] 6.C.11. The projections of the cartesian product are con-
tinuous by definition of the product topology; for surjectivity see
Hocking-Young [23] 2-84. Q.E.D.

Examples for the application of (2.3) ean be found in (3.4.3) and
section 4.

3. — A class of compact totally disconnected topological n-gons (n =3,
4, 6) arising from rank 3 affine buildings.

In this section we show that the geometry at infinity (see (3.4))
of a locally finite rank 3 affine building can be given the structure of

a compact totally disconnected n-gon in a natural way.

(3.1) Notation.

If X is a rank 2 incidence structure [6] of points and lines, then
we denote by P(X) its set of points, by L(X) its set of lines, and I
will always be the incidence relation. Points and lines are also called
varieties (as for a general incidence structure), and the type map t
assignes to any variety its type, i.e. either « point » or «line ». Suppose
G = (W, W,, Wy, I) is a rank 3 incidence structure and let v € W;.
Denote by R,= (Wz(Rx), W,(R,), I ) the rank 2 incidence structure
with

A/

ivl‘/zl\.t‘l’/w) — ‘:\'(‘/. c ¥V oo ?/'1{0}

Wi(R,) = {ve W;: vix}

and incidence is the same as in G. R, is called the residue of x in G.
Note that we can view R, as a point-line geometry in two different

T T s
yvﬂlwrsﬁ 1 v

TR

1) call W,(R,) points and W,(E,) lines

(1)
(2) call W,(R,) lines and W,(R,) points
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(3.2) Rank 3 affiwe buildings.

Apartments. Suppose A is the real Euclidean plane and consider
three triangles T,,T,,T; with respective angles (60° 60°, 60°),
(45°, 45°, 90°), (30°, 60°, 90°) (we consider each triangle as the convex
closure of its vertices). Suppose L'", j=1,2,3 support the sides
of T;, +=1,2,3. Denote by W; (¢ = 1, 2, 3) the group of isometries
of A generated by the reflections about L{”, j = 1,2, 3.

Denote by L; the set of lines of A for which W, contains the
reflection about it. L, defines a tessellation of A into triangles iso-
metric to 7';. These triangles are called chambers. By definition,
(4, L;) is a standard apartment and W, is its Weylgroup. Fix now
i€ {1,2,3}. The vertices of the chambers are also called the vertices
of the apartment. Two vertices are called adjacent if they lie on a
common chamber. Suppose z is a vertex and suppose L € L; with =
on L in A. Then a (topologically) closed half-line p contained in L
and bounded by « is called a panel of a quarter, or briefly a panel (with
source x). Also, » is called special if for any L e L,, there exists
L* e L; such that L* is parallel to L and z is on L*. If ¢ = 1, then
all vertices are special. If ¢ = 2 (resp. 3), then only vertices at the
angles of 45° (resp. 30°) of the chambers are special (see[4]). Sup-
pose x is special and P, is the set of panels with source x. The (to-
pological) closure of a connected component of A — [J P, is called a
quarter with source x. A subset of A is called chamber convexr if it 18
convex (in the usual sense) and if it is either a (not necessarily finite)
union of chambers, or if it is a panel (cf a quarter), or a wall, or an
interval contained in a wall and bounded by two vertices. Note that
the standard apartment we just described is nothing else than the
(geometric realization of a) Coxeter complex of irreducible affine type
of rank 3. All of the above definitions are standard concepts (see
Bourbaki [4]).

System of apartments.

Fix again ¢ € {1, 2, 3} and consider the standard apartment (4, L,).
Suppose J = {1, 2, 3}. A rank 3 affine building, also called a discrete,
complete system of apartments (A, F) over J is a set A together with
a family F of injections from A4 into A4, satisfying axioms (AB1),
(AB2), (AB3), (AB4) and (AB5) below. The images of A under the
elements of I are called the apartments of A. Also, the image under
any element of ' of a chamber, 2 panel, (adjacent) vertices, a (spe-
cial) vertex, a quarter is also called resp. a chamber, a panel, ete...
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Elements of 4 are called points. Keeping ¢ € {1, 2, 3} fixed, we now
give the five axioms mentioned above.

(AB1) FoW,=F.
(AB2) If f,f €F, then the set B = (flof')(4) is chamber convex

in A and there exists we W, such that fiz= fow|s.
(AB3) Any two points of A lie in a common apartment.

(AB4) If feF and x€f(4), then there exists a retraction map (i.e.
an idempotent surjection) ¢: 4 — f(4) such that f-logof’
diminishes distances in A4 for every f € F, and such that

o Y(x) = {x}.

The preceding axioms imply that 4 can be viewed as a combinatorial
abstract affine building (see Tits [38], ep. also an unpublished cor-
rection).

Now it is known that there exists a unique maximal set of apart-
ments for A (see Tits [38], theoréme 1). Hence the last axiom:

(AB5) The building 4 is thick and is endowed with a maximal set
{f(4): fe F} of apartments.

The thickness of 4 is equivalent to saying that any panel of a quarter
belongs to at least three distinet quarters with same source.

There is a type map ¢ from the set of vertices vert (4) of 4 to J
which turns 4 into a rank 3 geometry. Actually, a similar map ¢,
can be defined over the set of vertices of the standard apartment A4,
and 7 can be viewed as the image of ¢, under the mappings f € F'. Such
a mapping ¢ is well defined by (AB2). We denote that geometry also
by 4. The varieties are the vertices and incidence is adjacency. The
Buekenhout-diagram [5] is:

3

4 \Af > = 1’ type Auz

Ly § «

1 ! | ~
i i i i =2, type C,
1 2 3 S
1 = A
1 2 3
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So suppose ¢ = 1. All residues are projective planes and all vertices
are special. Next, suppose 7 = 2. The residues of varieties of type 1
or 3 are generalized quadrangles and these of type 2 are generalized
digons. The vertices of type 1 or 3 are special, and we call the ver-
tices of type 2 aniti-special. Finally, suppose + = 3. The residues of
varieties of type 1 are generalized hexagons, those of type 2 are general-
ized digons and those of type 3 are projective planes. The vertices
of type 1 are special, and we call the vertices of type 2, resp. 3, anti-
special, resp. non-special.

(3.3) The n-th floor of a rank 3 affine building.
Throughout we keep i€ {1, 2, 3} fixed.

(3.3.1) The next definition can be generalized to all affine buildings.
Suppose A is a rank 3 affine building, v € vert (4) and v is special.
For any panel p with source v, we denote by v, the vertex in 4 adjacent
to v and lying on p. We can consider R, as a point-line geometry in
two distinet ways. In the A,-case the two choices for P(R,) and L(R,)
are equivalent but we take in the C,-case P(R,) to be the set of special
vertices in R,, and consequently L(R,) is the set of anti-special ver-
tices in R,. In the G,-case, P(R,) is the set of anti-special vertices in R,,
and hence L(R,) is the set of non-special vertices in E,. Define

PV, = {fvnevert (A): there exists a panel p with source v contain-
ing v, such that v,€ P(R,) and d(v,v,) = n}

L(V,) = {v,€vert (4): there exists a panel p with source v contain-
ing v, such that v,€ L(R,) and d(v,v,) = n}

where d is the path metric in 4, i.e. d(x,y) is the smallest integer
k € N, such that there exists a chain (w, vy, s, ..., ¥, y) Of conse-
cutively adjacent vertices of A.

The n-th floor of A with basement v is the rank 2 incidence struec-
ture V,= (P(V,), L(V,), I) with v,Iw, (v,€ P(V,), w,€ L(V,)) iff v,
and w, lie on a common quarter with source ». The type of the m-th
floor is the type of the corresponding rank 3 affine building. Note
that R, =V;.

(3.3.2) There is a map=n”_ : V,— V,, from the n-th floor with
basement v onto the # — 1st floor with basement v, mapping the
vertex v, on the panel p with source v onto the vertex v,., on p with
d(v, v,—;) = w— 1. This map clearly preserves incidence and is surjec-
tive on the set of incident point-line pairs of V,_;.
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(3.3.3) For the A,-case, the n-th floors are investigated in detail
in [41], [19]. They are in fact projective Hjelmslev planes of level n
(for definitions ¢p. Artmann [1]). Artmann [2] shows that the inverse
limit of the sequence (V,, njf_l),-eN is a projective plane. In the next
section this result is generalized to sequences of n-th floors in buildings

AL dbrrnn £V oA LY cAn [0 A O
OL LY PO Uy allu Ugy SO0 (O.4.4).

~

(3.4) The geometry at infinity of a rank 3 affine building.

Suppose A is a rank 3 affine building and keep i€ {1, 2, 3} fixed,
i.e. we keep the type of A fixed. A germ of quarters in A is an equi-
valence class in the set of quarters of A with respect to the equivalence
relation: @, is equivalent to @, if @, N @, contains some quarter
(see [38]). We say that two panels p and q are parallel if they are on
bounded distance from one another, i.e. if the set of distances from a
variable point of p to ¢ and from a variable point of ¢ to p is bounded
in R. This defines an equivalence relation, and we denote the class
of p by c¢(p). By Tits [38], proposition 1, there exists a type map

two: {¢(p): p is a panel} — {1, 2}

such that the geometry A, = (£ ;}(1),?;'(2), I) defined by

¢(p)lc(q) <-there exists a germ G of quarters such that for all
@) € G, there exist p’' € ¢(p) and ¢’ € ¢(q) with p" U ¢’ C @, for all

nn

o(p), o(a)
is a generalized n-gon, » = 3, 4, 6 for resp. ¢+ =1, 2, 3.
(3.4.1) ProposITION. Let v be a special vertex of 4. Define a
point-line geometry Vo= (P(Vw), L(V), I) as follows:
P(V) = {plp is a panel of 4 with source » and v,€ P(R,)}
L(Vy) = {l|l is a panel of A with source v and v,€ L(R,)} .
pll<>p and [ lie on a common quarter with source v, for all (p,!) €
€ P(Vy) XL(Vy) -
Then V, is isomorphic to one of the two point-line geometries as-

sociated to A.

Proor. The map ¢,: A,— V, which maps c¢(p) to the unique
panel of ¢(p) with source v is well-defined by Tits [38], proposition 5,
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and it clearly preserves incidence. The map vo,: Vo— 4, which
maps a panel p with source v to ¢(p) is set-theoretically clearly the
inverse of ¢,. We now show that v, also preserves incidence. So sup-
pose pIlin V, and let ¢ be a quarter with source v containing p and 1.
Let G be the germ of quarters containing ¢ and let Q' € G be arbitrary.
Since @, Q' € G, there exists a quarter " CQ N Q'. Note that Q"€ G.
Let v” be the source of Q. Let p” and I” be the panels with source "
lying on the boundary of . Looking inside ¢, one can easily see that,
up to permutation, p” € ¢(p) and " ec¢(l). But p"UI"CQ"C @', hence
¢(p) Ie(l) in A, and ¢, is an isomorphism, Q.E.D.

(3.4.2) PROPOSITION.
Vo = 1im; (V,, 7]_))
<—

Proor. For ¢ = 1,2, this is shown in [41], theorem (4.4.1),
resp. [20], theorem (2.3.3.1). For ¢ = 3, the proof is similar to that
for ¢ =1 or 2, Q.E.D.

(3.4.3) CoOROLLARY. Suppose 4 is locally finite (i.e. one, and hence
each, residue is finite), then A4, is a compact totally disconnected
topological n-gon, » = 3, 4, 6 for resp. ¢ =1, 2, 3.

Proor. This follows immediately from (2.3), (3.4.1) and (3.4.2),
Q.E.D.

We denote the topology on 4, induced by the inverse limit of the
n-th floors with basement v as in (3.4.3) by 7,. The remainder of this
section is devoted to the proof of the fact that 7, on A, is independent
of the special vertex v». This requires the introduction of «trees ».

(3.5) Trees.

(3.5.1) DEFINITION AND NOTATION. Let 7 be an infinite tree
without (finite) endpoints, and assume for the sake of simplicity that
the valency of any vertex is greater than 2, i.e. each vertex is adjacent
to at least 3 other vertices. If a vertex z is adjacent to a vertex y,
then we write # ~y. Following the notation of Tits [38], we call a
half apartment in T any infinite sequence (z,, %, ...) of consecutively
adjacent vertices, all different from one another. Two half apartments
are called equivalent if they share infinitely many common vertices.
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This induces an equivalence relation in the set of half apartments of 7',
and an equivalence class is called an end. The set of ends of T is
denoted by End (7). We now make End (7') into a topological space
by establishing a base % for the topology. We define $ as follows.
Let # and y be two adjacent vertices, then the set B(x, y) of ends
having a representative (= a half apartment) of the form {w,v,...)
is an element of $, for all vertices =,y of 7.

(3.5.2) LemMA. Let T and $B be as above. Fix an arbitrary
vertex « of 7' and denote, for any vertex y = « in T, by #,(y) the set
of ends of T having a representative of the form (w,...,¥,...). Then
B, = {H.(y): vy is a vertex of T} is a base for the topology on End (7')
induced by %.

Proor. (1) We show first that $B,C B.

Let y be a vertex of T and ¢ € F,(y). Suppose ¢ has a representative
(@y ooy Yy Yo, Yy -..). Hence e has also a representative of the form
(Y05 Y, ...). Since T is a tree, y, is independent of e¢e H, (y). Hence
H.(y) € B(ys, y). Conversely, any half apartment (y,,,...) 18 equi-
valent to the half apartment (o, ..., %, ¥, ...) (note that all vertices
are distinet from one another indeed!), hence B(y,,y) = E.(y) € 3.

(2) We now show that every element of 3 is a union of elements
of $B,. So suppose B(v,, v,) € $. If the unique path from x to v, pas-
ses v,, then as in (1), B(v;, v,) = H, (v,) € $B,. If this is not the case,
then the unique path from 2 to », passes »,. Suppose that path is
(%y Vyy Vypgy ---5 U3y V5, 01). One can check that (putting x = v,4,)

Bvy, v5) = U {U {Ew(’v} Ve~V VF Vi, V7 779‘4—1}} U
j=2

VU {E.0:v~a,v%v,} QED.
(3.5.3) THREOREM. T, is independent of the special vertex v € vert (A).

Proor. Let p be any panel and suppose without loss of generality
that p has source v and p € P(V,). We define a graph G(p) by restrict-
ing A to the set of all vertices lying on some panel IIp in V. Clearly,
there is a unique path form v to any vertex x of G(p), namely the
interval joining v to #. Hence G(p) is an infinite tree without finite
endpoints. Apparently, every end represents a line of V, incident
with p in V, and conversely, every line of V, incident with p rep-
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resents an end of G(p) (the first assertion follows from the com-
pleteness of A, the second is trivial). In fact G(p) is the discrete ver-
sion of Tits’ tree (I(D>), {fy: f(D)eD>}), D= c(p) (see[38], §38).
Now note that an arbitrary element of the base of the topology 7,
on L(V,) is the set of panels with source v containing some L; € L(V;),
j>1. If we intersect each element of that base with the pencil on
p € P(V,), we obtain in G(p) sets of ends represented by half apart-
ments of the form (..., ...., L,, ...), hence we obtain as a base for the
topology 7, restricted to the pencil of p the set

B = {B,(L,): L,€ L(V,), ne N*} = {H,(r): v is a vertex of G(p)} .

So the topology on the pencil of p induced by 7, is the natural
topology induced by the representation of that pencil as a tree. This
representation as a tree is independent of v (by the remark above that
it is in fact the discrete version of Tits’ tree in [38], § 8) and hence
the topology on pencils is independent of ». The assertion now fol-
lows from lemma (2.1) (¢) Q.E.D.

4. — A theorem on epimorphisms.

In our formulation, the next theorem is in fact only a special case
of the original theorem by Ronan. Nevertheless it is still quite deep
and surprising.

(4.1) TEHEOREM (M. Ronan [28]). Suppose P, is the set of all pro-
jective planes of order r, Q, . the set of all gemeralized quadrangles of
order (r,s) and H,  the set of all generalized hexagows of order (r,s).
Suppose ¢, @z @3y Quy 4§ ore Such that P, 5= 0, Q, , 5+ 0, Q, , 7 0 and
H, .79, q; possibly infinite for some i’s. Then there exist buildings
Ay, Ay, Ay of resp. type Ay, Cy, Gy such that A, (resp. Ay, A) has as
set of rank 2 residues any subset of P, (resp. Q. oY Qu. 00y Po, Y Hy, o),
disregarding the generalized digons.

From the inverse limit representation of the geometry at infinity
of a rank 3 affine building 4 follows that, for any special vertex v,
there exists a natural continuous (by lemma (2.3)) epimorphism

7’ Ap~=V.—~V,=R,.

1
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Combining this observation with Ronan’s theorem, we get:

(4.2) THEOREM. (1) There exists a compact totally disconnected
projective plane admitting continuous epimorphisms onto any number
of finite projective planes of fixed order.

(2) There exists a compact totally disconnected generalized
quadrangle admitting continuous epimorphisms ontc any number
of finite generalized quadrangles of order (¢, q,) or (¢., q;), Where
01y Gz, 9 are such that @, , #~0£Q, ,:

(3) There exists a compact totally disconnected generalized
hexagon admitting continuous epimorphisms onto any number of
finite generalized hexagons of fixed order (¢;, ¢») such that P, #§.

In particular, we have

(4.3) COROLLARY. Any finite projective plane (resp. generalized
quadrangle, generalized hexagon of order (g, ¢,)) is the continuous
epimorphic image of an infinite compact projective plane (resp.
generalized quadrangle, generalized hexagon provided P, @ or

P, 0).

The case of G, needs our special attention. Suppose » is a non-
special vertex of A and [ is a panel containing special, non-special
and anti-special vertices (then one can check that ¢(l) is a line in 4,
after identifying with any V). Sinee, with our definition, panels
can only have special vertices as their source, we must interpret [38],
proposition b as follows: there exists an apartment 2 of 4 containing v
and some element I’ € ¢(l). Viewing 2 as an affine plane, we see that
the half line L in 2, bounded by » and parallel to I’ (« going in the same
direction » as [) containg a unique vertex ¢’ adjacent to v and v’ is
special or anti-special. The map u,: ¢(l) —v' is surjective on the set
of varieties of F, and it maps (by a similar argument as above) con-
current lines of A* onte incident varieties of R,. If we define a
hemimorphism u: X — Y from a generalized hexagon X onto a pro-
jective plane Y as a surjective map p: P(X) - P(Y)U L(Y) or L(X) —
— P(Y) U L(Y) such that y maps collinear points or concurrent lines
onto incident varieties (where a variety is assumed to be incident
with itself), then u, is a hemimorphism. If X and Y are topological
n-gons (resp. w = 6, 3), then a hemimorphism g is continuous if u
is continuous as a map between the two topological spaces L(X), or
P(X), and P(Y)U L(Y) (topological sum of P(Y) and L(Y)). We
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now show that u, is continuous. So we must prove that w *(v') is
open in the set of lines of A,. Let B be the set of all special ver-
tices s with the properties:

(V1) there exists a panel p with source s containing » and v’ and
d(@, v) + 1 = d(=, v')

(V2) 1If s’'s£s is any special vertex on any panel p with source s
containing » and v’, then d(s, s’) > d(s, v).

In fact, (V2) says that the interval joining s and v contains no other
special vertex than s itself. Now let se ¥ and let BB, be the set of
all panels of A4 with source s containing » and »’. Then by definition,
@,(*B,) is an open set in A,. Hence the set

U {p.(B,): s B}

is open in A,. But apparently this set equals 4 '(v'). Hence the next
theorem:

(4.4) THEOREM. There exists a compact totally disconnected gen-
eralized hexagon admitting continuous epimorphisms onto any number
of finite generalized hexagons of some fixed order (g, ¢.) with P, # 0
and also admitting continuous hemimorphisms onto any number of
finite projective planes of order ¢,.

(4.5) COROLLARY. Any finite projective plane of order ¢; such
that there exists ¢;€ N2 with H, ,+ 0 is a continuous hemi-
morphic image of an infinite compact totally disconnected general-
ized hexagon.

In particular, corollary (4.5) holds for every known finite projective
plane.
3. — Remarks.

(5.1) Suppose A is a symmetric discrete system of apartments,
i.e. A satisfies (AB1), (AB2), (AB3), (AB4) and (AB5’) where

(AB5') A is thick and any two germs of quarters have respective
representatives lying in a common apartment.
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Any complete discrete systems of apartments is symmetric (see
Tits [38]). The geometry at infinity of A (as defined in (3.4)) is again
a projective plane, a generalized quadrangle, a generalized hexagon
according to 2 =1,2,3. Now, to any symmetric discrete system of
apartments 4 corresponds a unique complete discrete system of
apartments 4 such that the set of points of 4 coincides with the
set of points of 4, but 4 has possibly more apartments. So in faet
A= (4,F) and 4 = (A4,F) with FCF. Hence A, can be embed-
ded in A, and so 4. can be given the structure of a (not necessarily
compact) totally disconnected non-discrete topological n-gon.

EXAMPLE PG(2, K(t)) it is a subplane of PG(2, K((t))) for every
finite field K.

(5.2) ExampLES of non-classical locally finite rank 3 affine build-
ings of type 4, are provided by [40], where the coordinatizing planar
ternary field of the projective plane at infinity is explicitly given.
A similar result can be given for type (., using quadratic quaternary
rings (see [18],[39]). An example of a non-classical rank 3 affine
building of type G, is given by the universal cover I" of the geometry
associated with Lyon’s group. In[37], §6.5, Tits alludes to the
topology of the geometry at infinity of /" by saying that it provides
an interesting exotic compact generalized hexagon.

(5.3) Suppose 4 is a (not necessarily locally finite) rank 3 affine
building, then it should not be difficult to show the following

(6.3.1) CONJECTURE. A, can be given the structure of a nontrivial
totally disconnected topological n-gon in a natural way.

The authors actually have a proof of this conjecture for types A,
and C,, using different techniques. Combining this with the existence
theorems above and Ronan’s theorem one can « construct » a totally
disconnected topological projective plane (resp. generalized qua-
drangle) admitting continuous epimorphisms onto every finite pro-

+ahlio
jective plane (resp. generalized guadrangle) and ontc any countable

number of countable or uncountable connected or disconnected to-
pological projective planes (resp. generalized guadrangles) (without
proof).

(6.4) Let G be the group of continuous automorphisms of the
topological space of ends of a tree 7. Not every element of G «ex-
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tends » to an automorphism of 7 itself (note that G is n-transitive for
all » € IV because End (7') is homeomorphic to Cantor’s set). In con-
trast, the group of automorphisms of an affine building of type A,
is isomorphic to the group of continuous automorphisms of its ge-
ometry at infinity w.r.t. the natural topology described in the present
paper. This will be proved in a forthcoming paper.

(6.5) If A is a classical rank 3 affine building, i.e. A arises from
an algebraic group over a local field, then the topology on A4, induced
by A (as above) coincides with the topology on A4, induced by a clas-
sical embedding of A, into a projective space (as in example (2.2)),
since the topologies on a line (resp. a pencil) coincide (and then use
lemma (2.1)).
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