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Abstract

A triality of type Iy in a building A of type D4 is a type rotating automorphism
of order 3 whose structure of fixed flags is the building of type Gy related to Dick-
son’s simple groups (in geometric term, this building is the split Cayley generalized
hexagon over the field in question). Such a triality exists over any field and is unique
up to conjugacy. In this paper, we present two characterizations of such trialities
among all type rotating automorphisms (hence not necessarily of order 3). We prove
that, if for a type rotating automorphism 6 of A, no non-fixed line and its image are
contained in adjacent chambers, and 6 fixes at least one line, then 6 is a triality of
type Iig (here, lines are vertices of type 2, with Bourbaki labeling). Also, if a type
rotating automorphism 6 of A never maps a line to an opposite line, then it is also
a triality of type I;,q. We moreover show that this condition is equivalent with 6 not
mapping any chamber to an opposite one. The latter completes the programme for
type rotating automorphisms of buildings of type D4 of determining all domestic
automorphisms of spherical buildings.

1 Introduction

A domestic automorphism of a spherical building is an automorphism which does not map
any chamber to an opposite one. This notion arose from work of Abramenko & Brown
2], who proved that in (thick) non-spherical buildings, only the identity has bounded
displacement on the set of chambers. In the spherical case, they proved that only the
identity maps no flag to an opposite flag. This led Temmermans, Thas and the present
author [8, 9, 10] to the more refined definition of J-domestic automorphism: this is an
automorphism of a spherical building over the type set I O J, with J stable under the
opposition map on types, mapping no flag of type J to an opposite flag. For J = I, we



obtain domesticity as defined above. It is clear that J-domesticity for any (self-opposite)
J C I implies domesticity. Hence in order to understand all J-domestic automorphisms,
one has to classify the domestic automorphisms. This was done for projective spaces in
8], for generalized quadrangles in [9], for type interchanging automorphisms of buildings
of type Eg in [14], and for generalized hexagons in work to be published by Parkinson
and the author. Partial results for polar spaces are contained in [10]. In a lot of cases, it
seems that domesticity is intimately related to the notion of geometric hyperplane in an
appropriate point-line geometry arising from the building. For instance, in a projective
space, the domestic dualities fix a hyperplane of the line-Grassmannian, namely a linear
complex, also known as the set of lines fixed under a symplectic polarity. In a polar pace,
an automorphism is line domestic if and only if it pointwise fixes a geometric hyperplane.
Also, the domestic dualities of buildings of type Eg fix pointwise a building of type Fy,
the standard point set of which is a geometric hyperplane of the standard point set of
the building of type Eg. In the situation of the present paper, this phenomenon will also
show up again. But I do not know of an abstract reason for it.

We investigate domestic type rotating automorphisms of (thick) spherical buidings A
of type Dy and we show that there is only one conjugacy class of such automorphisms,
namely, the trialities of type iy (as defined by Tits in [11]), which fix a split Cayley
hexagon. Now, it is well known (see Paragraph 5.2.2 of [11]) that the standard point
set of this hexagon is the standard point set of a subbuilding of type Bs, and thus again
constitutes a geometric hyperplane of the standard point set of A.

We will proceed by showing that a domestic automorphism maps no line to an opposite
line, and then use this to prove that it is a triality of type Iq. But domesticity also
implies that, if we view A as a hyperbolic quadric, no line and its image are contained in
a common singular plane. We also show that a partial converse holds, in particular, that
the fact that no non-fixed line and its image under a type rotating automorphism 6 are
contained in a plane, and some line is fixed, implies that 6 is a triality of type [,4. We can
rephrase these conditions with no reference to the hyperbolic quadric using the following
observation. Two distinct lines of the quadric are contained in a common plane if and only
if they are contained in respective chambers which are adjacent (these chambers contain
the intersection point and the two maximal singular subspaces through the plane).

Geometrically, the split Cayley hexagons and the symplectic quadrangles are very similar
objects, sharing a number of properties and characterizations, see Chapter 6 of [13]. The
present paper adds one more such characterization to this list: they both arise from the
unique type rotating domestic automorphism of their ambient building.

In fact, the same is true for all symplectic polar spaces. Note that the symplectic polar



spaces and the split Cayley hexagons are split buildings whose diagram contains a multiple
bond. There are two more classes of split buildings with a double bond in the diagram,
namely the polar spaces (of type B,) related to quadrics of maximal Witt index in even
dimensional projective spaces, and the standard buildings of type F4. The latter also
arise from domestic polarities, in these cases in buildings of type Eg, and these polarities
are (again) unique as domestic type rotating automorphisms. For the former (the polar
spaces of type B,,), a characterization has yet to be proved, but there are “polarities”
of buildings of type D, 1 producing them, and these polarities are domestic. For the
moment it is not clear whether these are the only domestic dualities (for low ranks,
n € {2,3}, it can be deduced from the results in [10] that they are unique). Hence it
seems that the split spherical buildings with a double bond in the diagram can be generally
characterized by domesticity of type rotating automorphisms of spherical buildings with
only single bonds in the diagram. This would be a rather beautiful and remarkable
synthetic characterization of such buildings.

For a relation between domesticity and the Freudenthal-Tits Magic Square, see the intro-
duction of [14].

Finally, our result shows that the Phan-geometry of a type rotating automorhism of a
building of type D, is empty if and only if it is a triality of type I;4. Phan-geometries (which
are the geometries of chambers mapped on opposite ones by a certain automorphism)
play a prominent role in Phan-Curtis-Tits theory, see [6]. Note that in this specific case,
the almost-Phan geometry (roughly defined as the geometry induced on the chambers
mapped “as far away as possible”, but not opposite) is studied in [4], where its diagram
is established and where it is proved that it is simply connected.

Remark 1.1 Although the general setting of the problem treated in this paper concerns
spherical buildings, we are here only concerned about buildings of type D4, which is a
“classical” type. Hence we will always take the natural point-line geometry point of view
to approach these buildings, i.e., we consider these buildings as non-thick polar spaces.
Then the elements (vertices) of the building (viewed as a simplicial complex) are the
singular subspaces except for the next-to-maximal ones (and the maximal ones represent
two types of vertices, see below). In fact, in this way, we can identify the building with a
hyperbolic quadric of Witt index 4, and we will do so explicitly below. Note that this is
closer to the original approach [12] than to a more recent approach [15]. When we mention
flags, vertices, chambers, then we mean the terminology of [12]; in the terminology of [15]
these are all residues. But we will not use the terminology of [15] in the present paper.



2 Preliminaries and Main Results

Let A be a spherical building, i.e., a building with a finite Weyl group. For the definition
of buildings, we refer to [1]. We always consider thick buildings, if not explicitly stated
otherwise. Let I = {1,2,3,4} be the set of types of A (and we use Bourbaki labeling [3]
for the nodes of the corresponding Coxeter diagram). As mentioned in the introduction,
for a subset J C I, a J-domestic automorphism is an automorphism which does not map
any flag of type J onto an opposite one. If J = I, then we simply talk about a domestic
automorphism. If J is a singleton, then we sometimes replace the “J” in J-domestic by
the name of the type of elements of type J. If J is not stable under the opposition relation,
then every automorphism is automatically J-domestic, hence we assume from now on that
J is fixed under the opposition relation. It is clear that in this case J-domesticity follows
from J’-domesticity if J' C J. Hence the most general situation is that of domesticity. In
the present paper, we concentrate on domestic type rotating automorphisms of buildings
of type Dys. Our main result will classify all such automorphisms and show that, here,
domesticity is equivalent to {2}-domesticity.

So let A be a building of type D4. It can be identified with a hyperbolic quadric H
in a projective space PG(7,KK) of dimension 7 over some (commutative) field K. Hence
the elements of A are the points, the lines, and the two systems of maximal isotropic
or singular subspaces of dimension 3 of H (the oriflamme complex of H). Each such
system plays the same role as the point set, and hence there is the principle of triality,
which just means that there exist type rotating automorphisms of A, inducing period 3
on the types. A triality, in the sense of Tits [11], is then a type rotating automorphism
of order 3, the smallest possible order it can have. Note that sometimes a type rotating
automorphism itself is already called a triality, but we will follow Tits’s terminology here,
and call a general type rotating automorphism a tairality (after a Welsh expression “tair”
for three). Since lines are the elements of type 2 in A, we also speak about line-domesticity
instead of {2}-domesticity, as explained in the previous paragraph.

Tits classified in [11] all trialities which admit at least one fixed flag of type {1,3,4}.
The most interesting trialities are the ones of type I,, where ¢ is an automorphism of the
underlying field K. The fixed flags of such trialities define a building of type G, a so-called
generalized hexagon. If o = id, the identity, then the standard point set of such hexagon is
exactly the standard point set of a subbuilding of type Bs—in geometric terms, a parabolic
quadric obtained from H by intersecting it with a non-tangent hyperplane of PG(7, K).
The hexagons related to trialities of type L4 are called split Cayley hexagons, because they
can be constructed directly using the split Cayley algebra over K, see Schellekens [7].

We can now state our first main result.



Main Result 2.1 A type rotating automorphism 0 of a building A of type Dy is a triality
of type Liq if and only if 0 is domestic if and only if 0 is line-domestic.

Note that two lines L, M in H can be in six distinct possible mutual positions:

1. L could be equal to M;
2. L could be concurrent with M and L U M contained in a singular subspace of H;

3. L could be concurrent with L but some point of L is not collinear with some point
of M;

4. L U M could be contained in a singular subspace of H but not in a plane;

5. there could be a unique point on L collinear to all points of M (and then there is a
unique point on M collinear with all points of L).

6. L and M are opposite, so each point of L is collinear to a unique point of M.

Viewing L and M as elements of A, the cases (3) and (4) are the same, since both say
that L and M are incident with a unique common element of A. In case (5), we say that
(L, M) is a special pair. Case (2) is equivalent to saying that L and M are distinct and
contained in adjacent chambers.

Now we can state our second main result.

Main Result 2.2 A type rotating automorphism 0 of a building A of type Dy is a triality
of type Ly if and only if no non-fixed line and its image under 6 are contained in adjacent
chambers, and 0 fixes some line.

Concerning Main Result 2.2, it also seems to be a general phenomenon for the split
buildings with a multiple bond in the diagram that a certain mutual position other than
opposition of a vertex and its image of the corresponding type rotating automorphism of
the ambient building with only single bonds in the diagram cannot occur, and that this
automorphism is characterized by that property. For instance, [14] shows that symplectic
polarities 6 of buildings of type Eg are characterized by the absence of pairs (p,p?), where
p is a point and p? is a “symp” not opposite and not incident with p, and the fact that
there is at least one pair (p, p’) with the point p incident with p?. A similar thing holds for
symplectic polarities in projective space; we will show in a short appendix the following
characterization.



Proposition 2.3 Let 0 be a duality of a projective space PG(n,K), n > 3, for some skew
field K. Then 0 is a symplectic polarity if and only if for no line L the image LY intersects
L in precisely one point, and there is some line L included in its image L° if and only if
for no line L the image LY intersects L in precisely one point, and there is some absolute
point.

The restriction n > 3 stems from the fact that for n = 2, the hypotheses are self-
contradictory (and there is indeed no symplectic polarity in a plane). Note also that the
last criterion is the most general because if a line is included in its image, then every point
of that line is absolute (a point being absolute if it is contained in its image).

3 Proof of Main Result 2.1

Let 6 be a type rotating automorphism of a building A of spherical type Dy. We repeat
that we call 6 a tairality (see the introduction). If § has order 3, then we call it a triality.
Let H be the corresponding hyperbolic quadric in PG(7, K), for some well determined field
K. Then H can be viewed as a non-thick polar space of rank 4 containing two systems ¥,
and Y5 of maximal singular subspaces (all of dimension 3; they are also called generators)
with the property that two maximal singular subspaces intersect in a singular subspace
of dimension 0 or 2 if and only if they belong to a different system. Each system of
generators can be identified with one type of vertices of A. Without loss of generality, we
assume that 6 maps points to elements of ¥;, maps ¥; to Xy and maps ¥, to the point
set of H. Notice that the planes of H correspond with flags of A containing an element
of > and one of Y.

We will identify A with H. In particular, we will view each element of A as a set of points
(the points incident with that element).

In order to prove Main Result 2.1, it suffices to prove that, if 8 is a triality of type I,
then it is line-domestic, and that, if # is a domestic tairality, it is a triality of type I;,q. We
begin with the former.

Let 6 be a triality of type Iy, and let L be a line of H. Then L contains at least one
absolute point p (as the set of absolute points consists of a parabolic subquadric, see
Paragraph 5.2.2 of [11]), and LY C p. It follows that L and LY are not opposite, hence 6
is line-domestic. Note that this has also been observed in [4] (Section 3) using a coordinate
calculation.

So from now on we assume that 6 is a domestic tairality, and we aim to show that it is a
triality of type [;q. We first show that # is line-domestic.
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Lemma 3.1 If 6 is domestic, then it is line-domestic.

Proof Suppose, for a contradiction, that some line L is mapped onto an opposite line
L?. Let p be an arbitrary point on L. Then there is a unique member of ¥; incident with
L not opposite p’, hence we can choose U; € ¥, opposite p’. Likewise, there is a unique
member of ¥, incident with L and not opposite Uf, and there is a unique point ¢ on
L? not opposite p. Since there are at least three elements of ¥y incident with L, we can
choose U, € ¥ incident with L such that Us is opposite U and such that U # ¢. Since
we now have that p is opposite U¢, that U, is opposite p?, and that U, is opposite U?,
we conclude that {p, L, Uy, Us} is a chamber that is mapped onto an opposite chamber, a
contradiction to the domesticity. [

We call a point p of H absolute if p € p’. Likewise, a member U of ¥, U X, is absolute
if U% is incident with U, i.e., if {U,U%} is a flag of A, or, equivalently, if U N UY is a
(singular) plane of H if U € ¥y, and U? € U if U € ¥,. Note that U € ¥; U X, being
absolute is equivalent with U? being absolute.

Here is a fundamental observation.

Lemma 3.2 Let L be a line such that (L, L°) is a special pair. Then the unique point p
on L collinear with all points of LY is absolute.

Proof Suppose, for a contradiction, that p is not absolute. Then p’ does not share any
point with L. Let 7 be the plane in p’ all of whose points are collinear with p. Note
that LY C 7. Let M be a line in p? intersecting L? in a point z, and not contained in 7.
We choose z different from the unique point on L? collinear with all points of L. Then
M is a line through p contained in a plane a together with L. By varying M?, we may
assume that o does not meet LY. It follows that M and M? are not concurrent. Since
p is not collinear to every point of M?, we see that M and M? are not contained in a
common singular subspace. By domesticity of 6, the pair (M, M?) is special. Since p is
not collinear to all points of M?, but it is collinear to z, it follows that z is collinear to all
points of M. Since x is not collinear with all points of L, it is not collinear with all points
of a line K in « through p, with L # K # M. But K’ contains x and is not contained in
7. Hence K and K? are opposite, a contradiction to the assumption that 6 is a domestic
tairality. Hence p is absolute. [

We now investigate properties of the set A of absolute points. Our first main aim in this
respect is to show that 6 has order 3 when restricted to A.

If p is an absolute point of #, then we denote by m, the intersection of p? with .

7



Lemma 3.3 Let p be an absolute point of 8. Then all points of m, are absolute.

Proof Let z be an arbitrary point in 7,. Let L be any line in p’ through x but not
through p. Then LY is a line in p92, but not in p?. If x € L?, then, since L? C 29, clearly
x is absolute. If x ¢ L, then Lemma 3.2 implies that x is absolute. Hence every point z
of m:= p? N p? is absolute. O

Lemma 3.4 Let p be an absolute point of 0. Then p € p92.

Proof Suppose by way of contradiction that p ¢ p?’. Let z be an arbitrary point of Tp-
By Lemma 3.3, we know that z is absolute. Then ¥ intersects 7, in a line L, through
x (since it intersects p?° in a plane). Tt follows that (pz)? = L, is a line of 7, through
z. But the map sending a line in p? through p to a line in 7, induces an isomorphism
of projective planes; hence the mapping from 7, to m, mapping the point = to the line
L, is the restriction to the points of a duality of m,. But since x € L,, no flag can be
mapped to an opposite, a contradiction to Theorem 3.1 of [8] and the fact that there are
no symplectic polarities in a projective plane.

This contradiction proves the lemma. (]

Lemma 3.5 Let p be an absolute point of 8. Then every line in m, through p is fized
under 0. Also, p=p?".

Proof Suppose, for a contradiction, that some line L through p in m, is not fixed under
0. Since p € L and L C p’ the image LY is contained in m,. Put 2 = LN LY. Let
y € L\ {p,z}. Since, by Lemma 3.3, y is absolute, y € y’. Since y € L, we also have
LY C y’. Hence m, € ¢, implying p’ = y’, a contradiction. Hence L is fixed.

Now suppose p # p93. Lemma 3.4 implies p € p92; hence p? contains peg. It follows that
P e mp. The image of a line through p in , is a line through p?” in mp. Now, since
p # p? | there exists a line L through p in 7, not through p” and so L cannot be fixed,
a contradiction. We conclude that p = peg. 0

Remark 3.6 Lemma 3.5 implies that no non-fixed line L is mapped onto a line L? such
that L and L are contained in a plane. Indeed, suppose that L and LY are contained in
some plane, and L # L?. Let x = LN LY, then € LY C 2% and so z is absolute. Then
L C 2" =2, Since no point of ¥ \ 7, is collinear with any point of ¥ \ ., one of
L, LY is contained in 7, and hence fixed, a contradiction.
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Lemma 3.7 Let p be an absolute point of 6. If q is an absolute point of 6 collinear with
p and not contained in m,, then there is a unique point r € m, such that {q,p} C 7. In
particular, all points of the line pq are absolute.

Proof First we claim that ¢ is not contained in p? U p‘92. Indeed, suppose g € p’. The
line (pq)? is contained in % but not in m,. Then ¢’ contains (pg)?, and so, if ¢ were
absolute, ¢ would be collinear with a point of pe2 \ 7. Hence ¢ would be collinear with all
points of p?°, a contradiction. The same argument with 6 substituted by 62 (and noting
that (p?)? = p’) shows that ¢ ¢ p?. Our claim is proved.

Hence there is a unique line L in 7, through p all of whose points are collinear with ¢,
and there is a unique plane 7 containing ¢ and L. Let U be the unique member of ¥,
containing 7. Since L’ = L, we see that the point r := U? is contained in L, and is
absolute. Now, since ¢ is contained in U = #”, it must be contained in 7, by the our
claim above. Hence m = .

Clearly r is unique as 7, = m, for every other point s € m, such that {p, s} C 7. [
Lemma 3.8 The set of absolute points is a geometric hyperplane of H.

Proof We start by showing that every line L contains at least one absolute point. If
LN L # 0, then for any € L N L?, the singular subspace 2¢ contains LY, and hence z;
so z is absolute and contained in L. If L N LY = (), then, by Lemma 3.1, either (L, LY) is
a special pair, in which case the assertion follows from Lemma 3.2, or L and L? are skew
lines in a singular 3-space U. If U € £y, then, since L C U, we see that U? ' € L and so
U is contained in U and is an absolute point on L. If U € s, then U? is a point on
L?, and hence p := U? is an absolute point and L C p? ' = p?. Also, L = (L% Cc U?"'
and the latter is by Lemma 3.5 equal to p’. Hence L C mp and so every point on L is
absolute by Lemma 3.3.

Hence every line of H contains at least one absolute point. Lemmas 3.5 and 3.7 complete
the proof. H

Lemma 3.9 The tairality 0 is a triality.

Proof If pis absolute, then p?° = p by Lemma 3.5. If p is not absolute, then we consider
the 3-space p’. Since, by Lemma 3.8, the set of absolute points is a geometric hyperplane
of H, it follows that there is a plane 7 in p’ consisting of absolute points. Moreover, p’



is the unique member of ¥y containing 7. But, by Lemma 3.5, 7% (pointwise image)
coincides with 7, hence (10‘9)93 = p?, implying that ]993 = p. Consequently # has order 3
and is a triality. O

We can now finish the proof of Main Result 2.1. Since 6 is a triality, and since every
absolute point is incident with at least three fixed lines, it follows from the second part of
Paragraph 5.2.9 of [11] that 6 is a triality of type I,, where o is a field automorphism of
order 3. However, since for every absolute point p, every line through p inside , is fixed,
the first part of Paragraph 5.2.9 of [11] implies that o = id.

The proof of Main Result 2.1 is complete.

4 Proof of Main Result 2.2

In this section, we let 6 be a tairality of a building A of spherical type D4 (which we again
view as the hyperbolic quadric H just like in the previous section) with the property that,
for every line L which is not fixed by 6, the lines L and L? are not contained in adjacent
chambers of A, and such that there exists at least one fixed line. We must show that 6
is a triality of type Iig. Hence, by Main Result 2.1, it suffices to show that 6 maps no
line to an opposite line. Note that, by Remark 3.6 and the fact that a triality of type Iig
is domestic, we know that trialities of type I,y do not map any non-fixed line L to a line
which is contained in a chamber adjacent to some chamber containing L.

The outline of the proof is as follows. We set A to be the the union of all fixed lines
(viewed as sets of points of H). Our first goal is the show that A is a subspace, i.e., if
x,y € A are collinear in H, then all points of the line xy belong to A. Then we show that
every line meets A nontrivially. Finally, we show that every line containing a point of A
is not mapped onto an opposite line.

We again assume that # maps points to elements of ¥, and its inverse maps points to
elements of 35. Note that every element of A is an absolute point. In fact, /A has order
3:

Lemma 4.1 Ifz € A, then 2% = z.

Proof Let L be a fixed line containing . Then L = L? C 2%, and similarly L C 2.
Replacing = by 2% and 0 by 61, we see that 2 e?na® =, Ifx #* 2%, we consider
a line M C m, through x but not through 2. Then M? C m, and M? contains z°.
Hence M and M? are distinct and contained in a common plane, a contradiction. OJ

10



We again introduce the notation , for 2% N 27

Lemma 4.2 If x € A, then all points of m, are in A and every line in 7, through x is
fixed under 6.

Proof If L is a line through z in 7., then L? is again a line through z in 7,. Our main
assumption now implies that L = LY. It follows that every point in 7, belongs to A. [

Lemma 4.3 The union A of all fized lines is a non-empty subspace.

Proof By our main assumption, A is non-empty. Now let =,y € A with L a line
of H containing x and y. If L is fixed, then we are done. Now suppose that L is not
fixed. We claim that y ¢ 2. Indeed, suppose the contrary. Then x € L C 2% and so
L C a2 na®” = m,. Also L? = 29N v’ > y. Hence y € 7, and so L is fixed due to
Lemma 4.2. Our claim is proved.

Similarly = ¢ y’. Hence L?, which is the intersection of z? with y?, does not contain x
or y. Consider the 3-space S determined by the points x and y and the line LY. Since
S intersects z¥ and 3? in planes, it belongs to ¥5. So S? is a point p. Since z and y
belong to S, we see that p is contained in 2 Ny’ = LY. Since S intersects z¥ and 3/’
in planes (and hence is incident with them as elements of the building A), we see that
p € e y‘92. Hence p € m, N m, and Lemma 4.2 implies that the lines px and py are
fixed. Consequently, these lines belong to m,, and so L C 7,. Lemma 4.2 implies that all
points of L belong to A. O

Lemma 4.4 The only points of A in z¥ U 2% for a point x € A, are the points of 7.

Proof Lety € 2’ \ 7, and suppose y € A. Let L be a fixed line through y. Then 7’
intersects 2%” in a plane, and contains L; hence L contains a point z of . Obviously,
2 € m,, and so L is contained in 2?. Applying 6, we see that L = L? is contained in x(’z,
hence in 7., a contradiction since y is not contained in m,. Similarly if y € 2 \ 7, and
y € A (interchange 6 and 671). O

Lemma 4.5 Fvery line of H contains a point of A.
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Proof Choose a point p € A arbitrarily. We can identify the lines of H through p
with the points of a quadric H, in PG(5, K) isomorphic to the Klein quadric over the field
K. The points of A collinear with p induce a subset A, of the points of H,. The plane
7, corresponds with a line L in A,. Each point # € 7, produces a plane 7, through p
and this plane 7, corresponds with a line L, entirely contained in A, and meeting L in
a point. Note that by Lemma 4.4 L, and L are not contained in a plane of H,. We can
consider three points x1, z2, x5 in m,, with x; and z, on distinct lines through p, and 3
on the line px;. Then the lines L, L,,, L,, generate a 3-space of PG(5,K) intersecting
H, in a hyperbolic quadric (), which is entirely contained in A,, by Lemma 4.3. The
subspace generated by ) and L, either is a cone over () entirely contained in A,, or
intersects H, in a quadric @' isomorphic to a parabolic quadric Q(4,K) in PG(4,K). In
the former case, A, contains a plane through L, contradicting Lemma 4.4. In the latter
case, the set A, induces a subspace of Q(4,K) containing a grid and an extra line through
one of the points of the grid. Now, a subspace of a generalized quadrangle containing
an ordinary quadrangle is a (full) subquadrangle, and so A, induces in Q(4,K) a thick
(full) subquadrangle. But Proposition 5.9.4 of [13] says exactly that every thick full
subquadrangle of )(4,K) coincides with Q(4,K) itself. It follows that A, contains @'
Note that )’ is a geometric hyperplane of H,,.

Now let K be any line of H and let a be any point of A. Since A contains m,, there is at
least one point p of A collinear with all points of K. Now the plane determined by p and
K defines a line in H,. That line intersects the geometric hyperplane ()’ in at least one
point, and so there is a line through p contained in A and intersecting K. The lemma is
proved. [

One could now go on and show that A is a geometric hyperplane consisting of all points
of a parabolic subquadric of H, and then show that the fixed lines define a generalized
hexagon. But we can end the proof quicker by noting that 6 is domestic.

Indeed, let L be any line of H, and let = be a point in LNA. Then LY C 2 > 2. Hence the
point z of L is collinear to all points of L and so L cannot be opposite LY. Consequently
0 is domestic and Main Result 2.2 now follows from Main Result 2.1.

Appendix: A characterization of symplectic polarities
in projective spaces

Here we show Proposition 2.3. It suffice to show that the duality 6 of the projective
space PG(n,K), n > 3, maps every point z to a hyperplane 2% containing x, as soon as
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maps no line to a subspace intersecting the line in precisely one point, and some point is
absolute. Then the result follows from Lemma 3.2 of [§].

So let, by way of contradiction, z be a point with z ¢ x%. Let p be an absolute point. If
p € 2%, then the line pz is mapped onto z?Np?, which contains p but not z, a contradiction.
Hence all points of 2% are non-absolute. Let L be a line in 2. Since every hyperplane
meets L, every point, and hence also p, is contained in some y’, with y € L. Now the
line py is mapped onto a subspace containing p but not y, a contradiction again. The
proposition is proved.

It is an open problem whether we can strengthen Main Result 2.2 to the assumptions that
no line is mapped onto a line in a common plane, and there exists at least one absolute
point. In the finite case, this works (and the proof, which we omit, uses the fact that
every duality of a finite projective plane has at least one absolute point, see [5]).
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