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A Hjelmslev-quadrangle of level n is a rank 2 incidence structure having an 
ordinary generalized quadrangle as homomorphic image and satisfying some 
uniformity axioms. We show that certain infinite sequences of homomorphic 
Hjelmslev-quadrangles define an aftine building of type c,. This is similar to the 
fact that sequences of projective Hjelmslev planes give rise to aftine buildings of 
type A,. This analogy is emphasized by the fact that the inverse limit of the above 
sequences is proven to be an infinite generalized quadrangle. 0 1990 Academic 

Press. Inc. 

INTRODUCTION AND MOTIVATION 

By a celebrated result of J. Tits [ 123, all affne buildings of rank 2 4 are 
classified and arise from algebraic groups over local fields. This leaves the 
question of the rank 3 atline buildings, i.e., the buildings with diagram 

Such buildings are called classical if they arise from algebraic groups. In 
Cl], it is proven that an infinite sequence of homomorphic level n 
projective Hjelmslev planes (for definition, see, e.g., [I]) defines an afIine 
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building of type AZ. In this way, non-classical affine buildings are obtained 
and the class of all buildings of type A”2 is characterized by putting a 
valuation on any planar ternary ring of the spherical building at infinity (see 
[14]). This spherical building at infinity is in fact a projective plane, the 
inverse limit of the above sequences. The present paper is the first in a 
sequence of four (besides the present paper, also [4, 15, 161) characterizing 
the class of buildings of type c, by putting a valuation on any quadratic 
quaternary ring [3] of the spherical building at infinity, which is a 
generalized quadrangle. In [ 151, we use the present results to construct 
explicitly defined affine buildings of type c’z which do not arise from 
algebraic groups. This construction is as explicit as the d,-analogue hence 
one can, for example, investigate automorphism groups, etc... . 

The fact that the final result we are aiming at is similar to the charac- 
terization theorem of afline buildings of type I2 may give the impression 
that also the techniques to prove it are similar and hence one might feel 
that the case ?, is a rewritten copy of the case A”?. This is however not true. 
Of course, the skeleton of the proof is the same, i.e., we axiomatize the 
geometry of the vertices at a certain distance from a fixed vertex of the 
building and put a valuation on the algebraic coordinatizing structure of 
the building at infinity (viewed as a geometry) of the afline building. But 
the way to get there is totally different and much more tricky. We give 
three examples. 

In the case A,, the geometry of the vertices at a certain distance from 
a fixed vertex, is a projective Hjelmslev plane (see ES]). This is a well- 
known geometry and this makes things easier. In the case c,, no such 
objects exist in the literature and hence we have to define them ourselves. 
This is done in the present paper. This is also motivated by the recent work 
of D. Keppens, who likewise treats geometries (circle-geometries with 
neighbour relation, generalized quadrangles with neighbour relation) in his 
thesis (unpublished) and shows some connections between them. 
Moreover, the definition of a Hjelmslev-quadrangle of level n will be by 
induction and this will cause difficulties in a lot of arguments (see [15]). 

For the case d,, one needs a coordinatization theory for projective 
planes. In the case zi2, one needs a coordinatization theory for generalized 
quadrangles, which was not available. We had to fill that gap. Needless to 
say that working with coordinates in generalized quadrangles is much more 
difficult and messy than in a projective plane. 

The notion of a valuation on the coordinatizing ring of a generalized 
quadrangle cannot be guessed by generalizing the notion of valuations on 
fields, as it is the case for planar ternary rings with valuation, One can see 
in [ 15, 161 that a different approach is needed. 

The paper is organized as follows. We give an axiomatic definition of 
Hjelmslev-quadrangle of level n in section 1. In Section 2, we show a series 
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of properties culminating in the fact that the inverse limit of an infinite 
sequence of level n Hjelmslev-quadrangles is a customary infinite 
generalized quadrangle. In Section 3, we use such sequences to construct 
buildings of type c, in an explicit way. No examples are given, since we 
first need the notion of a quadratic quaternary ring with valuation in order 
to obtain non-classical examples. (See [ 161). A classical example, however, 
is contained in the sequel of this paper when we show that every building 
of type ?, arises in the way described in Section 3 (see [4]). 

Prerequisites. Sections 1 and 2 are self-contained up to the notion of a 
point-line incidence geometry (see, e.g., [2]). For Sections 3 and 4, the 
reader should know about the diagram and residues of a rank 3 geometry 
(see [2] again) and the notion of a simplicial complex in connection with 
buildings (see, e.g., [IO]). Chamber systems are needed only in a small 
argument and, therefore, we do not define them, but refer to [ll, 83. 

1. DEFINITION OF A HJELMSLEV-QUADRANGLE OF LEVEL n 

1.1. Notation 

Suppose X= (P(X), Y(X), I) is a point-line incidence geometry with 
point set 9(X) and line set U(X). We denote the set of points incident 
with a given line 9 by ~(9) and call it the shadow (of 9) (see 
Buekenhout [2]). Suppose 9, and & are two distinct lines of X. If there 
is a point incident with both 9, and P& then we call 9i and 54! concurrent 
and we denote “9i I 5!“.” Suppose Y1 and Yz are two distinct points of X. 
If there is a line incident with both 9i and ,c$, then we call 9i and 9* 
collinear and we denote “Pi I .9$.” A flag in X is an incident point-line 
pair of X. The set of flags of X is denoted by F(X). A morphism from X 
to some other point-line incidence geometry X’= (9(X’), 9(X’), I) maps 
P(X) to 9(X’), 9’(X) to 9(X’) and the map induced on F(X) maps 
F(X) to Y-(X’). An epimorphism is a morphism which is surjective on the 
set of flags. The geometry X is called thick if every line is incident with at 
least three points and every point is incident with at least three lines. 

Suppose JG? is an arbitrary set and P,(d) and Pz(d) are two arbitrary 
partitions of d. Then we say that P,(&‘) is properly finer than P2(&) if 
every class of P,(d) is the union of at least two classes of P,(d). In that 
case, we denote 

which is a partition of Pi(&). If 9~ P,(d), then we call 
(~EIP~(~)~%TGE} th e canonical image of 9 in P,(d)/P,(d). 
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1.2. Generalized Quadrangles 

Let Y = (Y(Y), 9(Y), I) be point-line incidence geometry. Then we 
call Y a generalized quadrangle if there exist positive integers s > 1 and 
f >, 1 (s and/or t may also be infinite) such that the following axioms hold: 

(Ql) Every point of 9’ is incident with 1 + t lines and two distinct 
points are incident with at most one line. 

(Q2) Every line of Y is incident with 1 + s points and two distinct 
lines are incident with at most one point. 

(Q3) If 9 E Y(Y) and Y E Y(9) are not incident, then there exists 
a unique flag (9. ,U) E F(Y) such that 9 I .ti I!2 ZP’. 

Generalized quadrangles were introduced by J. Tits in his celebrated 
paper [9]. More information about generalized quadrangles can be found 
in, e.g., Payne and Thas [7] or in the survey paper of W. M. Kantor [6]. 
In this paper, we will always assume that every generalized quadrangle is 
thick. One can check that an axiom system for thick generalized 
quadrangles can be given as follows. 

(QQl) Every point is incident with at least two lines and there exists 
a point incident with at least three lines. 

(QQ2) Every line is incident with at least two points and there exists 
a line incident with at least three points. 

(QQ3) There exists a non-incident point-line pair. 

(QQ4) If YeY(Y) and Y;PE -I;p(sP) are not incident, then there 
exists a unique flag (9, J&‘) E S(Y) such that 9 I ,& I3 I Y. 

The reason why we introduce this axiom system is because of the fact that 
(QQ1) UP to (QQ4) is easier to check than (Ql) up to (Q3) (see 
Theorem (4.1) ). 

1.3. Definition of a Hjelmslev-quadrangle of Level n 

Throughout, n, i, j, and k denote positive integers, We define a 
Hjelmslev-quadrangle of level n by induction on n. The induction will start 
with n = 1. We give a separate definition for level 0. We abbreviate 
“Hjelmslev-quadrangle of level ,” by “level n H-Q.” 

A leuel0 H-Q is any trivial geometry V0 = ({ * }, { * ), = ), where * is any 
arbitrary (but twice the same) symbol. 

A 1eveE 1 H-Q is any 6-tuple, 
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where (g( fl ), A?( 6 ), I) is an arbitrary generalized quadrangle; P,(Y; ) is 
the partition of K determined by: every class is a singleton; 5’,( <) is the 
partition of 9(-Y;) consisting of one class; similar for (Ui(-Y^,))iG i, and for 
every 9’~9(“t/;), ?&(V”,, {9})= ((Y}, {Y}, =). The last three elements 
of 9’; do not add more structure to the generalized quadrangle, but they 
are necessary to start the induction. So, in fact, a level 1 H-Q “is” a 
generalized quadrangle. 

Now suppose n >, 2. Let (9(VE), Y(Y;), I) be a thick incidence geometry. 
Suppose (Pj(VR))isn (resp. (Li(^yjl))iGn) is a family of partitions of 9(-Y,) 
(resp. U( Y;)) satisfying: 

ml) P,(K)= ({~‘)I~@v;)}; P,(Y,)= {.!%-K,), 
(PS2) Q,(K) = { { =Yp> I2 E =qyl)}; Q,(c.) = (wa}, 
(PS3) IPi is properly liner than IFDi+ ,(Vi), for all i<n, 

(PS4) ei(-Y,) is properly finer than Qi+,(%;), for all i-~n. 

The elements of [FDi( ql) (resp. ej( Vi)) are called i-point-neighbourhoods 
(resp. i-line-neighbourhoods) (of their elements). An i-point-neighbourhood 
is also called a point-neighbourhood, an i-neighbourhood, or briefly a 
neighbourhood. Definitions for i-line-neighbourhoods are similar. If 
9’,~9(Y;) and ~?PE sP(“&), then we denote by cOi(9’) (resp. 0’(Y)) the 
unique i-point-neighbourhood of 9 (resp. i-line-neighbourhood of 9’). 

Suppose for every V E [FD,, ,(Yi), we have a level (n - 1) H-Q, denoted 
by %+L ~ ,( +‘i, 55’) (this is an element of a well-defined class of objects 
by induction) and select in every wn _ ,( $1, U) an (n - 2)-point- 
neighbourhood A’;.. Then we call the 6-tuple 

a level n H-Q if U, satisfies the axioms (IS), (GQ), and (NP) below. The 
geometry (Y(V’,), Y(Vn), I) is called the base geometry of Vz. Before 
stating the actual axioms, we need some preliminaries. 

We first define the canonical (n-l)-image of Y” by induction on n. The 
canonical O-image of a level 1 H-Q Y< is by definition the trivial geometry 
CPW)lt PWd), = 1. N ow let n > 2. Define the geometry (P ,( Vn), 
([L,(Vn), I) as follows. If 55’~ p,(Y;) and 9~ (il,(VT,), then % I9 if and only 
if there exist 9 E w  and 9 E 9 which are incident in (S(Vn) Y(Vn), I). 
Furthermore, denote by %lrn-J%;, %?) the canonical (n-2)-image of 
wi- i(nl/i, @?) (well defined by the induction hypothesis). Denote by A*& 
the canonical image of JV~ in Ki’,~,(~~-i(V~, %7))/Pl(wnpl(9;, U)) if 
n>2 and A’“$= {S(#‘;(?i, %‘))I if n=2. Obviously, there is a bijective 
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correspondence between P,_ ,(VR) and P,- r(VE)/P,(-y^,) and the unique 
element of P,_ ~(~;)/IP,(V;~) corresponding with the element %? of IF’,- r(11’;) 
is denoted by V*. In particular, all elements of P,- ,(^y^,)/P,(V~) are 
denoted with a *. We define the canonical (n - l)-image ofKz as the 6-tuple 

We can now state the very natural axiom (IS): 

(IS) The canonical (n - I)-image Vn I of 9’; is a leuel n - 1 H-Q. 

Using a similar notation for “tip r as for *zL’,, (IS) implies, e.g., 
Pi(VH- ,) = Pi+ ,(%‘,)/P,(V,) and similarly for the line partitions. 

Define inductively the canonical (n -j)-image of 9’; (0 <j< n) as the 
canonical (n -j)-image VH Pj of the canonical (n -j+ 1 )-image %‘i-j+ I of 
Y’;,, or as Yi (for j = 0). Note that 0’ defines a mapping from P(Y,) to 
P( $‘,- , ) and from Z(9’;) to Y(?i _ ,). By the definition of the incidence 
relation in Pi , , we can see that this mapping is an epimorphism from 
(P(%,), U(w,), Z) onto (P,(YiI), (il,(Y,), I). We denote this epimorphism 
by Z7: _, . By the induction hypothesis, a similar epimorphism exists from 
the base geometry of Yip j+, onto the base geometry of 3’;,- i and we 
denote it by II: ;“. By induction, we can put 

From now on, we denote the canonical j-image Yj of 3: by 

for all j, 0 <j < n. The epimorphism IZY is called the projection. We define 
the valuation map u : (S(Vn) u P’(%m)) x (?P(?i) u 9(Vn)) + N as follows. 
Let X, y be either both points or both lines of Vi, then 

u(x, y) = sup {j 6 n I UT(x) = I7;( y)}. 

If 9 E P( Vi) and 22 E -I?( Y’,). then 

with 

= sup {j < n 1 IQ19 such that I7y(Q) = n;(P), Q E 9(Vn)) 
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and 

= sup {j< n I3A’ZP such that ZZ;(A’) = ZZ;(dLp), 4 E T(V;)}. 

We now write down the axiom (GQ), consisting of two statements (GQl) 
and (GQ2): 

(GQ2) If PEP(“~ )̂, -44~9’(V~), and u(P, 9) = (k, 2k) for some 
k d n/2, then there exists a unique A E 9(Vn) such that 9’ IA! I 9. 
Moreover, ~(9, A)=2k and ~(9, Q)=O, for all Q~rr(P’)no(A). If 
k=O, then u(Q,, Qz)>n/2, for all Q,, Q2~o(Z)nu(A). 

We now define an afline structure on level j H-Qs. Suppose X, is a level j 
H-Q, 0 <j < n, with 

Let X, =(9(X,), . ...) be its canonical l-image. Let 9~ Pji ,(X,) be 
arbitrary. We denote: 

* u;= {=YPE(X,)Ia(~)n~#~}), 
* ~~=(~~E(Xj)13$P~~~suchthat~ZI}, 

* d9yXj, 23) =LqX,)-9$, 

* dLz?(Xj, 9) = LqX,) - 2;. 

We call the elements of &9(X,, 9) the uffine points (of (X,, a), if there is 
confusion possible) and the elements of zJJP(X,, 9) the ufJine lines (of 
(A’,, 9)). The elements of S$ - 9 (resp. of 92) are called the points (resp. 
the lines at infinity) (of (X,, 9)). The elements of 9 are the hyperpoints (of 
(X,, 9)). The pair (X,, 9) is called an affine H-Q (of level n). Before 
going on, we prove a small lemma. 

LEMMA (1.3). Let (A’,, 9) be as above. Every element of the (j- l)- 
point-neighbourhood of any affine point is again an affine point. Hence every 
element of the (j- 1)-point-neighbourhood of any point at inj?nity (resp. 
hyperpoint) is again a point at infinity (resp. hyperpoint). 
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ProoJ: Clearly, every element of the (j - 1 )-point-neighbourhood of any 
hyperpoint is again a hyperpoint. Now suppose .?J’, , 9z E 9(X,), with 9, an 
affine point and 9 a point at infinity of (X,, 9). Suppose Oi-‘(9,) = 
0’ ‘(9$). Let, with the above standard notation, ZZ{(%) =9~9(Xi), 
i = 1,2 (one can indeed see easily that all points in the same k-point- 
neighbourhood have the same image under the action of Z7{, 06 k <j, 
because this is true for k =j- 1; now use an inductive argument). Define 
Q E Y( X,) as {Q} = n{(9). Then 9 and Q are collinear in Xi, since .9z is 
collinear with a point of 9 in Xi. Since X, is a (thick) generalized 
quadrangle, there exists a line A? in X, incident with Q and not incident 
with 3’. Since ZZ{ is an epimorphism, there exists a line ,%IE.~‘(X~) such 
that ZZi(c,&‘) = 9’. Note that ~(9,) .A!) = (0, 0), otherwise ZZi(Y,) I n{(A)), 
contradicting the condition on ,fl. So, by (GQ2), there exists a point 
Q’ I pi and with Q’ I A?. Projecting down onto X, , we see that, since X, 
contains no triangles, ZZ{(Q’) = Q and hence Q’ E 9, contradicting 9, being 
affine. Q.E.D. 

This lemma will give sense to axiom (NP) below. 
We now introduce the notion of a “strip of width i” in an affine H-Q 

(X,, 9). Suppose 9 E Y(Xj) is a point at infinity of (X,, 9) and 9 E 9(X,) 
is an affine line incident with 9’. If i < j, then we call the set 

a strip of width i (in (Xi, 9)). If i>j, then the set 

is called a strip of width i (in (X,, 9)). In any case, we call 9 a base point 
(of the strip). It- is not necessarily unique, even if the strip has width > 0 
(cp. Property (2.26) below). 

We can now state the first part of (NP): 

(NPl) If VxEIFD,-i(Vn), then r;49(~~~l(+~,%Y),~V)=~. Moreover, 
the i-point-neighbourhood of any point 9 E 9? in “IIT, _ i(V”,,, %‘) coincides 
with the i-point-neighbourhood of 9 in Y’,, for all i < n - 2. 

Suppose %‘,, -i E P, -j( Vi) and let %,, _ k be the unique element of IFn, ~ J V’,) 
containing +& -, as a subset, 0 < k <j < n. By (NPl ), 
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This way, we justify the following notation: 

Moreover, GZRpj= L@‘~‘(~~-~(V~, (F,-,), J’&J. 
The axiom (NPl) was about points of the point-neigbourhoods. The last 

axiom, (NP2), says something about the lines in the alline H-Qs corre- 
sponding to these neighbourhoods: 

(NP2) If ~cscF(V;), .SC’E~‘(%~), O<j<n, and a(dp)nLo”-j(9)) 
# 0, then the set 

is a strip of widthj in (w;,j(V;, @-j(9)), J+$-,(~,). Every strip of width 
1 in (7K-,(9<, Co+‘(p)), .k>,mIC,,) can be obtained in this way (putting 
j= 1). 

This completes our list of axioms for a level n H-Q. 
We keep the same notation as above. Suppose ,X is an afhne line of 

(%-j(K? o”-J(p)), -&/(,9a)) such that the set of afline points of ~4’ is a 
subset of o(9) n Onpj(9) (with the notation of (NP2) above), then we call 
A? a component of 2, or a component of the strip Sy(9,U) and we denote 
.& < 9. The set of all components of Sy(9,9) is. denoted by Cr(S, 3). 
The set of alline points of -4’ is called the affine shadow of A?. As an exten- 
sion, we call every point of y; incident with 9 a component of 2’. 

Now let V’L = (p(V”i), U(V”;), . ..) b e a second level n H-Q and suppose 

Y: (9q d,), Z( Y;,), I) + (Y( F-k), d;p( Y ̂ I), I) 

is an isomorphism of incidence geometries mapping the affine shadow of 
every component of any line Y onto the affme shadow of a component of 
Y(U) and mapping i-neighbourhoods onto i-neighbourhoods, for all i, 
0 < i < n, then we call %$ and Y’h equivalent. This way, we can extend Y to 
the set of all components of all lines of $1 and this extended map, which 
we also denote by Y, preserves “being component of.” We call Y an 
equivalence. 

We now define by induction the notion of an isomorphism between V” 
and VL = (.!F(VA), .9( V-L), . ..). If n = 1, then “y; and Y’, are called 
isomorphic if their base geometries are isomorphic generalized quadrangles. 
Now let n > 2; then we call yi and Y-k isomorphic if they are equivalent 
(denote in that case the corresponding equivalence by Y) and if for all 
%?~EP,~,(V~), wn-i(?‘,, %7) is isomorphic with ?‘&,(V/‘~, Y(q)) and this 
isomorphism Y% coincides with Y/%? over %?. We can now extend Y with 
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every Y, and if we denote this extension still by Y, then we call Y an 
isomorphism. Obviously, isomorphic level n H-Qs are also equivalent. 

Recall that flz ~ i is the projection mapping the base geometry of vn onto 
the base geometry of the canonical (n - 1)-image “IT,- i = (9’(vn _ i), . ..). We 
can extend I7:-, to all “Ni_j(vn, %?), 97~ [lanei and O<j<n, with the 
projection of ?PiPj(Kf;,,%?) onto ~~PjPl(~~n-,, n:-,(q)). We denote that 
extension still by nz ~, . Suppose now that 9; _ I is isomorphic with some 
level n - 1 H-Q X, ~ 1 and call the corresponding isomorphism Y. Then we 
call YoZZ;-, a HQ-epimorphism. Suppose now that (X,,, V;+ l),s N is an 
infinite sequence with X,, a levei n H-O and Vi+’ an HQ-epimorphism 
from X,, , onto X,, then we call (X,,, Vz+l),cN an HQ-Artmann-sequence. 
This name is inspired by the work of Artmann [ 11, who studied similar 
sequences of level n Hjelmslev-planes, giving rise to affine buildings of type 
A”, (by Cl39 51). 

Suppose now that ( Y,, r;+ ‘)nE N is a second HQ-Artmann-sequence 
and suppose Y,, : X,, + Y, is an equivalence, for all n E N. Then we call 
(Xn, TflLN and (Yn,fz+‘)ncN equivalentifT:A+’ 0 Y,,+,=Y, o Vz+‘, 
for all n E N. If Z, is the base geometry of X,, then we call the sequence 
Lv:+l/zn+,LEN the base sequence of (X,, VE + ’ ), E N. 

2. PROPERTIES OF HJELMSLEV-QUADRANGLES OF LEVEL n 

In this section, C, = (9(*i,), Y(K), L (p,(Wi))i<n, (kl(K))i<n, 
(dlT-l(Kyn, w’), .-h&&E$n-,,~ .) ) denotes an arbitrary but fixed level n H-Q, 
n E N *. Its canonical j-image (1 <id n) is denoted by 

or by +‘O (j=O). The projections are denoted by 

zz; : 9; -+ 9,‘ .I’ O<jdkdn. 

The valuation map in ^y; is denoted by u[j,j] and we put U= u[n, n]. 
We denote the canonical k-image of %$i(vny,, %) by #$(vn, %‘), for all 
??EE,(V~), 06k<j6n. By (IS), 

for all %? E P, _ ,(v,). Suppose 9 E 9(vn). Denote cOj(9) briefly by %. Then 
we denote the set of lines of (y(v;, U), NV) by Uj(9). The projections 
are denoted by 
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still with @(9) = %?. The valuation map wk(Y;, @(fly(Y))) is denoted by 
u[j, k]. By Property (2.2), u[j, k] will also be the valuation map in 
~k(-tiT,, Q “‘“-‘(n;(P))), O<k<j<m<n. 

Throughout, j, k, I, m are positive integers, all smaller than or equal to 
n and 9, Q Ed’, 9, ,4%e U(V;), pre-assigned if not explicitly 
mentioned otherwise. 

PROPERTY (2.1). Thepartitions (Pi(VE))icn, (lli(VR))rG,,, are completely 
determined by the valuation map u and also by all the projections Ill:. 
Moreover, @-j(9) = (II;)-’ (17,“(g)), and similarly for the lines; 
On-‘(P)= {QE~(V’,)IU(P, Q,>j} d g an a am similarly for the lines. 

Proof: We already remarked this in the proof of Lemma (1.3). By 
definition, the points of Vi-r are the elements of Pi(V;). By the definition 
of the partitions of VH- ], the points of VnT,- 2 are the elements of 
P,(Vn)/p,(V;). So it is clear that ~(9,) Yz) = n - 2 if and only if Y, and 9$ 
are in the same partition class [FD,(Vn), but not in the same partition class 
of p,(%$). An inductive argument and the analogue for. the lines shows 
that the partitions of Vi are completely determined by u and proves the 
formula with U. The other assertion follows directly from the definition of U. 

Q.E.D. 

The symbol l in a formula means “anything that gives the formula any 
sense”, e.g., Z7: ~ i ( l ) = l n _ , means : for all x EY(Y,) u 9(-Y;,) and all 
XGS(~~)U.Y(VJ, one has I~~~,(x)=x,-~. 

PROPERTY (2.2). Zf~..~lP’~i(V~n) and k<j<n, then 

Proof: We proceed by induction on j-k for fixed j. 

(1) If j - k = 0 then the property is trivial. 

(2) Suppose now j - k > 0, then j - (k + 1) 2 0 and by the induction 
hypothesis, 

Since U;-j+k+, ($)~Pk+i(~~~+~+i), we have by definition 
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where %?L+ 2 is the the unique class of Pk+2(Vn/;1-,+k+ r) containing 

K-j+k+l(%) as a subset. By the property (* ), we have 

where %$ + 3 is the unique class of P, + 3( Vfi ~., + k + , ) containing %?L + ?. Hence 
again by ( * ), 

Going on in this manner, we eventually end up, using the fact that 
w  I--J+k--1(‘%--l+k+l, ‘)=*l/ni+km ,(~‘,~j+k,nnn--j=::+‘(‘)), after n-k 
steps, with 

PROPERTY (2.3). If II’,f(9) I I7;(2’) in Y;, then a(9) n O”- ‘(9) # 0. 

Proof. Denote ZZy(9’) = 9,) I7’$F) = 9, and choose Q, E Y(Y’;) such 
that Q, I $ and not incident with d%;, this is possible since 9; is a 
generalized quadrangle. Choose Q arbitrarily in (fly) -’ (Q,); then clearly 
u(Q, 9’) = (0, 0), otherwise 9, IQ, . By (GQ2), there exists a point 9” 
incident with 58 and collinear with Q. If o(Y)n O’-‘(9)= 0, then 
9’ 6 0” ‘(9) and using Property (2. I f, we see that { Z7;( 9’) 9,) Q3 > forms 
a triangle in “y; , a contradiction. Q.E.D. 

PROPERTY (2.4). If II; I n;(Y) in $;, then there exists a line 
9” E ~7”~ ‘(9) incident with 8. 

Proof The dual argument of the proof of property (2.3) holds here. 
Q.E.D. 

PROPERTY (2.5). * There exist at least three points PI, Y*, 9’ EL!J’( pi), 
all incident with 3’ and having the property u(P~:, gs) = 0, r, s = 1,2, 3 and 
r # s. 

* There exist at least three lines YI, 9”, Sp E 3’(?,), all incident with 
9 and having the property u(LZ’~, LZs) = 0, r, s = 1, 2, 3, and r #s. 

Proof. This is an immediate consequence of the Properties (2.3) and 
(2.4) and the fact that 9; is a thick geometry. Q.E.D. 
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PROPERTY (2.6). ~~(9, 9) d ~~(9, 9) < 2. u,(Y’,3’). 

Proof: Put k = u,(Y, 9) and I= u,(9,9). We show each inequality 
separately. 

(1) k d I. Choose Q incident with lip and such that ~(9, Q) = 0 
(this is possible by Property (2.5)). Choose A’ incident with Q and such 
that ~(9, A) = 0. By projecting onto Y‘Y;, one can see that ~(9, 4’) = 
(0,O). Denote l k = &( l ), then u[k, k](pk, A%‘~) = (0,O). By (GQ2), thee 
exists a line A’ E Y(Vn) incident with 9’ and concurrent with A. Hence 
Yk I A$ I A&. But since ~~(9, 9) = k, we also have gk IL& I .A?“. So by 
(GQ2), & = A?;, hence u( 9, A’) 3 k. Since 9 I A”, I > k by definition. 

(2) 13 2. k. Choose Q’ E 9(Vn) collinear with 9 and such that 
~(9, Q’) = 0 and u(Q’, 9) = (0,O) (this is the dual of part (1)). We again 
denote l ,= &‘( l ). Then u[1,1](Q;, 9,) = (0,O). Choose L’ E 3’(<,) 
incident with Q’ and concurrent with Y and M’ E U( Y’,) incident with 9 
and Q’. Note that P, IdpI by definition of u2. So by (G02), 9;= A; I L$. 
Now choose Q” E a( 9) n a( 9’) arbitrarily, then Q;, E a( 9,) n c( 9;). But 
also $E o(q) n ~(9;). By (GQ2), u[I, 1](9,, Q;) > f/2. Hence ~(9, Q”) > 
f/2. But since Q” Zo(;p, we have u,(Y, 9) 3 ~(9, Q”) 3 l/2. Q.E.D. 

PROPERTY (2.7). If Y 1 ,A! and 3 # -4, then u(Y, A’) is even. 

Proof: Suppose ~(3, A) = 2k + 1 and let 9’ be incident with 3’ and 
A. By Property (2.5), there is a point Q incident with .Y such that 
~(9, Q) = 0. Now, there are two possibilities: 

(1) Conek-‘(Q) n a(A) = 0. In this case, ui(Q, A’) d k. But 
+(Q, A!) 2 2k + 1, since Q I .Y and ~(9, A’) = 2k + 1. This contradicts 
Property (2.6). 

(2) on- kpl(Q)na(M)#@. By (GQl), 2k+2<2k+l, again a 
contradiction. Q.E.D. 

PROPERTY (2.8). Zfu(P, Q)2n--j, thenj-u[n,j](p, Q)=n-~(9, Q). 

Proof: This is an immediate consequence of (NPl ) and Property (2.1). 
Q.E.D. 

PROPERTY (2.9). If Q I Y ICY’ I Af, ~(9, Q) = 0, and 2 # A’, then 

proof. Let u(Q,A)=k, then On-k(Q)n~(A’)#@ and by (GQl), 
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2k < ~(9, 4). But u2( Q, J%‘) > ~(9, J#), so combining these inequalities 
with Property (2.6), we obtain 

hence equality holds everywhere. Q.E.D. 

PROPERTY (2.10). Suppose %? E P, _ l(VH) and n -j odd, then every strip 
of width j in (%T,, U) is also a strip of width j - 1, for all j # 0. 

Proof This follows from the definition of strip of width j and Property 
(2.7). Q.E.D. 

PROPERTY (2.11). Zf 9 and Q are both incident with both 5? and A, and 
~(9, Q) = 0, then ~3’ = Jr’. 

Proof This is a direct consequence of (GQl) applied for j = n. Q.E.D. 

PROPERTY (2.12). The line Y is completely determined by its shadow 

42). 

Proof: Follows from Properties (2.5) and (2.11). Q.E.D. 

Remark (2.13). Although 9 is completely determined by o(Y), the set 
a(Z7;(dP)) is not necessarily equal to the set UT(a(Y)). However, by 
Properties (2.5) and (2.11) flT(a(Y)) determines n;“(Y) and hence also 
4qY~H. 

PROPERTY (2.14). Suppose VE P,- l(VH), L!J’ is an affine point of (Vn, 97) 
and Q is a point at infinity of (Vi, U). Then ~(9, Q) = 0. 

Proof This follows directly from Lemma (1.3). Q.E.D. 

PROPERTY (2.15 ). Suppose W E P, _ 1 (9:). Every affie line LZ’ of ( Vn, U) 
is incident with at least two affine points PI:, pz and at least one point at 
infinity Q of ($z, U). Moreover, one can choose PI and g2 such that 
u(L’?~, pz) = 0 and 0”- l(Q) is the unique (n - l)-point-neighbourhood of 
points at infinity containing elements incident with Y. 

Proof. Choose 9’ E%? arbitrarily. Since 9 is aftine, u,(9, U) = 0 by 
definition, and so by Property (2.6), ~(9, 9) = (0,O). Applying (GQ2), we 
obtain a point Q collinear with 9 and incident with 9’. This point Q is by 
definition a point at infinity. Suppose 9 is incident with a (different) point 
at infinity Q’ and assume 0” ~ ‘(Q) # Co”- ‘(Q’). We denote Z7;( l ) = l , . By 
Property (2.3), 9: is not incident with YI and hence {PI, Qi, QI} forms a 
triangle in Vi, a contradiction; hence 0”- ‘(Q) is unique with the above- 
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mentioned property. Applying Property (2.5) on 9, we obtain three points 
pi, pz:, Y3, all incident with 2 and two by two in distinct (n - l)-point- 
neighbourhoods. By the first part of the proof, at most one can be a point 
at infinity of (-y^,, U), e.g., p3. Then Yi, C?$ are two affine points such that 
u(.q,9y=O. Q.E.D. 

PROPERTY (2.16). Zf a(3’)nLoi(9)#12/, then every component of 3’ in 
%$(V;, Oj(9)) is determined by any affine point incident with Y, i.o.w. no 
two elements of @r(S, 9’) are incident with a common affine point. 
Moreover, every element of @r(S, 3) is incident with every base point of 
~Y(c?, A?), and every line of %$(-Y;,, Oj(Y)) incident with some points 
QI, Q2 E sJ.‘(B, 9) such that u[n,j](Ql, Q2) =O, belongs to Cr(.9, 9). 

Proox The first assertion will follow from the second and properties 
(2.11), (2.141, and (2.15). So suppose YEC~(Y,Y). Let P,:,c?$ be two 
affine points of q(Vn^,, Oj(S)) incident with 3’ and such that 
u[n,j](YI, gz:) =0 (this is possible by Property (2.15)). If Yr and pz are 
incident with a common element 3”’ of @J(Y, 6p) which is incident with all 
base points, then by Property (2.11), 3” = J?’ E CJP, 2). So suppose 
% Z z E C;(S, T), i = 1,2, with .Yi # & and both incident with all base 
points of sJ(9, 9). Let F be such a base point, not incident with p’, then 
by Property (2.14), u[n,j](F, #)=O, i= 1,2, and from Property (2.9) 
follows 2u[n,JI (T-,5?‘) = u[n,j], (F-, 9”); hence by (GQ2), 2, = zz, a 
contradiction, showing the second assertion. The last assertion clearly 
follows from the same argument, putting 9, = Qi and gz = Q2. Q.E.D. 

Remark (2.17). Suppose n 3 2. Assume COnpl(p)ne(Y) # 0 and 
let Y’EC;-,(~, 9). By Property (2.15), there exist two points 
Y,;,cF~;U-‘(~) incident with 3’ in wn-1(V’,,0+1(9)) and such that 
u[n, n- l](.??,, Yz)=O. By Property (2.8), ~(4, pz:) = 1 and, since Yi;, PALE 
a(Y), they are collinear. So we see that the dual of Property (2.7) is false 
for n >/ 2. Hence, there is no point-line duality for level n H-Qs, although 
the dual of some properties is true. 

PROPERTY (2.18). Suppose q. E pj( Vu), Every affine line of 
(q(VY,, Vj), NW,) is a component of at least one line in *y,. 

ProojI Let 9’ be an aftine line of (%$(Vn, qj), JK~,) and let ‘$+ i be the 
unique element of pj+ ,(*y^,) containing ‘ik;. as a subset. Note that J&, is the 
unique (j - 1 )-point-neighbourhood in ?Y$Vn,, Vj) for which the set of all 
affine points of (%$(Vn, qj), JV&) is exactly gj. We will use that notation 
frequently. By Property (2.15), 9’ is incident with a point at infinity F of 
(YY$(V~, wj), N%,). Now we take 9 as base point of a strip of width 1 in 
(%‘j( V”, V$), J&&J containing the affine shadow of 2’. By (NP2), there 
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exists a line 3” of %$+ r ($$, vj+ r ) such that 3” < ~3”‘. The line Y’ is 
clearly an affine line of (q+,(Yn,, gj+,), A&+,). Now we let Y” play the 
role of Y and by an inductive argument, we obtain eventually after n-j 
steps, a line 9 E Yn whose shadow contains the afhne shadow of dp’. By 
poperty (2.16), Ip’ < ~3’. Q.E.D. 

PROPERTY (2.19). If n = 2 and O’(Y)n ~(9’) # @, then 9 is com- 
pletely determined by any component in w(V*, O’(9)), i.e., every element of 
9’ (9) is a component of exactly one line of ^t;. 

Proof: Suppose A%! #Y and 4’ and 3’ share a component Y in 
Y&(Y~, Co’(Y)). By Property (2.7), ~(3, A’) = 0. Now “w,(Y*,, CO’(Y)) 
is a (thick) generalized quadrangle and it is easy to see that two strips of 
same width, which share the afftne shadow of an afftne line, coincide. 
Hence, 0’(p) no(Y)= lo’(g) n a(A). Choose Q such that Q IL? and 
u(Q, Y) = 0. By (NP2), O’(Q) n o(3) #O’(Q) and we can choose a point 
Q’ E O’(Q) not incident with 9. By projecting onto K, we see that 
ur(Q’, A’)=0 (otherwise ~(9, A)> 1). Hence, by Property (2.6), 
u(Q’, A!) = (0,O). So by (GQ2), there exists a unique line A’ IQ’ and 
concurrent with A. By projecting onto Y,;, we obtain ~(2, A”) = 1. But 
A? and A” must meet in Co’(Y) by Property (2.11). Hence A”’ and Y also 
meet there, contradicting Property (2.7), hence 9 and ~4’ cannot have any 
component in common. Q.E.D. 

PROPERTY (2.20). Zf a(Z) n W(9) # ~3 and 55” < 9, 9’ E 9?‘(9), then 
i I n V/-J9 )<n,-,(=q,Vk6/. 

Proof. By an inductive argument, we only need to show the property 
for k = 1. So suppose k = 1. We choose two points Qr , Q2 E O’(Y) incident 
with 3” and such that u[n, j] (Qr , Q2) = 0 (this is possible by Property 
(2.15)). We denote briefly IZE-,( l ) = l *. Now Q: and Q: are both 
incident with 8*, but also with Vet,. From the third assertion of 
Property (2.16) it follows that Vi- r(Y) is a component of Y*. Q.E.D. 

PROPERTY (2.21). rf a(Y) n Oj(S) # 121 and k <j. then 

Prooj This is an immediate consequence of the previous property. 
Q.E.D. 

PROPERTY (2.22). If 53’ and Q are both incident with 3’ and A, and 
~(2, A!) = 0, then ~(9, Q) 3 n/2. 
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ProojY We can choose a point 9” 19 such that u(B’, A’) = (0,O) (use 
Properties (2.5) and (2.6)). The assertion now follows from (GQ2) applied 
on 9’ and A?. Q.E.D. 

PROPERTY (2.23). If ~(9, *I)Ln- 1, dp ZY IA? and n is odd, then 
C;(Y, 9) = C;(Y’, A) and S;(9,6p) = S;(9, A). 

Proof: By Property (2.17), C;(g, U) and @y(.Y’, A) are both singletons 
with respective elements, say 9’ and A”. By Property (2.20), V;~~(F) 
and V~I:(&‘) are components of Z7;- ,(U)= ZI;- r(A). But W;_ ,(9) is 
incident with both Vz; i(Y’) and Vi; :(A’) and hence by Property (2.16), 
VE 1 i(Y) and Vz 1 :(A”) coincide. But since n - 2 is odd, 2’ = A!’ by 
Property (2.7). Q.E.D. 

PROPERTY (2.24). Zf cr(Y)n O’(Y) # 0, then there exists AE O’(dR) 
incident with 8. 

Proof. By Property (2.1), a(Y)n@(g)#f21 if and only if 
u,(Y, Lf)>n -j, hence u,(B, dp) an-j (Property (2.6)). But this is 
by definition equivalent with the existence of a line A E Si(5?) incident 
with 9. Q.E.D. 

PROPERTY (2.25). rf ZIJ’(S) ZZZy(Y), then there exists k’~O”~‘(9’) 
incident with 9. 

Proof. Choose e E @“-j(Y) and A’ E On-j(Y) such that e IA” (this 
is possible since IZJ’, is an epimorphism). Hence a(&‘) n Upi (Q) # 0. 
Now U-j(g) = @-l(Q) and so the assertion follows from Property (2.24). 

Q.E.D. 

PROPERTY (2.26). If % E irp,- ,(V”) and n is odd, then every strip of width 
1 in (VH, ‘3) is completely determined by any component. 

Proof: Let Y be a strip of width 1 in (^y^,, U) and 2 E Y. By 
Property (2.15), 9 meets a unique (n - 1)-point-neighbourhood at infinity, 
say cO”~‘(&,). But if A”E.Y’, then 0#a(~)no(~)~O”-‘(~~). By 
Property (2.23), ~(9) n O”- ‘(.i3fm) = CT(&) n On- ‘(Pm). Hence every 
element of a(Y) n On- ‘(g’,) can serve as a base point. Q.E.D. 

PROPERTY (2.27). If a(Y) -‘(SF) # 0 and n is even, then 9 is 
completely determined by any component in W”- ,(VT,, On- ‘(9)). 

Proof: We proceed by means of induction on n E 2. N. 

(1) For n = 2, this is Property (2.19). 
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(2) Let n > 2. By the previous property, any component of 2 in 
“IIT, _ l(Vn, 0” ~ ‘(9)) determines the strip completely. Hence we can assume 
that there is line ,I #Y such that C;(Y’, Y)= C;(9, A). We seek a 
contradiction. By the induction hypothesis and Property (2.20), we have 
~(9, JV) = n - 2, because u( 3, 4’) must be even. Choose now Q IY such 
that ~(9, Q) = 0. By Property (2.9), u(Q, .X) = (n/2 - 1, n - 2). Choose 
now Q’ E 0’(Q) not incident with 3 (this is possible since Co’(Q) meets Y 
only in a strip). By Properties (2.6) and (2.25), u(Q’, &!‘) = (n/2- 1, n-2) 
and consequently by Property (2.9), u[n - 1, n - l](n;.- ,(Q’), Z7;... i(d)) 
= (n/2 - 1, n - 2). Applying (GQ2) in respectively 9; and Vnp 1, we obtain 

a line 6p’ E Y(Y,) incident with Q’ and concurrent with JJ?! and such that 
~(9, 9’) = n - 1. If Y’ and ,K would meet outside O”- ‘(Y), then by 
Property(2.11), Z7~~,(Y)=17;_,(,&‘), because I7; ,(Y)=n;_,(d;p) 
and both lines also have X7;-, (9) in common. Hence Y’ and .I meet in 
lfi’“-‘(Y), where 4 and Y have the same shadow. Hence Y meets Y’, 
contradicting ~(9, 2’) = n - 1, n - 1 odd and Property (2.7). Q.E.D. 

PROPERTY (2.28). Zf ~(2’) n o(A’) n 0” ‘(P) # @ and C;(C!?, 3) n 
C;(.C?,, A’) f @, then ~(2, .X)>/n- 1 and if n is even, then equality does 
not occur. 

Proof. If n is even, then the assertion is completely equivalent with 
Property (2.27). So suppose n odd. Consider Vt::(CT(P, A). Its unique 
element is a component of fi; i(Z) and also of Z~:-,(J&‘), by Property 
(2.20). The result now follows from Property (2.27) applied in YZ+,-, 

Q.E.D. 

PROPERTY (2.29). Suppose 9 IT and k <j. If L$ (resp. &) is the unique 
component of 2 in %$(^I’;,, W(g)) (resp. %$(V;,, Ok(p))) incident with 9, 
then q. < &. In particular, & is the unique component of Y in 
%L;(Y,, ok(g)) containing Y, as a component. 

Proof: Since -Ok<<, we have S,kei(9, ~k))5~~~j(~, 9). The result 
now follows from Property (2.16). Q.E.D. 

PROPERTY (2.30). If ~(9) no(A) n Oi(p) # 0 and @I-,(9, U) n 
C~-,(~, A!) # 0, then ~(2, J@) > j and if,j is odd, then equality does not 
occur. 

Proof: We proceed by means of induction on n > j + 1 for fixed j. 

(1) For n = j-t 1, this is Property (2.28). 
(2) Suppose now n > j -t 2. Let X be an arbitrary component of both 

Y and J? in YY;(Y;,, @j(g)) and let Y’ (resp. M’) be the unique compo- 
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nent of 2 (resp. A) in “11;‘+ ,(Yi, Sj+‘(p)) having X as a component 
(cp. Property (2.29)). By Property (2.28 ), V/ + ‘(A’) = V- + ’ (2’). Hence 
n:-,(Z) and nz- ,(A) share a component in +$(Yn^,_ ,, @(J7:- ,(.Y)). By 
the induction hypothesis, u[n - 1, n - l](n;- ,(g), Z7;- ,(Y)) >j. But 
then ~(9, 6p) >j obviously. If j is odd, then the result follows from 
Property (2.7). Q.E.D. 

For any real number r, we denote by [r] the biggest integer smaller than 
or equal to r. 

PROPERTY (2.31). If ~(9, 9’) = (k, I), 2k < n, and Y’ is an arbitrary 
component of Y, YE .S!‘n-2kf’(9), then u[n, n - 2k + Z](Y, 9’) = 
(I-k, 2(l-- k)). 

Proof. Let us denote u[n, n - 2k + i] briefly by u’ and n - 2k + 1 by i. 
Since ~(9, 2) = k, at least one component Yi of 9 in wnpi(Y$, Onpi(.!?‘)) 
will meet the set Onpk(.!Y). We denote 23=Cy(p, 9). By (NP2), 
~‘(9, , Y’) 2 n - 2i. Now 2, and 2’ meet in a base point and by 
(GQl) and Property (2.14), they meet all the same [(n + 1)/2]-point- 
neighbourhoods. Since n-k > [(n + 1)/2], 9’ meets 0fl-k(Y). Since 2 
does not meet @-kp1(Y), neither does 2’ and hence u,(Y, 2’) = 
i-(n-k)=I-k. Since u(p,Z)=Z, we find k! in ?“, such that 
u(Y, 4) = I and 9 I&. We project this situation onto v’; and denote 
n;( l )= l ,. So wU-i(Yn, 0O”-i(5i’)) is projected onto qpi(Y:, Onei(Y 
%‘-,(q;, O’-i(Y,)). One has Y,=&?, and the strip si-,(Y1[, Y!) is of 
width i. Denote 8’ = C:- i(e, 9,). Let k’] be the unique element of ‘%’ 
incident with g[ (cp. Property (2.16)) and let .,%e, be the unique element 
of V;:/(8) (the latter is indeed a singleton since 8 is a strip of 
width i d (n - i) - (I - i)). By Property (2.20), &X1 E %‘. And J& meets 
V;:,‘(Upk(Y)) = O’-k($). Since A, and J& meet in a base point, we have 
by (GQ 1 ), u’(J& , JE&) > I- i = 21- 2k, but this means that ~&‘i = J& ; hence 
Vy::(Y’) = J?‘~ = J%‘, IV;..-,‘(.Y) = 9. By Property (2.25), z&(9, 9’) 2 
21- 2k and the equality follows straight from Property (2.6). Q.E.D. 

PROPERTY (2.32). Zf ~(9, A!) 2 2j - 1, then 

~$2) n U”-i(9) # % 0 q(A) n @--I(g) Z %. 

ProoJ The property is trivial for j= 0 and 2j> n. So we can assume 
O< 2j<n. Suppose a(Y) n (Y-j($Y) # 0. Without loss of generality, we 
can also assume that !? I Y. Choose a line X E Y(Yn) incident with 9 
such that u(Y, ,X) = 0, and choose a point Q IX such that ~(9, Q) = 0. 
The (n - 1)-point-neighbourhood of Q does not meet Y; otherwise 
u(Y,X)>O. Hence @-l(Q) d oes not meet J.# and by Property (2.6), 
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u( Q, A) = (0,O). We apply (GQ2) and obtain a line Xx’ E .Y(P,) incident 
with Q and concurrent with -1. We put i = 2j- 1 and denote again 
I7:( 9 ) = l i. A similar argument as above shows u[i, i](Q,, J&) = (0,O) and 
from z= J& follows by (GQ2), z= $: By Property (2.22), all common 
points of x’and J& lie in O’-‘(q)= (O”~j(~)), and hence, all common 
points of X’ and J? lie in U’-)(Y). Since there is at least one such point, 
we have G(J%‘) n c?Y-~(P,) # a. Q.E.D. 

PROPERTY (2.33). Zf 2u[j,jll (h’;(P), I7:(2’)) < j f n, then u[j,j] 
(z7pq hy(9)) = u(.Y, 2). 

Proof: Let u[j,j](Z7J’(9’), Z7J’(Y)) = (k, I) and u(9,Z) = (k’, I’). 
Clearly, k > k’ and lb 1’ and if u(U, &‘) 6 j, for arbitrary A, then 
~(9, Me) = u[j,j](IZ,“(9’), Z7;(9)). Denote ZZ;( l ) = l j and, choose Jz’ 
such that Aj Zq and ~[j,j](~&, q)= I< 2k<j (this is possible by the 
definition of u[j,j] and the fact that Z7; in surjective). By Property (2.25) 
we can even assume that J! 19 and ~(9, A) >, I (because 1 <j). Hence 
I’3 1 and consequently I= I’. Now choose Q such that Qj IY, and 
u[ j, j](q, Q,) = k. Since Z7J! is surjective on the set of flags, there exists a 
9” e U(Vn) incident with Q and such that ~(9, 9’) aj> 2k > 2k - 1. So 
by Property (2.32), there exists a point Q’ E??(Y~) incident with 9’ and 
such that u( Q, Q’) 2 k. We also have u( Q, 9) 2 k, hence U( Q', 9) > k. This 
shows k’ 3 k. Q.E.D. 

PROPERTY (2.34). Ij’ 2u,(Y, 2’) <j<n, then u[j,f(I7;(9), n;(Y))= 
u(P, 9). 

Proof. Again denote ZIJ(*) = l , and put u[j,j], (9$ g.) = k, ~(9, 9) 
= k’, and suppose 2k >j. Choose Q such that Q, Z %$ and u(Q,, q) = k. 
Choose J? IQ and such that ~(9, A)>j (cp. Property (2.25)). By 
Property (2.32), 3 meets Onei( where i = [(j+ 1)/2]. Since k 2 i, we 
have ~(9, Q’) >/ i for all Q’ E ~‘(9) n ~9”~ ‘(Q). Hence k' > i and thus 
2k’ aj, contradicting our assumptions. Hence 2k <j and the result follows 
from the previous property. Q.E.D. 

PROPERTY (2.35). u2(9,6p) = sup {id n ) Z7;(9) z n;(u)}. 

Proof. (1) ua(Y’, 9) $ sup {i < n I ZZl(9) IZZ:(Y)} by the definition of 
49, 2). 

(2) uz(9,6p) 3 sup {i< n I ZZy(9) I ZZy(9’)) by Property (2.25). 
Q.E.D. 

PROPERTY (2.36). Zf ~(9, 9) = (k, l), 2k Q n, and Y’ E Lfn- i(S) is a 
component of9 in W~~i(V~~, O”-i(.9’)), i<2k-I, then u[n, n-i](p’, U’)= 
(k-&Z-i). 
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Proof: Similar to the proof of Property (2.31) one shows here that 
~‘(9, 2’) = k - i and ~‘(9, 9’) = I’ - i 3 l- i, where u’ = u[n, n - i]. By 

Property (2.35), Vg 1 i(Y) IV: 1 i (2’). By Property (2.20) this implies 
n:(Y) In;(Y). Consequently I’ < 1 by Property (2.35). Q.E.D. 

PROPERTY (2.37). If u(Y, A?) = j and .Y IY IA?, then .Y and A! share 
a common component in -W;(%‘i, Sj(g)) incident with .Y. 

ProoJ By Property (2.7) j is even. We now fix jc 2kJ and proceed by 
means of induction on n > j. 

(1) For n = j + 1, the property is equivalent to Property (2.23). 

(2) Suppose n>j+l. Again denote Z7;p,(*)=*np,. By the induc- 
tion hypothesis, Yn , and J$~ ~, share a component X incident with 9” ~ , 
in %T(-Y;,-,, Oi(Ynl,_ ,))= %$(Yi, I!@“(Y)). Now let 9’ (resp. A’) the 
component of Y (resp. Jz’) in Y’#‘+ r(Yn, Qj+ ‘(9)) incident with 9. By 
Properties (2.16) and (2.20), Vj+ ‘(9’) =V,!+‘(&“) = K. The result now 
follows from Property (2.23). Q.E.D. 

Remark (2.38). In the above property, we can substitute ~(2, ,X) aj 
for ~(2, 4’) = j and the same conclusion remains valid (by Property 
(2.29)). 

PROPERTY (2.39). Suppose ~(9, L?) = (k, 1) with 1~ 2. k ,< n. Denote 
(0-2k+‘(p)=$g and let 58’ be an arbitrary component of .Y in 
YY‘ Hpzk+l(nl/m, %‘). Then there exists a unique line A!” in ‘@Lr,p2k+l(Vn, 9) 
such that 9 I A” I 2’. Moreover, all elements of o(A!‘) A a(Y) are affine 
points of (*w;, _ 2k+ l(%> VI9 &). 

Proof: The existence and the uniqueness of ~5” follows from 
Property (2.31) and (GQ2). We now show the second assertion. By 
Property (2.36) we can assume without loss of generality that I= 2k - 1. 
Hence 5?‘, &‘E 5?“- ‘(9) and u[n, n - l](g, dip’) = (k - 1,2(k- 1)). 
Suppose that 2’ and &?’ are incident with a common point at infinity. 
From u[n, n - 1 ](L?“, -&‘) = 2k - 2, we deduce u[2k, 2k - 1 ](V;;L ,(Y), 
V;;J ,(&I’)) = 2k - 2 and hence by (NP2), there exists a line A E z(Yi) 
such that V!&?,(Y) and V;;?,(&“) are components of Z7Zk(&). By 
Property (2.25), we can choose Jz’ incident with 9’. By Property (2.20), 
Vl;? ,(U’) < IIgk(Y). As a consequence of Property (2.28) n;,(Y) = 
&!,(,+4’) and this implies 13 2k, a contradiction. Q.E.D. 

PROPERTY (2.40). Zf u(W, 56’) = (k, 1), 2k < n, and .Y IA! IQ ZLZ’, then 
~(9, Q) 2 2k - 1. 

Proof This is trivial for I= 2k, so assume 2k > 1. Suppose ~(9, Q) = 
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j < 2k - 1. We seek a. contradiction. Let AT (resp. A’o) be the component 
of A’ in ‘JY~-~(Y,, U-j(Y)) incident with .?? (resp. Q). We know u[n, n-j] 
(A9,A&)>n-2j. Let .5$ be the component ofY in ~~~,(P~,O”-~j(~)) 
incident with Q. By Property (2.36), u[n, n -j](Y, LfQ) = (k-j, Z-j). 
Since 2(k-j) < (n-j) -j, we can apply Property (2.34) and obtain 
u[n-j,n-2j](V~1/2,(~),V;:-iZ/(Yo))=(k-j,Z-j). But V;:i,(A$)= 
V”,:i,,(Ao) and hence Vt:i, (Yo) ZV;:{,(Q) ZV;:i,(&) IV;:‘,(Y). But 
u[n -j, n - 2jl(V::J,(Y), Vz:i,(Q)) = 0 by Property (2.8), and we 
conclude with Property (2.9) 2(k -.j) = I-j, a contradiction. Q.E.D. 

PROPERTY (2.41) Zf u(9, 9) = (k, I) with 2k < n. then there exists a line 
A%’ incident with 9 and concurrent with Y. 

Proof For I= 2k, this follows from (GQ2), so suppose I< 2k. Choose 
an arbitrary component _tLp’ of 2 in %(vi, Oi(Y)), with j= n - 2k + 1. 
Then, by Property (2.3 1 ), U[IZ, j](Y, 2’) = (I - k, 21- 2k). Choose 
A!’ E Y’(S) such that 9 I A’ I Y, then 2’ and A? meet in affine points, 
i.e., in points of @j(g) by Property (2.39). It suffices now to choose A such 
that ,A” < -%p, which is possible by Property (2.18). Q.E.D. 

PROPERTY (2.42). [f ~(9, U)= (k, I), 2k <n, A+‘,, A&E Y(%;), and 
9 I-6. I Y, i= 1, 2, then u(,HI, .&‘~))nn4k+21. 

Proof For I= 2k, this follows from (GQ2), so suppose I < 2k. The 
strips s’& ,(9, .A&) and S;,- ,(g, Y), i= 1,2, have both width 2k- 1. 
So we can put (Y*)=V”,_~k,=:,(@l;k-I(~, 2)) and (A%!,+> = 
v”,I::::,(c;k-l(% Jto)’ i= 1, 2. By Property (2.40), .Y IA’: I Y*, 
i= 1,2. But by Properties (2.31) and (2.34) and (GQ2), A%‘: = A’;. Hence 
by Properties (2.20) and (2.30) we have u[j, j](ZZy(A’,), ZZJ~(J$!~))& 
n - 4k + 21 and thus u( A,, ..&) 3 n - 4k + 21. Q.E.D. 

PROPERTY (2.43). Zf u(W, Y))=(k,l), 2k<n, and 6??ZA’ 19, then 
u( Y, ;&‘) = 21- 2k. 

Proof. Since 21- 2k < n - 4k + 21, we can assume that A! is constructed 
as in the proof of Property (2.41) (by the previous property). Throughout 
this proof we use the same notation as in the proof of Property (2.41). We 
have u[n, j]( Y’, A”) = 2I- 2k. Choose Q Z Y’, A?‘, then we have already 
shown that Q is an affine point (cp. Property (2.39)), i.e., Q E Y(Yn). By 
Property (2.37) Y and A” possess the same component incident with Q 
in %^ 2,-Zk( V,, OZ’p’k(Q)). So by Property (2.29), 2 and A share a 
component in, %$pZk(Vn, 02’-2k(Q)). Hence ~(2, A!)b21--2k (by 
Property (2.30)). By Remark (2.38), the proper inequality is contradicting 
u[n. j](Y’, %&‘) = 21- 2k and Properties (2.29) and (2.30). Q.E.D. 
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PROPERTY (2.44). If ~(9, Y), 2k -C n, and 9 I A Z Q IY, then 
~(9, Q) = 2k - 1 and .I is constructed as in the proof of Property (2.41). 

Proof By Property (2.40) ~(9, Q) > 2k - I and by Property (2.43), 
~(2, A) = 2Z- 2k. Let n - 2k + I =j and let J& (resp. d;pQ) be the compo- 
nent of .,&? (resp. 8) in %$(Y,, Oj(p)) incident with Q, and let J& be the 
component of &? in q(,Y’,, @(g)) incident with 9’. Similarly as in the 
proof of Property (2.43), we have here urn, j](YQ, u%e,) = 2Z- 2k. Now let 
Yp be a base point of stpj(Y, 2); then by Properties (2.9) and (2.14), 
uCn,A(~y, - &&) = (1-k, 21- 2k). From Properties (2.33) and (2.34) we 
deduce (using V~S$:& ) u[n,j](Y9, A$,) = (Z-k, 21-- 2k). As a conse- 
quence of Property (2.34) and (GQ2), the unique line YY~ dpj(g) such 
that YY I Z3 I A:?, is a component of 2 (again using V~:~~~ i,). Hence 
,& is constructed as in the proof of Property (2.41). We now show 
~(9, Q)=2k-1. We will write briefly V for V~:~~~:r. So V(Q) IV(Zp), 
V(J&) (because V(Q) is a singleton, for the set 0, of components of any 
strip of width j). But similarly as above, we have u[j,j- 2k + /](V(JZ’~), 
V(A?Y))=21-2k<n-4k+21. Hence V(s;) #V(J%$). So for any 
Q’~cr(&&)na(5?~), u[j,j-2k+I](V(Q),V(Q’))>O (Property (2.11)), 
and hence u[n,j](Q, Q’)>O. But by Property (2.31), u[n,j](g, =Y$) = 
(l-k, 2l-2k) and by (GQ2), u[n,j](Y, Q’)=O. Consequently, 
u[n,j](Y, Q) = 0 and we conclude with Property (2.8), ~(9, Q) = 2k - 1. 

Q.E.D. 

PROPERTY (2.45). Zf 9, Q ZY, A’, then 2u(.Y, Q) + ~(9, A?) > n. 

Proof Let ~(9, Q)= k and consider ?N;-k(Yn, &-“(p)). The strips 
sjJ(g, 2) and si(Y, JZ) have both width k and thus Vz:‘;,(C;(Y, 9)) 
and V::&(@E(g,, 4)) are singletons. By assumption, urn, n - k](g, Q) 
=0 (Property (2.8)) and both Vt~z,(sl) and V~:~,(Q) are incident with 
the two unique elements of the above mentioned singletons, which coincide 
by Property (2.11). So Properties (2.20) and (2.30) imply u[j,j](I7;-,(Z), 
I7:- J&‘)) 3 n - 2k. Hence the result. Q.E.D. 

We now show a generalization of (GQ2). 

PROPERTY (2.46). If ~(9, 9) = (k, l), 2k <n, then there exists a line A? 
and a point (2 such that .!Y IA%! Z Q Z 9. Moreover, there holds: 

(1) u(Y, A)=21-2k, 

(2) ~(9, Q)=2k-I, 

(3) Zf M’EY(“Y;,), Q’~~(~~),and~Z~‘ZQ’Z~, then 

(3a) u(A%‘, A?)Bn-4k+21, 

(3b) u(Q, Q’)>n/2+k-1. 
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Proof: The existence of A’ and Q with the desired properties and the 
claims (l), (2) and (3a) follows directly from Properties (2.41), (2.42) 
(2.43), and (2.44). We show (3b). We use the same notation as in the proof 
of Property (2.44). So we have V(Q), V(Q’) I V(ZY), V(J@~). By 
Property (2.45), u[j,j--2k+I](V(Q), V(Q’))> (n-4k+2/)/2-(2Z--2k)= 
n/2-k. Hence u[n,j](Q, Q’) >/n/2 - k. The result now follows from 
Property (2.8). Q.E.D. 

PROPERTY (2.47). Suppose 9 IA? I Y, n odd, 9” E C;(Y, 9’) # @, 
ZZt-,(Y) I I7~_,(9’),3”<3’, and u(A’,~3’)=0. Then V;::(Y) is the 
unique component of Zi’z _ ,(9) incident with II:- ,(.Y). 

Proof: Let A’ < A with .A” E @;(Y, .N). Since ,&” is unique (n is odd), 
A” is incident with 9 in “$@i- ,(%‘i, 0”- ‘(I?p)). So V:I~(&‘) is the unique 
component of n:- ,(~fl) incident with I7:_ ,(P). Since 9’ 1 A”, we also 
have VE:i(Y’) I Vz:i(A’), but only one component of ZZ;-,(~) can 
meet the line Vt: i(~fl’) (otherwise in contradiction with (GQ2) and 
Property (2.14); cp. also (2.49)) and that must be the one incident with 
q- ,(PP). Q.E.D. 

PROPERTY (2.48). Suppose 9 I Y I A?, n odd, ~(9, Q) = 0, Y’, ~4” E 
U”-‘(Q), 2”< 9. A”‘<&! and u[n,n-1](6P’,M’)>n-2. Then 
9 = M’ and 9 = A. 

Proof: Since VE: i(Y) = VE 1 ~(.A”) is a component of both Z7;- ,(Z) 
and IZ:- ,(A’), we already have ~(9, A’) 3 n - 1. Suppose now 
~(2, A’) = n - 1. Let Q’ E O”- ‘(Q) be arbitrary but incident with A, then 
Q’ is not incident with 5! by Property (2.11), but u[n, n- 112 (Q’, .Z’) = 
n - 2. Since Y’ is the unique component of 6p in *ly-,- ,(Y;, O”- '(Q)), it 
follows from Property (2.8) that u[n, n - l]r (Q’, 2") + 1 = ul(Q', 9). But 

by Property (2.10), u(Q’, =Y’) = ((n - 1)/2, n - 1). So u[n, n - l](Q’, 9’) = 
((n - 3)/2, n - 2), contradicting Property (2.6). Q.E.D. 

PROPERTY (2.49). Suppose u(9) n U-‘(Y) # 0 # CT(&) n ~9”~ l(9), 
~(9, A) = n - 2, Vi:i(C:(Y, 9)) =Vt:i(Cy(Y’, A)), and n euen. Then 

for every 9” E C;(S, 6p), there exists a unique A?’ E C:(9), A) concurrent 
with 9’. 

Proof: If n = 2, then the assertion is clear, since “W;(Y;, 0 ‘(9)) is a 
generalized quadrangle. So suppose n > 2. We first show that there is a pair 
(Y”, C&“‘)~C;(Y, 6p) x C;(p, A) with the property that dp” I A” in 
w  n- i (“Y,,,, O”- l(g)). Let Q be arbitrary but incident with Y and not lying 
in Cfi”- ‘(9). We again denote Z7; ,( l ) = l n ~, . By Property (2.9) and the 
fact that 64 , i Ck’,,,-,v we have u[n- 1, n- i](Q,z-,,.,&,)= 
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((n - 2)/2, n - 2), and so by Property (2.33), u(Q, A’) = ((n - 2)/2, n - 2). 
Hence there exists by (GQ2) a unique line X E p(3’;) incident with Q and 
concurrent with A. But (GQ2) applied in V,Y-, implies that Xnp 1 = Yflp, 
and, since Q is incident with both X and 8 and n - 1 is odd, it follows 
from Property (2.7) that .X = Y. By Property (2.11) applied in Yip,, all 
points incident with both 9 and A must be elements of @-l(Y). So at 
least one 9” E @;(9, .Y) meets at least one A” E C;(,Y, A). Let YY 
(resp. qM) be a base point of sy(Y, 9) (resp. s;(g, A’)). By Properties 
(2.15) and (2.32), cO”-2(p’) = 0”~2(?C). By Property (2.23), the shadow 
of every element of C;(Y, 9) (resp. @;(g’, M)) meets Onp2(YY)= 
On-- ‘(q,,) in the same subset (n - 1 is odd!). Since 2” and A!” only have 
affine points in common, it follows from Properties (2.9) and (2.14) that 
u[n, n - I](?,, 9”) = ((n - 2)/2, n - 2) (taking into account the assump- 
tion u[n, n - 1 ](U”, M”) = n - 2). Similar to an argument in the foregoing 
proof, one shows that u[n, n - l](!YK, 2’) = ((n - 2)/2, n - 2), for every 
9’ E C;(g, 2). The result now follows directly from (GQ2) and the defini- 
tion of strip. Q.E.D. 

PROPERTY (2.50). If I7;~ 2(.Y) IZ7Em2(3’) for n > 2, then there exist 
distinct lines 9,) Tz E 02(U) incident with 9. 

Proof: We proceed by means of induction on n E N, n 3 2. 

(1) n = 2. This is trivial since F; is a thick geometry. 

(2) n > 2 and n odd. By Property (2.25), we can put 9 = yl. Now let 
A be such that A I Y, ~(2, A!) =O, and ~(9, .A!) = (0,O) (cp. 
Property (2.6)). Let Q E a(p) n a(A) be arbitrary and let A!’ be the 
unique component of A? in wi _ ,(Y’,, 0’~ I(Q)). Let Y’, be an arbitrary 
point at infinity of (%L_-,(Vz, 0”-‘(Q)), JV&,~~,) incident with A’ in 
wnpl(Vnn, U-‘(Q)). Let X’E~‘(A’) be a line of ?$-,(V;,O”+‘(Q)) 
incident with g= (X’ exists by the induction hypothesis). Let X E Y(Vn) 
be such that X’ < X. Since a strip of width 1 is completely determined by 
any of its components, it follows from Properties (2.20) and (2.28) by 
projecting onto Yip, that u(.&‘, X) = n - 1. With Properties (2.35) and 
(2.6), we deduce ~(9, ,X) = (0,O). Now define J.Z~ E 5Y(P;) as the unique 
line for which 9 1Y2 I X (cp.(GQ2)). Let dp’ be the component of .Y in 
%$-,(Yi, on”-l(Q)), then u[n, n- l](Ym, Y’)=(O, 0) and so by unique- 
ness of A!’ (cp.(GQ2)), 8’ does not meet X’. But if a(Y) n a(X) # 0, 
then it must be a subset of O”- ‘(Q) (project down onto Vnn2 to see that), 
and so 2’ must meet X’. Hence 2 and X does not meet and Spz is 
distinct from 5?! By projecting down onto VnT,, and by the uniqueness 
part of (GQ2), we conclude (since u(X, A’) =n - 1) that Yz E 0’(g) E 
02(U). 
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(3) n>2 and n even. Obviously ZZ~I:(ZZ~_,(Y)) ZZZ~I\(ZZ~_,(.~)) 
with n - 1 odd. So by the induction hypothesis, there exist lines ZZi- ,(9’, ) 
and ZZ~_,(&), both incident with ZZt- r(9) and both belonging to 
CI’(ZZz- ,(9)). By Property (2.7) and the fact that n-2 is even, 
n::~,(~)=n::_,(~,)=n::~,(~,) (after all, these three lines are all 
incident with ZZE-,(Y)). By Property (2.25), we can choose 6” and sp2 
incident with 9. Q.E.D. 

PROPERTY (2.51). If n>2, j<n/2 and o(n::_2(~))nOJ-‘(n::~2(~)) 
# 0, then there exist TWO poinrs 9,. pz E 0 I+ ‘(9) sati&ving: 

(1) a(U)nOi(~)#~, i= 1,2, 

(2) Oj(Y,) # Cl’($). 

ProoJ Without loss of generality, we can assume that ZZz_ z(9) 
Z ZZ; ~ *(9). There exists at least one line J&’ Z 9 such that ~(9, A) 3 n - 2 
(by Property (2.25)). Now n - 2>2j- 1 and so by Property (2.32), 
cr(U) n Loi+ ’ (9) # 0. The result now follows from Property (2.15) by 
considering an arbitrary component of Y in “;+ ,(<,, 8’+ ‘(9)). Q.E.D. 

Remark (2.52). Note that all above properties remain true if we replace 
the projection ZZ; by HQ-epimorphisms (obviously). In view of that 
remark, we can prove the next property. 

PROPERTY (2.53). The inverse limit of the base sequence of any HQ- 
Artmann-sequence is a generalized quadrangle of order (s, t), tijhere both s 
and t are irzfinite, but set-theoretica1l.v not necessarily equal. 

Proof We now leave our usual notation and let (“y, L2:+ ‘),,rm (with 
“y = (Y(Y,,), L?‘(GY~), I)) be the base sequence of an arbitrary HQ-Artmann- 
sequence. We denote the inverse limit of this sequence by ?Y* = (9(91~), 
9(8,), I). Note that by Property (2.50), there are infinitely many lines 
incident with any point and dually, by Property (2.51), there are infinitely 
many points incident with any line in “Y,.. Hence (QQI) and (QQ2) hold. 
By surjectivity of 52:+ ’ and the fact that 9, is a generalized quadrangle, 
also (QQ3) holds. We now check (QQ4). So let TX, E 9(qm), L?~ E U($YJ 
with Ym = (g),t,, Sp, = (q)jeN, ~EYP(~~), q~ V(q), and 9’, not 
incident with ~9’~ in dY=. This means : for certain n E N, Yn is not incident 
with Yn. Hence 9, is not incident with Y;,, in C&. By Properties (2.6) and 
(2.35), u[2n, 2n] r (Yzn, L$,,) <n. Now choose m 3 2n arbitrarily. By 
Property (2.33), u[m, rn](Ym, &)= (k, I) does not depend on m. By 
Property (2.46) there exists a line %G&” E 6p(%‘;) such that Ym Z .,&‘,,, I Tm. 
We define Xr =sZm(~&), i<m -4k+ 21. By Property (2.46)(3a), Xy 
does not depend on A,,, for fixed m. Note that, if m’ < m, we can choose 
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-J’&,~ =a:,(~&~). Hence XT does not depend on the choice of m 2 
i+ 4k - 21 and we can denote it by &. So X, = (&)jG N E 9’(+Ya) is well 
defined and LF~ I Xa 1 dip, _ Clearly Xm is unique (by applying Property 
(2.46) (3a) again). Dually, one shows completely analogously (now using 
Property (2.46)(3b), of course) that there is a unique point QU; E?J’(GY~) 
incident with LYE and collinear with Pm. Hence 9! Z Xm Z Qoo I Ym with 
(Xi,, Quc,) unique. 

Q.E.D. 

3. DEFINITION OF THE BUILDING CORRESPONDING TO AN 
HQ-ARTMANN-SEQUENCE 

In this section, we are given an HQ-Artmann-sequence (ti’,, ZZi+ l),sN, 
with Yn as in Section 2. We also keep the notation VJ of the previous 
section. We now define a simplicial complex d(X, Y) with X de set of 
vertices and Y the set of simplices. The dimension of d(X, 9’) will be 2, i.e., 
the cardinality of the maximal simplices is 3. We denote: 

lB;= {5kY’(~)p%.!fq~~)), O<j<n, 

Q = ~(CJ, 

In all other cases lEB{ is the empty set (j and n integers). We can define: 

x= n {B;IO<jdnEN}. 

We now define Y. let x E B;I and y E X, then {x, y } E Y if one of the follow- 
ing conditions are satisfied: 

(Al) yElBi,+l andx<y, 

(Al’) ye I!!;-’ andy<x, 

(A2) y~iBL::andVj-,(x)=y, 

(A2’) y E Bi,;; andVj+‘(y)=x, 

(A3) DEB;-randV,/-,(x)<yandjiseven, 

(A3’) YE B:+, and Vj- I ( y) < x and j is even, 

(A4) y~B;::andy<V;_,(x)andjiseven, 

(A4’) y E @I: and x < Vjz:(y) andj is even. 

Here, “9 Z 9” is for the sake of brevity denoted by “9’ < 9” and “ZZ:” by 
“VI .” The 2-dimensional simplices are by definition the 3-sets (x, y, z), 
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Bjf2 
n+l 

FIGURE 1 

where every 2-subset is a l-dimensional simplex. We now define a type- 
map typ on the set X of vertices: 

w:~+ C(O>? (I>, (0, I>> : XE 5: + {n(mod 2), n -j(mod 2)). 

All possible kinds of “adjacencies” with a fixed vertex x E E8: for j even can 
be pictured as in Fig. 1. 
In Fig. 1, two sets are connected if they contain respective elements which 
are adjacent in d(X, Y) (this is easy to see using the properties of 
Section 2). 

Now let j again be arbitrary and x E 5:. We denote the residue of x by 
a(x) = (9(x), 9(x), I,), where 

(RI) S(X)=(~~[BI/,~~~B;I;-‘UB/,+~UB~~~~{X,),)E~}, 

u(x,=(ZE5;ln+,UB~~,u5~~~u5~~~~{x,z}~~}), 

1.x = {(Y, z), (z, Y) I YE +Yx), z E U(x), 

and 1.~3 z} Ey}),jeven; 

(R2) ~(x)={y~~i,~‘u~~+~({x,y)~Y}, 

~(X)={ZE5i,~:u5;l;~:~{x,z}E~}, 

1, = {(.Y? z), (z, Y) I YE 9(x), z E ax), 

and (y,z}~~},jodd. 
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By introducing a type-map, we turned d(X, 9’) into an incidence structure 
of rank 3. We denote it from now on briefly by A. In the next section, we 
show that A is an affine building of c,. 

4. A Is A BUILDING OF TYPE c, 

THEOREM (4.1). The rank 3 incidence structure A, as defined above, is a 
thick geometry of type ?, with diagram 

Proof: Note that A is connected since every vertex is joined to the 
unique element of III: by consecutive projections. Now let x E lE8i. There are 
two distinct possibilities. 

(1) j is odd. Then typ(x) = { 0, 1) and we must show that 99(x) is a 
thick generalized digon. So let (y, z) E 9(x) x Y(x). We show y 1, z, i.e., 
{ y, z} E 9. As an example, we do this for the case y E lEEi+ l and z E IBL:~, 
j< n. All other cases are similar (including j = n). So, by definition, x < y 
and Vi- i(x) = z. Hence z = V,i- ,(x) <V!- ,(y) by Property (2.20). Since 
j + 1 is even, we have by definition ( y, Z} E Y. 

To show that 9?!(x) is thick , it suffices to find three points and three lines 
in 9(x). Obviously, S(x) n Levi+’ # @ (by (NP2)) and Y(x) n B!r: # Izr 
(it contains V!- i(x)). By Property (2.15), we also have 1 Y(x) n B’,-’ 13 2 
and so 1 Y(x)] > 3. By (PS4), we have 19’(x) n E!i:: I> 2 and so 
1 Y(x)/ 2 2 and so I Y(x)1 2 3. Hence 9(x) is thick. 

(2) j is even. Now we have to show that W(x) is a thick generalized 
quadrangle. We will assume n #j # 0, the cases j = 0 and j = n being special 
cases of this with either a similar proof (here and there a subcase less) or 
a very simple one (e.g., for j = 0, everything happens in a level 2 H-Q). 
Note that the case n =j = 0 is trivial since Y, is the residue. Before starting 
the actual proof, we introduce some shorter notation: 
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By Property (2.27) there exists for every YE B’,zii nP(x) a unique 
z E El’,:: n 9(x) such that y 1, z. We denote z by n(y). Recall that x is a 
fixed line in a fixed %$(Vi, (e), YE P,(*y,) also fixed from now on. We 
denote by ‘$+ , the unique element of Pi+ ,(Y$) containing V, as a subset. 
Furthermore, we put gj+ I = (nE+‘))’ (Ce,) and 9j+*=(17”,+i)-i (y+i). 

We now verify the axioms (QQl ), (QQ2), (QQ3), and (QQ4). 
(QQl) From Fig. 1, it follows clearly that every point is incident 

with at least two lines. Now take a fixed y E lEKL:\ n 9(x). Note first that 
y is the unique element of I!!‘,:: n 9(x). Note also that B’,- i n Y(x) 
is a singleton and its unique element is the unique line in 
y(?L- i, Z7;- ,(%?,+ i)) having y as a component. As a consequence of 
Property (2.15), there are at least two elements of lE!Lrl adjacent to y and 
they belong to 9(.x); hence y is incident with at least three lines. 

(QQ2) From Fig. 1, it follows again that every line of 9(x) is 
incident with at least two points. Now let 2 be the unique element of 
Bj,-, n dip(x). The unique element of EKJn:: n Y(x) is already incident with 
z. All lines in w;+,(Y,, q+ i) h avi ‘n g x as a component are by definition 
points of 9?(x), incident in a(x) with z. We now show that there are at 
least two such. Let 9’ be a point of “$( ?,, q) incident with x and let 9 
be a line of y+ ,(Y/n, %,+ ,) with x < 9’. By Property (2.50), there exists a 
second line Y’ of YYJ+ i(?m, 9?,+ ,) incident with 9’ and such that 
u[n,j + l](Y, 9’) >,j- 1. Since j - 1 is odd and both lines are incident 
with 9, Property (2.7) implies u[n,j+ 1](6p, 9’) =j. By Property (2.23), 
x < 9’. Hence, 2 is incident with at least three points. 

(QQ3) Also this axiom follows directly from Fig. 1 by considering f.e. 
yEUS:-‘nB(x) and zEEQ_,nY(x). 

(QQ4) Let y E Y(x) and z E Y(x) not be incident in W(x). In view of 
Fig. 1, there are 4 x 4 = 16 distinct cases for (y, z), according to which set 
lB: they belong. Note that an element c1 of 9(x) u 9(x) is incident with 
exactly one element of the set of Fig. 1 lying vertically right below the set 
where a belongs (if there is one such set) (use the projections). We already 
remarked that the sets B;I;L: nP(x) and E!i-, n Y(x) are singletons. In 
view of these observations, the proof of the following situations is nearly 
trivial (see Fig. 2). 

In the last case of Fig. 2 we must use Property (2.27) to show 
uniqueness, more exactly, to show that if z I., a Z., b Z, y, then (a, b) does 

=Y Y z Y Y z z z 7. 

FIGURE 2 
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FIGURE 3 

not belong to fE8::: x Levi=:. The next two cases (see Fig. 3) are an 
immediate consequence of Property (2.27) (resp. Property (2.11)) (of 
course, always remembering natural properties like Property (2.20), for 
instance). 

We now investigate the remaining cases in detail. So we are given 
KEY and ZEN and we seek aEY(x) and bEP’(x) such that z 
Z, a Z, b Z, y with (a, b) unique. In order not to overburden the proof, we 
leave it to the reader to check that all the a’s and b’s we will define are 
indeed in W(x) (in most cases, this will be trivial). The five cases in 
question are shown in Fig. 4. 

Case (I). The assumptions are : z E Y’(9) for certain 9 E B(YE + I ) and 
YE~!‘(%+~(Y”, wj+,)). Since y and z belong to a(x), V,(z)<x<y. 
Clearly, we must find (a, b) in IEI!~~ x BiI: (this is the only possibility in 
view of Fig. 4). Without loss of generality, we can assume B Zz in 
q(cz+l, @j(p)); hence V,(Y) Zy in %$+ r(Yn, %$+,). Note that 0i+2(g) = 
Bj+2. By Properties (2.7) and (2.24) and the fact that j+ 2 is even, there 
exists a unique b E (V,) ~ ’ (y) incident with 9 in %$+ 2(Yn + r , gj+ 2). Let 6’ 
be the unique component of b in q(*;+, , Oj(g)) incident with 9. By 
Property (2.16), V,(z) = V,(b’) because they are both incident with V,(p) 
and they are both a component of y. But since j - 1 is odd, by Property 
(2.7), z = b’. Now let u be the unique component of b in q+ r(Yn+ r, gj+ 1) 
having z as a component (cp. Property (2.29)); then we have z Z, a Z, b I, y. 
Since b does not depend on 9 (after all, all points of z are incident with 
b), b is unique (again see Property (2.7)) and so is (a, b). 

FIGURE 4 
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Case (II). The assumptions are now : y E 9j- ‘(9) for certain 9 E $ 
and ZE~(“$+~(%+~, 9j+2)). Without loss of generality, we can again 
assume 9 Zy. Expressing y, z E 9(x) gives : y < x < V,(z). In view of Fig. 4, 
we must find (a,b) in B;I;z:xB’,+,. Let 9j=((n;+‘)-’ (@~(Y))E 
pji(Yn + , ). By Property (2.3), the shadow of every component of z 
in %$+l(Yn+I, C@j+l) meets the set gj. Let QE~~, then s{+‘(Q, z) is 
well defined and has width 2. From the assumptions, it follows that 
y E Ci,“(V,(Q), V,(z)). But s{“(V,(Q), V,(z)) has width 1 (cp. Property 
(2.10)), so by Property (2.20), V,(@j,+*(Q, z)) s Ci,+ ‘(V,(Q), V,(z)). But 
applying Property (2.25) on a base point of S;+‘(Q, z), we easily see 
V,(@i,+‘(Q, z)) = Ci+ ‘(V,(Q), V,(z)). Since j is even, Property (2.7) 
implies that V, induces a bijection from Ci,+‘(Q, z) to Ci+ ‘(V,(Q), V,(z)). 
Hence, there exists a unique b E @if * (Q, z) such that V,(b) = y. Let a be 
the unique component of z in ?&i+ 1 (Ylj, + 1, q+ 1) having b as a component, 
then z Z, a Z, b Z, y and, from the reasoning above, it follows that (a, b) is 
unique. 

Case (III). The assumptions are now : y E 9(~‘#- l(v;, qj- i)) for 
certain qj’i-l~Pj-l(Yn) and ~EY(K(V,+~,~~)) for certain gjjEj(Yn+,). 
Expressing that y and z are in 9?(x) and that they are not incident, gives 
us : y < x; V,(z) < x and y #V,(z). Note that it is needless to try to find 
(a, b) in lE!;I;-l x B{+1 because this would imply V,(b) = a = y. There are 
two possibilities: 

(IIIa) ZZ;“(gj) =qpl. Then a and y are both components of x, 
belonging to a strip of width 1. So we can put b = A _ I(a) = A ~ l(y) and 
b Z, a Z, b Z, y. Since every line of F+ ,(Yn + , , gj+ 1), having z as a compo- 
nent, has no other line of YY$(Y~+, , 9j) as a component (j even), we cannot 
have z Z, a’ Z, b’ Z, y with a’ E lEl;I;:{ (for any b’). Hence (a, b) is unique. 

(IIIb) Z7:+ ‘(gj) #qil. This time, we need not look for a in Bi,-‘, 
because A-,(V,(z))#A-,(y). So we try to find a in the set BLz:. Let 
~‘~~-~beincidentwithyin~~,(~~,~-,)andlet~~~(~(~~,~.)be 
incident with 9 such that u[n,i](9, x) = 0. Let Q be an arbitrary point in 
gj+r such that V,(Q)=9 and let A be a line in T+,(Yn+,, 9j+1) such 
that V,(A) = 9 and J# ZQ. Let 9’ be an afTme point of z, i.e., 
9’~ ajn (T(Z). By the assumption of (IIIb) and Property (2.35), we have 
u[n + l,j+ l](Y’, A@‘) = (0,O). We now apply axiom (GQ2) and get a line 
a~~(~+I(cz+fl~ Dj+l)) incident with 9” and concurrent with A! in 
“y+l(“c+l> gj+ 1). By projecting and using the uniqueness part of (GQ2), 
one sees that V,(a)=x. Now let b be the unique component of a in 
.y’(Kz+l? Oj(Q)), then V,(b) < x by Property (2.20). By Property (2.47), 
V,(b) =y. Let z’ be the unique component of a in %$(Yn + , , gj), then V,(z) 
and V,(z’) are both components of x incident with V,(Y). By Property 
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(2.16), they coincide. But since j is even and 9” is incident with both z and 
z’, z and z’ also coincide. Hence z Z, a Z, b Z,y. By Property (2.48), (a, 6) is 
unique. 

Case (IV). Here the assumptions are: y E Y(%$+ i(K+ i, Bj+ i)) and 
==aq+*(%+l~ gj+I)). Expressing y, z E a(x) gives: x = V,( y) < V,(z). 
Since y and z are not incident in a(x), y is not a component of z. Since 
j+ 2 is even, we will not be able to find (a, b) in lEiL=: x B;111: by property 
(2.27). Let Y = A( y). By property (2.30), u[n + l,j+ 2](Y, z) >j. So there 
are two possibilities. 

(IVa) u[n+l,j+2](Y,z)=j+l. Sincej+l is odd, Y and z are 
not concurrent by Property (2.7) and hence they share no component. 
So we need not look for b in Bi+, . The only possibility is b = 2, 
a = V,(z) = V,(b), and thus z Z, a Z, b Z, y with (a, b) unique. 

(IVb) u[n+ l,j+2](F, z)=j. This time, b can only be found in 
BL+ i (if it exists). Let 9 be an arbitrary element of q+ r, then @(+‘(9, z) 
and c{“(Y,, 2) are non-empty by Property (2.3) and they are both 
mapped on x by V,. By Property (2.49), there exists a unique element 
a E a={’ 2(p, z) concurrent with y E C {+2(9, 2). By Property (2.23) y and 
a share a unique component b in “$( Yn + , , gj) for a certain gj E pj( YY + , ). 
Hence z Z, a Z, b Z, y and it also follows from this reasoning that (a, b) is 
unique. 

Case(V). The assumptions are now :y~=Y(q+i(Y~+i, gj+i)) and 
zE=wq(K+,, gj)) for a certain gj E lpj( Yn + ,) with gj c gj+ i. Expressing 
y, z E g(x) gives : V,(z) <V,(y) =x. Though, z is not a component of y, 
since y is not incident with z in a(x). Note that x is incident with elements 
of ZZ:“(gj) and hence, by Property (2.3) there are elements of gj incident 
with y. So there exists a =!%?‘I < y with Y’ E T(T(“t: + i, gj)). Since V,(Y) 
and V,(z) are both components of x, we have u[n + l,j](U’, z) >j- 2. So 
there are two possibilities. 

(Va) u[n+ l,j](Y, z)=j- 1. Put u=V,(z)=Vo(Y) and b=Y. 
Then z Z, a Z,Y b Zry. It is clear that (a, b) is unique in IBM-’ x Bi+ i. 
Suppose z Z, a’ Z, b’ Z, y, then, by Property (2.48), (a’, b’) 4 Bi,: i x IEli + , 
(this would lead to z <y). Suppose now (a’, b’)E IEB{zi x Biz:, then both 
(I’ and y are components of b’ and so they are incident with a common 
point at infinity. In view of Property (2.14), we can use Property (2.48) to 
see a’ = y. 

(Vb) u[n+l,j](Y’,z)=j-2. Let QE~! be incident with z in 
Wj( 79” n+ i, $Xj). Since V,(z) and V,(Y) are both components of X, 
Properties (2.14) and (2.33) and axiom (GQi) imply u[n + 1, j](Q, 9’) = 
((j - 2)/2, j- 2). By Property (2.35) and the uniqueness of the component 
Y’ of y, one can verify that this implies u[n + 1, j + l](Q, y) = (j/2, j). By 
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(GQ2), there exists a unique line a~ Y(q+i( K+ i, gj+ ,)) such that 
QZa ly in %“+,(Pi+,, 9,+,) and we have u[n+ l,j+ l](a,y)=j. Note 
that z < a (same proof as at the end of case (IIIb) above). Hence a does not 
depend on Q E gin (T(Z) and is unique with respect to the property 
z-caly in “w;+,($‘;,+,, gj + , ). Again, there are two possibilities. 

(Vb.1) a and y are incident with common points at infinity of 
(-q+1(Kl+,, gj+ , ), J&,+, ). Then a and y are components of a unique line 
b~P’(-ly;+~(*i+~, 9f+z)). Hence z I, a Z, h Z,y with (a, b) unique (the 
construction of (Vb.2) is not possible here). 

(Vb.2). a and y are inicdent with common afline points of 
(~+,(K+,~ 9,+ ,), ,C,+ ,). By Property (2.23), a and y share a component 
b in -Iv;(v;+,, 9;) for a certain but unique ~‘JE pj( Yi+ i) with 9.’ sj+, 
and gj# 9;. We have z Z., a Z, b I, y with (a, b) unique (this time, the 
solution of (Vb. 1) is not possible). 

This completes the proof of (QQ4) and the theorem. Q.E.D. 

The proof of the next theorem is very similar to [13,6.2]. For this 
reason, we will only sketch it. But one will be able to fill in every missing 
detail. First, recall the following standard definitions concerning homotopy 
in simplicial complices. A path is a sequence of vertices (u,, vi, u?, . . . . u,) 
with the condition that {a,, ui+, j is a simplex for all i E (0, 1, 2, . . . . n - 1). 
Two paths Y’= (oh, ~‘1, . . . . of,), i= 1, 2, are called elementary homotopic if 
n, = n2 + 1 and if there exists js (0, 1, 2, . . . . n2 - 1 } such that u: = u: for all 
k < j; vi+ i = v: for all k E (j+ 1, . . . . n2> and iv,!, uf+ i, v,!+ *} is a simplex. 
Two paths $9’ and 9’ are called homotopic if they can be joined by a 
sequence of consecutively elementary homotopic paths. A path is called 
trivial if it consists of a unique vertex. A path B = (v,, . . . . v,) is closed if 
v0 = v,. In this case, we also say that 9 is bused at u,,. 

THEOREM (4.2). The rank 3 incidence structure A, us defined above, is a 
building of type s2. 

Proof: 
c, 

By the previous theorem, A is a connected Tits-geometry of type 
(with all residues thick). Suppose every closed path based at the unique 

element b of Bi is homotopic with the trivial path (fl). Then by Ronan 
[S, Corollary 2.31, A is 2-simply-connected as a chamber system. Tits [ 111 
implies that A is an affine building of type c,. So let Y = (u,, vi, . . . . u,) be 
a closed path based in /I = v,, = u,. Define 

,/1/“(59)=sup {ke N I3ie (0, 1, . . . . n) such that DUE Bifor somej<n}. 

Note that J”(9) is well defined, since 9 is finite (in fact, M(9) <n/2). Let 
9’ be the path obtained from 9 by copying all vertices v E U!bi, for which 



290 HANSSENS AND VAN MALDEGHEM 

0 <j < k < M(9) and replacing the vertices w  E LB!,.,,,, 0 <j < N(9), by 
V;-,(w). One can check that Y’ is indeed a path and that it is, moreover, 
homotopic to 9 (cf. [13, 6.21). Clearly is M(Y) = N(Y)- 1. With an 
inductive argument, we conclude that 9 is homotopic to the path 
(8, p, . . . . /?) (n elements) which is homotopic to (8). Q.E.D. 

In view of the definition of equivalent HQ-Artmann-sequences, the next 
theorem is logical. 

THEOREM (4.3). Equivalent HQ-Artmann-sequences define isomorphic 
buildings of type c2. 

Proof This is obvious, because equivalent H-Qs coincide over the 
afftne part of all %$‘s, and the definition of the corresponding building of 
type c, only uses these afline parts. Q.E.D. 

Remark (4.4). As alluded to in the Introduction, we shall prove in a 
forthcoming paper [4] that all buildings of type c, arise in this way. Then 
we shall also deal with examples. 
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