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Abstract

In [4], a characterization theorem for Veronesean varieties in PG(N, K), with K a skew-
field, is proved. This result extends the theorem for the finite case proved in [6]. In this
paper, we prove analogous results for Hermitian varieties, extending the results obtained in
the finite case in [1] in a non-trivial way.

1 Introduction

In [4], we showed that a Veronesean cap endowed with its ovals is a projective space (using
Veblen’s axiom) and as a corollary we obtained a characterization for quadric Veronesean va-
rieties as a representation of a projective space in another projective space where lines of the
former are ovals in the latter. In this paper we consider Hermitian Veronesean varieties. Here,
a characterization as a union of ovoids with an additional assumption on the tangent planes can
be proved in much the same spirit as for quadric Veroneseans, except that, after using Veblen’s
axiom, one needs an argument to show that all ovoids are isomorphic elliptic quadrics (in the
finite case there is only one isomorphism class of elliptic quadrics in projective 3-space over
a fixed finite field, since Galois extensions of degree 2 are unique for finite fields). Then we
obtain a characterization of Hermitian Veroneseans as a representation of a projective space in
another one where the lines of the former are ovoids of the latter. In the finite case, the key
lemma is Lemma 3.2 of [7], which is proved with a typical finiteness argument, using counting
and dividing. Moreover, later in the proof, in order to arrive at the André representation of
an affine plane, one heavily uses the fact that the number of points is already correct. These
two facts seemed, up to now, too heavy obstacles for the infinite case. However, in the present
paper we use entirely different ideas to generalize Lemma 3.2 of [7]. The proof we provide is
more geometric and also largely holds in the finite case, and it provides enough insight in the
matter to analyze the smallest case, which is an exception to the theorem, see Remark 4.2. We
will describe this case in detail.

We end the paper with an easy application, providing a simple alternative geometric definition
of the Hermitian Veronesean. This application generalizes a result of Lunardon [3].
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The paper is organized as follows. In Section 2, we introduce the necessary notions: we review
the Veblen-Young theorem [8], which is crucial in our arguments, define Hermitian Veroneseans,
and state our main results.

2 Notation and main results

2.1 Axiomatization of projective spaces

A good exposition on the foundations of projective and polar spaces can be found on Peter
Cameron’s website, and the paragraph below is based on these lecture notes. At the end of the
19th century a lot of work was done on the axiomatization of projective spaces, starting with
Pasch. This work culminated in 1910 when Veblen and Young provided a beautiful characteri-
zation of projective spaces [8] based on the following axiom.

Veblen’s axiom

If a line intersects two sides of a triangle but does not contain their intersection then it also
intersects the third side.

Theorem 2.1 (Veblen-Young theorem) Let (X,L) be a thick linear space satisfying Ve-
blen’s axiom. Then one of the following holds:

(1) X = L = ∅.

(2) |X| = 1, L = ∅.

(3) L = {X}, |X| ≥ 3.

(4) (X,L) is a projective plane.

(5) (X,L) is a projective space over a skew field, not necessarily of finite dimension.

2.2 Quadric Veronesean caps

Since we will need our results of [4], we briefly recall them here.

Let X be a spanning point set of PG(N, K), with K any skew field, and let Π be a collection of
planes of PG(N, K) such that, for any π ∈ Π, the intersection π ∩X is an oval X(π) in π (and
then, for x ∈ X(π), we denote the tangent line at x to X(π) by Tx(X(π)) or sometimes simply
by Tx(π)). We call X a Veronesean cap if the following conditions hold :
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(V1) Any two points x and y of X lie in a unique element of Π, denoted by [x, y].

(V2) If π1, π2 ∈ Π, with π1 6= π2, then π1 ∩ π2 ⊂ X.

(V3) If x ∈ X and π ∈ Π, with x /∈ π, then each of the lines Tx([x, y]), y ∈ π ∩X, is contained
in a fixed plane of PG(N, K), denoted by T (x, π).

Then we have the following result.

Theorem 2.2 (Schillewaert & Van Maldeghem [4]) Let X be a Veronesean cap in Π :=
PG(N, K). Then K is a field and there exists a natural number n ≥ 2 (called the index of X),
a projective space Π′ := PG(n(n + 3)/2, K) containing Π, a subspace R of Π′ skew to Π, and a
quadric Veronesean Vn of index n in Π′, with R∩Vn = ∅, such that X is the (bijective) projection
of Vn from R onto Π. The subspace R can be empty, in which case X is projectively equivalent
to Vn.

As an application, we showed the following characterization, which basically replaces Condition
(V2) with a dimension restriction, and (V3) with the condition that the geometry of points and
ovals is a projective space.

Theorem 2.3 (Schillewaert & Van Maldeghem [4]) Let X be a spanning set of points in
the projective space PG(d, K), with K any skew field of order at least 3. Suppose that

(V1*) for any pair of points x, y ∈ X, there is a unique plane denoted [x, y] such that [x, y] ∩X
is an oval, denoted X([x, y]);

(V2*) the set X endowed with all subsets X([x, y]), has the structure of the point-line geometry
of a projective space PG(n, F), for some skew field F, n ≥ 3, or of any projective plane Π
(and we put n = 2 in this case);

(V3*) d ≥ 1
2n(n + 3).

Then d = 1
2n(n + 3) and X is the point set of a quadric Veronesean of index n. In particular,

F ≡ K if n ≥ 3, and Π is isomorphic to PG(2, K) if n = 2.

2.3 Hermitian Veronesean caps

An ovoid O in a 3-dimensional projective space Σ is a set of points of Σ such that no line of Σ
intersects O in at least 3 points, and for every point x ∈ O, there is a unique plane π through x
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intersecting O in only x and containing all lines through x that meet O in only x. The plane π
is called the tangent plane at x to O and denoted Tx(O).

Let X be a spanning point set of PG(N, K), with K any skew field, and let Ξ be a collection of
3-dimensional projective subspaces of PG(N, K), called the elliptic spaces of X, such that, for
any ξ ∈ Ξ, the intersection ξ ∩X is an ovoid X(ξ) in ξ (and then, for x ∈ X(ξ), we sometimes
denote Tx(X(ξ)) simply by Tx(ξ)). We call X a Hermitian Veronesean cap if the following
conditions hold :

(H1) Any two points x and y of X lie in a unique element of Ξ, denoted by [x, y].

(H2) If ξ1, ξ2 ∈ Ξ, with ξ1 6= ξ2, then ξ1 ∩ ξ2 ⊂ X.

(H3) If x ∈ X and ξ ∈ Ξ, with x /∈ ξ, then each of the planes Tx([x, y]), y ∈ ξ ∩X, is contained
in a fixed 4-dimensional subspace of PG(N, K), denoted by T (x, ξ).

In [1], it was shown that the following are examples of Hermitian Veronesean caps.

Hermitian Veronesean varieties

Let n be a positive integer, let L be a quadratic extension of a field K, and consider the projective
spaces PG(n, L) and PG(N, K) with N = n(n+2). Let r ∈ L\K be arbitrary. Then the Hermitian
Veronesean variety of index n is the image of the map π : PG(n, L) → PG(N, K)

π(〈(x0, x1, . . . , xn)〉) = 〈(yi,j)0≤i,j≤n〉,

with yi,i = xix̄i, yi,j = xix̄j + x̄ixj (for i < j), and yi,j = rxix̄j + r̄x̄ixj (for i > j), where x̄
denotes the conjugate of x.

Moreover, in the finite case, it is proved in [1] that every Hermitian Veronesean cap is a suitable
projection of some Hermitian Veronesean variety. Below we generalize this to the infinite finite
dimensional case.

The following is our main result.

Theorem 2.4 Let X be a Hermitian cap in Π = PG(N, K), N > 3, with corresponding set Ξ
of elliptic spaces. Then K is commutative. Also, X endowed with all X(ξ), for ξ ∈ Ξ, is the
point-line structure of a projective space PG(n, L), with L a quadratic extension of K, and X is
projectively equivalent to a quotient of a Hermitian Veronesean variety of index n. If n = 2, 3,
then N = n(n + 2) and X is projectively equivalent to a Hermitian Veronesean variety of index
n.

As an application, we also show the following elegant characterization, which basically replaces
Condition (H2) with a dimension restriction, and (H3) with the condition that the geometry of
points and ovoids is a projective space.
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Theorem 2.5 Let X be a spanning set of points in the projective space PG(d, K), with K any
skew field of order at least 3. Suppose that

(H1*) for any pair of points x, y ∈ X, there is a unique 3-dimensional subspace denoted [x, y]
such that [x, y] ∩X is an ovoid, denoted X([x, y]);

(H2*) the set X endowed with all subsets X([x, y]), has the structure of the point-line geometry
of a projective space PG(n, L), for some skew field L, n ≥ 3, or of any projective plane Π
(and we put n = 2 in this case);

(H3*) d ≥ n(n + 2).

Then d = n(n + 2) and X is the point set of a Hermitian Veronesean variety of index n. In
particular, L is a quadratic extension of K if n ≥ 3, and Π is isomorphic to PG(2, F) if n = 2,
where F is a quadratic extension of K.

3 Hermitian Veronesean caps

3.1 The projective space associated with the cap

Let H = (X, Θ) be a Hermitian Veronesean cap, where X is a set of points in PG(N, K), for
some skew field K, and Θ is a set of elliptic spaces satisfying (H1), (H2) and (H3) introduced
before.

Associated with H we can consider the geometry P having point set X and line set the set Ξ,
endowed with the natural incidence.

Lemma 3.1 P is a projective space.

Proof First of all P is a linear space by (H1).

Let x12, x23 and x13 be three points of X and denote O1 = X([x12, x13]), O2 = X([x12, x23])
and O3 = X([x13, x23]). Let O4 be an oval intersecting O1 in a point x14 and O2 in a point x24,
both different from x12. Our purpose is to show that Veblen’s axiom holds, which means that
we have to show that O4 intersects O3. Of course, we may assume that O3 6= O4 and that O4

does not contain x13 nor x23. Clearly 6 ≤ dim V ≤ 8, with V := 〈O1, O2, O3〉, and we claim that
V contains O4.

Indeed, let us first show that V contains O4. Since both Tx13(O3) and Tx13(O1) belong to
〈O1, O3〉 ⊆ V , also Tx13([x13, x24]) does by applying (H3) with as point x13 and as ovoid O2, and
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hence [x13, x24] = 〈Tx13([x13, x24]), x24〉 is contained in V . Likewise, applying (H3) to x24 and
O1 and reasoning as above yields that O4 is contained in V .

If V were 6-dimensional, then O4 and O3 would meet, and Veblen’s axiom would follow auto-
matically.

Next, suppose that dim V = 8. Now we project V \ 〈O2〉 from 〈O2〉 onto a four-dimensional
space Π of V disjoint from 〈O2〉. The ovoids O3 and O4 together with their tangent planes
at their intersection point with O2 are mapped onto two full planes of Π, say Π3 and Π4,
respectively. Note that Π3 and Π4 generate Π, as one has similarly as above that O1 is contained
in 〈O2, O3, O4〉, and so the latter is 8-dimensional. Let x be the unique intersection point of Π3

and Π4. There are basically four different possibilities.

(1) There is a point xi of Oi \O2 projected onto x from 〈O2〉, for i = 3, 4, and x3 6= x4.

In this case, since the space 〈x3, x4, O2〉 = 〈x,O2〉 is 4-dimensional, the line 〈x3, x4〉 meets
the elliptic space 〈O2〉 in a point y. This implies that the elliptic space [x3, x4] intersects
〈O2〉 in y, implying y ∈ X, contradicting X([x3, x4]) being an ovoid.

(2) There is a point x3 of O3 \O2 projected onto x from 〈O2〉, and the tangent plane Tx24(O4)
to O4 at x24 projects from 〈O2〉 onto a line L4 through x.

In this case, clearly 〈Tx24(O4)〉 is contained in 〈O2, L4〉, which also contains Tx24(O2).
Hence, by our axioms, the 5-space 〈O2, L4〉 also contains Tx24([x13, x24]) (since the ovoids
O2, O4 and X([x13, x24]) all intersect O1). Similarly, since the ovoids X([x13, x24]), O2 and
X([x3, x24]) all meet the ovoid O3, the plane Tx24([x3, x24]) belongs to 〈O2, L4〉, which
implies that [x3, x24] belongs to the 5-space 〈O2, L4〉 and so [x3, x24] meets 〈O2〉 in a line,
contradicting our axioms.

(3) The tangent plane Tx2i(Oi) to Oi at x2i, i = 3, 4, projects from 〈O2〉 onto a line Li through
x.

In this case, as above, the 5-space 〈O2, L4〉 contains Tx24([x13, x24]). It follows that the
7-space U := 〈O2, L3, L4, x13〉 contains X([x13, x24]), O2 and O3. But, as above, using (H3)
with x13 and O2 one easily deduces that U also contains O1, and so U coincides with V ,
a contradiction.

(4) The only remaining possibility is that there is a point z of (O3 ∩ O4) \ O2 projected onto
x from 〈O2〉. But then O3 ∩O4 is nonempty, and that is exactly what we had to prove.

Finally, suppose that dimV = 7. Now we project V \ 〈O2〉 from O2 onto a three-dimensional
space Σ of V disjoint from 〈O2〉. The ovoids O3 and O4 together with their tangent planes at their
intersection point with O2 are mapped onto two full planes of Σ, say Π3 and Π4, respectively.
Let L be the intersection line of Π3 and Π4. We distinguish three cases.
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(1) Both tangent planes Tx23(O3) and Tx24(O4) are projected from O2 onto lines L3 and L4

which are distinct from L. Then we can pick a point y on L not contained in L3 nor L4

and continue as in (1) of the case dim V = 8.

(2) The tangent plane Tx24(O4) is projected onto L from O2 and Tx23(O3) is projected onto a
line L3 6= L. Then choose a point x3 of O3 that is projected onto a point of L and reason
as in (2) of the case dim V = 8 to conclude that X([x3, x24]) belongs to the 5-space 〈O2, L〉
and so [x3, x24] meets 〈O2〉 in a line, contradicting our axioms.

(3) Both tangent planes Tx23(O3) and Tx24(O4) are projected onto L from O2. Then arguing as
in (3) of the case dim V = 8 yields that V = 〈O2, L, x13〉, a contradiction since 〈O2, L, x13〉
is 6-dimensional.

Hence we have shown that Veblen’s axiom holds. �

Note that P is not necessarily finite-dimensional at this stage. If P has finite dimension n, then
we say that the Hermitian Veronesean cap has index n.

3.2 The basic step

Assume that our Hermitian Veronesean cap has index 2. Then we have the following result.

Theorem 3.2 If H = (X, Θ) is a Hermitian cap of index 2 in PG(N, K), then N = 8 and X is
projectively equivalent to a Hermitian Veronesean variety of index 2.

Proof We choose an arbitrary elliptic space ξ and corresponding ovoid O := X(ξ). Assume,
by way of contradiction, that there is a 4-dimensional space U containing ξ and two points x, y
of H not on O. Then [x, y] contains the line xy, which intersects ξ in some point z, which must
necessarily belong to O in view of Condition (H2). But then the ovoid X([x, y]) contains three
collinear points x, y, z, a contradiction.

It follows that, if W4 is an (N − 4)-dimensional subspace of PG(N, K) skew to ξ, then the
projection ρ4 of X\O from ξ onto W4 is injective. Let p be any point of O. Then T (p) := T (p, ξ∗),
for an arbitrary elliptic space ξ∗ not containing p, is 4-dimensional and intersects ξ in the plane
Tp(O). Hence T (p)ρ4 is a line, which we denote by Lp. For any member ξ′ ∈ Θ containing p,
with ξ′ 6= ξ, each line in ξ′ through p is either contained in T (p) or intersects X(ξ′) in a second
point. This immediately implies that the projection of X(ξ′) \ {p} is an affine plane αξ′ in W4

which, completed with Lp, becomes a projective plane πξ′ . Choose q ∈ O with q 6= p and let
ξ′′ ∈ Θ be arbitrary but such that q ∈ ξ′′ and ξ′′ 6= ξ. First remark that αξ′ and αξ′′ share
exactly one point (namely, the projection of the intersection ξ′ ∩ ξ′′; they cannot share more
by injectivity of ρ4). Hence W4 has dimension at least 4. Also, considering the varying ovoid
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X([q′, p]), with q′ ∈ X(ξ′′)\{q}, all points of (X \O)ρ4 arise in all planes of W4 that are spanned
by Lp and some point of αξ′′ , and no such point is contained in Lp (as Lp always corresponds
with the tangent plane at p to X([q′, p])). It follows that dim W4 = 4 (and hence N = 8), and
that the projection of X \O from ξ coincides with the affine space obtained from W4 by deleting
the 3-space Σ generated by Lp and Lq (this is indeed a 3-space for, if the lines Lp and Lq would
intersect in a point x, then the projection of the elliptic spaces through an arbitrary point z of
X \O and p, respectively q, would intersect in the set 〈zρ4 , x〉 \ {x}, which contains at least one
point of the image of ρ4 coming from different points on X([p, z]) and X([q, z]), a contradiction
to the injectivity of ρ4 and Condition (H2)). It also follows from this argument that, for any
point r ∈ O, the line Lr is contained in Σ. Moreover, if s is an arbitrary point of Σ, then we
can choose two points s1, s2 in W4 \ Σ such that s, s1, s2 are collinear. Considering the inverse
images under ρ4 of s1 and s2, and the unique member ξ∗ of Θ containing both these inverse
images, we see that, if ξ∗ ∩ ξ = {t}, the point s is contained in Lt. We conclude that the lines
Lr, for r ranging through O, form a spread S of Σ, and we obtain an André construction of the
projective plane P. Hence each line of P is a translation line. So P is a Moufang plane. The
inverse image of Σ under ρ4 is a 7-dimensional space which we shall denote by T (ξ) or T (O)
and refer to as the tangent space to X at ξ or at O. Clearly, it intersects X in O.

Since T (O) contains T (p), it follows that T (p) intersects X in just p. Moreover, since Lp and
Lq are skew, we see that the spaces T (p) and ξ′, for ξ′ 3 q and ξ′ 6= ξ, generate PG(8, K), and
so are complementary.

Now consider a point x ∈ X not on O. From the previous paragraph, we know that the spaces
T (x) and ξ are complementary. Consider a point a ∈ X \ {x}. The space [a, x] meets T (x)
in the plane Tx([a, x]) and so the projection of a from T (x) onto ξ coincides with the unique
intersection point O ∩ [a, x]. This implies that the image of the projection of X \ {x} from
T (x) onto ξ coincides with O. Denote the projection operator by ρ3 for further reference. The
previous argument now easily implies that the image under ρ3 of any member of Θ not containing
x coincides with O. By varying x we deduce that all members of Θ are projectively equivalent.

Note that the projections ρ3 and ρ4 are in a certain sense “opposite”. Indeed, we can choose
W4 = T (x) and then the kernel of one projection is the image of the other. Let ζ be a member of
Θ containing x. Put z = ζ∩ξ. Then ζ∩T (x) equals Tx(X(ζ)), and hence, since 〈z, Tx(X(ζ))〉 = ζ
and z ∈ ξ, the image under ρ4 of ζ coincides with ζ ∩ Tx(X(ζ)). But, with the above notation,
the latter plane is spanned by x and Lz. It follows that the spread S is projectively equivalent
with the set of lines arising from the planes Tx(O∗), with O∗ ranging through the set of members
of Θ containing x, by projecting from x inside T (x). Consequently we can state the following
remark.

Remark 3.3 The tangent planes at x cover the whole 4-dimensional tangent space T (x).
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Now we return to the André representation above. Let ξ′′ be as above, and put O′′ := X(ξ′′).
Let α be a plane in ξ′′ through q different from the tangent plane at q to O′′. The intersection
C = α ∩ O′′ is an oval. The projection under ρ4 of C \ {q} is some ‘affine’ line `. Considering
a plane π in W4 containing ` and intersecting Σ in a line not belonging to the spread S, we
obtain a subplane P ′ of P. Taking inverse images with respect to ρ4, we see that P ′ contains C
and lives in a 6-dimensional space πρ−1

4 containing O and that the lines of P ′ not contained in ξ
correspond to plane sections of members of Θ (and we call such plane sections ovals). Since P ′
is determined by two such ovals, and since an oval always projects from one of its points b onto
a line (modulo the point b), we can obtain the same subplane P ′ by projecting from another
elliptic space containing a line of P ′. Intersecting now the two 6-spaces thus obtained, we see
that P ′ is contained in a 5-space Ω, and the lines of P ′ are plane ovals. Moreover, P ′ generates
Ω (indeed, the 6-space πρ−1

4 is generated by P ′ and ξ, hence by P ′ and one further point of O;
so 〈P ′〉 has codimension at most one in πρ−1

4 ). Consequently, by Theorem 2.3, the plane P ′ has
a Veronesean embedding in Ω, which implies that K is commutative and that all ovals above are
conics.

Varying C, we now see that all ovals on members of Θ are conics. We claim that this, in turn,
implies that all ovoids of X are elliptic quadrics. Indeed, consider the ovoid O and consider two
plane section C1 and C2 intersecting in two distinct points x1 and x2. Let y be some point of O
not contained in C1 ∪ C2.

We claim that O is the unique object S of the 3-space 〈O〉 containing C1, C2 and y and such
that

(∗) every plane of 〈O〉 intersects S in a possibly degenerate conic, and

(∗∗) through each point of S, there is a unique plane (called the tangent plane) containing all
tangents at this point to arbitrary plane sections through that point.

Note that, in particular, Condition (∗∗) implies that no point of S is incident with three lines
contained in S.

We now prove the claim. We start by showing that the intersection of S with an arbitrary line
through y is determined by C1, C2, y and the Conditions (∗) and (∗∗).

Put πi = 〈Ci〉, i = 1, 2. Let Li,j be the tangent to Ci in πi at the point xj , i, j ∈ {1, 2}. Put
zi = Li,1 ∩ Li,2, i = 1, 2, and set αj = 〈L1,j , L2,j〉, j = 1, 2. Let L be any line through y
and suppose first that L is not incident with either z1 or z2, and that it does not meet both
L1,1 and L2,2, and neither both L1,2 and L2,1 (and let us call the lines through y not satisfying
these conditions exceptional). Let yi be the intersection of L with πi, i = 1, 2. The conditions
on L imply that for some i ∈ {1, 2} none of the lines y1xi and y2xi is tangent to C1 and C2,
respectively. Hence they intersect C1 and C2, respectively, in the point xi and two further points
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u1 and u2, respectively. The points u1 and u2 coincide if and only if L meets the intersection of
π1 and π2, and then u1 = u2 = x3−i. Hence in the plane α := 〈L, xi〉 we already count either
four points of S, or three points. Hence α ∩ S is a conic C. The tangent to C at xi is the line
obtained by intersecting α with 〈L1,i, L2,i〉, and if u1 = u2 = x3−i, we have something similar at
x3−i. Hence C is uniquely determined and so is the intersection of S with L.

Now let L be one of the four exceptional lines through y. Since this is a finite number (and
we may suppose that K is infinite), the tangent plane to S at y is determined by the points we
already traced. So we can consider a plane distinct from that tangent plane, containing L. It
contains infinitely many of the already constructed points of O, and hence the corresponding
conic section is uniquely determined. Our claim is proved.

Now any elliptic or hyperbolic quadric through C1, C2, y satisfies Conditions (∗) and (∗∗), as well
as our ovoid O. So if we show that there is an elliptic or hyperbolic quadric through C1, C2, y,
then it must coincide with O, and consequently O is an elliptic quadric.

We introduce coordinates. We may assume that C1 contains the points x1 := (1, 0, 0, 0), x2 :=
(0, 0, 1, 0) and (1, 1, 1, 0) and that z1 has coordinates (0, 1, 0, 0). Also, C2 can be assumed to
contain, besides x1 and x2, the point (1, 0, 1, 1) and z2 can be chosen as (0, 0, 0, 1). Then C1 has
equations {

X2
1 = X0X2,

X3 = 0,

whereas C2 has equations {
X2

3 = X0X2,
X1 = 0.

Hence the equation of a generic quadric through C1 and C2, distinct from the union of the two
planes π1 and π2, is X2

1 +kX1X3 +X2
3 = X0X2, with k ∈ K. Since y is not contained in π1∪π2,

there is a unique k ∈ K such that the coordinates of y satisfy the above equation. There remains
to show that this quadric cannot be an elliptic cone. If it was, then the generator through y
must meet C1 ∪ C2 in a unique point, and this must either be x1 or x2 (otherwise three points
of O are collinear), say x1. But then y is contained in α1, which is ridiculous because α1 is the
plane tangent to O at x1.

So we have shown that O is an elliptic quadric.

Since the rest of the proof of Theorem 4.1 in [1] holds for arbitrary fields K we conclude that, if
L is the quadratic extension of K with the roots of x2 +kx+1, then P is isomorphic to PG(2, L).

�

3.3 The general case

In Section 5 of [1] in the induction argument from index 2 to index n the only point where the
finiteness assumption is used is the starting point of the induction which we handled here in
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Theorem 3.2 and the fact that the tangent planes at x cover the whole 4-dimensional tangent
space T (x), which we proved for the infinite case in Remark 3.3. Finally, we exclude the
possibility of P being infinite-dimensional. By Remark 3.3 we can proceed as in [1] to prove
that for a Hermitian Veronesean cap of index r the tangent space at a point has dimension
2r, yielding the general version of Proposition 3.1 of [1]. This immediately shows that P is
finite-dimensional.

Hence Theorem 2.4 is proved.

4 An application of Hermitian Veronesean caps

We now show Theorem 2.5. We start with the case of index 2. Recall that we assume that
|K| > 2. At a crucial point in the proof, it will become clear why this theorem does not hold
for |K| = 2 and a counterexample naturally pops up. We also note that, at some point, one
argument needs |K| > 4 (which is allowed since the finite case follows from [7]).

Let S = (P,L, I) be a projective plane. Let PG(d, K) be a d-dimensional projective space over
the skew field K, with d ≥ 8. A projective space of dimension l in a projective space of dimension
d has codimension d− l. Suppose that P is a spanning subset of the point set of PG(d, K) and
that every element of L induces an ovoid in some solid of PG(d, K). In the sequel, we identify
a line of S with the set of points incident with it. Our aim is to prove that K is commutative,
that there is a quadratic extension L of K such that S ∼= PG(2, L) and that P is the Hermitian
Veronesean cap of PG(2, L).

In order to do so, we need to show that two lines of S generate a six-dimensional subspace of
PG(d, K), and that the tangent planes Tx(O) at a fixed point x to a variable ovoid O correspond-
ing with a line of S containing x, are contained in a four-space. We first need some preliminary
lemma’s.

Lemma 4.1 Every triangle of lines of S generates a subspace of codimension at most 1.

Proof Let L1, L2, L3 be such a triangle of lines. Let xij be the intersection of Li with Lj (this
implies xij = xji), for i, j ∈ {1, 2, 3}, i 6= j. Let x be a point of S not contained in 〈L1, L2, L3〉.
Let L be any line of S through x. If L is not incident with x12, x23, x31, then L meets L1∪L2∪L3

in three points, say y1, y2, y3, which are non-collinear in PG(d, K). Since x is not contained in
〈L1, L2, L3〉, we see that 〈L〉 = 〈y1, y2, y3, x〉 ⊆ 〈L1, L2, L3, x〉.

Since |K| > 2, it is clear that the number of points of any line M not contained in a given
subspace is either 0 or exceeds 5. But from the foregoing it follows that every line of S not
through x has at most 3 points not in 〈L1, L2, L3, x〉, namely potentially the ones lying on
lines through x and x12, x13 or x31. Hence every such line is contained in 〈L1, L2, L3, x〉. This
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implies that PG(d, K) coincides with 〈L1, L2, L3, x〉 and so 〈L1, L2, L3〉 has codimension 0 or 1
in PG(d, K). �

Remark 4.2 If |K| = 2 if follows from the proof of the foregoing lemma that at most six points
of S are not contained in 〈L1, L2, L3, x〉. Indeed, the only possible ones lie on the three lines
through x and x12, x13 and x23 respectively. Each such line contains five points and intersects
〈L1, L2, L3〉 in at least two points. In case this maximum is attained these six points must form
a hyperoval in S. This situation really occurs. Indeed, let |K| = 2. There is an example in
dimension 10, and it is the largest one. To see this, we note that the points of every line add up
to zero. Hence we can try to find the universal embedding by relating to each point of PG(2, 4) a
generator of an elementary abelian 2-group, and then factor out the subgroup generated by the
sums of points corresponding to the lines. This subgroup is exactly the code of PG(2, 4) generated
by the lines, which has dimension 10, see page 722 of [2]. Hence we obtain an eleven-dimensional
vector space over GF(2), and hence this “universal” example lives in 10-dimensional projective
space. Now, with previous notation, the subspace 〈L1, L2, L3, x〉 is at most 9-dimensional, and
it easily follows from the arguments above that it is at most 1-codimensional. Consequently,
〈L1, L2, L3, x〉 has dimension 9 and the points of S not in 〈L1, L2, L3, x〉 form a hyperoval.

We now continue with the case |K| > 2. The spans of two lines of S cannot meet in a plane,
since otherwise the span of these two lines and any third line not through the intersection point
would be contained in a subspace of dimension 4 + 2 = 6, contradicting Lemma 4.1. Also, if
d = 9, then the spans of two lines of S cannot meet in a line by a similar argument. Finally, d
cannot be larger than 9, as a triangle of lines cannot generate a subspace of dimension > 8.

We now analyze the case where a point x0 of S is contained in a subspace 〈L0〉, where L0 is a
line of S not incident with x0 in S. By the previous paragraph this can only happen if d = 8.
So in the next proof, we may restrict to d = 8.

Lemma 4.3 If x0 /∈ P\L0, then x0 /∈ 〈L0〉.

Proof Let x0 and L0 be as above and suppose by way of contradiction that x0 ∈ 〈L0〉. Let L̃
be any line of S not through x0. Let x be the intersection of L̃ with L0. Let L′ be any line of
S through x0 but not incident with x. Then 〈L′〉 shares at least one plane with 〈L̃, L0〉, and so
the dimension of 〈L0, L̃, L′〉 is at most one more than the dimension of 〈L0, L̃〉. By Lemma 4.1,
it follows that the dimension of 〈L0, L̃〉 is at least six, and hence equal to six. Suppose there is
another point y0 ∈ P contained in 〈L0〉 not incident with L0. Then the line L′′ through x0 and
y0 passes through x since otherwise 〈L0, L̃, L′′〉 is 6-dimensional, contradicting Lemma 4.1. But
replacing L̃ with a line not through x, we arrive again at a contradiction. Hence it follows that
x0 is the only element of P in 〈L0〉 \ L0.

Consider the projection of P \ (L0 ∪ {x0}) from 〈L0〉 onto some 4-dimensional space U skew to
〈L0〉. The points of every line L not through x0 not in 〈L0〉 are mapped onto an affine plane
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αL of U . The points of every line M through x0 different from x0 and from xM := M ∩ L0 are
mapped onto the points of a line λM , and the point fibers are plane ovals through x0 and xM

(with x0 and xM themselves omitted).

Now we fix a line L not through x0 and distinct from L0, and a line M through x0. We choose
L and M such that L,M and L0 are not concurrent. Then αL and λM meet in a point zM (they
share the projection of the intersection L ∩ M , but not more as otherwise L0, L,M would be
contained in a 6-dimensional space). Hence 〈αL, λM 〉 is a solid Σ. Now let M ′ be any line of S
through x0. We claim that λM ′ is contained in Σ.

First we assume that L0, L,M ′ are not concurrent. Then αL and λM ′ share a unique point zM ′ .
We choose two arbitrary points u, v in αL with the only restriction that the line 〈u, v〉 of U does
not contain any of the points zM , zM ′ (this is possible). Let uL and vL be the unique points of
L mapping down to u and v, respectively. The fiber of vL is an oval minus two points. Now
we assume that |K| > 4, so that we can choose a point ṽ ∈ P in the fiber of v (which has size
at least 4) such that ṽ 6= vL, and such that the line L′ := uLṽ of S contains neither xM nor
xM ′ . Then αL′ contains both u and v and intersects λM in the projection of L′ ∩M . Hence αL′

belongs to Σ. Now λM ′ shares the projection of M ′∩L′ with αL′ (which is different from zM ′ as
otherwise αL′ = αL, which would imply that L0, L, L′ are contained in a 6-dimensional space),
and it also contains zM ′ ; hence it is entirely contained in Σ.

Now we assume that M ′ is incident with L0 ∩L. We may replace L with a line L′ as introduced
in the previous paragraph, and the claim is proved.

This claim immediately implies that the entire projection is contained in Σ, and so P is contained
in a 7-dimensional space, a contradiction. This completes the proof. �

The next lemma is trivial if d = 9 by Lemma 4.1. Hence we may assume d = 8.

Lemma 4.4 The space generated by two lines of S is 6-dimensional, so (H2) holds.

Proof Suppose, by way of contradiction, that two lines L0,M generate a 5-space (it is impos-
sible that 〈L0,M〉 is 4-dimensional, as this would imply that 〈L0,M,N〉 is at most 6-dimensional,
for every line N not incident with L∩M). We again consider the projection from 〈L0〉 of P \L0

onto a suitable 4-dimensional subspace U skew to 〈L0〉. Now, M \ {L0 ∩M} is projected onto
an affine line λM and the fibers are pointed plane ovals.

Let L be any line of S not incident with L0 ∩M . If the projection of L \ {L0 ∩ L} were a line
λL, then, since λL and λM have a point in common (namely, the projection of L∩M), the lines
L0, L,M would be contained in a 6-space, a contradiction. Hence the projection of L \ {L0 ∩L}
is an affine plane αL. So the projection is injective on lines not incident with L0 ∩M .

We now claim that every line M ′ of S incident with L0∩M is projected onto an affine line (where
we do not project L0∩M ′ of course). Indeed, let M ′ be such a line and let x′ be the intersection
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of M ′ with L. Also, let x be the intersection of M with L. Let u and u′ be the projection of x
and x′, respectively. We choose a point w on the line 〈u, u′〉 inside αL (this is possible since we
assume that there are at least 4 points on a line in the projective space PG(8, K)). Let y be a
point in the fiber of u distinct from x. Let z be the point of L projected onto w. Then the line
yz ∈ L does not contain L0 ∩ M and is hence projected onto an affine plane α. This plane α
contains u and w and hence intersects αL in either an affine line or an affine line minus a point.

If u′ is in the intersection of α and αL, then at least two points (one point is x′; let’s denote a
second one by x′′) are projected onto u′. By this non-injectivity the join in S of x′ and x′′ must
be a line through L0 ∩M , and hence coincides with M ′.

So we may assume that u′ is not in α. Let p be the unique point on 〈u, u′〉 not in αL. Since u′

is not in α it follows that p belongs to α. We can now vary the point y, and by the foregoing,
we may assume that the point p belongs each time to the corresponding affine plane. Hence
the fiber of the point p contains at least two elements, say q and q′. The line qq′ ∈ L must be
incident with L0 ∩ M and projects onto an affine line. But this affine line must have a point
in common with αL. This implies that this affine line is contained in 〈αL〉, which implies that
L0, L, qq′ is contained in a 6-space, a contradiction by Lemma 4.1.

But now, similarly as in the previous lemma, one shows that the projection of P\L0 is contained
in the 3-space generated by λM and αL. This contradiction proves that 〈L0,M〉 is 6-dimensional.

�

From now on, we assume d ∈ {8, 9} again.

Next we construct quadratic subveroneseans. Let C1 and C2 be two plane ovals contained in the
lines L1 and L2, respectively, of S, and suppose that C1 ∩C2 = {x} is a point of S. Let L be a
line of S incident with a point xi of Ci, for i = 1, 2, and with x1 6= x 6= x2. We project P \ L
from 〈L〉 onto a (d− 4)-dimensional subspace U skew to 〈L〉. By Lemma 4.4, this projection is
injective. The points of every line M of S (except for the point M ∩ L) are mapped onto the
points of an affine plane αM (bijectively). Let p be a point of 〈αM 〉 \ αM . We claim that

(∗) p is not the projection of any element of P \ L.

Indeed, assume by way of contradiction that q ∈ P is mapped onto p. Take an arbitrary point y
of M . Then the projection of the line yq of S intersects αM in at least two points, contradicting
injectivity of the projection operator on P \ L.

Now it is clear that (C1 ∪ C2) \ {x1, x2} is mapped onto the union of two intersecting affine
lines, say λ1 ∪ λ2, with λi the projection of Ci \ {xi}, i = 1, 2. Let π be the plane of PG(d, K)
generated by λ1 ∪ λ2 and let p∞i be the unique non-affine point of the projective extension of
λi, i = 1, 2. Let zi be an arbitrary point of Ci \ (L ∪ {x}), i = 1, 2. Then the projection of the
oval on z1z2 determined by z1, z2 and z1z2∩L is projected onto an affine line λz1z2 in π. Let z∞
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be the unique point on 〈λz1z2〉 not in λz1z2 . If z∞ /∈ 〈p∞1 , p∞2 〉, then we choose distinct points
z′i and z′′i on Ci, i = 1, 2, such that, with corresponding notation, z∞ belongs to 〈λz′1z′2

〉 and
to 〈λz′′1 z′′2

〉. By the claim (∗), this implies z∞ = z′∞ = z′′∞. Hence 〈p∞1 , p∞2 〉 ∩ (λz′1z′2
∪ λz′′1 z′′2

)
contains exactly two elements u′, u′′. Let v′, v′′ ∈ P \L, respectively, be the inverse image (under
the projection) of the latter. Then the line vv′ of S is projected onto an affine plane containing
all points of 〈u′, u′′〉 except for one. But (∗) implies that both points p∞1 and p∞2 are outside that
affine plane, contradicting p∞i ∈ 〈u′, u′′〉, i = 1, 2. Hence the points in π that are a projection of
points of S not in L form an affine plane α. Each affine line of α corresponds with a plane oval,
and all these form an affine subplane A of S.

Lemma 4.5 The abstract projective closure of A is a projective subplane S ′ of S, which forms
a quadratic Veronesean.

Proof For this, we have to show that three parallel affine lines of A meet in a point of S,
and that all points thus obtained are collinear in S. We start by showing that, if D1 and D2 are
two distinct ovals corresponding with two parallel affine lines of α, then D1 ∩D2 is nonempty
and is contained in L. Indeed, let Ki be the line of S containing Di, i = 1, 2. Let t be the
intersection point of K1 and K2. If t /∈ L, then the projections of K1 and K2 would share an
affine line, a contradiction. Hence t ∈ L, and since D1 and D2 both contain a point of L (as
they are projected onto affine lines), we must necessarily have t ∈ D1 ∩D2. Since t is uniquely
determined by any of D1 or D2 only, we automatically have that three lines of S which induce
parallel lines in A meet in a point of S. Since all these points lie on L, our claim is proved.

Hence we see that S ′ is a subplane of S contained in a 6-dimensional subspace W of PG(d, K).
However, if we consider a different line L, then we obtain the same subplane contained in a
different 6-dimensonal space W ′ (indeed different since it will now not contain all points of
L but only an oval). Hence it is now easy to see that S ′ spans a 5-dimensional subspace V .
Consequently, S ′ forms a quadratic Veronesean. �

Lemma 4.6 Condition (H3) holds.

Proof Now let x ∈ P be an arbitrary point and let L1, L2 be two distinct lines of S through
x. Then the tangent planes at x in 〈Li〉, i = 1, 2, to Li together span a 4-space Ξ. We show that,
if L is an arbitrary line of S through x, then the tangent plane at x to L in 〈L〉 is contained in
Ξ. This will follow if we show that an arbitrary tangent line T at x to L in 〈L〉 is contained in
Ξ. Therefore, let C be an arbitrary oval on L through x with T tangent to C at x, and let L′ be
any line of S not through x but containing a point y of C. Let C ′ be the oval on L′ containing
y and a point of each of L1 and L2. Then C,C ′ are contained in a unique subplane inducing a
quadratic subveronesean V on S, as shown in the previous paragraphs. Note that V contains a

15



conic lying on L1 and one on L2. The line T is contained in the plane spanned by the tangent
lines at x to the conics of V on L1 and L2, and hence T is contained in Ξ. �

This completes the proof of the fact that S is a Hermitian cap; in particular d = 8 and the case
d = 9 cannot occur after all. Indeed, we can now also give a short proof for the fact that the
case d = 9 cannot occur. Suppose d = 9, consider a line L and a point p not on L and project
P \ L from 〈L〉 onto a 5-dimensional space skew to 〈L〉. Then, since we also assume that X
has the structure of a projective plane, it follows that P \ L is projected into the 4-dimensional
space which is the projection of the tangent space through p. Hence d = 8.

Now, concerning the case n > 2 of Theorem 2.5, similarly to the finite case, it suffices to show
that, if we consider a subset Y of X corresponding to the point set of a plane of PG(n, L), then
Y generates a subspace of dimension 8. But the proof of the finite case, see Section 4 of [7],
applies verbatim.

5 Another application

We now define the following object. Let L be a quadratic extension of the field K. Let V be a
vector space of dimension n over L. Consider V as a vector space W of dimension 2n over K,
and let L be the set of 2-dimensional subspaces of W arising from the vector lines of V . Then
consider the line Grassmannian of PG(W ). The image G(L) of L is precisely the Hermitian
Veronesean variety of index n− 1.

Indeed, there exists a d ∈ K such that the equation x2+x+d = 0 has no solution in K and two so-
lutions in L. Note that L has the natural structure of a projective space P isomorphic to PG(V ).
A line of P corresponds to the set of members of L arising from vector lines of V contained in
a vector plane π. This vector plane over L becomes a 4-space over K. We now coordinatize the
situation as follows. Each element x of L can be written as a couple (x1, x2), where x = x1 + ix2,
with i2 + i + d = 0 . Note that i(x1 + ix2) = −dx2 + i(x1 − x2). Then a vector of V with coor-
dinates (x(1), x(2), . . . , x(n)) can be given the coordinates (x(1)

1 , x
(1)
2 , , x

(2)
1 , x

(2)
2 , , . . . , x

(n)
1 , x

(n)
2 ) in

W . For π we can now take the set of vectors with coordinates (x, y, 0, 0, . . . , 0), x, y ∈ L, and the
vector plane in W corresponding to the above vector (x, y, 0, . . . , 0) is spanned by the vectors
(x1, x2, y1, y2, . . . , 0) and (−dx2, x1 − x2,−dy2, y1 − y2, 0, . . . , 0). The image of this vector plane
under the line Grassmannian in PG(W ) is the point with coordinates

p01 = x2
1 − x1x2 + dx2

2, p12 = −x1y1 + x2y1 − dx2y2,
p02 = −dx1y2 + dx2y1, p13 = −x1y2 + x2y1,
p03 = x1y1 − x1y2 + dx2y2, p23 = y2

1 − y1y2 + dy2
2.

We observe that p02 = dp13 and p13 = p12 + p03, hence we may concentrate on the coordinates
p01, p12, p13, p23. One easily verifies that these satisfy the equation p01p23 = p2

12 − p12p13 + dp2
13
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and hence all these points are contained in an elliptic quadric Q. Conversely, suppose the four
field elements a, b, c, e ∈ K satisfy ab = c2 − ce + de2 (where we think of a, b, c, e as potential
values for p23, p01, p12, p13, respectively), then (a, b) 6= (0, 0). Suppose without loss of generality
that a 6= 0, then we may even assume a = 1. Put y1 = 1, y0 = 0, x1 = e− c and x2 = e. Then
b = c2 − ce + de2 = x2

1 − x1x2 + dx2
2, and so the corresponding point on Q belongs to G(L). It

follows that the lines of P are elliptic quadrics in solids of PG(W ).

As clearly every point of G(L) contained in 〈Q〉 belongs to Q (since every other point has to
involve an additional coordinate pij , with {i, j} 6⊆ {0, 1, 2, 3}), left to show is the fact that the
dimension of he span of G(L) is at least (n − 1)(n + 1). We show this by induction on n. For
n = 2, this is proved above, as Q spans a 3-space.

Now suppose that n > 2. Consider a basis of size n in V and let V ′ be the subspace generated
by the first n − 1 basis vectors. Let W ′ be the corresponding subspace of W , let L′ be the
corresponding subset of L and let G(L′) be the corresponding image on the line Grassmannian.
The the induction hypothesis implies that 〈G(L′)〉 has dimension at least (n−2)n. Now consider
the 2n − 1 points of V with coordinates (0, 0, . . . , 0, 1), (1, 0, 0, . . . , 0, 1), (0, 1, 0, 0, . . . , 0, 1),. . . ,
(0, 0, . . . , 0, 1, 1), (i, 0, 0, . . . , 0, 1), (0, i, 0, 0, . . . , 0, 1),. . . , (0, 0, . . . , 0, i, 1). Then it is a routine
exercise to verify that the corresponding points in G(L) generate a (2n − 2)-dimensional pro-
jective subspace skew to 〈G(L′)〉 (this follows from the fact that the first point gives rise to
the Grassmann coordinate p2n−1,2n, the next n − 1 points additionally to p2k−1,2n − p2k,2n−1,
1 ≤ k < n, and the corresponding points on the Grassmannian of the last n− 1 vectors involve
p2k,2n + p2k,2n−1 + p2k−1,2n−1, 1 ≤ k < n).

Hence we checked (H1*), (H2*) and (H3*) and we are done.
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