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Abstract

We generalize the notion of Desargues configuration in projective planes to a similar
notion in generalized quadrangles. In this way, we can generalize Baer’s theorem and obtain
new characterizations of many classes of generalized quadrangles.

1 Introduction

In the theory of projective planes, Baer’s theorem (see e.g. [4]) connects a configurational prop-
erty (being (V, L)-Desarguesian) and a collineation group property (being (V, L)-transitive). A
successful attempt to obtain a similar result for generalized quadrangles was made by M.A .Ronan
(6], who showed that a configurational property involving some line L is equivalent to some group
transitivity property involving collineations fixing L pointwise and stabilizing all lines meeting
L. Under these conditions, the line L is always regular (for the definition of regular line, see
[5]). In the present paper, we generalize Ronan’s configurational property in order to drop the
regularity of L. At the same time, our configuration will more easily be seen as a generalization
of the Desargues configuration in projective planes. The idea is the following. A classical pro-
jective plane is (V, L)-transitive for every point V' and every line L incident with V. The group
fixing L pointwise and fixing V' linewise is in fact a root group. For generalized quadrangles,
such root groups fix a line (resp. a point) pointwise (resp. linewise) and two distinct points
on that line (resp. two distinct lines through that point) linewise (resp. pointwise). Hence our
Desargues configuration, which we will call a generalized Desargues configuration, must involve
a root, i.e. a triplet {P, L, P'} where P and P’ are two distinct points on a line L (or dually, a
triplet {L, P, L'} where L and L’ are two distinct lines on a point P). In this way, we obtain
the definition of quadrilaterals in perspective from {P,L,P'} (or {L,P,L'}). ”Enough” such
generalized Desargues configurations will imply the existence of enough” collineations in the
sense of Baer’s result. More exactly, we will show

Main result. A generalized quadrangle S is { P, L, P'}-Desarguesian if and only if S is {P, L, P'}-
transitive, P and P’ being two distincts points on a line L of S.

The way to prove our main result differs from the way it is usually done for projective planes.
Indeed, in our situation it is quite complicated to use only geometrical arguments. On the other
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hand, a purely algebraic proof would be too abstract. Hence we will combine geometrical and
algebraic arguments. The algebra is brought in by coordinatization.

In section 4, we mention some immediate consequences and show how Ronan’s result fits
into our theory as an important corollary.

2 Definitions and not

A generalized quadrangle of order (s,t) is a point-line incidence geometry S = (P, B, I satisfying

(GQ1), (GQ2) and (GQ3):

(GQ1) Two distinct lines have at most one point in common and there are exactly
1 + s points incident with every line.

(GQ2) Two distinct points lie on at most one common line and there are exactly
1+t lines incident with every point.

(GQ3) Given a point P and a line L not incident with P, then there exists a unique pair
(@,M)eP xBsuchthat PIMIQIL.

Note that s and/or ¢ can be infinite. Throughout this paper, we assume s,t > 2, that is, we
assume that § is thick. In 8, two points P and @ are called collinear if they lie on a common
line (notation P L @), and two lines L and M are called concurrent if they share a common
point (notation L 1L M). A quadrilateral of S is a subquadrangle (in the usual sense) of order
(1,1) of S (see [5]).

Let (P,L,P'y € P xBxP besuchthat PILI P and P # P'. Denote C = {P,L, P'}. Let
Di=P 1L IPILyIPsI L3I PaI L4 I Prand Dy =P IL{ T PTI LT PLT LS IP4IL' IP|
be two quadrilaterals. Then we call D and D, in perspective from C if for every i € {1,2,3,4},
P; and P/ are collinear with a same point on L, and L; and L! are concurrent with a same line
through P, resp. P’. In such a case, we call {C,D;,D2} a generalized Desargues configuration
in § and P;, P{ (resp. L;, L) are called corresponding elements or corresponding points (resp.
lines) of the configuration. A quadrilateral Dy = Py I L1 I P, T Lo I P31 L3 I PRI L4 1 Py
satisfying

(D1) Pi and P, or P’ and P, are collinear,
(D3) neither P nor P’ is incident with any of the lines L;,i = 1,2, 3,4

is called a C-quadrilateral and the line joining P and P;, or P’ and P, is called a base-line of
(C,Dy). Note that for a given C-quadrilateral there can be at most two base-lines : one through
P and one through P’

Let C be as above, then we call & C-Desarguesian if for every C-quadrilateral D; and every
point Pj, P{ # P, P!, on any base-line, there exists a C-quadrilateral D, containing P which is
in perspective with Dy from C.

An automorphism 6 of § is called a C-elation, C as above, if it stabilizes each line through
P, each line through P’, and fixes each point on L. Let M be any line through P distinct from

I, and denocte by A4 flﬁn set of noints incident with A and distinct from Nnn b~

L4 Quila AT LIUUVO J LA vire v H\J LLUO lllbl\.&\/llu VVIUIA iva alii\a \AlDUlll\‘t LLULLL .LD. \JLLC DllU‘VVD Uhau
every C-elation fixing at least one element of A must be the identity [5]. Hence the group of all

C-elations acts semiregularly on A. If this group is transitive on A, then we call S C-transitive

3 I _tmncibivre Fam avrames ! PR,
r?}} IfS isS 1ID, TilD i~ tlaualmvc ful cvTiLy d_lbllllbl.r _'D culd lD Ot L, Ith‘:ll WJ.L]l'l Lut: uu-‘a-vw UL 'J_”

we say that S satisfies (M)L (a local Moufang condition). If § satlsﬁes (M)L for all L € B,
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then we say that S satisfies (M) Is S satisfies (M) and the dual property (M), then § is called
Moufang.

All of the above definitions can of course be dualized.

We now show how § can be coordinatized by a quadratic quaternary ring (R, Rz, Q1, Q2),
where R; is an arbitrary set of s elements all distinct from the symbol oo, but containing the
symbols 0 and 1, and R; is an arbitrary set of ¢ elements, not containing oo but also containing
0 and 1. We choose an arbitrary quadrilateral in § and coordinatize its elements by (co) I [00]
I(0)1[0,0]1(0,0,0)I[0,0,0]1(0,0)I[0]I (00), whereround brackets are used for points and
square brackets for lines. The coordinatization of the lines is the dual of the coordinatization
of the points, hence we only describe the latter explicitly. Choose bijectively a coordinate (a),
a € Ry, for each point of [00] distinct from (o0), such that 0 corresponds to (0). We do the
same for points of [0, 0] distinct from (0), which are given coordinates (0,0,a), a € R1. A point
P collinear with (co) but not lying on [oco] has coordinates (k,a) € Ry x Ry if P lies on [k]
and is collinear with (0,0, a). Finally, a point not collinear with (co) is assigned the coordinate
(a,l,d') € Ry x Ry x Ry if it lies on [a,l] and is collinear with (0,a’). We now define two
quaternary operations @1 and @9 as follows :

Qi(k,a,l,d") = b <= (k,b) L (a,l,d),
Qg(a,k,b,k') = | [a,[] 1 [k,b,k'],

where a,b,a’ € Ry and k,[, k' € Ry. Thefact that S is a generalized quadrangle turns the quadru-
ple (R1, R2,Q1,Q2) into a quadratic quaternary ring. For the precise definition of quadratic
quaternary rings and their properties, we refer to [2]. We also define the quaternary operations
Q7 and @3 as follows :

Qi(a,k,b,k) = d <= (a) and (0,0,a’) are collinear with the same point on
[k, b, k],

Q3(k,a,l,a’) = k' <= [k] and [0,0,k'] are concurrent with the same line through
(a)lyal)7

where a,b,a’ € Ry and k,[, k' € R,. Hence,
(a,1,a") I [k, b, k'] <= Qi(a, k,b, k') = a’ and Q2(a,k,b,k") =1,
where a,b,a’ € Ry and k, [, k' € R;.

Q

Furthermore, we require that the bijections from R; to the points of [co] distinct from (oo)
,Yand from R to the points of [0, 0] distinct from (0), have the property that (a) and (0, a) are
collinear with the same point on the line [1,0,0]. This is called *-normalization in [3]. From
that paper, we also recall the following (straightforward) identities :

() Qi(k,0,0,a) = d = @Q(0,qa,k,d),
(I) Q2(a,0,0,k) = Kk = Q2(0,k,b k),
(I1)  Q3(0,k 50 = b = Qi(a,0,bk),
av) @3(0,¢1,0) = I = Q;(k,o,l,a'),
(V) @Qi(e,1,0,0) = g,
(VD)  @Q3(k,1,0,0) = K,
for all a,b,a’ € Ry and k,l,k' € R,.
We define an addition in R; by

a+b=Qi(a,1,5,0) a,b€ Ry,
and a multiplication on Ry x R; with values in R; by

k.a = Qi(a, k,0,0) k€ R; and a € R;.
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Note that by the properties (I) through (VI) above, 0 +a = a = a+ 0,1.a = @ and
0.a=k.0=0for all a € R,k € R;. More details can be found in [3].

3 Proof of the main theorem

In this section, we fix C = {P,L,P'},P,P' € P,P # P',L € B,PI1 L1 P'. We show that § is

C-transitive if and only if § is C-Desarguesian.

Suppose first that § is C-transitive and consider an arbitrary C-quadrilateral D; as well as
an arbitrary point P on any base-line M of (C,D;), with P; distinct from P and P'. If P,
denotes the point of D1 on M, then the unique C-elation mapping P; onto P{ maps D; onto a
C-quadrilateral D, which is in perspective with D; from C and which contains Pj. Hence S is
C-Desarguesian.

Throughout the remainder of this section, we suppose that S is C-Desarguesian. We show
that S is also C-transitive.

We coordinatize S as in the previous section where P = (00), P/ = (0) and L = [00]. Then,
by [3, theorem (3.3)], S is C-transitive if and only if

Qi(a,k,b+ B, k) = Qi(a,k,bk)+ B

Q?(aak>b+ B)k’) = QQ(G,O,B,Qg(a,k,b,k,)),
for all a,b, B € Ry and k, k' € R;.

If t = 2, then the theorem is trivial since § must then be classical [5]. So we can assume
t > 2 throughout. We show the result in six steps.

Notation. We abbreviate the sequence P, I L1 I P, I Ly, for P,, P, € P,L1,L, € Band P
not incident with Lq, by Py ~ Ls.

Remark. By the special choices for (00), (0) and [o0], two corresponding elements of two
C-quadrilaterals that are in perspective from C have a common first coordinate and if they are
lines, also their last coordinates coincide.
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Qi(a,k,B,0) = k.a+ B.

Proof. The lemma is trivial for £ = 0 or £ = 1. So suppose k # 0 and k£ # 1. Consider
the quadrilateral D, = (0,0,0) I [£,0,0] I (a,Q2(a,,0,0),Qi(a,k,0,0)) I [0,Q5(a,k,0,0),k]]
I(0,Q%(a,k,0,0)) I[0,Q5(a,k,0,0),k5] I (Q1(a,k,0,0),Q2(Q7(a,%,0,0),1,0,0),Q7(a, k,0,0)) I
[1,0,0]11(0,0,0), where kj and k3 (both in R3) are well defined. Now consider the quadrilateral
D’y in perspective with Dy from C and containing (0,0, B) (which corresponds to (0,0,0)). By
the remark above, D’y must be necessarily written as (0,0,B) I [k, B,0] I (a,Q2(a,k, B,0),
Qi(a,k,B,0)) L [0,Qi(a,k, B,0),k1] I (0,Qi(a,k, B,0)) L [0,Qi(a, k, B,0), k5] I (Qi(a,k,0,0),
Q2(Qi(a,k,0,0),1, B,0), Qi(Qi(a,k,0,0),1,B,0)) I [1,B,0] I (0,0,B). Hence by the sixth

incidence in this chain, we conclude
ka+B = Q;(QI(G,k,0,0),l,B,O)

Q1(Qi(a,k,0,0),0,Q3(a, k, B, 0), k3) (1)
Q;(aa k: B,O),



©y

GENERALIZED DESARGUES CONFIGURATIONS 717

by identity (III) of the previous section. Q.E.D.

Lemma 2. The equation a + z = b has a unique solution in the unknown z, for all a,b € R;.

Proof. We first prove that there is at most one solution. Therefore, suppose a + #; =
b = a 4+ z2. Let L; be the unique line through (0,b) meeting [1,z;,0],7 = 1,2. Consider the
C-quadrilateral D2 = (1,z2) I [1,22,0] ~ (0,b) I Ly ~ (1, z2) and let D} be the C-quadrilateral in
perspective with Dy from C which contains (1, 1) as the corresponding point to (1,z2). Then
the line [1,z1,0] of D, corresponds to [1,x2,0] of D’;. Suppose z1 # z2. The point (a,...,b)
of D, corresponds to a point (a,...,b) of D'y, hence Ly corresponds to Lg. But then, since the
last coordinates of these lines coincide, there exists a line through (0) meeting both Z; and Lo,
a contradiction. Hence z1 = 4.

Now we show that there is at least one solution. Consider any C-quadrilateral D3 = (0,0, 0)
I[1,0,0] I (a,Q2(1,4a,0,0),a) I1[0,a,k']I(0,a)~ [k,0,0]I(0,0,0), where k’ is well-defined and
k € R, is arbitrary but distinct from 0 and 1 (existing since ¢ > 3). Denote by D% the C-
quadrilateral in perspective with D3 from C and containing the point (0, b) which corresponds to
(0,a). Then the line of D’z corresponding to [1, 0, 0] has coordinates of the form [1,z,0],z € R;.
Clearly a+z = b. Q.E.D.

Lemma 3. Let D be an arbitrary C-quadrilateral containing the point P* collinear with (00).
Let L* be a line of D not incident with P*. Then for every line M™* not concurrent with [00]
and sharing its first and last coordinate with L*, there exists a (unique) C-quadrilateral D' in
perspective with D from C and containing M* as corresponding line to L*.

Proof. One can easily check that we can recoordinatize in such a way that L* = [1,0,0]
and P* = (0, a) for some a € R;. Note that, if M* satisfies the assumptions of the lemma, then
it has new coordinates of the form [1, B,0], B € R;. Denote by D’ the unique C-quadrilateral
in perspective with D from C and containing the point (0,a + B). But then the chain (0,a)
1[0,a,k]1(a,...,a) I[1,0,0] of D corresponds to (0,a+ B) I [0,a+ B,k]I(a,...,a+C) I
[1,C,0] of D, for some C € Ry. By property (III), it follows that a+ B =a + C or B = C by
the previous lemma, and the result follows. Q.E.D.

Lemma 4. Let D=Py I L1 IP, I Lo IP3sI L3I Py ILs 1P, be a quadrilateral and suppose
that Ly I (o0) and that L; does not meet [oc],i = 2,3,4. Then for every point P; I Ly distinct
from (00), there exists a unique quadrilateral P{ I Ly I Py I...1I P| in perspective with D from

C.

Proof. Consider an arbitrary line Ls through P,, distinct from L; and L,. Let Ps be the
unique point on Lj collinear with the same point on [0o] as P3. The unique line Lg through P;s
meeting L3 (in, say, Pg) does not meet [0o]. Let L7 be the unique line through P, meeting Lg
in, say, P7. Clearly L7 # L. Let P I Ly I P, 1 L5 1 PE 1 Lg I P; 1 L% 1 P| be the C-quadrilateral
in perspective with Py I Ly I P4 1 L3 I Ps 1 L¢ 1 P, 1 L7y I P, from C. Now consider the
C-quadrilateral Dy = P, I Lo I Ps I L3 I Ps 1 Lg I Ps I Ls I P,. The unique C-quadrilateral D’4
in perspective with D4 from C containing L} as corresponding line to L3 (such a quadrilateral
exists by the previous lemma) must contain Pj (since it is the unique point on Lj collinear with
the same point on [0o] as P3). Hence D’y looks like Py I L5 I P41 L I...1 P;, where Py I L;.
But now it is easy to check that P{ I Ly I P, I Ly T P41 L5 I P; I L} I P is a quadrilateral
which is in perspective with D from C. Q.E.D.

STEP 2. Let (a,l,a’) be a point of S not collinear with (0,0,0). Since t > 3, there
exists k¥ € Ry — {0} such that the line [a,[] does not meet [k,0,0]; in other words, the unique
line [p, z,p’] through (a,l,a’) meeting [k,0,0] does not meet [00] and hence has indeed three
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coordinates. Suppose first p # 0. We consider the C-quadrilateral D5 = [£,0,0] L [p,z,p/] [
(a,1,a')1[0,a', K] 1(0,a")1[0,a' k5] I (b,m,a’) I [k,0,0], where ki, k3,b and m are well-defined.
We have m = Q2(b,k,0,0) and o’ = Q7(b,k,0,0) = k- b. Consider the C-quadrilateral D’s
containing [k, B,0], B € Ry, and which is in perspective with D5 from C (which exists by lemma
3). Then, by lemma 1, D’ contains the chain [k, B,0] I (b,m’,a’+B) L (0,a’+B) L (a,l',d’+B)
for some I',m' € Ry. Hence the unique C-quadrilateral containing [k, B, 0] (for any B € R;) and
which Is in perspective from C with any C-quadrilateral containing the chain [k,0,0] ~ {(a,i,d')
(with the above restrictions) contains the chain [k, B,0] ~ (a,lI',d’ + B), for some I' € R;.
This property is immediate if p = 0. If we assume [ # 0 and we consider the C-quadrilateral
D¢ = [k,0,0] ~ (a,l,a’) ~ [0,0,0] I (0,0,0) I [k,0,0], then, by considering the corresponding
C-quadrilateral in perspective with Dg from € and containing the line [0, B, 0], we see that the
above property also holds for ¥ = 0 (in which case I’ must be 0). Hence the property holds for

00V~ (a1l a\ not cont Iim irrent with Tool

every chain [k,0,0] ~ (a,!,a') not containing a line concurrent with [co).

Suppose now (a,l,a’) L (0,0,0) but still not incident with [0,0]. Then (a,!,a’) I [k,0,0] for
some k € Ry and k-a = a’. If B € Ry, then the last coordinate of the point (a,...) incident with
[k, B,0] is by definition Qi(a,k,B,0) = k-a+ B = a’ + B. So we can generalize the property
mentioned above to chains of the form [k,0,0] I (a,l,a"),k # 0.

STEP 3. Let (a,l,a’) and [k,0,0] be again as in the very beginning of step 3 (so without
the condition p # 0). Suppose moreover { # 0. We consider the C-quadrilaterals D7 = [0, 0, 0] ~
(a,l,a’) ~ [k,0,0] I (0,0,0) I [0,0,0] and Pg = [0,0,0] ~ (a,l,a’) I [a,0] I (a,l,0) I[0,0,1] I
(0,0) I [0,0,0]. The C-quadrilaterals in perspective with D7 and Dg from C and containing
[0,B,0], B € Ry, are resp. Dy = [0,B,0] ~ (a,!',d’ + B) ~ [k,B,0] I (0,0,B) I [0, B,0] for
some I’ € Ry and Py = [0,B,0] ~ (a,I',d’ + B) I [a,Q2(a,0,B,))] I (a,Q2(a,0,B,1),B) I
[0,B,1]1(0,B)1][0,B,0]. Hence I" = Q2(a,0,B,l). Now suppose | = 0. The quadrilateral
D7 above is still well-defined (unlike Dsg) and so is D7, which must contain the chain [0, B, 0]
I (a,Q2(a,0,B,0),B) L (a,l'ya’ + B), for some I' € R;. But since [ = 0, the line joining
(a,Q2(a,0, B,0), B) and (a,l’,a’ + B) meets [00], hence I" = Q2(a,0, B,0). Consequently, if a
C-quadrilateral D contains the chain [k,0,0] ~ (a,l,a’), then the C-quadrilateral in perspective
with D from C and containing [k, B,0], B € Ry, contains the point (a,Q2(a,0, B,l),a’+ B) as the
point corresponding to (a,l,a’). Suppose again | # 0, then by considering the C-quadrilaterals
D7 and D’7, we see that this property also holds for k = 0.

Now suppose (a,l,d’) is collinear with (0,0,0), but not incident with [0,0]. So (a,l,a’) I
[k, 0,0] for some k € Ry. We compute I’ € Rp in (a,i,d’ + B) [ [k, B 0] (the third coordinate
a' + B is calculated in the last part of step 2). If £k = 0, then ¢’ = [ = 0 and [0,B,0] I
(a,Q2(a,0, B,0), B), hence I = Q2(a,0, B,0) = Q2(a,0, B,l). Suppose now k # 0. Consider the
C-quadrilateral Dg = (0,0,0)I[k,0,0]I(a,l,a’")I[a,]1I(a,!,0)1[0,0,111(0,0)1[0,0,0]1(0,0,0).
The C-quadrilateral D’y in perspective with Dy from C contains the chain (0,0,B) I [0, B,0] I
(0,B)1[0,B,01 (a,Q2(a,0,B,1),B)I [a,Q2(a,0,B,)] I (a,I',a’ + B), hence I = Q2(a,0, B I)
So one can extend the above property to C-quadrilaterals containing any chain [k, 0,0] I (a,l,d’).

STEP 4. In this section, (k,b) denotes a point collinear with {oco) with & # 0 and b # 0.
Since t > 3, there exists k* € Ry — {0}. We define Py, Lo, P1,...,Ps,Ls as follows: Py =
(k,b),Lo = [k*,0,0],Po L Ly I P, I Lo, Ly = [k,b,0], P, = (0,0,5),L3 = [0,b,0], Ps = (0,b), P5
I Ly 1 P41 Loand PoI Ls I Ps I Ly. Suppose first P; # Py. Then we can consider the
quadrilateral Dg = (0,0,0) I [0,0] I P, I Ls I PsI Ly I P41 Lo I (0,0,0). By lemma 4, there

DV'IQ"S 2 n'nnrlrllafnrn] 'T)A \TI T\DT‘QT\D(‘*’I‘Y‘I “71*’]’1 ﬂn frnm f’ l'f\"lfﬂ'ln'lnﬂ' (n n R\ R = p< 'T‘]'Iﬁn

CXISL qu iy peIspelilve willl JJg iICil o contaiiinl & \Vyv, £, 2 T L. aiaeh
D' = (0,0,B) 1 Ly = [k*,B,0] L P, = (...,b+ B) 1L, 1 P, = (0,64 B) 1 L} = [0,b+ B, 0]
I P, =(0,0,6+B)I1[0,0]1(0,0, B) Cons1der the C-quadrilaterals Dyg = Lo I P4 I Ly I Ps
I L-'- I Pl:' I Li I P‘i I LQ oud :'/1 ig in pblsybbtlvb wnth Dlu f;unu. C uud conta}n}ns Lé Bv thc

construction of D’g and D'y9, we have : D'jo = LI P, I L, I PETLL I P T LY I P I L{, where
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P!, L%, P}, L} and P{ are well-defined. Finally consider the C-quadrilateral D1y = L4y I P3 I L3
IP 1L, 1 PyILsI P51 Ly and the C-quadrilateral D’y; in perspective with Dy; from C and
containing L. By construction, the chains Ly I P4 I L5 I P; and L} I P§ I L I Py are contained
in D'y;. Hence P} L P}, so Py = (k,b+ B). This shows that, if D is any quadrilateral containing
the chain [k*,0,0] ~ (k,b) (with the above restrictions), then the quadrilateral in perspective
with D from C and containing [k*, B,0] contains (k,b+ B). This property also holds for k = 0
as the coordinates of Pj show us.

Suppose now Py = P;. Then Ls = L1 and Ps = P4. The quadrilaterals Dg and D13 are still
well-defined and hence so are D’g and D’;1. We obtain, with the same notation as above and in
a similar way, Py = (0,0,b+B) L P = (k,b+ B) ~ L. So the above stated property still holds.
Applying this property to the C-quadrilateral [0, 0,0] ~ (k,b) ~ [k*,0,0] I (0,0,0) I [0,0,0], we
see that this property extends to quadrilaterals containing the chain [0,0,0] ~ (k,b),k # 0,5 # 0.

STEP 5. Suppose [k, b,k'] I (a,1,a’) L (0,0,0),a,b,a’ € Ry and k,I,k' € Ry. If a # 0, then
there exists a unique k* € Ry such that (a,l,a’) I [k*,0,0]. We consider five cases.

eCase 1: a # 0 and k = k* # 0. Clearly b = 0 and k' = 0. By step 3, we have, for every
B € Ry, [k,b+ B, K] = [k, B,0] I (a,Q2(a,0, B,I),d + B).

eCase 2: a # 0 and k = k* = 0. Clearly @’ = b = 0 and ¥ = [ = 0. By definition,
(a,Q2(a,0,B,1),a' + B) = (a,Q2(a,0,B,0),B) 1 [0, B,0] = [k,b + B, k'].

eCase 3: a # 0 and k # k* # 0. Consider the chain [k*,0,0] I (a,{,a’) I [£,5,k] T (k,b)
and any C-quadrilateral D containing it. The C-quadrilateral D’ in perspective with D from C
containing [k*, B, 0] contains (a,@2(a,0, B,l),a’ + B) (by step 3) and (k,b+ B) (by step 4).
Hence D’ contains the chain (a,Q2(a,0, B,l),a’ + B) I [k, b+ B, k'].

eCase 4 : a # 0and k # k* = 0. Asin case 2, a’ = 0 and [ = 0. Sincet > 3, we
can choose k* € Ry — {0},k* # k. Consider the C-quadrilaterals D12 = (0,0,0) I [0,0,0]
I(a,0,0) 1 [k,b,k"1 I (k,b) ~ [£™*,0,0] I (0,0,0) and D’;2 in perspective with D2 from C
and containing [0, B,0]. By case 3 above (substituting k**, for k*), [k, b, k'] corresponds to
[k,b+ B,k'] in D'15. Furthermore, if (a,0,0) corresponds to (a,!’,a"), then I’ = Q2(a,0, B,0)
and a” = B since (a,l’,a"”) is incident with [0, B,0] (which corresponds to [0,0,0]). Hence,
again, (a,Q2(a,0, B,l),d' + B) = (a,Q2(a,0, B,0), B) I [k, b+ B, k'].

eCase 5 : a = 0. Clearly (a,l,a’) = (0,0,d’) I [0,0] and [k, b, k'] = [k,a’,0]. In this case,
trivially (e, Q2(a,0, B,l),a’ + B) = (0,0,a’ + B) I [k,a’ + B,0] = [k, b+ B, k'].

So if (0,0,0) L (a,l,a’) I [k,b, k'], then for every B € Ry, we have
(a,Q2(a,0,B,1),a’ + B) I [k,b+ B,k'].

STEP 6. Suppose now that (0,0, 0) is not collinear with the point (a,l, a’), which is incident
with the line [k, b,k’]. We can choose k* € Rz such that [a,[] does not meet [k*,0,0] (¢ > 3).
We consider two cases.

eCase 1: b# 0. Consider the C-quadrilateral D3 = [k*,0,0] ~ (k,b) I [k,b,k'] I (a,l,a’) ~
[£*,0,0]. By lemma 3, there exists a unique C-quadrilateral D’;3 in perspective with D;3 from
C and containing [k*, B, 0]. By the properties stated in steps 2, 3 and 4, D’13 contains the chain
(a,Q2(a,0,B,1), a’ + B) I [k, b+ B,k'].

eCase 2 : b = 0. Consider the chain [k,0,0] I (k,0) I [k,0,k"] I (a,l,a’). By steps 2 and 3,
one has [k, B,0] I (k,B) I [k, B,k"] I (a,Q2(a,0, B,l),d' + B).

So we have shown that, whenever (a,l,a’) I [k,b, k'], then

(a,Q2(a,0,B,1),a’ + B) I [k,b+ B, k). (1)
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In coordinates, this means that, whenever Qz(a,k,b,k¥') = [ and Qj(a,k,b,k') = a', then
Q2(e,0,B,1) = Q2(a,k,b+ B,k) and o' + B = Qi(a,k,b + B,k’'). Substituting the values
for I and o’ in the latter equations, we obtain for all arbitrary a,b, B € R; and k, k' € Ry,

Qi(a,k,b+ B, k)Y = Qi(ak,bk')+ B 2
and
Qala,k,b+B,K) = Qa(e,0,B,Qa(a,k,b,)), (3)
i.e. § is C-transitive. This completes the proof of our main result. Q.E.D.

4 Corollaries

We keep the notation S,C,... of the previous section. A line M of § is said to be regular if
for every line M’ not concurrent with M, the set of lines meeting two distinct lines M; and
My, M L M; 1 M',i=1,2, is independent of the choice of M; and M, (see [5]). By [2], the
line [o0] is regular if and only if (J2 is independent of the third argument. Now suppose § is
C-Desarguesian (or equivalently C-transitive). Suppose we add the following extra-condition :

(R) Corresponding points of any two C-quadrilaterals in perspective from C are collinear.

In coordinates this means that corresponding points with three coordinates have the same second
coordinate. In that case, for ¢t > 3, (1) becomes

(e,l,d’+B) 1 [k,b+ Bk, (4)
with
(a,1,a') 1 [kb, K]

Consequently, | = Qq(a,k,b+ B,k') = Qz(a,k,b, k") for all a,b,B € Ry and all k, k' € R,.
Hence, for t > 3, @2 is independent of its third argument and [00] is a regular line.

Consider now the following condition (DP3) on a quadrilateral D.
(D3) No line of D meets L.

A C-quadrilateral D satisfying (D3) is called opposite C. Call § weakly C-Desarguesian if
for every quadrilateral D; opposite C and every point P; (distinct from both P and P’) on any
base-line, there exists a quadrilateral D; opposite C containing P; and which is in perspective
with Dy from C.

If § is weakly C-Desarguesian and if we add at the same time the condition (R), then it is
an easy exercise to show that § is C-Desarguesian. So § is C-transitive. Moreover, for t > 3, L
is regular and consequently L is an axis of symmetry (with the terminology of [5]). This is more
or less what M.A Ronan shows in [6]. Compared to the version of Ronan’s theorem in [5], we
use here a somewhat weaker hypothesis : indeed, we assume our quadrilaterals to be opposite C,
which is weaker than being opposite L (a quadrilateral is opposite L if it is opposite {P;, L, P, }
for at least one pair of distinct points Py and P2 on L). In [5], it is also shown that for ¢ = 2 all

conditions are thqﬁnr] but that I ic not nprnqenrl]v an axig of evmmnfnr

In [7], it is shown that, if a finite generalized quadrangle is {P, L,P'}- transitive for all roots
{P,L, P'}, then it is {L, P, L'}-transitive for all roots {L, P,L'} (with P, P’ points and L, L’

lines) nnnl‘n Q |e lenlrrnnrf nnrl than T ’T‘ﬂ-e I'Q'I clnr“rrc thot fram o thanrorm
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G. M. Seitz [1] it is stralghtforward that the quadrangle is classical or dual classical.
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Corollary 1. Ifa finite generalized quadrangle S is { P, L, P'}-Desarguesian for all roots { P, L, P'},
then S is classical or dual classical.

For the next results, we need the definition of a TGQ. By [5], 9.2.2 (ii), S8P) is a translation
generalized quadrangle, P € P, if each line through P is regular and if S is { P, L, P'}-transitive
for all lines L through P and some point P’ distinct from P on L. It follows that Sis {P’, L, P"}-
transitive for all lines L through P and all pairs of distinct points P’, P” on L. Hence

Corollary 2. Let P be a point of the generalized quadrangle S. Then the following conditions
are equivalent.

(C.1) 8P) is a translation generalized quadrangle.

(C.2) All lines through P are regular and S is { P, L, P'}-Desarguesian for all lines L through P
and some point P’ distinct from P on L.

(C.3) All lines through P are regular and § is {P', L, P"}-Desarguesian for all lines L through
P and all pairs of distinct points P', P" on L.

For the following results, we need some definitions. A triad is a set of three pairwise non
collinear points. A center of a given triad is a point collinear with all elements of the triad. The
span of two distinct points P; and Py, denoted by {P;, P;}+1, is the set of points of S collinear
with all points that are collinear with both P and P,. The definition of a regular point is dual
to the definition of a regular line above.

The following results are immediate consequences of our main result, combined with results
of S. E. Payne and/or J. A. Thas (see [5,ch.9]) :

Corollary 3. If8P) is a translation generalized quadrangle, then S is {Ly, P, L, }-Desarguesian
for all pairs of distinct lines Ly, Lo through P.

Corollary 4. Let S be a finite generalized quadrangle of order (s,t). Suppose S is {L1, P, Ly }-
Desarguesian for all pairs of distinct lines Ly, L, through some fixed point P. Then we have

(i) If all lines through P are regular and t is odd, then S®) is a translation generalized
quadrangle.

ii) If each triad containing P has at least two centers, then S(F) is a translation generalized
g &
quadrangle and t = sZ.

(iii) If P does not belong to a triad having exactly one center, then S®P) s a translation

generalized quadrangle; if t is even, then t = s2.

(iv) Ift = s?, then S®) is a translation generalized quadrangle.

Combining corollaries 2 and 3, we obtain Ronan’s theorem, which we state using our notation.

Corollary 5. (M. A. Ronan [6]). Let S be weakly {P, L, P'}-Desarguesian for all lines L
of 8 and some pair of points P,P' on L, and suppose S satisfies the condition (R) for all
C={P,L,P'}. Ift> 3, then S is Moufang and all lines of S are regular (in particular, if § is
finite, then it arises from a nonsingular quadric of Witt index 2 in PG(4,s) or PG(5, s)).

Proof. By the preceding discussions all lines of S are regular and § is {P, L, P'}-Desargue
sian for all lines L and all pairs of distinct points P, P’ on L. Hence, by corollary 2, S(F)
is a translation generalized quadrangle for all points P of S. By corollary 3, S is {L,P,L'}-
Desarguesian for all points P and all pairs of distinct lines L, L’ through P. Hence S is Moufang.
If § is finite, then, since all lines are regular, it consists of all points and all lines of a nonsingular
quadric of Witt index 2 in PG(4, s) or PG(5,s) (cfr. [5]). Q.E.D.
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Combining our main result with a fundamental result of J. Tits [9], stating that every
Moufang generalized quadrangle is known, we finally have

Corollary 6. Ifageneralized quadrangle S is { P, L, P'}-Desarguesian and {L, P, L' }-Desarguesian
for all roots {P, L, P'} and all roots {L, P, L'} (with P, P’ points and L, L' lines), then § is known.
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