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Abstract

We classify all embeddings θ : PG(n, q) −→ PG(d, q), with d ≥ n(n+3)
2 , such that

θ maps the set of points of each line to a set of coplanar points and such that the
image of θ generates PG(d, q). It turns out that d = 1

2n(n + 3) and all examples are
related to the quadric Veronesean of PG(n, q) in PG(d, q) and its projections from
subspaces of PG(d, q) generated by sub-Veroneseans (the point sets corresponding
to subspaces of PG(n, q)). With an additional condition we generalize this result to
the infinite case as well.

1 Introduction

Quadric Veroneseans are important varieties in classical algebraic geometry, and play
also an important role in combinatorial geometry, see [1]. In particular, they turn up in
many characterization and classification problems of certain objects in Galois spaces. It
is then important to be able to recognize them. There exist a number of characteriza-
tions of quadric Veroneseans, and of their injective images under projection from suitable
subspaces. However, there do not seem to exist characterizations of projections of the
Veronesean Vn of PG(n, q) from subspaces generated by sub-Veroneseans (remark that
for (m, q) 6= (1, 2), every sub- Veronesean Vm of Vn is the image under the Veronesean
mapping of PG(n, q) onto Vn of a subspace PG(m, q) of PG(n, q), see [1]). These objects
have even not been studied in detail, although they are natural generalizations of normal
rational cubic scrolls. The present paper presents a common characterization of quadric
Veroneseans and unions of such projections thereof (for a precise statement, see below).

For the ease of notation, the symbol PG(2, q) will from now on denote any projective
plane of order q, and not just the Desarguesian one. Of course, only the latter admits
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a Veronesean. Our main result below will imply that it is also the only one admitting a
generalized Veronesean embedding, see below.

This common characterization we mentioned above will be achieved by introducing the
notion of a generalized Veronesean embedding. But first we start with recalling the classical
Veronesean map α : PG(n, q) −→ PG(n(n+3)

2
, q), which maps a point with coordinates

(xi)0≤i≤n onto the point with coordinates (xixj)0≤i≤j≤n. Notice that the image of a line
under α is a plane conic. Next, we define the (new) notion of an (i + 1)-Veronesean

embedding θ : PG(n, q) −→ PG(n(n+3)
2

, q), with 0 ≤ i + 1 ≤ n. We use induction on n.
For n = 0, a 0-Veronesean map is trivial and equal to the classical Veronesean map. For
n = 1, a 0-Veronesean embedding is any injective map from PG(1, q) to PG(2, q) such
that the image spans PG(2, q). Now let max{n, i + 2} > 1. Let U be an i-dimensional

subspace of PG(n, q). Put d′ = i(i+3)
2

. Then the image of U under α spans a d′-dimensional
subspace V of PG(d, q). Let W be a (d−d′− 1)-dimensional subspace of PG(d, q) skew to
V and let θ′ : U → V be a j-Veronesean embedding of U (defined inductively), for some
j, with 0 ≤ j ≤ i. Then define θ : PG(n, q) −→ PG(d, q) as θ(x) = θ′(x) for x ∈ U , and
θ(x) = 〈α(x), V 〉 ∩W for x ∈ PG(n, q) \U . The latter means the projection of α(x) from
V onto W .

The subspace U will be referred to as the lid of the embedding. Hence a 0-Veronesean
embedding for n > 1 is an ordinary quadric Veronesean embedding and has empty lid.

Now, notice that the image of any line of an i-Veronesean embedding, 0 ≤ i ≤ n, of
PG(n, q) is a set of points contained in a plane. More generaly, we now define a generalized

Veronesean embedding as a map θ : PG(n, q) −→ PG(d, q), with d ≥ n(n+3)
2

, such that
θ maps the set of points of each line of PG(n, q) to a set of coplanar points of PG(d, q)
and such that the image of θ generates PG(d, q). The image in PG(d, q) is then called a

generalized Veronesean. We will prove that d = n(n+3)
2

and that each such embedding θ
is an i-Veronesean embedding for some i, 0 ≤ i ≤ n.

For a given embedding θ : PG(n, q) −→ PG(d, q), we will from now on identify each point
of PG(n, q) with its image under θ. For θ an i-Veronesean embedding we call the image
under θ an i-Veronesean. We can then formulate our main result as follows.

Main Result. Let S = (P ,L,∈) be isomorphic to the geometry of points and lines of

PG(n, q), n ≥ 2, q > 2, with P ⊆ PG(d, q), 〈P〉 = PG(d, q), d ≥ n(n+3
2

, and such that every
member L of L is a subset of points of a plane in PG(d, q). Then P is an i-Veronesean,
for some i ∈ {0, 1, . . . , n}.

The case q = 2 is a true exception, since every injective mapping from PG(n, 2) into
PG(d, q), with d ≥ n, is a generalized Veronesean embedding as soon as the image set
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generates PG(d, q). And this can be achieved whenever d ≤ 2n+1 − 2.

The rest of the paper is devoted to the proof of the Main Result. Since we will need to
identify a single projection of a quadric Veronesean of PG(n, q) in PG(d, q), d = 1

2
n(n+3),

from a subspace of PG(d, q) spanned by a subspace of PG(n, q), we first show how one can
recognize this situation easily. It provides a nice connection between quadric Veronesean
varieties and Segre varieties.

In the last section, we generalize to finite-dimensional projective spaces over infinite (skew)
fields.

2 Projections of quadric Veroneseans

Consider coordinate systems of the projective spaces PG(n, q), PG(m, q) and PG(nm+n+
m, q), where we write the coordinate tuples of the points of PG(n, q) as column matrices,
those of PG(m, q) as row matrices, and those of PG(nm + n + m, q) as (n + 1)× (m + 1)-
matrices. In practice, n is allowed to be equal to m, in which case we still view PG(n, q)
and PG(m, q) as distinct projective spaces (this does not cause any notational confusion).
With a pair of points (p1, p2), where p1 ∈ PG(n, q) and p2 ∈ PG(m, q), we can associate a
point p1 ∗ p2 of PG(nm + n + m, q) by simply multiplying the column matrix associated
with p1 with the row matrix associated with p2.

Let Sn,m(q) be the Segre variety of the pair of projective spaces (PG(n, q), PG(m, q)), i.e.,
Sn,m(q) is the subset of points p1 ∗ p2 of PG(nm + n + m, q), with p1 ∈ PG(n, q) and
p2 ∈ PG(m, q). This variety has some nice properties, which are proved in [1]. We write
down some of them.

(1) There are two classes Σ1 and Σ2 of maximal subspaces contained in Sn,m(q). All
members of Σ1 have dimension n, those of Σ2 dimension m. Also, every pair of
members of Σi, i ∈ {1, 2}, is disjoint and every member of Σ1 meets every member
of Σ2 in precisely one point.

(2) Let U and V be two arbitrary members of Σ1. Define the following map σ : U → V :
a point u ∈ U is mapped onto the point v ∈ V if u and v are contained in a common
member of Σ2. Then σ is a projectivity (i.e., a collineation preserving the cross-
ratio with respect to the given coordinate system in PG(nm+n+m, q)). The same
property holds interchanging the roles of Σ1 and Σ2.
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(3) Let U ∈ Σ1 be arbitrary. Let P be the set of n + 2 points of a skeleton of U . Let Π
be the set of n + 2 members of Σ2 containing a point of P . Then Π is projectively
equivalent to any set of n + 2 subspaces of PG(nm + n + m, q) of dimension m such
that every n + 1 of that set generate PG(nm + n + m, q). Also, for each point x
belonging to the union of the members of Π, there exists a unique subspace U ′ in
PG(nm+n+m, q) of dimension n meeting every member of Π (necessarily in unique
points), and U ′ belongs to Σ1.

The last property allows for the following characterization of Sn,m(q).

Proposition 2.1 Let Σ1 and Σ2 be two families of subspaces of PG(d, q), with d ≥ nm +
n+m, where n is the dimension of every member of Σ1, and m is the dimension of every
member of Σ2, and assume that Σ1 and Σ2 cover the same point set of PG(d, q). Suppose
that every member of Σ1 meets every member of Σ2. Suppose also that Σ2 contains a set
of n + 2 members each n + 1 of which generate a space of dimension nm + n + m. Then
Σ1 and Σ2 form the two sets of maximal subspaces of a Segre variety Sn,m(q).

Note also that (2) above implies the following property.

Proposition 2.2 Let Σ1 and Σ2 be the two families of maximal subspaces of the Segre
variety Sn,m(q), where the dimension of each member of Σ1, Σ2 is equal to n, m, respec-
tively. If we call a block of Σ2 a set of q + 1 members of Σ2 intersecting some (and hence
every) member of Σ1 in q + 1 points of a line, then this gives Σ2 the structure of (the
point-line geometry associated to) PG(n, q).

Now let Vn(q) ⊆ PG(d, q) be the quadric Veronesean of PG(n, q), d = 1
2
n(n + 3). Embed

PG(d, q) in a PG(d′, q), with d′ = d + nm + n + m + 1, with m ≥ 0 arbitrary. Choose a
subspace PG(nm + n + m, q) in PG(d′, q) skew to PG(d, q) and consider a Segre variety
Sn,m(q) in PG(nm + n + m, q) with Σ2 the family of m-spaces partitioning Sn,m(q).
Choose any isomorphism σ between Σ2 (viewed as projective space of dimension n, see
Proposition 2.2) and the point set of Vn(q), also viewed as the point set of PG(n, q).
Assume that σ preserves the cross-ratio. Let Pn,m(q) be the set of points of PG(d′, q)
obtained from σ by considering the union of all sets 〈X, Xσ〉 \ X, with X ∈ Σ2. Then
it is clear that the isomorphism class of this object inside PG(d′, q) is independent of the
choice of the embeddings of Vn(q) and Sn,m(q), and also independent of σ. We call it an
SV-combination (over GF(q)) with parameters (n, m).
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Now, it is easy to verify that the following set of points of PG(d′, q) is an SV-combination
over GF(q) with parameters (n, m):

{((xixj)0≤i≤n,0≤j≤n, (xiyj)0≤i≤n,0≤j≤m) : xi, yj ∈ GF(q), 0 ≤ i ≤ n, 0 ≤ j ≤ m}.

But this is clearly also the set of points obtained by projecting Vn+m+1(q) \Vm(q) from
the subspace generated by the points of a canonical sub-Veronesean Vm(q). This follows
from an easy coordinate calculation.

Hence we can summarize:

Proposition 2.3 Let Vm(q) be a sub-Veronesean of the Veronesean Vn+m+1(q), except
that for (q, m) = (2, 1) we take for V1(2) the image of a line of PG(n + 2, 2). Then the
projection of Vn+m+1(q) \ Vm(q) from the subspace generated by the points of Vm(q) is
projectively equivalent with an SV-combination over GF(q) with parameters (n, m).

Notice that the case n = 0 corresponds with an affine space of dimension m + 1. Also,
Proposition 2.3 is fundamental to the (inductive) proof of the Main Result.

3 Generalized Veronesean embeddings of projective

planes

We aim to prove our Main Result using induction on n. Hence we first consider the case
n = 2. In the present section, we will show that any generalized Veronesean embedding of
a projective plane of order q is an i-Veronesean of the classical projective plane of order
q, with i ∈ {0, 1, 2}.
Hence, throughout this section, we assume that S = (P ,L, I) is isomorphic to a projective
plane of order q, which we denote by PG(2, q). We assume that P ⊆ PG(d, q), 〈P〉 =
PG(d, q), d ≥ 5, and that every member L of L is a subset of points of a plane in PG(d, q),
which we denote by πL if it is unique; if it is not unique, then πL is the intersection of all
such planes (and so πL is the line of PG(d, q) containing all points of L).

We denote the line of PG(d, q) spanned by two points a, b ∈ P by 〈a, b〉, while the line
of S through a, b is denoted by ab. More generally, we use the symbol 〈A〉 to denote the
subspace of PG(d, q) generated by the elements of A.

We will assume that q > 2.

We begin with a general lemma.
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Lemma 3.1 Let S1, S2, S3 be three sets, of at least three lines each, in PG(m, q), m ≥ 3,
such that each member of Si meets every member of Sj in a unique point, for i 6= j, for
all i, j ∈ {1, 2, 3}. Then there are distinct indices i, j ∈ {1, 2, 3} such that either all lines
of Si ∪ Sj are contained in a plane, or they contain a common point.

Proof Without loss of generality we may suppose that there are two skew lines L1, M1 ∈
S1. As soon as two members L2, M2 of S2 are skew, every member of S3 must either contain
L1 ∩ L2 and M1 ∩M2, or L1 ∩M2 and M1 ∩ L2, and so |S3| ≤ 2, a contradiction. Hence
all members of S2 and, likewise, of S3 meet each other. By assumption all members of S2

meet all members of S3, so all members of S2 ∪ S3 meet each other. The lemma is now
clear. �

Lemma 3.2 If L, M are two distinct lines of S, meeting in the point z ∈ P, and x ∈ P
is a point off L∪M not contained in 〈πL, πM〉, then every point y ∈ P off xz is contained
in the space W := 〈πL, πM , x〉.

Proof The line xy meets L∪M in two distinct points u, v, with u ∈ L and v ∈ M . So the
space πxy has a line in common with 〈πL, πM〉 and contains x. Hence πxy = 〈x, u, v〉 ⊆ W .

�

Lemma 3.3 If d ≥ 5 and if a proper subspace H of PG(d, q) contains all points of S off
a certain line L ∈ L, then d = 5 and either S is 2-Veronesean, or S is a 1-Veronesean.

Proof Suppose some proper subspace H contains all points of S off a line L ∈ L. We
may assume that H is spanned by the points of S off L. Then there is a least one point
x ∈ L not contained in H. For each line M ∈ L containing x, with M 6= L, the space πM

is a plane and intersects H in a line. It follows that all points of M except x are contained
in a line LM of H.

Suppose first that there is a second point x′ ∈ L not contained in H, then we obtain
likewise for each line M ′ ∈ L through x′, with M ′ 6= L, a line L′

M ′ in H containing all
points of M ′ except for x′. Each of the lines LM meets each of the lines L′

M ′ . It follows
easily that H is at most 3-dimensional.

If no other point of L lies outside H, then, as q ≥ 3, at least two points of L are contained
in H, and so πL is a plane meeting H in a line. This implies that H is a hyperplane,
contradicting our observation above. Hence, at least three points x, x′, x′′ of L lie outside
H. In H, there arise three sets of q lines, and two lines of different sets always intersect.
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It follows that all points of S off L lie in a plane, which by definition coincides with H.
Hence, deleting L and its points, there arises an affine plane AG(2, q) in H, and S is
Desarguesian. As S generates a d-dimensional space, with d ≥ 5, πL is a plane which is
disjoint from the plane H, and d = 5.

Note that with what we already proved, we can derive the following property:

(*) If all points of S except some contained in a fixed line are contained in a 3-space,
then S is Desarguesian and θ is a 2-Veronesean.

Also, since two lines generate at most a 4-space, our previous arguments and Lemma 3.2
imply that, if d > 5, then we have a 2-Veronesean, and hence d = 5 after all, a contradic-
tion. Hence d = 5 in any case.

Next suppose that only one point x of L lies outside H. Then H is a hyperplane, and
hence 4-dimensional. Let L1 and L2 be two lines of S through x, and let L′

1 and L′
2 be the

respective lines of H containing q points of these (we shall adopt this notation throughout
this proof). Suppose that L′

1 and L′
2 are contained in a plane π. Take a point y of S

outside L1 ∪ L2 and not belonging to π, and consider any line M through y not through
x. Then πM meets π in a line and hence πM is contained in the 3-space 〈π, y〉. It follows
that all points of S off xy are contained in a 3-space. Now (*) above implies that we
have a 2-Veronesean, contradicting the hypothesis of this paragraph. Hence L′

1 and L′
2

are skew.

Let z ∈ P be distinct from x. Let M1 and M2 be two lines of S through z not incident
with x. We claim that Z = 〈M1, M2〉 is 4-dimensional. Assume that Z is 3-dimensional
(if 〈M1, M2〉 is a plane, then 〈L′

1, L
′
2〉 is a plane, a contradiction). Every line N through

x, with N 6= xz, has two points N ∩Mi, i = 1, 2, in common with Z, and none of these
points coincides with x. It follows that P \ xz is contained Z. Again (*) implies that P
is a 2-Veronesean, a contradiction. The claim follows.

Now let L1 and L2 again be two arbitrary lines through x, and let z be a point distinct from
x off L1 ∪ L2. We claim that Z ′ = 〈L′

1, L
′
2, z〉 is 4-dimensional. Indeed, we already know

that 〈L′
1, L

′
2〉 is a 3-space, so we assume by way of contradiction that z ∈ 〈L′

1, L
′
2〉 = Z ′.

We already showed that z is not contained in L′
1 ∪ L′

2, otherwise 〈M1, M2〉 is not 4-
dimensional for any two lines M1, M2 on z not containing x; hence there is a unique line
of PG(5, q) containing z and meeting both L′

1 and L′
2. Since q ≥ 3, it follows that at

least two lines of S through z not through x have three non-collinear points in common
with Z ′, and so these two lines generate Z ′, contradicting our previous clam. Our present
claim follows.
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Now let L3 be a third line through x. Denote the unique point of PG(5, q) on L′
i which does

not belong to P by xi, i = 1, 2, 3. From our previous claim we infer that xi ∈ 〈L′
j, L

′
k〉,

for {i, j, k} = {1, 2, 3}. It is easy to see that, if x1, x2, x3 were not collinear, then either
two members of {L′

1, L
′
2, L

′
3} would be coplanar, or 〈L′

1, L
′
2, L

′
3〉 would be 3-dimensional,

both contradictions. Hence x1, x2, x3 are collinear. We conclude that there is a line X in
PG(5, q) containing no point of S, but meeting every line of PG(5, q) containing q collinear
points of S which form, together with x, a line of S.

Now we project P \ {x} from an arbitrary point z ∈ P , z 6= x, onto a suitable 3-
space. Our previous claims imply that the q projections of the planes supporting the lines
of S through z distinct from xz, together with the projection of X, form a full set of
generators of a hyperbolic quadric H for which the complementary regulus contains the
q projections of the lines 〈L〉 ∩H, with L a line of S through x not containing z. It now
follows that every line of S not through x nor z is projected onto a plane conic lying on H.
Consequently every line of S not through x forms a plane conic in PG(5, q). Moreover, the
complementary regulus of the above quadric H defines a projectivity between the points
of the projection of such a conic C (provided z /∈ C) and the points of the projection of
X where the projection of the line 〈xz〉 ∩ H is a fixpoint). It follows that the mapping
β : C −→ X defined by β(u) is the intersection of X with the plane generated by the
line ux of S, is a projectivity. We conclude now that S ∩ H is a normal rational cubic
scroll, and consequently that S is a 1-Veronesean (since any normal rational cubic scroll
is the projection from a point of a conic Veronesean onto a 4-space). In particular, S is
Desarguesian.

This completes the proof of the lemma. �

So we may, from now on, assume that no line L of S has the property that P \ L is
contained in a proper subspace. In view of Lemma 3.2, this implies that every pair of
lines generates a 4-space.

We now show that no three collinear points of S are collinear in PG(5, q). Assume by way
of contradiction that L ∈ L contains three points x1, x2, x3 such that X := 〈x1, x2, x3〉 is
a line (and note that X does not contain points of S off L). We now project all planes
spanned by lines of S through one of the xi, i = 1, 2, 3, except for L, from X onto a
suitable 3-space U and thus obtain three sets S1, S2, S3 of at least three lines each, such
that each member of Si meets every member of Sj, for i, j ∈ {1, 2, 3}, i 6= j. Note that no
two of such projections coincide, since otherwise the corresponding planes live in a solid,
contradicting our observation in the previous paragraph. Hence we can apply Lemma 3.1
and deduce without loss of generality that either S2∪S3 is contained in a plane (but then
all points of S off L are contained in a hyperplane, contradicting our hypothesis), or all
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members of S2 ∪ S3 contain a common point z. But then every point of S off L is even
contained in a plane, again a contradiction.

Consequently, it follows that every line L of S is an oval in πL, and it follows from [3]
that S is Desarguesian and isomorphic to a 0-Veronesean.

4 Generalized Veronesean embeddings of projective

spaces of dimension at least 3

Here we assume that S = (P ,L, I) is isomorphic to PG(n, q), n > 2, with P ⊆ PG(d, q),
〈P〉 = PG(d, q), d ≥ 1

2
n(n + 3), and such that every member L of L is a subset of points

of a plane in PG(d, q), which we again denote by πL if it is unique; if it is not unique,
then πL is again the line of PG(d, q) containing all points of L. In the present section, we
finish the proof of our Main Result.

We use the same notation as before to distinguish lines of S from lines of PG(d, q): we
denote the line of PG(d, q) spanned by two points a, b ∈ P by 〈a, b〉, while the line of
S through a, b is denoted by ab. More generally, we use the symbol 〈A〉 to denote the
subspace of PG(d, q) generated by the elements of A, and we use 〈A〉S to denote the
subspace of S spanned by A.

We will assume that q > 2 as for q = 2 every injective map from S to PG(d, 2) such that
the image of S spans PG(d, 2) is a generalized Veronesean embedding, for every d.

Our proof proceeds by induction on n. The result for n = 2 has been proved in Sec-
tion 3, and we assume that the result is true for any generalized Veronesean embedding
of PG(n′, q) in PG(d′, q), with n′ < n and d′ ≥ 1

2
n′(n′ + 3).

We first prove that d must necessarily be equal to 1
2
n(n + 3). This will be a consequence

of the following lemma, in which we abandon for once our restrictive assumption on d.

Lemma 4.1 Let H ∼= PG(n−1, q) be a hyperplane of S, and let H generate (in PG(d, q))
a d′-dimensional subspace. Then d− d′ ≤ n + 1.

Proof We prove this by induction on n. For n = 2, this is proved in Section 3, so we
may suppose that n > 2 (notice that, if both H and 〈H〉 are 1-dimensional, then by our
classification above, d < 5 and hence the assertion follows). Choose an arbitrary subspace
U ⊆ H of dimension n − 2 in H, and let H ′ be a second hyperplane of S containing U .
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Using the induction hypothesis applied to U ⊆ H ′, we see that dim〈H, H ′〉 ≤ d′ + n. If
d− d′ > n + 1, then we can select two points x1, x2 ∈ P such that 〈x1, x2〉 is disjoint from
〈H, H ′〉. For an arbitrary point z ∈ P not in 〈U, x1〉S , let y and y′ be the intersection
points of x1z with H and H ′, respectively. Then z ∈ 〈x1, y, y′〉. We conclude that, in
particular, x1x2 meets U , and, interchanging the roles of x1 and x2, that all points of S
off 〈U, x1〉S are contained in 〈H, H ′〉.

We can consider any hyperplane H ′′ 6= H of S through U , but not containing x1 and
x2, let it play the role of H ′ in the previous paragraph, select the same points x1 and
x2 outside 〈H, H ′′〉, argue as before and obtain that 〈H ′〉 is contained in 〈H, H ′′〉; hence
〈H, H ′〉 = 〈H, H ′′〉. Now, we can repeat the same argument starting with H∗ = 〈U, x1〉S
instead of H ′, and using q > 2 obtain that H∗ is contained in at least one of 〈H, H ′〉 and
〈H, H ′′〉, a contradiction. The lemma is proved. �

A repetitive use of the previous lemma, using an appropriate maximal chain of nested
subspaces of S, easily shows the following proposition:

Proposition 4.2 If d ≥ 1
2
n(n+3), then d = 1

2
n(n+3) and every i-dimensional subspace

U of S, i ≤ n − 1, generates in PG(d, q) a subspace of dimension 1
2
i(i + 3). Hence the

induction hypothesis implies that U is an `-Veronesean, for some nonnegative integer
` ≤ i. In particular, for every line L ∈ L it holds that πL is 2-dimensional.

Our next task is to identify the (future) lid of the embedding. Therefore, we introduce
the following notions. Let L ∈ L be arbitrary. Then we say that L is a semiaffine line if
there is a unique point x on L such that 〈L \ {x}〉 is 1-dimensional. The point x is called
a lid point, or the lid of L. The line L is called a box for x. Clearly, the lid of a semiaffine
line is unique, but a lid point can have several boxes. The lid of S is the set of the lid
points of all semiaffine lines.

The lid of an i-Veronesean of PG(n, q) is a proper subspace of PG(n, q), and being a proper
subspace is exactly the first thing we will prove for the lid of S, in three lemmas.

Let L be the lid of S.

Lemma 4.3 The set L is a subspace of S.

Proof The lemma is trivial if L either is empty, or contains a unique point. Hence we
may assume that at least two elements belong to L. Let x1 and x2 be two lid points, and
let L1 and L2 be boxes of x1 and x2, respectively. If L1 and L2 generate a plane π of
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S, then π induces an i-Veronesean in some 5-dimensional subspace PG(5, q) of PG(d, q),
i ∈ {0, 1, 2}, by Proposition 4.2. But only a 2-Veronesean has two distinct lid points, and
clearly, all points on x1x2 are lid points for π, and hence for S.

So we may assume that U := 〈L1, L2〉S is a 3-space. Let πi be a plane of S containing Li,
but not containing x1x2, i = 1, 2. Then πi is a ji-Veronesean with ji ∈ {1, 2}. If ji = 1,
then all lines in πi through xi are boxes for xi; if ji = 2, then at most one line in πi

through xi is not a box for xi, i = 1, 2. It follows that there are at most two points z on
the intersection line π1 ∩ π2 for which xiz is a not a box for xi, for some i ∈ {1, 2}. Hence
there is at least one point y ∈ π1∩π2 such that xiy is a box for xi, for all i ∈ {1, 2}. Since
the lines x1y and x2y meet, we deduce from the first paragraph of the present proof that
all points of x1x2 are lid points.

This proves the lemma. �

Lemma 4.4 Let x be a lid point of S. Then the set of lines L of S containing x and
such that L is not a box for x is the set of lines through x of a subspace of S through x.
(Lemma 4.6 will clearly imply that this subspace is contained in L.)

Proof Suppose two lines L1, L2 through x are not boxes for x. Then inspecting all
possibilities in the i-Veronesean defined by the plane 〈L1, L2〉S , i = 0, 1, 2, we see that all
lines through x inside that plane are not boxes for x. The assertion now follows easily. �

Lemma 4.5 The set L does not coincide with S.

Proof We assume, by way of contradiction, that all points of S are lid points. Then,
let H be a hyperplane of S containing some semiaffine line. Then H is an i-Veronesean,
for i > 0 (use the induction hypothesis). Let LH be the lid of H; then LH is (i − 1)-
dimensional, 0 ≤ i − 1 ≤ n − 2 (use induction). Hence we can pick a point y ∈ H \ LH .
Notice that, since y is not a lid point for H, the subspace of S generated by all lines
through y which are not boxes for y, contains H. But, by assumption, this subspace does
not coincide with S (as y is a lid point for S). Hence every line of S through y not in H
is a box for y. Since y is arbitrary, and since lid points are unique for any of their boxes,
no point off H is a lid point for a line of S missing LH . Hence, if z ∈ P is some point off
H, then there exists a point x in LH such that xz is a box for z. By definition of LH and
the induction hypothsis, xy is a box for x. So, in the plane 〈x, y, z〉S , we have a triangle
{x, y, z} of lid points for this plane, a contradiction (as in this case every point is a lid
point for that plane, clearly impossible).
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This contradiction completes the proof of the lemma. �

So now we know that the set of lid points is a proper subspace of PG(d, q), say of dimenson
`. Next thing we want to verify is that every line intersecting L in a unique point x is a
box for x.

Lemma 4.6 Let L be a line intersecting L in a unique point x. Then L is a box for x.

Proof

Assume, by way of contradiction, that L is not a box for y. Let M be a box for y. By
considering the plane of S defined by L and M (which clearly defines a 2-Veronesean),
one sees that L consists of lid points, implying L ⊆ L, a contradiction. The lemma is
proved. �

We now treat three special cases.

Proposition 4.7 If L is empty, then S is a 0-Veronesean.

Proof We can include any line of S in a plane of S, which, by the fact that there
are no lid points, is a 0-Veronesean in some 5-subspace of PG(d, q). It follows that every
line of S is a plane conic of PG(d, q). The Main Result of [3] completes the proof of the
proposition. �

Let L ∈ L, with L not a line of L, be a box with lid x. Then there is a unique line L′ of
PG(d, q) containing at least three points of L, and there is a unique point x′ of PG(d, q)
incident with L′ \ L. We call L′ and x′ the bearer and the cap, respectively, of L. We

will also sometimes denote x′ by L̂. By considering a plane of S containing L, and the
corresponding generalized Veronesean, one sees that x′ does not belong to S.

Proposition 4.8 If L is a point, then S is a 1-Veronesean.

Proof We put {x} = L. Let C be the set of all caps. We claim that C is an (n − 1)-
subspace of PG(d, q). Consider two points c1, c2 of C, and let L′

1, L
′
2 be two (distinct)

corresponding bearers. Then the corresponding lines L1, L2 of S span a plane π which
induces a 1-Veronesean (because π contains x). Hence all points of the line 〈c1, c2〉 are
caps. This also shows that different bearers contain different caps. Hence, (all lines of S
through x of) planes of S through x correspond with (all points in PG(5, q) of) lines in
C. This easily implies that (all lines of S through x of) solids of S through x correspond
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with (all points in PG(d, q) of) planes in C. An easy inductive argument now shows the
claim. Moreover, the previous argument shows that coordinates can be chosen such that,
for an arbitrary hyperplane H of S not containing x, the mapping µ : H → C : z 7→ x̂z is
a projectivity (in the sense that µ is a collineation between projective spaces preserving
the cross-ratio). Indeed, the assertion about the cross-ratio follows from the fact that this
is obviously true for the case n = 2 by the previous subsection.

Now, since H does not contain any lid point, it corresponds with a 0-Veronesean. Hence
the above collineation µ can be considered as a bijection from this 0-Veronesean to the
(n − 1)-subspace C such that all points of any line of PG(d, q) joining corresponding
points, except for the point in C, belong to S, and all points of S \ {x} can be obtained
this way. Also, looking in a plane of S through x, we see that this bijection maps plane
conics to lines and preserves the cross-ratio. It follows from the equality 1

2
n(n + 3) =

1+((n−1)+ 1
2
(n−1)(n+2)+1) that C and 〈H〉 are disjoint, and that x is not contained

in 〈C, H〉 either. Hence S \ {x} is the projection from x of Vn(q) \ {x}, with Vn(q) a
0-Veronesean of PG(d, q) containing x, and so S is a 1-Veronesean. �

Proposition 4.9 If L is a hyperplane, then S is an n-Veronesean.

Proof By Proposition 4.2, the space 〈L〉 has dimension 1
2
(n−1)(n+2), and by induction,

L is an i-Veronesean, 0 ≤ i ≤ n − 1. Also, Lemma 4.6 combined with the 2-Veronesean
structure of any plane of S not contained in L implies that the inclusion map ι : S \ L ⊆
PG(d, q) induces an isomorphism between affine spaces. Since 1

2
n(n + 3) = 1 + 1

2
(n −

1)(n+2)+n, we see that the subspace of PG(d, q) generated by the image of ι and the one
generated by L are disjoint. Since the projection of Vn(q)\Vn−1(q), with Vn−1(q) ⊆ Vn(q)
and 〈Vn(q)〉 = PG(n(n + 3)/2, q), from 〈Vn−1(q)〉 onto a PG(n, q) ⊆ PG(n(n + 3)/2, q)
skew to 〈Vn−1(q)〉, is an AG(n, q) (cf. Proposition 2.3), the proposition is proved. �

We can now finish the proof of our Main Result. With our current notation, and in view
of the previous propositions, we may assume 1 ≤ m ≤ n−1, with m the dimension of the
subspace L of S. Now let W ∼= PG(n−m−1, q) be a fixed subspace of S skew to L. Then
W is a quadric Veronesean and 〈W 〉 has dimension 1

2
(n −m − 1)(n −m + 2). For each

point x ∈ L, the set 〈x, W 〉S induces a 1-Veronesean of an (n−m)-dimensional projective
space with as set of caps a subspace Cx of dimension n −m − 1 of PG(d, q). Also, for a
point y ∈ W , the set 〈y, L〉S induces an (m + 1)-Veronesean of an (m + 1)-dimensional
projective space with as set of caps a subspace Cy of dimension m of PG(d, q). Now let
Σ1 be the set of all subspaces Cx, with x ∈ L, and Σ2 is the set of all subspaces Cy, with
y ∈ W . It is clear that each member of Σ1 meets each member of Σ2 in at least one point,
namely, with the above notation, Cx and Cy have the point in common that corresponds
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with the cap of the line xy = 〈x, W 〉S ∩ 〈y, L〉S . Also, it is easy to see that C is the union
of all Cx, and also the union of all Cy. Moreover, since PG(d, q) is generated by W, C and
L, we see that the dimension of 〈C〉 is at least

1

2
n(n+3)− 1

2
(n−m−1)(n−m+2)−1− 1

2
m(m+3)−1 = (n−m−1)m+(n−m−1)+m,

which is precisely the natural dimension of the ambient space of a Segre variety Sn−m−1,m(q).
If n = 3 and m = 1, then it is easy to see that C is a hyperbolic quadric in a 3-space.
Considering in this case a plane of S through the line W , we see that the correspondence
y 7→ Cy, y ∈ W , is a projectivity (preserving the cross-ratio). Since 〈C〉 is disjoint from
from 〈W 〉 by the above relation between the dimensions of 〈W 〉, 〈C〉 and 〈L〉, it follows
from Proposition 2.3 that S is a 2-Veronesean.

Since two lines of S are always contained in some 3-subspace of S, we see, using the
previous paragraph, that the caps of two semiaffine lines L1, L2 coincide if and only if the
plane 〈L1, L2〉S intersects L in a line of S. This now implies that every member of Σ1 meets
every member of Σ2 in a unique point, and two members of either Σ1 or Σ2 are disjoint.
Looking at appropriate 3-dimensional subspaces, we also see that Property (2) of Section 2
holds for Σ1 and Σ2. This now implies that, considering U1 ∈ Σ1, each (n−m)-subset of
the n−m + 1 members of Σ2 containing a point of a given skeleton of U1 generates 〈C〉.
It also follows that the dimension of 〈C〉 is equal to (n−m− 1)m + (n−m− 1) + m, and
hence that each of 〈C〉, 〈W 〉 and 〈L〉 is disjoint from the subspace of PG(d, q) generated
by the other two. Furthermore, as before, considering appropriate planes of S, we deduce
that the correspondence y 7→ Cy, y ∈ W , is a projectivity (preserving the cross-ratio).
Proposition 2.3 now finishes the proof of our Main Result.

5 What about finite dimensional infinite projective

spaces?

One can easily check that the above proof holds verbatim to prove the following result
(with a similar definition of i-Veronesean as for the finite case, and where PG(2, K) denotes
any projective plane), except that one has to use [2] instead of [3] in the last line of
Section 3, and in the proof of Theorem 4.7:

Main Result—General Version Let S = (P ,L, I) be isomorphic to PG(n, K), n ≥ 2,

K a skew field with at least 3 elements, with P ⊆ PG(d, K), 〈P〉 = PG(d, K), d ≥ n(n+3
2

,
and such that every member L of L is a subset of points of a plane in PG(d, K). Assume
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also that for each line L of S, and each point x ∈ L, whenever the map y 7→ 〈x, y〉,
y ∈ L \ {x}, is injective, then there is a unique line T of PG(d, K) in 〈L〉 through x such
that T ∩ L = {x}. Then P is an i-Veronesean, for some i ∈ {0, 1, . . . , n}.

Notice that, for K commutative, i-Veroneseans of PG(n, K) always exist for 0 ≤ i ≤ n,
but for K noncommutative, an i-Veronesean of PG(n, K), n ≥ 2, exists only if i = n. The
reason is that, as soon as i < n and K is noncommutative, there exists a sub-1-Veronesean
of a plane PG(2, K), and this cannot exist, as an appropriate projection of that object
gives rise to two complementary sets of reguli. On the other hand, building up inductively
(on n), one can always construct an n-Veronesean of PG(n, K). It consists of the union
of affine subspaces AG(i, K), for all i ∈ {2, 3, . . . , n} (and the projective closure of each
such subspace is disjoint from the subspace generated by the other affine subspaces), and
a generalized Veronesean of the line PG(1, K) satisfying the additional condition of the
General Version of the Main Result above (and the plane generated by this generalized
Veronesean is disjoint from the subspace generated by all affine subspaces AG(i, K), i =
2, 3, . . . , n). This 1-Veronesean certainly is not projectively unique, but ignoring this,
generalized Veronesean embeddings of PG(n, K) in PG(d, K), for noncommutative K, with
the above assumptions, are projectively unique.
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