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RICHARD M. WEISS

Abstract. Let ∆ be a spherical building each of whose irreducible compo-
nents is infinite, has rank at least 2 and satisfies the Moufang condition. We
show that ∆ can be given the structure of a topological building that is com-
pact and totally disconnected precisely when ∆ is the building at infinity of a
locally finite affine building.

1. Introduction

Generalizing earlier work by Kolmogorov and Pontryagin [22, 27], Salzmann [29],
and Burns and Spatzier [7], Knarr and two of the present authors showed that
an infinite compact (locally) connected building without factors of rank 1 whose
topological automorphism group acts transitively on the chambers must be the
building associated with the parabolic subgroups of a semisimple Lie group; see
[14], [15], [23], [24, Ch. 7]. In particular, such a building is the spherical building
at infinity of a unique Riemannian symmetric space of noncompact type. (See
Section 9 for more details.)

The goal of this paper is to extend this result to totally disconnected compact
spherical buildings. Our results are as follows. (All buildings in this paper are thick.
By Bruhat-Tits building, we mean an irreducible affine building of dimension l at
least 2 whose building at infinity satisfies the Moufang condition; see Definition 1.3,
Conventions 1.5 and Section 5 below.)

Theorem 1.1. Let ∆ be an infinite irreducible spherical building of rank l at least 2.
Suppose, furthermore, that ∆ satisfies the Moufang condition if l = 2. Then the

following hold.

(i) ∆ can be given the structure of a totally disconnected compact building if

and only if it is the building at infinity of a locally finite Bruhat-Tits building

X of dimension l .

(ii) If ∆ is the building at infinity of a locally finite affine building X of di-

mension l , then X is unique, the topology on ∆ giving it the structure of

a compact building is unique, this topology is uniquely determined by the

canonical CAT(0) metric on X, the set of chambers of ∆ is totally discon-

nected and, in fact, homeomorphic to the Cantor set, and the natural map

from Iso(X) to Aut(∆), each equipped with the compact-open topology, is

an isomorphism of topological groups.

Combining this with the aforementioned results, we have the following.
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Theorem 1.2. Let ∆ be a compact spherical building each of whose irreducible

factors is infinite, has rank at least 2 and satisfies the Moufang condition. Then

the following hold.

(i) ∆ is the building at infinity of a product of irreducible Riemannian symmet-

ric spaces of noncompact type and rank at least 2 and locally finite Bruhat-

Tits buildings of dimension at least 2.
(ii) The compact topology of ∆ is unique up to conjugation by field automor-

phisms on the irreducible Riemannian symmetric factors belonging to com-

plex simple Lie groups.

(iii) If none of the Riemannian symmetric irreducible factors belongs to a com-

plex simple Lie group, then the compact topology of ∆ is unique and every

abstract automorphism is continuous.

Definition 1.3. Let ∆ an irreducible spherical building of rank at least 2. For each
root α of each apartment, we denote by Uα the corresponding root group. This
is the subgroup of Aut(∆) consisting of all elements acting trivially on all panels
containing two chambers in α. The building ∆ satisfies the Moufang condition

(equivalently, ∆ is Moufang) if for each root α of each apartment, the root group
Uα acts transitively on the set of all apartments of ∆ that contain α. See [43, 11.2].

If ∆ is an irreducible spherical building, then by [34] and [43, 11.6], ∆ is auto-
matically Moufang if its rank l is at least 3. The hypothesis in Theorem 1.1 that
∆ is Moufang if l = 2 is, however, essential. In [13], for example, it is shown that
compact totally disconnected projective planes exist that do not have a continu-
ous epimorphism to a finite projective plane and hence cannot be the building at
infinity of a locally finite affine building.

The following question is presently open. In the (locally) connected case the
answer is in affirmative in both cases by [7] and [14, 15].

Question 1.4. Let ∆ be an irreducible totally disconnected compact building of

rank at least 2. If the topological automorphism group Auttop(∆) acts chamber

transitively or even strongly transitively on ∆, is ∆ necessarily Moufang?

Bruhat-Tits buildings of dimension l ≥ 2 were classified by Bruhat and Tits in
[6] and [36]. Tables describing the thirty-five families of locally finite Bruhat-Tits
buildings can be found in [45, Chapter 28]. Apart from the three families involving
inseparable extensions in characteristic 2 and 3 in [45, Table 28.4], they are precisely
the affine buildings associated with absolutely simple algebraic groups of k-rank l ,
where k is a commutative local field in the sense of Definition 3.5 below. These
algebraic groups had been classified earlier in [35] (for arbitrary l).

Conventions 1.5. All topological spaces in this paper are assumed to be Hausdorff,
unless stated otherwise. In a metric space X we denote balls as

Br(x) = {y ∈ X ; d(x, y) < r} and B̄r(x) = {y ∈ X ; d(x, y) ≤ r}.

All buildings are assumed to be thick (as defined in [43, 1.6]). When we say that
∆ is the “building at infinity of an affine building X” in Theorem 1.1 or elsewhere
in this paper, we mean that ∆ is the “building at infinity of X with respect to the
complete system of apartments” as defined in [45, 8.5 and 8.25].

After preparing the ground in Sections 2 through 8, we prove Theorems 1.1 and 1.2
in Section 9. We also call attention to Theorem 4.1 below.
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2. Locally compact groups

To get started, we assemble a few well known facts about locally compact groups.
Recall that a locally compact space is σ-compact if it is a countable union of compact
subsets. Every second countable locally compact space is σ-compact.

Theorem 2.1. Let G be a locally compact σ-compact group and let X be a locally

compact space. Suppose that G × X → X is a continuous and transitive action.

Then the action induces a homeomorphism from the quotient space G/H to X,

where H is the stabilizer of a point x ∈ X.

Proof. See [33, 10.10] or [30, 96.8]. 2

From 2.1, we obtain the “Open Mapping Theorem”:

Corollary 2.2. Let f : G → H be a continuous epimorphism of locally compact

groups. If G is σ-compact, then f is an open map. In particular, f is a topological

isomorphism if f is continuous and bijective.

Proof. The map G → G/ker(f) is open and G acts via f onH by left multiplication.
By 2.1 this action induces a homeomorphism G/ker(f) → H . 2

We could not find a reference for the following standard fact.

Theorem 2.3. Let (X, d) be a proper metric space, i.e., all closed balls in X
are compact. Then the isometry group Iso(X), endowed with the compact-open

topology, is a locally compact second countable transformation group. The stabilizer

H ⊆ Iso(X) of any point x ∈ X is compact. If H/Hn is finite for all n ∈ N,

where Hn is the pointwise stabilizer of the closed ball B̄n(x), then H is totally

disconnected.

Proof. Since X is a countable union of second-countable open sets [8, XI.4.1], X
is second countable. Therefore the space C(X,X) of all continuous maps from X
to X is second countable in the compact-open topology; see [8, XII.5.2]. Thus we
may use sequences to check continuity. By [8, XII.7.2], the compact-open topology
coincides with the topology of uniform convergence on compact sets. We note also
that Iso(X) is closed in C(X,X).

We show first that Iso(X) is a topological group. It is true in general that
C(X,X) is a topological semigroup (by [8, XII.2.2]), so we only have to check the
continuity of inversion. Suppose that (gn)n∈N converges in Iso(X) to g. We have
d(gn(z), g(z)) = d(z, g−1

n g(z)) for each n. Substituting y = g(z), this becomes
d(gn(z), g(z)) = d(g−1(y), g−1

n (y)). Thus if Y ⊆ X is compact, then (g−1
n )n∈N

converges on Y uniformly to g−1 because (gn)n∈N converges on g−1(Y ) uniformly
to g.

Now we show that some neighborhood of the identity of Iso(X) is compact. Let
x ∈ X be any point and put L = {g ∈ Iso(X); d(x, g(x)) < 1}. This is an open
neighborhood of the identity in Iso(X) because the evaluation map g 7→ g(x) is
continuous (by [8, XII2.4]). Since L consists of isometries, L is equicontinuous. Let
y ∈ X be arbitrary and put r = d(x, y). Then L(y) is contained in the compact ball
B̄r+1(x). Therefore L(y) has a compact closure. By Arzela-Ascoli (see [8, XII.6.4]),
L has a compact closure L̄ in Iso(X).
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Since H ⊆ L̄ is closed, H is compact. If H/Hn is finite for all n, then H injects
into the compact totally disconnected space

∏

n∈N

H/Hn

and is therefore totally disconnected. 2

3. Locally compact fields

In this section we assemble classification results for locally compact nondiscrete
fields, skew fields and octonion division algebras.

Proposition 3.1. Let F be an infinite nondiscrete locally compact field. Then the

following hold.

(i) If char(F ) > 0, then F is isomorphic to the field of formal Laurent series

Fq((t)) for some q, where Fq is the field of q elements.

(ii) If char(F ) = 0, then either F = R or C or F is a finite extension of the

p-adic field Qp for some prime p.

Proof. This holds by [42, Chapter 1, Theorems 5 and 8]. 2

Proposition 3.2. If F is an infinite nondiscrete locally compact field of charac-

teristic p > 0, then F/F p is an extension of degree p.

Proof. If F = Fq((t)) for some power q of p, then F p = Fq((t
p)). The claim holds,

therefore, by 3.1(i). 2

Proposition 3.3. Let F be an noncommutative nondiscrete locally compact skew

field. Then F is a cyclic algebra over a locally compact field, i.e., over one of the

fields in Proposition 3.1 other than C.

Proof. See [31, 58.11]. 2

Proposition 3.4. Let F be a nondiscrete locally compact field or skew field. Then

the locally compact topology on F is unique except when F = C, in which case the

locally compact topology is unique up to field automorphisms.

Proof. See the references at the bottom of [31, p. 332]. 2

Definition 3.5. We will say that F is a local field if it is a field or a skew field
complete with respect to a discrete valuation whose residue field is finite.

Proposition 3.6. Local fields, as defined in Definition 3.5, are precisely the fields

and the skew fields that appear in Propositions 3.1 and 3.3 other than those whose

center is R or C. Furthermore, the discrete valuation of a local field is unique.

Proof. By [41, Theorem 21.6], a local field is a locally compact field with respect to
the topology induced by its valuation. By [32, Section II, Corollary 2 to Proposi-
tion 3] and [38, Corollary 2.2], the fields and the skew fields that appear in Proposi-
tions 3.1 and 3.3 (other than those with center R or C) are, conversely, local fields.
The uniqueness of the discrete valuation of a local field holds by [31, 56.13] or [45,
23.15]. 2
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Remark 3.7. Let F be a local skew field. Since F and F opp have the same
valuation, it follows by Propositions 3.4 and 3.6 that they have the same topology
as locally compact fields.

Proposition 3.8. Let F be a nonassociative alternative division algebra. Then F
is an octonion division algebra over some infinite field k. If F is locally compact and

nondiscrete, then F is topologically isomorphic to the real octonion division algebra

O. In particular, the locally compact topology on F is unique and F is connected.

Proof. The first assertion was first proved in [5] and [21]; see [37, 20.2-20.3] for
another proof. Therefore k is infinite by, for example, [37, 9.9(v)]. Now suppose
that F is locally compact and nondiscrete. Since the center k of F is closed, it is
locally compact. By [40, Corollary 1 on p. 465], k is nondiscrete. Hence by [45,
28.4(i)] and 3.1, k must be R or C. By [37, 20.9], k cannot be C. Thus k = R. By
[37, 9.4 and 9.7], there is precisely one quaternion division algebra H over R. Let N
denote its reduced norm. Since N(H) = {α ∈ R; α ≥ 0}, it follows from [37, 9.9(v)]
that there is precisely one octonion division algebra O over R. (The uniqueness of
H and O was, in fact, first proved by Frobenius.) Since O is finite-dimensional over
its center, an isomorphism from O to F must, in fact, be a topological isomorphism
(by [31, 58.6(i)]). 2

4. The rank 1 case: compact projective lines

Let F be field, a skew field or an alternative division algebra. Let P = F ∪{∞} and
let G denote the permutation group on P generated by the maps τa : x 7→ a + x
for all a ∈ F and the involution i : x 7→ −x−1 with the usual conventions that
0−1 = ∞, ∞−1 = 0, −∞ = ∞ and a +∞ = ∞ for each a ∈ F . We call the pair
(G,P ) the projective line over F and denote it by F̂ . We call F̂ = (G,P ) a compact

projective line if F is infinite, P carries a compact topology and G acts as a group
of homeomorphisms on P .

The following, combined with Proposition 3.8, generalizes the main result of [12].

Theorem 4.1. Let F be a field, a skew field or an alternative division ring and

suppose that F̂ = (G,P ) is a compact projective line. Let F ⊆ P be endowed with

the subset topology. Then F is a locally compact, non-discrete and σ-compact field,

skew field or alternative division ring.

Proof. We divide the proof into several steps. We note that P is topologically just
the one-point compactification of F .

Step 1. The additive group (F,+) is a locally compact topological group. Moreover,

the extended addition F × P → P is continuous.

Proof. See [41, Theorem 9.4] and its proof. 2

Step 2. Both inversion and the map (x, y) 7→ xyx from F ×F to F are continuous.

Proof. We start with Hua’s identity:

xyx = (x−1 − (x+ y−1)−1)−1 − x

for all x, y ∈ F such that xy 6= 0,−1. (When F is an octonion division algebra,
then by [37, 20.22], the subring generated by any two elements of F is associative.
Thus Hua’s identity holds also in this case.) The map x 7→ −x is a homeomorphism
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of F , so it extends continuously to its one-point compactification P . Since the map
i : x 7→ −x−1 is continuous, it follows that the extended inversion x 7→ x−1 from P
to P is also continuous. It remains only to check that with these extended maps,
Hua’s identity holds also when xy = 0 or xy = −1. 2

Step 3. The map x 7→ x2 is continuous on P , where ∞2 = ∞.

Proof. On F = P\{∞} we have x2 = x ·1 ·x and on P \{0} we have x2 = −i(i(x)2).
The claim holds, therefore, by Step 2. 2

Step 4. F is σ-compact and not discrete.

Proof. The compact set P is infinite and homogeneous. It follows that F is not
discrete and there exists a countably infinite set C = {cn; n ≥ 1} ⊆ F \{0} that has
0 in its closure. Let K be a compact neighborhood of 0. The map φ : (x, y) 7→ xyx

is continuous. For z ∈ F we have by continuity 0 ∈ φ(C̄ × {z}) ⊆ φ(C × {z}).
Therefore, cnzcn ∈ K for some n. It follows that

F =
⋃

n∈N

c−1
n Kc−1

n .

Thus F is σ-compact. 2

From now on, we let k denote the center of F .

Step 5. If char(F ) 6= 2, then the map x 7→ 2x from F to itself is a homeomorphism

and if char(F ) = 2, then k is a closed subset of F and the Frobenius map from k
to k2 is a homeomorphism.

Proof. If char(F ) 6= 2, then the map x 7→ 2x is continuous (by Step 1) and bijective,
hence (by Step 4 and Corollary 2.2) a homeomorphism. Suppose that char(F ) = 2.
In this case, k = {x ∈ F ; (x + y)2 = x2 + y2 for all y ∈ F}. By Steps 1 and 3, it
follows that k is closed in F . By Step 3, the map x 7→ x2 from k∪{∞} to k2∪{∞}
is continuous. Since the set k∪{∞} is the one-point compactification of the closed
subset k ⊆ F , this map is a homeomorphism. Thus the Frobenius map from k to
k2 is a homeomorphism. 2

By Steps 1 and 2, addition and inversion in F are continuous maps. To conclude
that F is a topological field (or skew field or alternative division ring), it thus
remains only to show that multiplication is also continuous.

Step 6. If F = k is a field, then multiplication is continuous.

Proof. If char(k) 6= 2, then by Steps 1 and 3, the quantity

2xy = (x+ y)2 − x2 − y2

depends continuously on x, y, so by Step 5, the map (x, y) 7→ xy is continuous.
If char(k) = 2, then by Step 4, the inverse s of the Frobenius map x 7→ x2 is
continuous, so by Steps 2 and 3, the map (x, y) 7→ s(xy2x) = xy is continuous. 2

Step 7. If F is a skew field, then multiplication is continuous.

Proof. We put λc(x) = cx for all c, x ∈ F and [a, b] = a−1b−1ab for all a, b ∈ F ∗ :=
F\{0}. Then

a−1(b−1(ab)x(ab)b−1)a−1 = [a, b]x = λ[a,b](x)
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for all a, b ∈ F ∗. By Step 2, the maps λc are thus continuous for all multiplicative
commutators c ∈ [F ∗, F ∗]. By Step 6, we can assume that F is not commutative.
Let a, b be non-commuting elements of F . Then a = (1−[a−1, b])([a, b]−[a−1, b])−1.
By Corollary 2.2, the continuous automorphism

λ[a,b]−[a−1,b] = λ[a,b] − λ[a−1,b]

of (F,+) is a homeomorphism and therefore

λa = λ1−[a−1,b] ◦ λ
−1
[a,b]−[a−1,b]

is continuous on F . Since a is an arbitrary non-central element and every element
in F is a sum of two non-central elements, we conclude that the maps λc are
continuous for all c ∈ F . Similarly, the maps x 7→ xc are continuous for all c ∈ F .
By [41, Theorem 11.17], it follows that the map (x, y) 7→ xy is continuous. 2

Step 8. If F is a nonassociative alternative division algebra, then multiplication is

continuous.

Proof. By Proposition 3.8, F is an octonion division algebra and k is infinite. By
[37, 20.8 and 20.22], every subalgebra of F generated by two elements is contained
in an associative division ring. Let jy(x) = yxy for all x, y ∈ F . We claim that k
is closed in F . By Step 5, we can assume that char(k) 6= 2. We will show that in
this case,

(4.2) k = {a ∈ F | ja(jx(y)) = jx(ja(y)) for all x, y ∈ F}.

By Step 2, this will suffice to prove our claim. Let a 6= 0 belong to the set on the
right-hand side of (4.2). Then

(4.3) a(xyx)a = x(aya)x

for all x, y ∈ F . Setting y = a−1 in (4.3) yields a(xa−1x)a = xax. Hence a−1xa
commutes with x for all x ∈ F . Fix x ∈ F\{k} and let B denote the subalgebra
of F generated by x. By [37, 20.9], B is a subfield of F and B/k is a quadratic
extension. By [37, 20.20, 20.21], it follows that the centralizer of B in F is B itself.
Thus a−1Ba = B. Hence conjugation by a induces a k-automorphism of order at
most 2 on B and therefore a2 centralizes x. Since x is arbitrary, it follows that
a2 ∈ k. Setting y = 1 in (4.3), we therefore have ax2a = xa2x = x2a2 for all x ∈ F .
Thus a commutes with x2 and hence with x = ((x + 1)2 − x2 − 1)/2 for all x ∈ F ,
so a ∈ k. Therefore (4.2) holds. We conclude that k is closed (in all characteristics)
as claimed.

By Step 6, k is locally compact and by Step 4, k is σ-compact. We have

2xa =
(

(x+ 1)2 − x2 − 1
)

a

= jx+1(a)− jx(a)− a

for all x ∈ k and a ∈ F . Thus if char(k) 6= 2, then by Steps 1, 2 and 5, the map
(x, a) 7→ xa from k × F to F is continuous and therefore F is a topological vector
space over k. Suppose that char(k) = 2 and let s denote the inverse of the Frobenius
map from k to k2. Since xa = js(x)(a) for all x ∈ k2 and all a ∈ F , it follows from

Steps 2 and 5 that F is a topological vector space over k2. By Proposition 3.1(i),
dimk2 k = 2 and hence dimk2 F = 16 if char(k) = 2. By Step 5, k2 is homeomorphic
to k and hence also locally compact and σ-compact. We conclude that F is a locally
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compact topological vector space of finite dimension m (equal to 8 or 16) over a
locally compact and σ-compact field L (equal to k or k2) in all characteristics.

Let v1, . . . , vm be a basis for F . The map Lm → F that sends (a1, . . . , am)
to a1v1 + · · · + amvm is a continuous bijective homomorphism. Since L is locally
compact and σ-compact, so is Lm. Hence this map is a homeomorphism by Corol-
lary 2.2. We conclude that multiplication in F is continuous (since it is bilinear
over L).

2

With this last step, the proof of Theorem 4.1 is complete. 2

Remarks 4.4. We note that another proof of Theorem 4.1 can be derived from
[26, Satz 1.2]. If we add “totally disconnected” to the hypotheses of Theorem 4.1,
then by Proposition 3.8, we can add “F is associative” to the conclusions.

5. Buildings

In this section, we briefly record some basic notions and facts for buildings which can
be found in [1], [4], [28], [34] and [43]. We view buildings as simplicial complexes.

Simplicial complexes. Let V be a set and S a collection of finite subsets of
V . If

⋃

S = V and if S is closed under going down (i.e., a ⊆ b ∈ S implies
a ∈ S), then the poset (S,⊆) is called a simplicial complex. More generally, any
poset isomorphic to such a poset S will be called a simplicial complex. The join

S ∗ T of two simplicial complexes S, T is the product poset; it is again a simplicial
complex. The automorphism group of a simplicial complex is the group of all its
poset automorphisms.

Coxeter groups and buildings. Let (W, I) be a Coxeter system. Thus W is a
group with a (finite) generating set I consisting of involutions and a presentation of
the form W = 〈I; (ij)ord(ij) = 1 for all i, j ∈ I〉, where the relation (ij)ord(ij) = 1
is to be ignored whenever ord(ij) = ∞. For a subset J ⊆ I we put WJ = 〈J〉. Then
(WJ , J) is again a Coxeter system. The poset Σ =

⋃

{W/WJ ; J ⊆ I}, ordered by
reversed inclusion, is a simplicial complex, the Coxeter complex Σ = Σ(W, I). The
type of a simplex wWJ is t(wWJ ) = I \ J . The type function may be viewed as a
non-degenerate simplicial epimorphism from Σ to the power set 2I of I viewed as
a simplicial complex. We refer to [20] for more details on Coxeter groups.

A (thick) building ∆ is a simplicial complex together with a collection of sub-
complexes called apartments which are isomorphic to a fixed Coxeter complex Σ.
The apartments have to satisfy the following two conditions.

(B1) For any two simplices a, b ∈ ∆, there is an apartment A containing a, b.
(B2) If A,A′ ⊆ ∆ are apartments containing the simplices a, b, then there is a

(type preserving) isomorphism A → A′ fixing a and b.
(B3) Every non-maximal simplex is contained in at least three maximal simplices.

The property (B3) is called thickness. Sometimes this axiom is omitted, but for
our purposes it is convenient to assume that buildings are thick. Non-thick build-
ings can in a certain way be reduced to joins of thick buildings and spheres. An
automorphism of a building is just a simplicial automorphism.

The join of two buildings is again a building. Conversely, a building decomposes
as a join if its Coxeter group is decomposable, i.e., if I ⊆ W decomposes into two
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subsets which centralize each other; see [28, 3.10]. A building is called irreducible

if its Coxeter group is not decomposable.
The type functions of the apartments are pairwise compatible and extend to a

non-degenerate simplicial epimorphism t : ∆ → 2I . The cardinality of I is the rank

of the building, so
rank(∆) = dim(∆) + 1.

The automorphisms of a building that preserve the type function are called special

automorphisms. A building of rank 1 is just a set (of cardinality at least 3 since
we are assuming buildings to be thick), where the apartments are the two-element
subsets.

Chambers and galleries. The maximal simplices in a building are called cham-

bers. The chamber graph of ∆ is the undirected graph whose vertices are the
chambers of ∆. Two chambers are adjacent if they have a codimension 1 simplex
in common. A gallery is a simplicial path in the chamber graph, and a nonstammer-
ing gallery is a path where consecutive chambers are always distinct. The chamber
graph of a building is always connected. A minimal gallery is a shortest path in
the chamber graph.

The distance function. Let i = (i1, . . . , im) be a sequence in Im. A gallery of
type i is a gallery (c0, c1, . . . , cm) where ck−1∩ck contains a simplex of type I \{ik}.
If (c0, c1, . . . , cm) is a minimal gallery of type i, then the product w = i1 · · · im ∈ W
is independent of the chosen gallery (i.e., the types of all minimal galleries yield the
same element w ∈ W ). The W -valued distance δ is defined by δ(c0, cm) = w. Thus

δ(a, b) = δ(b, a)−1

for all chambers a, b ∈ ∆ and δ(a, b) = 1 if and only if a = b.

Residues and panels. Let a ∈ ∆ be a simplex of type J . The residue of a
is the poset Res(a) consisting of all simplices containing a; this poset is again a
building, whose Coxeter complex is modeled on WI\J [34, 3.12]. If a is a simplex
of codimension 1 and type I \ {j}, then Res(a) is called a j-panel.

Spherical buildings. A Coxeter complex Σ is called spherical if it is finite and a
building is called spherical if its apartments are finite.

6. Compact buildings

Definition 6.1. Let ∆ be a spherical building with Coxeter system (W, I). We
call ∆ a compact spherical building if for each i the set Vi of vertices of type i
carries a compact topology such that the set of chambers is closed in the product
∏

i∈I Vi, where we view a chamber as an I-tuple of vertices. It is easy to see that
this agrees with the definition of a compact spherical building given in [7, 1.1]. In
the rank 2 case it also agrees with the definition of a compact generalized polygon;
see [14], [16], [23]. We say that ∆ is connected, totally disconnected, etc., if the set
of chambers is connected, totally disconnected, etc.

Our first observation is that compact spherical buildings arise from transitive
actions of compact groups on spherical buildings.

Lemma 6.2. Let ∆ be a spherical building and suppose that a group K acts as a

chamber transitive automorphism group. Let {vi; i ∈ I} denote the vertices of a

fixed chamber c. If K is a compact group and if the stabilizers Kvi are closed in
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K, then ∆ is a compact building if we endow the set of i-vertices with the compact

topology of K/Ki. If K is totally disconnected, then ∆ is totally disconnected.

Proof. The group Kc =
⋂

{Kvi ; i ∈ I} is closed and the natural map

K/Kc →
∏

i∈I

K/Kvi

is continuous onto the set of chambers. Since K/Kc is compact, the set of chambers
is compact and therefore closed. If K is totally disconnected, then each coset space
K/Kv is also totally disconnected; see [18, 7.11]. 2

Proposition 6.3. Let G be a noncompact simple real or complex Lie group and let

∆ denote the spherical building associated to the canonical Tits system of G; see

[39, p. 68]. Then ∆ carries in a natural way a compact topology which turns ∆ into

a compact building. Let K ⊆ G be a maximal compact subgroup and let X = G/K
denote the associated Riemannian symmetric space of noncompact type. Then ∆
can be identified with the spherical building at infinity of X. The compact topology

on ∆ coincides with the topology induced on ∆ by the cone topology on ∂X. See [3,
II.8] for the latter.

Proof. We refer to [39] and [9] for the following facts. Let G = KAU be an Iwasawa
decomposition of G; see [17, Section IX.1]. Note that we call the nilpotent part U
instead of N since N has a different meaning for Tits systems. Let K0 = CenK(A).
Then K0 is the reductive anisotropic kernel of G and B = K0AU is a minimal
parabolic subgroup. Let N = NorG(K0A). Then (B,N) constitutes a Tits system
for G, of rank dimA. The parabolics of this Tits system are closed subgroups. The
group K acts transitively on the chambers of the corresponding spherical building
∆, since G = KB. Because the parabolics are closed in G, the vertex stabilizers in
K are also closed. By Lemma 6.2, ∆ is a compact building and G acts continuously.
Let x = K denote the unique fixed point of K in G/K. Then K acts continuously
on the compact space X ∪ ∂X ; see [3, II.8.8]. Recall that each boundary point
in ∂X is represented by a geodesic ray starting at x [3, II.8.2]. Let ξ be such a
geodesic ray starting at x. Since K is compact, the K-orbit of ξ is homeomorphic
to the coset K/Kξ. The G-stabilizer of ξ(∞) is a parabolic P (see [9, 2.17]) and
therefore we have a K-equivariant homeomorphism G/P ∼= K/Kξ. 2

In a similar way, we have the following result for Bruhat-Tits buildings. Re-
call that by ‘Bruhat-Tits building,’ we mean an irreducible affine building whose
spherical building at infinity is Moufang.

Proposition 6.4. Let X denote a locally finite Bruhat-Tits building. Then Aut(X)
is a totally disconnected locally compact group. The spherical building at infinity,

∆, is in a natural way a totally disconnected compact building on which Aut(X)
acts continuously. The compact topology on ∆ coincides with the topology induced

on ∆ by the cone topology on ∂X with respect to the canonical CAT(0) metric on

X.

Proof. We endow the geometric realization of X with the unique metric which ex-
tends the W -invariant euclidean metric on the apartments. In this way, X becomes
a CAT(0) space; see [3, II.10A.4] and [6, 3.2]. Moreover, each closed ball in X is
contained in a finite subcomplex and is therefore compact. It follows from Theo-
rem 2.3 that the isometry group Iso(X) is locally compact and the stabilizer of any
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vertex x ∈ X is compact. Moreover, the isometry group Iso(X) coincides with the
combinatorial automorphism group Aut(X); here note that because X is thick, ev-
ery isometry is a simplicial automorphism. For every n ≥ 1, the closed ball B̄n(x) is
contained in a finite metric simplicial subcomplex of X . Therefore Iso(X) induces
a finite isometry group on B̄n(x). By Theorem 2.3, Iso(X)x is totally disconnected.
We claim that Iso(X) is also totally disconnected. If Z ⊆ Iso(X) is a connected
subset, then Z intersects every stabilizer trivially. If x is a simplicial vertex, then
the orbit Z.x is a connected set of vertices. But simplicial vertices are isolated in
X . Therefore Z.x = {y} consists of a single element, and so does Z.

Now let x be a special vertex. By Proposition 7.9(iv) below, the compact group
K = Iso(X)x acts transitively on the chambers of the spherical building at infinity.
The rest of the proof is completely analogous to the previous proof. TheK-stabilizer
of each geodesic ray ξ starting in x is closed. By Lemma 6.2, the spherical building
at infinity is a totally disconnected compact building. 2

Suppose now that ∆ is a compact building over I and let C denote its set of
chambers. For each sequence i = (i1, . . . , im) ∈ Im, we have the set of all (possibly
stammering) galleries of type i. This is clearly a closed, whence compact, subset of
Cm+1. The following observations are immediate consequences.

Lemma 6.5. Let ∆ be a compact spherical building and C its set of chambers. Let

m ≥ 1.

(i) For each i ∈ Im, the set of all pairs of chambers that can be joined by a

gallery of type i is compact.

(ii) For each i ∈ Im, the set of all chambers that can be reached from a given

chamber by a gallery of type i is compact.

(iii) The set of all chambers in any residue of ∆ is compact. In particular,

panels are compact.

(iv) The set of all pairs of opposite chambers is open in C × C.

(v) The set of all chambers opposite a given chamber is open in C.

Proof. The sets given in (i) and (ii) are continuous images of compact sets of gal-
leries and therefore compact. Now (iii) is a special case of (ii), since the set of
chambers of a residue is precisely the set of all chambers of ∆ that can be reached
from a chamber in the residue via a (possibly stammering) gallery whose type rep-
resents the longest word w0 in the Coxeter group of the residue by, for example,
[43, 5.4]. The complements of the sets given in (iv) and (v) are finite unions of
compact sets by (i) and (ii), and therefore closed. 2

Corollary 6.6. Every residue in a compact spherical building is in a natural way

a compact spherical building.

Proof. The proof is mainly a matter of careful bookkeeping. Let a ∈ ∆ be a simplex
of type J ⊆ I. Its residue Res(a) is by definition the poset of all simplices containing
a. For i ∈ I \J , its set of i-vertices Vi(Res(a)) consists of all simplices of type J∪{i}
containing a. Its chamber set is C(Res(a)) = Res(a) ∩ C. This set C(Res(a)) is
compact by 6.5(iii). Since it projects continuously onto Vi(Res(a)), the latter set
is also compact. Moreover, Vi(Res(a)) ⊆

∏

j∈J∪{i} Vj is Hausdorff. Consider the

natural injection C(Res(a)) →
∏

i∈I\J Vi(Res(a)). This map is continuous, so its

image is compact and therefore closed in the product
∏

i∈I\J Vi(Res(a)). 2
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Corollary 6.7. Let ∆1 and ∆2 be spherical buildings and let ∆ = ∆1 ∗∆2 denote

their join, i.e., the product poset.

(i) If ∆1 and ∆2 are compact buildings, then ∆ is in a natural way a compact

building.

(ii) If ∆ is a compact building, then ∆1 and ∆2 are compact buildings and ∆
is as in (i) isomorphic to their join.

Proof. Again, the proof is just a matter of bookkeeping. The vertex set of ∆1 ∗∆2

is the disjoint union of the vertex sets of ∆1 and ∆2. The chamber set of ∆ is the
cartesian product of the chamber sets of ∆1 and ∆2. For (i) we note that we have
compact Hausdorff topologies on the vertex sets of ∆ and the chamber set of ∆ is
a continuous image of a compact set in their cartesian product. This proves (i).
For (ii) we note that ∆1 and ∆2 are residues in ∆. By Corollary 6.6, both residues
are compact buildings. It is now easy to see that the various compact topologies
on ∆1 ∗∆2 and ∆ coincide, since there are natural continuous bijections between
them. 2

Lemma 6.8. Let i = (i1, . . . , im) be a reduced expression of i1 · · · im = w ∈ W ,

i.e., w cannot be expressed in a shorter way as a word in the generating set I. The

map which assigns to a pair of chambers (c, d) at distance δ(c, d) = w the unique

gallery (c0 = c, c1, . . . , cm = d) of type i is continuous.

Proof. We use the fact that a map from a topological space X to a compact space
Y is continuous if and only if its graph is closed; see [8, XI.2.7]. In our situation
X = {(a, b) ∈ C × C | δ(a, b) = w} and Y = Cm+1. The graph of the map in
question is the set of all (m + 3)-tuples (c0, cm, c0, . . . , cm), where c0, . . . , cm is a
nonstammering gallery of type i. Clearly, this set is closed in C2 × Cm+1. 2

Corollary 6.9. Let i ∈ I and w ∈ W and suppose that l(wi) < l(w), i.e., w
admits a reduced expression that ends with the letter i. For any chamber c ∈ C, let

pi(c) denote the unique i-panel containing c. Then the map that assigns to a pair

of chambers (c, d) at distance δ(c, d) = w the unique chamber e = projpi(d)(c) with

δ(e, d) = i and δ(c, e) = wi is continuous.

6.10. Schubert cells. Let w ∈ W and let c0 ∈ C be a fixed chamber. We call the
set Cw(c0) = {c ∈ C; δ(c0, c) = w} a Schubert cell. If w0 is the longest element in
W , then Cw0

(c0) is sometimes called the big cell. The big cell is just the set of all
chambers opposite c0. By Lemma 6.5(v), this set is open.

Proposition 6.11. Let w ∈ W be an element of word length l(w) = m ≥ 1. Then

the Schubert cell Cw(c0) is homeomorphic to a product of m punctured panels, where

‘punctured panel’ means a panel with one chamber removed.

Proof. We proceed by induction onm. For each i ∈ I, we haveCi(c0) = pi(c0)\{c0}.
Thus the claim holds for m = 1. Suppose now that m > 1 and choose i such that
l(wi) < l(w). Let w0 be as in 6.10 and let j = w0iw0 ∈ I, put v = ww0, so
w0 = v−1w, and fix d ∈ Cv(c0), so δ(d, c) = v−1w = w0 for all c ∈ Cw(c0). Then
the panels pi(a) and pj(d) are opposite for each a ∈ Cwi(c0) (by [43, 5.13]). By [43,
5.14(i)], projpi(a) restricted to pj(d) and projpj(d) restricted to pi(a) are inverses

of each other for each a ∈ Cwi(c0). Thus the maps Cwi(c0) × Cj(d) → Cw(c0)
sending (a, b) to c = projpi(a)(b) and Cw(c0) → Cwi(c0) × Cj(d) sending c to

(a, b) = (projpi(c)(c0), projpj(d)(c)) are inverses of each other. By Corollary 6.9,
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both these maps are continuous. By induction, therefore, Cwi(c0) is homeomorphic
to a product of punctured panels. 2

Corollary 6.12. The topology on ∆ is uniquely determined by its restriction to

the panels of ∆.

Proof. By Proposition 6.11, the topology on the panels determines the topologies
on the Schubert cells. In particular, it determines the topologies on the big cells.
Since these are open, this determines the topology on C. The vertex sets Vi are
topologically quotients of C and thus the topology on Vi is also determined by the
topologies of the panels. 2

Proposition 6.13. If ∆ is an irreducible compact spherical building of rank at

least 2, then either C is connected, or C is totally disconnected, and, in fact, home-

omorphic to the Cantor set.

Proof. Suppose that C is not connected. Then there is some panel R which is not
connected. By [23, 2.2.3], R is totally disconnected and without isolated points. If
S is any other panel in ∆, then we find a sequence of panels between R and S such
that consecutive panels are contained in irreducible rank 2 residues. Therefore, S
is also totally disconnected without isolated points by [23, 2.2.3]. It follows that
the big cells in C are totally disconnected and without isolated points, and thus
C itself is totally disconnected. Moreover, no point in C is isolated, so the result
follows from [19, 2-98]. 2

We remark that the vertex sets Vi are also either connected or totally discon-
nected, depending on C. This can be proved in a similar way as in [23, 2.5.2].

Proposition 6.14. Let ∆ be a compact building without factors of rank 1. Then

the topology on the vertices and chambers is separable and metrizable.

Proof. In view of Corollary 6.7 it suffices to consider the case when ∆ is irreducible
and of rank m ≥ 2. For m = 2, this is proved in [14, Thm. 1.5]. Suppose now that
m ≥ 3. Every panel of ∆ is then contained in some irreducible residue of rank 2
and therefore second countable by [14, Thm. 1.5]. It follows from Proposition 6.11
that every big cell in C is second countable. Since C can be covered by |W | big
cells (where |W | here denotes the cardinality of W ), and since the big cells are open
by Lemma 6.5(v), C itself is second countable. It follows that C is separable and
metrizable [8, VIII.7.3, XI.4.1], [10, 4.2.8]. It follows from [10, 4.4.15] that Vi is
also metrizable and separable [8, VIII7.2]. 2

Theorem 6.15. Let ∆ be a compact building without factors of rank 1. Then the

group Auttop(∆) of all continuous automorphisms of ∆, endowed with the compact-

open topology, is a second countable locally compact metrizable group. The group

of all continuous special automorphisms is an open normal subgroup.

Proof. This is essentially [7, Thm. 2.1]. We first note that by Proposition 6.14, ∆
is a metric building in the sense of [7, p. 12]. We also note that a sufficiently small
neighborhood of the identity of Auttop(∆) consists only of type-preserving auto-
morphisms. We note that the argument in [7, pp. 20–21] requires only that each
rank 1 residue is contained in some irreducible rank 2 residue. This is precisely
our assumption. Thus a sufficiently small identity neighborhood of Auttop(∆) is
compact and consists of special automorphisms [7, p. 21]. Moreover, Auttop(∆) is
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second countable, because this is true for ∆, cp. [8, XII.5.2], and therefore metriz-
able [8, IX.9.2]. 2

Proposition 6.16. Let f : ∆ → ∆ be an abstract automorphism of the compact

building ∆. If, for each i ∈ I, there is some i-panel Ri ⊆ C such that f is continuous

on R, then f is a continuous automorphism of ∆.

Proof. Suppose that f is continuous on the panel R. Let S be a panel opposite to R.
By [43, 5.14(i)] the maps projR|S and projS |R are inverses of each other. Moreover,
f |S = projf(S) ◦ f ◦ projR|S is continuous by Corollary 6.9. It follows from [34,

3.30] that f is continuous on every panel of the same type as R. Therefore f is
continuous on every panel of ∆. From Proposition 6.11 we see that f is continuous
on every Schubert cell. In particular, f is continuous on the big cells. Since these
are open and cover C, f is continuous on C. Finally, we note that C → Vi is an
f -equivariant quotient map, so f is also continuous on each vertex set Vi. 2

Corollary 6.17. Let ∆ be a compact spherical building. Then every element of

every root group is continuous.

Proof. A root group fixes some panel of each type chamber-wise; see Definition 1.3.
Compare [7, 5.1]. 2

Notation 6.18. Let ∆ be an irreducible spherical building of rank at least 2
that satisfies the Moufang condition. We denote by G† the subgroup of Aut(∆)
generated by all the root groups of ∆.

Corollary 6.19. Let ∆ be an irreducible compact spherical building of rank at

least 2 that satisfies the Moufang condition. Then G† is contained in Auttop(∆).
In particular, Auttop(∆) acts strongly transitively on ∆.

Proof. By [43, 11.12], the group G† defined in Notation 6.18 acts strongly transi-
tively on ∆. By Corollary 6.17, the group G† is contained in Auttop(∆). 2

7. Moufang spherical buildings

In this section, we gather the various results about Moufang spherical buildings
we will need. See Appendix B in [45] for a summary of the classification of these
buildings.

Throughout this section, we let ∆ be an irreducible spherical building of rank l

at least 2 that satisfies the Moufang condition.

Notation 7.1. Let F be the defining field of ∆ as defined in [45, 30.15]. Note that
although we call F the defining field of ∆, F might be a skew field or an octonion
division algebra. Note, too, that although we call F the defining field of ∆, it is
not quite an invariant of ∆. By [45, 30.29], the following hold.

(i) If ∆ is of type Al , then only the unordered pair {F, F opp} is an invariant
of ∆.

(ii) If ∆ is mixed as defined in [45, 30.24], then F is commutative, char(F ) =
p ≤ 3, there exists an extension E of F such that Ep ⊂ F ⊂ E and the
unordered pair {F,E}, but not F alone, is an invariant of ∆. Note that if
we replace E by the isomorphic field Ep, then F p ⊂ E ⊂ F .

(iii) In every other case, F is an invariant of ∆.
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If F is a local skew field, then so is F opp (with the same valuation). If F , E and
p are as in (ii), then (by Proposition 3.2) E equals either F p or F ; in both cases,
E is isomorphic to F and, in particular, E is also a local field. Thus in those few
cases where there are really two defining fields, one is a local field if and only if the
other one is.

Theorem 7.2. Let F be as in Notation 7.1. Then the following hold.

(i) If ∆ is the building at infinity of a locally finite affine building X, then F
is a local field and X is one of the buildings in [45, Tables 28.4–28.6] where
F is called K.

(ii) If F is a local field, then ∆ is the building at infinity of a unique locally

finite affine building X.

Proof. If ∆ is the building at infinity of a locally finite affine building X , then by
1.5 and the remarks in the two paragraphs preceding [45, 28.1], F is a local field.
Suppose, conversely, that F is a local field. By [45, 28.11(viii)], ∆ is not an excep-
tional quadrangle and therefore the relevant parameter system is “ν-compatible” in
every case (as defined in the places cited in the second column of [45, Table 27.2])
simply because F is complete with respect to its valuation ν. It follows from in
[45, 27.2] that ∆ is the building at infinity of an affine building X with respect to
some system of apartments A and from [45, 27.1(iv)] that the pair (X,A) is unique
(since the valuation of F is unique). It is the main result of [45, Chapter 28] (see,
in particular, [45, 28.11(viii), 28.14 and 28.33–28.38]) that if F is a local field and
∆ is the building at infinity of an affine building X with respect to a system of
apartments A, then (X,A) is one of the Bruhat-Tits pairs (as defined in [45, 13.1])
in [45, Tables 28.4–28.6] (where F is called K). It can be read off from the last
column of these tables that X is, in every case, locally finite.

It is assumed in [45, 28.29] that A is complete, but this assumption is not used
in [45, 28.33–28.38]. Instead, it can be observed by invoking [45, 17.11, 19.28(ii),
23.13, 24.48, 25.27 and 28.15] that each Bruhat-Tits pair in these tables is, in fact,
complete as defined in [45, 17.1]. (When invoking [45, 23.13], it needs to be observed
that by [45, 28.15], F0 is a closed subset of F if (F, F0, σ) is an involutory set and
when invoking [45, 25.27], it needs to be observed that by Proposition 3.2, L is
closed in F if char(F ) = 3 and L is a subfield such that F 3 ⊂ L ⊂ F .) 2

We now fix an irreducible rank 2 residue Γ of ∆. By [43, 7.14, 7.15 and 11.8], Γ
is a Moufang n-gon for some n ≥ 3 (as defined in [37, 4.2]). Thus, in particular, Γ
is a graph whose vertices are the panel and whose edges are the chambers.

Notation 7.3. Let Σ be an apartment of ∆ containing an apartment of Γ. By
[43, 8.13(i)], the intersection Σ ∩ Γ is a circuit of length 2n whose vertices we can
label with the integers modulo 2n, so that i − 1 and i are adjacent for each i.
For each i, there exists by [43, 3.11 and 4.10] a unique root αi of Σ such that
α ∩ Γ = (i, i+ 1, . . . , i+ n). Let Ui = Uαi

for each i.

Proposition 7.4. Let Ui for all i be as in Notation 7.3. Then the following

hold.

(i) The group 〈U1, U2, . . . , Un〉 acts faithfully on Γ.
(ii) If 0 ≤ j ≤ n− 3 and 1 ≤ i ≤ n− j, then the subgroup

UiUi+1 · · ·Ui+j
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is the pointwise stabilizer of its set of fixed points in Γ.

Proof. Assertion (i) holds by [43, 11.27]. Assertion (ii) holds, therefore, by [37, 5.2].
2

Notation 7.5. By [37, 17.1–17.7] and 7.4(i), the group U+ := 〈U1, U2, . . . , Un〉 can
be identified with one of the groups described in [37, 16.1–16.9]. We denote the nine
cases (as in [37]) T , QI , QQ, QD, QP , QE , QF , H and O. (We have n = 3 in the
first case, n = 4 in the next six cases, n = 6 in CaseH and n = 8 in CaseO.) In each
case, U+ is defined in terms of a parameter system Ξ. In Case T , Ξ is an alternative
division ring k (that is to say, a field, a skew field or an octonion division algebra);
in Case QI , an involutory set (k, k0, σ); in Case QI , an anisotropic quadratic space
(k, L, q), in Case QD, an indifferent set (k, k0, L0), in Case QP , an anisotropic
quadratic space (k, k0, σ, L, q), in Cases QE and QF a quadrangular algebra defined
over a field k, in Case H, an hexagonal system (J, k,N,#, T,×, 1) and in Case O,
an octagonal set (k, σ). (A quadrangular algebra is defined in [44]; references to all
the other relevant definitions can be found in [37, 16.1–16.9].) By [37, 38.9], we can
assume that in Case QD the indifferent set Ξ = (k, k0, L0) is proper as defined in
[37, 38.8].

Proposition 7.6. Let k be as in Notation 7.5 and let F be the defining field of ∆
as defined in Notation 7.1. Then one of the following holds.

(i) k = F or F opp.

(ii) F is commutative and F/k is a separable quadratic extension.

(iii) F is a quaternion or octonion division algebra and k is its center.

(iv) F is commutative, char(F ) = p = 2 or 3 and either F p ⊂ k ⊂ F or

kp ⊂ F ⊂ k.

Proof. This holds by [45, 30.14–30.15]. 2

Corollary 7.7. Let k be as in Notation 7.5 and let F be the defining field of ∆.

Then the following hold.

(i) k is a local field if and only if F is.

(ii) If k is a local field, then either k or {k, kopp} is an invariant of ∆.

Proof. By Propositions 3.3 and 3.6, the center of a local field is a local field. By
Proposition 3.8, there are no octonion division algebras over a local field. Assertion
(i) holds, therefore, by Propositions 3.6 and 7.6. Assertion (ii) holds by Notation 7.1
applied to Γ (since Γ is an invariant of ∆). 2

Proposition 7.8. Suppose that ∆ is the building at infinity of a locally finite

Bruhat-Tits building X, let Σ be an apartment of ∆, let α be a root of ∆ and let

ϕ be a valuation of the root datum of ∆ based at Σ, which exists by the results in

the first two columns of [45, Table 27.2] and is unique up to equipollence by [45,
3.41(iii)]. Let the root group Uα be endowed with the metric dα determined by the

map ϕα as described in [45, 17.3]. Then Uα is locally compact with respect to this

metric.

Proof. We write Uα additively even though it might not be abelian and let

Uα,k = {u ∈ Uα; ϕα(u) ≥ k}
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for each integer k (where ϕα(0) = ∞). By [45, 18.20], Uα,k+1 is a subgroup of finite
index in Uα,k for each k. To show that Uα is locally compact, it will suffice to show
that the open subgroup Uα,0 is compact. Let (ui)i∈N be an infinite sequence of
elements in Uα,0. We can choose w0 ∈ Uα,0 such that −w0+ui ∈ Uα,1 for infinitely
many i. We can then choose w1 ∈ Uα,1 such that −w1−w0+ui ∈ Uα,2 for infinitely
many i. We continue in this fashion and set zm = w0 + w1 + · · · + wm for each
m ≥ 0. By [45, 17.9] and Theorem 7.2(i), Uα is complete with respect to the metric
dα. It follows that the sequence (zm)m∈N has a limit z in Uα. In fact, z ∈ Uα,0 since
Uα,0 is closed. By the choice of the elements wj , the element z is an accumulation
point of the sequence (ui)i∈N. We conclude that every infinite sequence in Uα,0 has
an accumulation point in Uα,0, from which it follows that Uα,0 is compact. 2

Proposition 7.9. Suppose that ∆ is the building at infinity of a Bruhat-Tits build-

ing X, let G† be the subgroup of Aut(∆) defined in Notation 6.18 and let B be the

stabilizer in G† of a chamber c of ∆, i.e., B is a minimal parabolic subgroup of G†.

Then the following hold.

(i) The group G† is canonically isomorphic to a subgroup of Aut(X).
(ii) The subgroup B acts transitively on the set of all special vertices of a fixed

type in X.

(iii) G† = KB, where K is the stabilizer in G† of a special vertex of X. (This
is the Iwasawa decomposition of G†. )

(iv) The subgroup K acts transitively on the chambers of ∆.

Proof. By [45, 12.31], (i) holds and we can identify B with a subgroup of Aut(X).
The chamber c is a parallel class of sectors of X . By [43, 11.12] and [45, 8.27], B
acts transitively on the set of all apartments of X containing c (i.e. containing a
sector in the parallel class c). By [45, 7.6], every vertex of X is contained in such
an apartment.

Now let A be an apartment of X containing a sector in the parallel class c, let N
denote the normalizer of A in G† and put T = N ∩B. By [45, 18.3(ii)], T contains
all affine reflections of A. By [45, 1.30], it follows that T acts transitively on the
set of special vertices of A of any given type. Thus (ii) holds. This, in turn, implies
(iii) which then implies (iv). 2

8. Compact totally disconnected buildings of rank 2

In this section we prove the following result. It is the key step in the proof of
Theorem 1.1.

Theorem 8.1. Let Γ be an infinite irreducible compact totally disconnected Mo-

ufang building of rank l = 2. Let G† be the group of automorphisms generated by all

the root groups of Γ and let F be the defining field of Γ as defined in Notation 7.1.
Then F is a local field in the sense of Definition 3.5 and the topology on Γ that

makes it a compact building is unique.

The building Γ in Theorem 8.1 is a graph whose edges are the chambers and
whose vertices are the panels. For each vertex x, we denote by Γx the set of vertices
adjacent to x and we identify the set of chambers (i.e., edges) containing x with Γx

via the map {x, y} 7→ y.
We fix an apartment Σ of Γ. Let n, the labeling of the vertices of Σ and Ui for

i ∈ Z2n be as in Notation 7.3 and let k and Ξ be as in Notation 7.5.
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We recall from Theorem 6.15 that the group Auttop(Γ) of topological automor-
phisms of Γ is locally compact, metrizable, second countable, and in particular
σ-compact.

Proposition 8.2. The subgroup Ui is a locally compact subgroup of Auttop(Γ) for
all i ∈ [1, n].

Proof. Let i ∈ [1, n]. By 6.17, Ui ⊂ Auttop(Γ). By Proposition 7.4(ii) (with j = 0)
and Theorem 6.15, therefore, Ui is a closed subgroup of a locally compact group.
2

From now on we use exponential notation to indicate the action of a group on a
set; see [43, 11.9].

Proposition 8.3. The map u 7→ 0u is a homeomorphism from U1 to Γ1\{2} and

the map u 7→ (n− 1)u is a homeomorphism from Un to Γn\{n+ 1}.

Proof. The closed subgroup U1 is σ-compact (by Theorem 6.15) and the stabilizer
in U1 of the vertex 0 is trivial (by [37, 3.7]). By Theorem 2.1 and Proposition 8.2,
it follows that the map u 7→ 0u is a homeomorphism from U1 to Γ1\{2}. Thus the
first assertion holds. The proof of the second assertion is virtually the same. 2

Notation 8.4. Let the cases T , QI , QQ, QD, QP , QE , QF , H and O and the
parameter system Ξ be as in Notation 7.5. We use xi to denote the various isomor-
phisms from the appropriate algebraic structures to Ui for all i ∈ [1, n] that appear
in [37, 16.1–16.9]. In particular, the following hold.

(i) x1 is an isomorphism from k0 to U1 and x4 is an isomorphism from L0 to
U4 in Case QD, where Ξ is the indifferent set (k, k0, L0);

(ii) x1 is the isomorphism from the group called S in [37, 16.6] to U1 in CaseQE ;
and

(iii) x1 is the isomorphism from the group called X0 ⊕K in [37, 16.7] (with K
here replaced by k) to U1 in Case QF .

In both (ii) and (iii), the map t 7→ x1(0, t) is an isomorphism from the additive
group of k into U1.

Definition 8.5. In Case QD, where Ξ = (k, k0, L0), we equip k0 with the unique
topology that makes the isomorphism x1 into a homeomorphism from k0 to U1. In
the remaining cases, we equip k with the unique topology such that the following
hold.

(i) x1 is a homeomorphism from k to U1 in Cases T , QQ and O;
(ii) xn is a homeomorphism from k to Un in Cases QI , QP and H;
(iii) the map t 7→ x1(0, t) is a homeomorphism from k to the subset x1(0, k) of

U1 in Cases QE and QF .

Notation 8.6. Let ∞, P and 〈t〉 be as follows:

(i) In Cases QI , QP and H, let ∞ = n+ 1, P = Γn and 〈t〉 = (n− 1)xn(t) for
all t ∈ k.

(ii) In Cases T , QQ and O, let ∞ = 2, P = Γ1 and 〈t〉 = 0x1(t) for all t ∈ k.
(iii) In Case QD, where Ξ is an indifferent set (k, k0, L0), let ∞ = 2, P = Γ1

and 〈t〉 = 0x1(t) for all t ∈ k0.
(iv) In Cases QE and QF , let ∞ = 2, P = Γ1 and 〈t〉 = 0x1(0,t) for all t ∈ k.
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Proposition 8.7. Suppose that Γ is neither in case QE nor in case QF . Let P
and 〈t〉 be as in Notation 8.6 and let τ be the map from P to itself that interchanges

∞ and 〈0〉 and maps 〈t〉 to 〈−t−1〉 for all t ∈ k∗ (respectively, t ∈ k∗0 in case QD ).
Then τ is a homeomorphism.

Proof. Suppose that we are in case T , QQ, QD or O. (In case QD, where Ξ =
(k, k0, L0), “t ∈ k” is to be read as “t ∈ k0” everywhere in this proof.) By [37,
6.1], there exists for each t ∈ k∗ a unique element µ(x1(t)) in the double coset
U∗
n+1x1(t)U

∗
n+1 that maps Σ to itself and induces on Σ the reflection with fixed

points 1 and n+1. The element µ(x1(t)) maps P to itself and interchanges ∞ and
〈0〉 for all t ∈ k∗. Let m = µ(x1(1)). Then all the identities in [37, 32.5, 32.7, 32.8
and 32.12] as well as

xn+1(t) = x1(t)
m

hold for all t ∈ k (as explained in the introduction to [37, Chapter 32]). In partic-
ular,

µ(x1(t)) = xn+1(t
−1)x1(t)xn+1(t

−1)

for all t ∈ k∗. Choose t ∈ k∗. Since both m and µ(x1(t)) interchange 〈0〉 and ∞
and Un+1 fixes 〈0〉, we have

〈t−1〉mx1(t) = 〈0〉x1(t
−1)mx1(t) = ∞m−1x1(t

−1)mx1(t)

= ∞x1(t
−1)mx1(t)

= ∞xn+1(t
−1)x1(t)

= ∞µ(x1(t))xn+1(t
−1)−1

= 〈0〉xn+1(t
−1)−1

= 〈0〉

and therefore
〈t−1〉m = 〈0〉x1(t)

−1

= 〈−t〉.

Thus m induces the map τ on P . Hence (by 6.17) τ is continuous. Since τ = τ−1,
it is, in fact, a homeomorphism. The argument in the remaining cases is virtually
identical, only with xn(t) in place of x1(t), xn(t

−1) in place of x1(t
−1) and x0(t

−1)
in place of xn+1(t

−1). 2

Proposition 8.8. In Case QD, where Ξ = (k, k0, L0), there exists a subfield M
of k0 containing k2 such that x1(M) is a closed subset of U1, where x1 is the

isomorphism from k0 to U1 indicated in Notation 8.4.

Proof. Let P and ∞ be as in 8.6, let R = Γ4, let [∞] = 5, let [a] = 3x1(a) for all
a ∈ L0 and let π be the map from R to P that sends [∞] to ∞ and [a] to 〈a〉 for
each a ∈ L0. Next let m = µ(x1(1)) and r = µ(x4(1)), where µ is as defined in [37,
6.1]. By [37, 6.4(i) and 16.4], we have

[x1(1), x4(a)] = x2(a)x3(a),

x2(a) = x4(a)
m and x1(b) = x3(b)

r for all a ∈ L0 and all b ∈ k0. Hence

x1(a) =
(

x4(a)
−mx4(a)

x1(1)x4(a)
)r

for all a ∈ L0. It follows that the map x4(a) 7→ x1(a) from U4 to U1 is continuous.
By Proposition 8.3, it follows that the restriction [a] 7→ 〈a〉 of the map π to R\{[∞]}
is continuous. Exactly as in Proposition 8.7 (alternatively: by Proposition 8.7 and
[37, 35.18]), the map from R to itself interchanging [∞] and [0] and mapping [a]
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to [a−1] for all a ∈ L∗
0 is continuous. Thus a sequence ([ai])i∈N in R\{[0], [∞]}

converges to [∞] if and only if the sequence ([a−1
i ])i∈N converges to [0]. Since the

analogous assertion holds in P , it follows that the map π from R to P is continuous.
Since R is compact (by Corollary 6.6), we conclude that its image is a compact
subset of P . Thus π(U4) is a closed subset of U1. By Proposition 8.3 again, we
conclude that L0 is a closed subset of k0.

Now let M = {t ∈ L0; tL0 ⊂ L0}. Then M is a subring of k0. Since k2 ⊂ M
(by [37, 10.2]), it follows that M is, in fact, a subfield. Let u ∈ L∗

0. The product
r−1µ(x4(u

−1)) fixes the vertex 2 and (by [37, 32.8])

x1(t)
r−1µ(x4(u

−1)) = x3(t)
µ(x4(u

−1)) = x1(ut)

for all t ∈ k. Thus the map from P to itself that fixes ∞ and maps 〈t〉 to 〈ut〉 is
continuous. Now suppose that (ti)i∈N is a sequence of elements in M that converges
to an element t ∈ L0. Then the sequence (uti)i∈N converges to ut. Since uti ∈ L0

for all i, it follows that ut ∈ L0. Therefore t ∈ M . Hence M is closed. 2

Proposition 8.9. In Cases QE and QF , x1(0, k) is a closed subset of U1, where

x1 is as in Notation 8.4.

Proof. By 16.10 and 16.11 of [37], x1(0, k) = CU1
(U3). Since U1 and U3 are closed

(by 8.2), the claim follows. 2

Notation 8.10. Let D be the group

(i) Un in Cases QI , QP and H;
(ii) U1 in Cases QT , QQ and O;
(iii) x1(M) in Case QD; and
(iv) x1(0, k) in Cases QE and QF .

Proposition 8.11. In Cases QE , QF and QD, let Q = {∞} ∪ 0D, where D is as

in Notation 8.10. In all other cases, let Q = P , where P is the panel of Γ defined

in Notation 8.6. Then Q is a compact subset of P .

Proof. By Corollary 6.6, the panel P is compact. By Propositions 8.8 and 8.9,
therefore, Q is the one-point compactification of Q\{∞} in Cases QE , QF and QD.
2

Proposition 8.12. The map t 7→ 〈t〉 is a homeomorphism from k (respectively, M
in Case QD ) to Q\{∞}.

Proof. This holds by Proposition 8.3 and Definition 8.5. 2

Proposition 8.13. k (respectively, M in Case QD ) is totally disconnected, in fact,

homeomorphic to the Cantor set minus a point.

Proof. This holds by Propositions 6.13 and 8.12. 2

Proposition 8.14. Let ω be the map from Q to itself that interchanges ∞ and 〈0〉
and maps 〈t〉 to 〈−t−1〉 for all t ∈ k∗ (respectively, t ∈ M∗ in Case QD ). Then ω
is a homeomorphism.

Proof. By Proposition 8.7, it suffices to consider Cases QE and QF . In these two
cases we can simply replace x1(t) by x1(0, t), x1(t

−1) by x1(0, t
−1) and xn+1(t

−1)
by xn+1(0, t

−1) everywhere in the proof of Proposition 8.7. 2
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Proposition 8.15. Let E denote the permutation group on Q generated by τ and

the group induced by D on Q and let k (respectively, M in Case QD ) be identified

with Q\{∞} via the homeomorphism t 7→ 〈t〉, so Q = k ∪ {∞} (respectively, Q =

M ∪ {∞} ). Then (E,Q) is the projective line k̂ (respectively, M̂ in Case QD ).

Proof. This holds by Corollary 6.17 and Proposition 8.14. 2

Proposition 8.16. k is a local field as defined in Definition 3.5.

Proof. Suppose first that we are not in CaseQD. By Proposition 8.11,Q is compact.
By Theorem 4.1 and Proposition 8.15, therefore, k is a locally compact field. Hence
by Propositions 3.8 and 8.13, k is a local field. Now suppose that we are in CaseQD.
By virtually the same arguments, we conclude that M is a local field. Since M is
a commutative field of characteristic 2, it is the field of formal Laurent series over
a finite field (by Proposition 3.1). By Proposition 8.8, k/M2 is a quadratic (and
hence finite) extension. Therefore k is a local field also in this case. 2

Proposition 8.17. The topology T on the set of chambers of Γ is unique.

Proof. Let R be a panel of Γ. By Corollary 6.12, it will suffice to show that the
restriction of T to R is unique. Let Σ, n and Ui for i ∈ N be as in 7.3 and let k and
Ξ be as in 7.5. We can assume that Σ is chosen so that R = Γ1 or Γn. Our goal,
therefore, is to show that the restriction of the topology T to the panel Γ1 and the
restriction of T to the panel Γn are unique.

By Theorem 7.2(i), Γ is in one of the cases T , QI , QQ, QP or H and, as we
saw in Proposition 8.16, k is not octonion. Case QD is ruled out by [45, 28.14],
Cases QE and QF are ruled out, as we observed in the proof of Theorem 7.2, by
[45, 28.11(viii)] and Case O is impossible since by Proposition 3.2, there are no
octagonal sets (k, σ), as defined in [37, 10.11], with k local. By Corollary 7.7(ii),
either k or {k, kopp} is an invariant of Γ. By Proposition 3.6 and Remark 3.7, the
topology on k that makes it into a locally compact field is uniquely determined
by Γ. We call this topology Tk. Replacing k by kopp if necessary, we can assume
by [37, 35.15] that R = Γ1 if Γ is in Case T . It thus suffices to show that the
restriction of T to the panel Γ1 is uniquely determined by Tk in Case T and that
the restriction of T to Γp is uniquely determined by Tk for both p = 1 and p = n
in every other case.

From now on, let p = 1 in Cases T and QQ and p = n in Cases QI , QP and H.
By Proposition 8.12, the restriction of T to Γp is uniquely determined by Tk. We
can assume from now on that we are not in Case T . Let d be the element of the
set {1, n} different from p. It remains only to show that the restriction of T to Γd

is uniquely determined by Tk.
Let ν be the valuation of k. By the results in the third column of [45, Table

27.2], there is a valuation ϕ = (ϕi) of the root datum of Γ (where ϕi is a map from
U∗
i to Z for each root αi of Σ) such that ϕp(xp(t)) = ν(t) for all t ∈ k. Let Tϕ

be the topology on Ud induced by the metric associated with ϕi as described in
Proposition 7.8. By [45, 3.41(iii)], ϕ is unique up to equipollence. This means that
ϕd is uniquely determined by Tk up to an additive constant. Hence the topology
Tϕ depends only on Tk.

Now let Td denote the locally compact topology on Ud that we identified in
Proposition 8.2. Suppose we know that the identity map from Ud to itself is a
continuous map from (Ud, Td) to (Ud, Tϕ). By Theorem 6.15 and Corollary 6.17, Ud
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is σ-compact. By Corollary 2.2, it follows that Td = Tϕ. Hence, by the conclusion
of the previous paragraph, Td is uniquely determined by Tk. By Proposition 8.3, it
follows that the restriction of T to Γd is also uniquely determined by Tk.

Suppose now that we are in Case QQ, where Ξ = (k, L, q) and d = 4. By [37,
16.11], we can assume that there is an element 1 in L such that q(1) = 1. Let
m = µ(x1(1)) and r = µ(x4(1)). By [37, 6.4(i) and 16.3], we have

[x1(1), x4(u)
−1] = x2(u)x3(q(u)),

x2(u) = x4(u)
m and x3(t)

r = x1(t) for all u ∈ L and all t ∈ k. Hence

x1(q(u)) =
(

x4(u)
−mx4(u)

x1(1)x4(u)
−1

)r

for all u ∈ L. Therefore the map x4(u) 7→ x1(q(u)) is continuous. By [45, 19.20],
we can assume that ϕ4(x4(u)) = ν(q(u))/δ for all u ∈ L, where δ is either 1 or 2.
It follows that the identity map from U4 to itself is a continuous map from (U4, T4)
to (U4, Tϕ) and hence the restriction of T to Γ4 is uniquely determined by Tk.

Suppose next that we are in Case QP , where Ξ = (k, k0, σ, L, q) and d = 1. Let
m = µ(x1(0, 1)) and r = µ(x4(1)). By [37, 6.4(i) and 16.5], we have

[x1(a, t), x4(1)
−1] = x2(t)x3(a, t)

and hence

x4(t) =
(

x1(a, t)
−1x1(a, t)

x1(1)
−1

x1(a, t)
−r−1)m−1

for all x1(a, t) ∈ U1. Thus the map x1(a, t) 7→ x4(t) is continuous. By [45, 24.33],
we can assume that ϕ1(x1(a, t)) = ν(t)/δ for all x1(a, t) ∈ U1, where δ = 1 or 2. It
follows that the identity map from U1 to itself is a continuous map from (U1, T1)
to (U1, Tϕ) and hence the restriction of T to Γ1 is uniquely determined by Tk.

Suppose next that we are in Case QI , where Ξ = (k, k0, σ) and d = 1. Replacing
[37, 16.5] by [37, 16.2], [45, 24.33] by [45, 23.4] and x1(a, t) by x1(t) in the previous
paragraph, we obtain a proof that the identity map from U1 to itself is a continuous
map from (U1, T1) to (U1, Tϕ) and hence the restriction of T to Γ1 is uniquely
determined by Tk also in this case.

Suppose, finally, that we are in CaseH, where Ξ = (J, k,N,#, T,×, 1) and d = 1.
This time, we set r = µ(x1(1)) and m = µ(x6(1)). By [37, 16.8 and 29.17],

[x1(a), x6(1)
−1] = x2(N(a))x3(−a#)x4(N(a))x5(a)

and hence

x4(N(a))x5(a
#)x6(−N(a)) =

(

x1(a)
−1x1(a)

x6(1)
−1

x1(a)
−r−1)m

for all a ∈ J . By Proposition 7.4(ii), each of the groups U4U5U6, U4U5 and U6 is
closed. By [33, Theorem 6.23], therefore, the map x4(w)x5(b)x6(t) 7→ x6(t) from
U4U5U6 to U6 is continuous. We conclude that the map x1(a) 7→ x6(−N(a)) is
continuous. By [45, 15.23], we can assume that ϕ1(x1(a)) = ν(N(a))/δ for all
a ∈ J , where δ = 1 or 3. It follows that the identity map from U1 to itself is a
continuous map from (U1, T1) to (U1, Tϕ) and hence the restriction of T to Γ1 is
uniquely determined by Tk. 2

This concludes the proof of Theorem 8.1.
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9. The proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. We assume that ∆ is an irreducible infinite compact totally
disconnected spherical Moufang building of rank l ≥ 2. Then the panels of ∆ are
totally disconnected. Let Γ be an arbitrary irreducible residue of ∆ of rank 2. By
Corollary 6.6, Γ is a compact totally disconnected building and by [43, 11.8], Γ is
Moufang. If Γ1,Γ2 are two irreducible rank 2 residues such that Γ1 ∩Γ2 contains a
panel, then by [37, 34.5], Γ1 is finite if and only if Γ2 is finite. Since ∆ is irreducible,
it follows that all the irreducible rank 2 residues of ∆ are finite if one of them is.
Since ∆ is infinite, we conclude that Γ is infinite. Hence by Theorem 8.1, the totally
disconnected compact topology on Γ is unique. Since Γ is arbitrary, we conclude
that the totally disconnected compact topology on every panel of ∆ is unique. By
Corollary 6.12, therefore, the totally disconnected compact topology on the set C
of chambers of ∆ is unique and by Proposition 6.13, C endowed with this topology
is homeomorphic to the Cantor set.

Suppose now that f is an abstract automorphism of ∆. Then the topology of ∆,
transformed by f , is another totally disconnected compact topology which turns ∆
into a compact building. Therefore, f fixes the topology. In other words, f is a
homeomorphism. Thus, Aut(∆) = Auttop(∆).

Next we note that the defining field F of ∆ is a local field by Theorem 8.1. By [45,
27.2 and 27.6], therefore, there exists a unique locally finite Bruhat-Tits building
X whose building at infinity is ∆. By Proposition 6.4, the compact topology on ∆
coincides with the topology induced by the cone topology on ∂X .

Finally, consider the natural homomorphism Iso(X) → Aut(∆). By Proposi-
tion 6.4 again, the group Iso(X) acts continuously on ∆. Since Aut(∆) carries the
compact-open topology, the map Iso(X) → Aut(∆) is continuous. It is also injec-
tive (an isometry that fixes ∆ pointwise fixes every apartment in X and is therefore
the identity). By [45, 26.37 and 26.40-2], this map is also surjective. Since Iso(X)
is locally compact and σ-compact by Theorem 2.3, it follows from Corollary 2.2
that this map is open and therefore a homeomorphism. This finishes the proof of
Theorem 1.1. �

Before we proceed with the proof of Theorem 1.2, we add some general remarks
on the compact connected case and its history. Building on Pontryagin’s classifi-
cation of locally compact connected fields [27], Kolmogorov [22] classified compact
connected desarguesian projective spaces, showing that the defining field is R,C or
the real quaternion division algebra H. Half a century later Salzmann [29] classified
all compact connected projective planes admitting a flag transitive, or equivalently,
chamber transitive, group of continuous automorphisms. He proved that such a
projective plane is the Moufang plane over R,C,H or the real octonion division
algebra O. These results cover the compact connected buildings of type An.

Burns and Spatzier [7] classified all irreducible compact connected buildings of
rank at least 2 under the condition that they admit a strongly transitive group
of continuous automorphisms; they call this the ‘topological Moufang condition’.
In particular, they classified all compact connected Moufang buildings of rank at
least 2. Their proof does not use the classification of Moufang buildings. Instead,
they use a characterization of Furstenberg boundaries of simple Lie groups. They
also use, as does Salzmann, the solution of the 5th Hilbert problem.
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Continuing in the vein of Salzmann’s result, Grundhöfer, Knarr and Kramer
[14, 15] classified all compact connected buildings of rank at least 2 admitting a
chamber transitive group of continuous automorphisms. As we have seen, it suffices
to deal with the rank 2 case. The final result, assembled from [7], [14, 15] and [24,
Ch. 7], is as follows.

Theorem 9.1. Let ∆ be an irreducible compact and connected building of rank l

at least 2. Suppose that the topological automorphism group Auttop(∆) acts tran-

sitively on the chambers of ∆. Then ∆ is the standard spherical building associated

to a noncompact centerless real or complex simple Lie group G of rank l ; cf. Propo-

sition 6.3.

We remark that such a Lie group G is simple as an abstract group [30, 94.21].
In particular, G = G† in the notation of 6.18. If G is not complex, then every
abstract automorphism of G = G† is automatically continuous [11]. This shows
that every abstract automorphism of ∆ is also continuous. If G is complex, then
the automorphism group of G = G† is the group of all continuous automorphisms,
extended by the field automorphisms of C; see [2]. Thus, an abstract automorphism
of G or ∆ need not be continuous in this situation. Nevertheless, we have the
following result.

Proposition 9.2. Let ∆ be a compact connected irreducible Moufang building of

rank at least 2. If the associated simple Lie group G is not complex, or equivalently,

absolutely simple as a real algebraic group, then there is a unique topology on ∆
which turns ∆ into a compact building. If G is complex, then all topologies that

turn ∆ into a compact building are conjugate under Aut(C).

Proof. First of all we note that the defining field F of ∆ is R,C, the real quaternion
division algebra H or the real Cayley division algebra O. Suppose that T is a
compact topology on the chambers of ∆ that turns ∆ into a compact building. If
the set of chambers C is connected in this topology, then ∆ comes from a simple
Lie group H by Theorem 9.1. Therefore there is an abstract isomorphism H =
H† ∼= G† = G. If G is real, this isomorphism is continuous by [11] and if G is
complex, then the isomorphism becomes continuous after composing it with a field
automorphism by [2, 8.1]; see also [34, 5.8–5.9] for a more detailed statement.

Next, assume that the topology T on C is not connected. Then it is totally
disconnected by Proposition 6.13 and ∆ is one of the buildings classified in the
present paper. Therefore the center of the defining field F is a finite extension of
the p-adic field Qp for some prime p. Neither R nor C is, however, isomorphic to a
finite extension of Qp by, for example, [31, 54.2]. 2

We remark that there is another approach to the proof of Proposition 9.2: it can
be shown that a simple real or complex Lie group admits only one locally compact
and σ-compact group topology up to conjugation by an abstract automorphism if
G happens to be complex; see [25].

Proof of Theorem 1.2. The special automorphism group of a reducible building
factors as a product of the automorphism groups of the factors. In the compact
case, this factorization is compatible with the topology because the elementwise
stabilizer of any residue is closed in Auttop(∆). In this way the problem can be
reduced to the irreducible case. Now the result follows from a combination of
Theorems 1.1 and 9.1 and Proposition 9.2. �
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