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Abstract

The split version of the Freudenthal-Tits magic square stems from Lie theory and
constructs a Lie algebra starting from two split composition algebras [5, 20, 21]. The
geometries appearing in the second row are Severi varieties [24]. We provide an easy
uniform axiomatization of these geometries and related ones, over an arbitrary field.
In particular we investigate the entry A2 × A2 in the magic square, characterizing
Hermitian Veronese varieties, Segre varieties and embeddings of Hjelmslev planes of
level 2 over the dual numbers. In fact this amounts to a common characterization
of “projective planes over quadratic 2-dimensional algebras”, in casu the split and
non-split Galois extensions, the inseparable extensions of degree 2 in characteristic
2 and the dual numbers.

1 Introduction, Notation and Main Result

1.1 Mazzocca-Melone axioms and C-Veronesean sets

In this paper we present a far-going generalization of the Mazzocca-Melone approach
to quadric Veronese varieties. In this introduction, we describe the formal situation,
and mention some history. The compelling motivation for our approach (why exactly
generalizing in the way we do) is explained in the final section of the paper in order not to
interfere with the mathematical flow of the paper. The reader might want to read the final
section first. It puts our result in the broader perspective of the Freudenthal-Tits Magic
Square [5, 20, 21], certain alternative algebras, and representations of a class of spherical
buildings (containing those having exceptional type E6) in projective space. Let us just
mention here that our intention is not just “generalizing”, but rather a new geometric
approach to the aforementioned magic square.
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The Mazzocca-Melone axioms for Veronese varieties have proved to be of fundamental
importance for the theory of Veronese varieties. Mazzocca and Melone [10] were the first
ones to prove such a characterization (for quadric Veronese varieties of finite projective
planes), and the same axioms, with only some minor changes depending on the context,
were used by others to characterize finite quadric Veronese varieties of projective spaces
[17], quadric Veronese varieties in general [13], finite Hermitian Veronese varieties [18],
and Hermitian Veronese varieties in general [12]. In this paper, we introduce a further
minor change in these axioms to include more varieties over arbitrary fields.

Let us start by briefly recalling the “classical” Mazzocca-Melone axioms, in their simplest
form, namely, for the quadric Veronesean variety X of a projective plane PG(2,K) in the
5-dimensional projective space PG(5,K) (see [13]). One hypothesizes a family Π of planes
each member of which intersects X in a conic (or, more generally, an oval, see below).
The set X corresponds to the point set of PG(2,K), whereas the conics correspond to the
lines of PG(2,K). The pair (X,Π) satisfies three properties. The first is that every pair of
points in X is contained in a unique member of Π; the second is that every pair of planes in
Π intersects inside X; the third is that the tangent lines at any point x ∈ X to the conics
obtained from Π and going through x are contained in a plane only depending on x. The
axioms for a Hermitian Veronesean are the same, except that Π is replaced by a family
of 3-spaces each member of which intersects the point set X in a quadric of Witt index
1. One possible way to go on would be to replace 3-spaces with n-spaces (see [8] for such
an approach). Another generalization is to consider other classes of quadrics in 3-space.
That is exactly what we will do. The achievement is then that the corresponding varieties
precisely correspond in a uniform and explicit way to projective planes over 2-dimensional
unital algebras.

So our first aim is to write down a satisfactory new version of the classical Mazzocca-
Melone axioms that capture exactly the varieties we are aiming at. Two features have
to be taken into account. The first one is that the quadrics no longer have Witt index
1; hence the set X will no longer be a cap, i.e., a set not containing 3 points on a line),
which implies that more than one quadric can contain two different points. The second
one is the quadrics no longer need to be nondegenerate, in which case the singular points
do not belong to the set X.

We now discuss how to deal with the first feature, and we do this by considering the case
of Segrean Veronesean sets; here the quadrics have Witt index 2 and are nondegenerate.

A Segre variety of type (2,2) is the image S2,2 of the direct product PG(2,K)× PG(2,K)
of the point sets of two isomorphic projective planes over a commutative field K under
the mapping
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σ : PG(2,K)× PG(2,K)→ PG(8,K) :
((x, y, z), (x′, y′, z′)) 7→ (xx′, xy′, xz′, yx′, yy′, yz′, zx′, zy′, zz′).

(In general, for the definition of a Segre variety Sn,m of type (m,n), m,n ≥ 1, one considers
the direct product of the point sets of a projective m-space with a projective n-space and
the obvious generalization of the mapping above.)

One observes that the image of the direct product of two lines inside these planes is a
hyperbolic quadric in some 3-dimensional subspace of PG(8,K). Clearly, every pair of
points in the image is contained in at least one such hyperbolic quadric, but considering
a fixed line in one of the planes, we see that distinct hyperbolic quadrics contain the
same line, and hence the same pairs of distinct points. Hence the first Mazzocca-Melone
axiom has to be modified in this way. As for the other two axioms, we note that the
automorphism group of S2,2 is transitive on the points, and on the hyperbolic quadrics
(indeed, if a linear collineation acts on the first component with matrix A, and one on the
second component with matrix B, then the Kronecker product A ⊗ B acts in a natural
way on S2,2). Thus we can choose the coordinates conveniently to verify that (1) the
intersection of two arbitrary 3-spaces each containing distinct such hyperbolic quadrics is
a subset of S2,2, and (2) all generators of all hyperbolic quadrics through a fixed point are
contained in a 4-space. Let us record in some more detail the resulting axiomatization.

A hypo H in a 3-dimensional projective space Σ (over K) is the set of points of Σ on
some hyperbolic quadric. For every point x ∈ H, there is a unique plane π through x
intersecting O in two intersecting lines both of which contain x. The plane π contains
all lines through x that meet H in only x and is called the tangent plane at x to H and
denoted Tx(H). The lines contained in a hypo are called generators of the hypo.

Let X be a spanning point set of PG(N,K), N > 3 (possibly infinite), and let Ξ be a set of
3-dimensional projective subspaces of PG(N,K), called the hyperbolic spaces of X, such
that, for any ξ ∈ Ξ, the intersection ξ ∩X is a hypo X(ξ) in ξ (and then, for x ∈ X(ξ),
we sometimes denote Tx(X(ξ)) simply by Tx(ξ)). We call X a Segrean Veronesean set if
the following properties hold :

(S1) Any two points x and y in X lie in at least one element of Ξ, which is denoted by
[x, y] if it is unique.

(S2) If ξ1, ξ2 ∈ Ξ, with ξ1 6= ξ2, then ξ1 ∩ ξ2 ⊂ X.

(S3) If x ∈ X, then the planes Tx(ξ), with x ∈ ξ ∈ Ξ, are contained in a common
4-dimensional subspace of PG(N,K), which we denote by T (x).
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Note that (S1) immediately implies that the cardinality of Ξ is at least 2, since N > 3
and X spans PG(N,K). This rules out the trivial case of X being a hyperbolic quadric
in 3-space.

Now about the second feature, namely, the possibility to allow degenerate quadrics. Then
Axioms (S1) and (S3) can remain the same, but it is clear that axiom (S2) has to be
reformulated in a more general context. Indeed, we do not want the singular points of the
degenerate quadric to belong to the variety. To make our point clearer, we will introduce
the new axioms for a general class of “hypersurfaces”.

Let n ≥ 1 be a natural number. Let us call a point set S ( PG(n,K), K any skew field,
a hypersurface if (1) for any point x ∈ S the union Tx(S) of the set of lines through x
that either are contained in S or intersect S precisely in {x} either forms a hyperplane
of PG(n,K) (and then x is called a regular point of S), or is the whole point set of
PG(n,K) (and then x is called a singular point of S), and (2) the set of regular points
spans PG(n,K). Let C be a class of hypersurfaces of PG(n,K). Let there be given a set X
of points spanning of some projective space PG(N,K), with N > n and K still any skew
field, and let Ξ be a collection of subspaces of PG(N,K) of common dimension n (the
“C-subspaces”), such that, for any ξ ∈ Ξ, the intersection ξ ∩X is the set X(ξ) of regular
points of some hypersurface X(ξ) of ξ belonging to the class C (and then, for x ∈ X(ξ),
we sometimes denote Tx(X(ξ)) simply by Tx(ξ)). Put X equal to the union of all X(ξ),
ξ ∈ Ξ. We call X a C-Veronesean set if the following properties hold :

(V1) Any two points x, y ∈ X lie in at least one element of Ξ, denoted by [x, y], if unique.

(V2) If ξ1, ξ2 ∈ Ξ, with ξ1 6= ξ2, then ξ1 ∩ ξ2 ⊂ X(ξ1) ∩ X(ξ2), and ξ1 ∩ ξ2 ∩ (X \ X) is
contained in some subspaces of ξ1 ∩ ξ2 of codimension 1.

(V3) If x ∈ X, then each of the subspaces Tx(ξ), with x ∈ ξ ∈ Ξ, is contained in a
(2n− 2)-dimensional subspace of PG(N,K), denoted by T (x).

Axiom (V1) is self-explanatory in the frame of projective planes over rings (every pair
of points is contained in a least one line). Axiom (V2) expresses two facts: (1) two
members of Ξ intersect in the same way as the corresponding hypersurfaces do, up to the
singular points; (2) they intersect in the minimal possible dimension. The motivation here
is to exclude certain projections of the varieties that we want to characterize. Finally,
Axiom (V3) expresses the 4-dimensionality of the variety over K, and hence bounds the
dimension N . Indeed, as an algebraic variety, the tangent space has the same dimension
as the variety, and it is the dimension of the tangent space that is bounded in (V3)
in an abstract way. Deletion of (V3) would result in many more examples, such as
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the varieties corresponding to projective spaces over 2-dimensional unital algebras, even
infinite dimensional ones, and many suitable projections. Also Veronesean representations
of other linear spaces, such as Hermitian curves, in 6- and 7-dimensional projective space
and related to triality (see [4]) satisfy (V1) and (V2). Finally, free constructions not
related to any variety satisfy (V1) and (V2) but not (V3), and such objects are considered
unclassifiable.

The original Mazzocca-Melone axioms amount to the case n = 2 and C the class of
irreducible finite plane conics. Mazzocca & Melone characterized finite quadric Veronese
varieties over fields of odd order [10]. This was later generalized by Hirschfeld & Thas to
include all finite fields [7]. Thas & Van Maldeghem [16] then considered the case where C
is the class of finite plane ovals (and proved each of these ovals must automatically be a
conic; an oval is a set of points of a projective plane no three on a line and through each
of its point a unique line intersecting the oval in one point), whereas Schillewaert & Van
Maldeghem [13] classified C-Veronesean sets for C the class of all ovals of any (finite or
infinite) projective plane.

Cooperstein, Thas & Van Maldeghem [3] characterized finite Hermitian Veronese vari-
eties as the C-Veronesean sets, where C is the class of elliptic quadrics of finite 3-space.
Thas & Van Maldeghem [18] generalized this to the class of ovoids of finite 3-space,
whereas Schillewaert & Van Maldeghem [12] proved the same characterization for Her-
mitian Veronese varieties over any field, as C-Veronesean sets, where C is the class of all
ovoids of PG(3,K), with K any skew field.

In the present paper, we want to consider the case n = 3 and C-Veronesean sets for C
either the class of ruled quadrics of PG(3,K), with K an arbitrary field, or the class of
oval cones in PG(3,K), with K any skew field. In the former case, we also speak of a
Segrean Veronesean set (see above), whereas in the latter case we speak of a Hjelmslevian
Veronesean set.

Let X be a Hermitian, Segrean or Hjelmslevian Veronesean set. We define the geometry
G(X) as follows. The points are the elements of X, the lines are the members of Ξ and
incidence is given by containment. Note that, for X a Hermitian Veronesean set, the
geometry G(X) is a projective plane over a quadratic extension of K, see [12]. But for
the Segrean and Hjelmslevian cases, G(X) will be a ring geometry. The corresponding
ring will be a 2-dimensional unital algebra over a field. So let us have a look at such
geometries and algebras in the next subsection.
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1.2 Planes over some 2-dimensional algebras

Let K be a (commutative) field and let V be a 2-dimensional unital algebra over K. Let
V0 be the set of zero-divisors of V and put V ∗ = V \ V0.

We have the following classification result. Note that all algebras are quadratic, i.e., every
element of the algebra satisfies a quadratic equation with coefficients in K.

Proposition 1.1 (Bourbaki [1], III $2 Proposition 3, p. 441) Let V be a unital K-
algebra of dimension two. Then precisely one of the following holds.

(a) V is étale, i.e., V/K is either a separable quadratic field extension or V = K ⊕ K
splits.

(b) V = K[ε]; ε2 = 0; is the algebra of dual numbers.

(c) K has characteristic 2, and V/K is a (purely) inseparable field extension (of exponent
one).

We define the following geometry G(V ). The points are the classes of triples V ∗(x, y, z),
x, y, z ∈ V , such that, if v ∈ V and v × (x, y, z) = (0, 0, 0), then v = 0. The lines are the
classes of triples V ∗[a, b, c], a, b, c ∈ V , such that, if v ∈ V and v × [a, b, c] = [0, 0, 0], then
v = 0. A point V ∗(x, y, z) is incident with a line V ∗[a, b, c] if a × x + b × y + c × z = 0.
We will usually omit the multiplication sign “×” in the sequel.

A 3× 3 matrix with entries in V will be said to have rank 1 if for every two rows R1, R2,
there are elements a, b ∈ V such that aR1 + bR2 is the zero-row, and such that no nonzero
element c of V exists such that ac = bc = 0. Below we will only use this notion for
“Hermitian matrices”, where it is clear that one can substitute “row” by “column” in this
definition without changing the meaning.

There are always three ways to represent G(V ) in an 8-dimensional projective space over
K, and sometimes there is a fourth.

We denote the unique identity element in V with respect to × by 1. Proposition 1.1
implies that there exists a unique (linear) automorphism σ of V of order 2 in Case (a), of
order at most 2 in Case (b), and of order 1 in Case (c), fixing 1 and such that both v+ vσ

and v × vσ belong to K · 1, for all v ∈ V . We will henceforth identify K · 1 with K.
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1. Let V and σ be as above. The set of points of G(V ) is in bijective correspondence
with the set of rank 1 Hermitian 3 × 3 matrices over V (i.e., diagonal elements
belong to K · 1 and corresponding symmetric elements are images under σ), up to
a scalar multiple, by mapping a point V ∗(x, y, z) onto the matrix (x y z)t(x y z)σ,
where t denotes transposition. Viewing the set of all Hermitian 3× 3 matrices over
V as a 9-dimensional vector space over K, we see that this defines a point set X
in PG(8,K). It is easy to see that the lines of the geometry correspond to images
of rank 1 Hermitian 2 × 2 matrices over V , and these in turn define quadrics in
PG(3,K). This hints to the fact that X is indeed a C-Veronesean set, where C is
either the class of all hyperbolic quadrics, or the class of all quadratic cones, or an
isomorphism class of elliptic quadrics. For ease of reference, we call the set X here
defined a V -set defined by matrices.

2. Consider the free moduleW of rank 3 over V , and reconsiderW as a 6-dimensional
vector space over K. The set of points of G(V ) defines a family of one-dimensional
subspaces over V of W , and this corresponds to a set of 2-dimensional subspaces
over K. This yields a set L of lines in the projective 5-space over K. If we take the
line Grassmannian of L, then we end up in PG(14,K). But actually, one can prove
that the image X of L under the line Grassmannian spans a subspace PG(8,K) of
dimension 8. We will refer to X as a V -set defined by reduction.

To see the lines, one must consider certain 2-dimensional submodules of W over V ,
which correspond to certain 4-dimensional subspaces of W over K. Projectively, we
have a line set in a projective 3-space, and the Grassmannian then lies on the Klein
quadric; in fact we obtain a quadric in projective 3-space (again either an elliptic
quadric, a ruled quadric, or a quadratic cone).

3. There is another construction leading to the same set of lines L. Indeed, it follows
from Proposition 1.1 that the algebra V is a matrix algebra, a subalgebra of the full
2×2 algebra over K. Now the set of lines in the projective 5-space obtained above can
also be obtained by juxtaposition of three arbitrary 2×2 matrices (corresponding to
triples satisfying the same restrictions as in the definition of points of G(V )) of the
corresponding matrix algebra, and then taking the joins of the points represented
by the rows of the 6 × 2 matrices thus obtained. The set X obtained by taking
the image under the line Grassmannian will be referred to as a V -set defined by
juxtaposition.

4. We provide a parameter representation of G(V ). Let U be the vector space K×K×
K×V ×V ×V and identify PG(8,K) with PG(U). Then we let the point V ∗(x, y, z)
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correspond to the point in PG(8,K) having coordinates (xσx, yσy, zσz, xσy, yσz, zσx)
and one checks easily that this is independent of the chosen representative. We call
this correspondence the Veronese correspondence. Then, by definition, the set of
images of points of G(V ) under the Veronese correspondence is X. The lines of
G(X) are the images under the Veronese correspondence of the lines of G(V ). Since
each line involves two free parameters over V , hence four over K, every line will be
contained in a projective 3-subspace, and hence here we also see that this hints to
a C-Veronesean set with C the a set of quadrics in projective 3-space. We call the
set X thus constructed a V -set defined by parametrization.

1.3 Main Result

Our main result connects the abstractly defined ring geometries with the notion of C-
Veronesean set as follows.

Main Result. Let K be any field. Let V be a 2-dimensional unital algebra over K.
Then the V -set defined by matrices is isomorphic to the V -set defined by reduction, to the
V -set defined by juxtaposition, and to the V -set defined by parametrization (which allows
to briefly talk about V -sets). Also, such a V -set is either a Hermitian Veronesean, or
a Segrean Veronesean, or a Hjelmslevian Veronesean set X, and G(V ) is isomorphic to
G(X). Conversely, every Hermitian, Segrean or Hjelmslevian Veronesean set in PG(N,K),
N ≥ 8, can be obtained from a V -set over K and hence is unique, up to projectivity (and
then N = 8). Also, a Segrean Veronesean set is projectively equivalent to a Segre variety
of type (2, 2) and the geometry G(X) for X a Hjelmslevian Veronesean set is a projective
Hjelmslev plane of level 2 over the dual numbers over K.

For the definition of projective Hjelmslev plane of level 2, we refer to Proposition 3.13.
We can also classify Segrean and Hjelmslevian Veronesean sets with 4 ≤ N ≤ 8, but for
that we refer to the exact statements in the next sections.

We are going to prove the Main Result in small pieces. The main work is done in the
next two sections, where we first classify Segrean Veronesean sets, and then prove that
Hjelmslevian Veronesean sets are projectively unique. We then briefly pause and mention
some properties of the ring geometries G(V ). At last, we show that each V -set is an
appropriate C-Veronesean set, establishing the Main Result. In the final section we put
our investigations in a broader perspective, thus motivating the results of the present
paper.
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Remark 1.2 In fact, it is easy to check that V is a ring of stable rank 2, and that the
geometry G(V ) coincides with the projective plane over V , as defined by Veldkamp in
[23]. We will make use of the results in [23] in Section 5

2 A characterization of Segrean Veronesean Sets

In this section, our main goal is to characterize Segre varieties of type (2, 2). More pre-
cisely, we prove

Theorem 2.1 The point set X of a Segrean Veronesean set of index 2 is the point set of
a Segre variety S1,2 (and then N = 5), S1,3 (and then N = 7) or S2,2 (and then N = 8).

From now on, we let X be a set in PG(N,K), N ≥ 4 and possibly infinite, and Ξ a
family of 3-spaces of PG(N,K) such that every member of Ξ intersects X in a hypo, and
satisfying (S1) and (S2). Note that we want X to contain at least two hypos, which
implies by (S2) that we can assume N ≥ 5. We will denote the (projective) span of a set
S of points of PG(N,K) by 〈S〉.
Our first aim is to show that X contains a plane. Call a line of PG(N,K) entirely contained
in X a singular line. Similarly for singular plane.

Lemma 2.2 (1) Every pair of intersecting singular lines not contained in a singular
plane is contained in a unique hypo.

(2) Every quadrangle of singular lines such that no two consecutive sides are contained
in a singular plane, is contained in a unique hypo, determined by any pair of inter-
secting lines of that quadrangle.

Proof Suppose by way of contradiction that the intersecting singular lines L1, L2 are
not contained in a hypo. Let x be any point of the plane π spanned by L1 and L2. Then
we can choose two lines M1,M2 through x meeting both L1 and L2 in distinct points. By
(S1), the line Mi, i = 1, 2, is contained in a hyperbolic space ξi. If ξ1 = ξ2, then it would
contain the plane generated by M1 and M2, and therefore also L1 ∪L2, contradicting our
hypothesis. Hence ξ1 6= ξ2 and so x ∈ ξ1 ∩ ξ2 belongs to X by (S2). Consequently π is a
singular plane, a contradiction.

Hence L1, L2 are contained in a hypo. This hypo is unique as otherwise the plane 〈L1, L2〉
would be singular as it would belong to the intersection of two distinct hyperbolic spaces.
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The second assertion follows from considering the hypos through two opposite pairs of
intersecting sides of the quadrangle, and applying the first part of the lemma, noting that
opposite points of the quadrangle do not lie on a common singular line. �

An easy consequence is that a non-singular plane does not contain at least three singular
lines.

Next we want to show that the singular lines through a point x span a space of dimension
at least 4. When we later assume (S3), this space will then necessarily have to coincide
with Tx.

Lemma 2.3 If X does not contain singular planes, and N ≥ 5, then through every point
x ∈ X, there exist at least four singular lines. Also, four arbitrary singular lines through x
span a 4-space. Moreover, given four singular lines L1, L2, L3, L4 through x, the hyperbolic
spaces containing L1, L2, and L3, L4, respectively, meet only in {x}, which implies N ≥ 6.

Proof By considering an arbitrary hypo H through x, which exists by (S1) and the
fact that X generates PG(N,K), N ≥ 5, we see that there are at least two singular lines
through x. We can now choose a point y1 ∈ X \ 〈H〉 and consider a hypo H1 containing
x and y1. Axiom (S2) implies that H ∩ H1 does not contain the two singular lines of
H through x. Hence there is at least one more singular line through x. If no more
singular lines through x existed, Lemma 2.2 would imply that there are exactly three
hypos containing x.

Now choose a point y ∈ H not on a singular line with x. Interchanging the roles of x and
y in the previous paragraph, we can choose a singular line L through y not contained in
H. If |K| ≥ 3, we want to show we get at least four hypos, which yields a contradiction.
In this case, we can consider 2 points z1, z2 different from y and not in H1. If there is more
than one hypo through x and z1 or more than one hypo through x and z2 we are done.
Otherwise, if [x, z1] = [x, z2] then y would be collinear with X by (S2), a contradiction,
so [x, z1] 6= [x, z2] and we are done.

Now suppose |K| = 2. If z is a point on a singular line with x, then the number of singular
lines distinct from 〈x, z〉 through z is equal to the number of singular lines distinct from
〈x, z〉 through x (indeed, a bijection is given by “being contained in the same hypo with
〈x, z〉”, and use Lemma 2.2). By connectivity, we obtain that through every point there
are a constant number of singular lines. If this constant is equal to 3, then one counts
|X| = 19, and a double count of the pairs (point,hypo), where the point is in the hypo,
results in 19× 3 = n× 9, where n is the total number of hypos. Clearly a contradiction.
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So we have at least four singular lines L1, L2, L3, L4 through the point x ∈ X. Now
(S2) implies that the hyperbolic spaces (which really are hyperbolic spaces by Lemma
2.2 and the assumption that there are no singular planes) containing L1, L2, and L3, L4,
respectively, meet only in {x}, since otherwise we would obtain more than two lines
through x in a hypo. Consequently N ≥ 6.

The lemma is proved. �

Now we fix a hypo H. We want to study the projection of X \ H from 〈H〉 onto some
(N−4)-dimensional subspace F . In order to do so, we first prove some additional lemmas.

Lemma 2.4 Suppose X does not contain singular planes. Let H be a hypo, and let L1

and L2 be two distinct singular lines of X meeting H in the points x1, x2, respectively.
Then the subspace generated by H,L1, L2 is 5-dimensional.

Proof If x1 = x2, then this follows from Lemma 2.3. Now suppose x1 6= x2, and
assume that the subspace generated by H,L1, L2 is 4-dimensional. Then the 3-space
〈L1, L2〉 (which is a 3-space by (S2) and Lemma 2.2) intersects 〈H〉 in a plane π. Then
π contains a point y not on H and not on the line 〈x1, x2〉. It follows that y lies on
a line M meeting both L1 and L2 in points, say z1, z2, respectively, not in 〈H〉. Since
y ∈ [z1, z2] ∩ 〈H〉, and [z1, z2] 6= 〈H〉, this contradicts (S2). �

The next lemma is the last one before we invoke (S3). It basically says that N ≥ 7.

Lemma 2.5 Suppose X does not contain singular planes. Let H be a hypo and L a
singular line on H. Let H1 and H2 be two different hypos distinct from H containing L.
Then W := 〈H,H1, H2〉 has dimension 7.

Proof Since H,H1, H2 all contain L, we already have dimW ≤ 7. Suppose now, by
way of contradiction, that dimW ≤ 6. Let Mi, i = 1, 2, be a singular line on Hi disjoint
from L. Since Wi := 〈H,Hi〉 has dimension 5, because of (S2) and since there are no
singular planes, for i = 1, 2, and since W = 〈W1,W2〉, we see that W1∩W2 has dimension
at least 4, hence 4 or 5. If it has dimension 5, then we choose a point m1 on M1 and
we set U = 〈H,m1〉. If it has dimension 4, then we put U = W1 ∩W2. In both cases,
U has codimension 1 in 〈Wi〉, for i ∈ {1, 2}. Since Mi, i = 1, 2, does not meet 〈H〉, U
intersects Mi in exactly one point, which we may denote mi. If we denote the generator
of Hi through mi distinct from Mi by Ri, then Ri intersects L, and hence H. Lemma 2.4
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implies that R1 = R2. But then Lemma 2.2 tells us that H1 = H2, since both contain L
and R1 = R2. This contradiction concludes the proof of the lemma. �

We can now prove the following two important lemmas.

Lemma 2.6 Suppose X does not contain singular planes, and assume that (X,Ξ) satisfies
(S3). Let H be a hypo and L a singular line on H. Let x1 and x2 be two distinct points on
L.Then the 5-spaces U1 = 〈H,Tx1〉 and U2 = 〈H,Tx2〉 meet in 〈H〉, so dim〈H,Tx1 , Tx2〉 =
7.

Proof Let L1 and L′1 be two singular lines through x1 not in H. By Lemma 2.3, Tx1
is generated by L1, L

′
1 and the two singular lines of H passing through x1. The unique

hypos G1 and G′1 containing L,L1 and L,L′1, respectively, contain some lines L2 and L′2,
respectively, through x2 distinct from L. Clearly 〈H,G1, G

′
1〉 = 〈U1, U2〉, which is, by

Lemma 2.5, 7-dimensional. It follows that U1 ∩ U2 is 3-dimensional, and hence coincides
with 〈H〉. �

A natural property to investigate is whether the tangent space Tx at some point x ∈ X
contains points of X not on a singular line with x. The following lemma will imply that
this is not the case.

Lemma 2.7 Suppose X does not contain singular planes, and assume that (X,Ξ) satisfies
(S3). Let x ∈ X be arbitrary, and let H be an arbitrary hypo containing x. Then all points
of 〈H,Tx〉 in X either lie on H, or are on a singular line together with x. In particular,
all points of Tx ∩X are contained in a singular line with x.

Proof Suppose by way of contradiction that some point y /∈ H, for which 〈x, y〉 is
not a singular line, is contained in 〈H,Tx〉. Let H ′ be the unique hypo through x and y.
Then H ′ ⊆ 〈H,Tx〉, and so, since the latter is 5-dimensional, 〈H ′〉∩ 〈H〉 is 1-dimensional.
This implies that H ′ and H share some singular line L through x, and hence there is a
singular line M containing y and a point z of L. By assumption, z 6= x. But the space
〈H,Tx,M〉 is 5-dimensional, hence, since M ⊆ Tz and M is not in 〈H〉, this implies that
the dimension of 〈H,Tx, Tz〉 is at most 6, contradicting Lemma 2.6. �

Lemma 2.8 Suppose X does not contain singular planes, and assume that (X,Ξ) satisfies
(S3). Then N = 8.
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Proof We first show that N > 7. Indeed, suppose N = 7. Fix an arbitrary hypo
H and two distinct points x1, x2 on a singular line L of H. Choose two singular lines
L1, L

′
1 through x1 outside 〈H〉. Let G1 be the hypo through L1, L

′
1. Then 〈H,G1〉 is 6-

dimensional by Lemma 2.3. Let S be a 3-space skew to 〈H〉. Then the projection of
G1 \ (L1 ∪L′1) from 〈H〉 onto S is an affine part π∗ of some plane π of S. The projection
of Tx2 is a line T2 in S. Noting that the line π \π∗ is the projection of Tx1 , it follows from
Lemma 2.4 that T2 intersects π in a point z′ of π∗. Let z be the point of G1 projected
onto z′. Then z lies in the 5- space 〈H,Tx2〉, contradicting Lemma 2.7.

Now we show that N ≤ 8. Indeed, suppose by way of contradiction that N > 8. Let
H again be an arbitrary hypo, and let x1, x2, L be as above. Since W := 〈H,Tx1 , Tx2〉
is 7-dimensional, by Lemma 2.6, we can choose two points y, z ∈ X such that the line
〈y, z〉 is skew to W . Then any hyperbolic space containing y and z has at most a line
in common with W , implying that we find a singular line R skew to W . We claim that
there can be at most one singular line Ri connecting a point of R with a point of Mi,
where Mi is the singular line of H through xi distinct from L, for i = 1, 2. Indeed, if there
were at least two such lines, then Lemma 2.2 would imply that R and Mi lie in some
hypo together, and so some point of R would be contained in Txi , a contradiction to the
choice of R. Hence we can find a point v on R not on any singular line meeting M1 ∪M2

nontrivially. This implies that X([v, x1]) and X([v, x2]) meet H in x1 and x2 respectively.
Consequently, Tv meets Txi in a line, for i = 1, 2, and these lines are skew as they do not
meet 〈H〉 ⊇ Tx1 ∩ Tx2 . Hence Tv intersects W in a 3-space Wv. But Tv also contains R,
and our choice of R implies that 〈Wv, R〉 is 5-dimensional, contradicting Axiom (S3). �

We can now show that there is at least one singular plane.

Lemma 2.9 Assume that (X,Ξ) satisfies (S3). Then there exists a singular plane in X.

Proof Suppose on the contrary that there is no singular plane in X. Let H be an
arbitrary hypo, and, as above, let x1, x2 be two points on H on a common singular line
L. Let L1, L

′
1 be two distinct singular lines through x1, not inside H, which exist by

Lemma 2.3. Let H1 be the hypo through L1 and L and let L2 be the singular line of H1

not in H and passing through x2. Finally, let L′′2 be an arbitrary singular line through
x2, distinct from L2 and not in H. We denote the hypo through L1 and L′1 by G1. By
Lemma 2.3, we have 〈G1〉 ∩ 〈H〉 = {x}. By Lemma 2.8, we have N = 8 and so we can
choose a 4-dimensional subspace F skew to 〈H〉. With “projection”, we mean in this
proof the projection from 〈H〉 onto F . As in the proof of Lemma 2.8, the projection of
〈G1 \ (L1∪L′1)〉 is a set of points of an affine plane π∗1 in F , with projective completion π1.
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Likewise the projection of the hypo G2 through L2, L
′′
2, except for L2 and L′2, is an affine

plane π∗2 in F , with projective completion π2. The projective planes π1 and π2 meet by a
dimension argument. Also, by Lemma 2.6, the intersection (π1 \ π∗1) ∩ (π2 \ π∗2) is empty.

Suppose now that a point of π1 coincides with a point at infinity of π2 (so belonging to
π2\π∗2). This means that a point z of G1 is contained in 〈H,Tx2〉, contradicting Lemma 2.7.

Hence, by symmetry, the affine planes π∗1 and π∗2 meet in a unique (affine) point and so
we have points z1 in G1 and z2 in G2 lying in a common 4-space S with H. We now prove
that z1 = z2. To that aim, suppose z1 6= z2. Let G be a hypo through z1, z2. Considering
G ∩ 〈H〉 and (S2), we see that 〈z1, z2〉 is a singular line hitting H in some point u. By
possibly interchanging the roles of x1 and x2, we may assume that 〈u, x2〉 is not a singular
line (u /∈ L because otherwise L belongs to G1 since by Lemma 2.2, there is a (unique)
hypo through z1, x1, L). Note that z1 does not belong to Tx2 (as z does not belong to the
projection π2 \π∗2 of Tx2). So we can consider the unique hyperbolic space [z1, x2] and the
corresponding hypo G′2. Suppose that G′2 contains a singular line of H. Then we can find
a quadrangle of singular lines containing z1, u and two singular lines of H. By Lemma 2.2,
this implies that z1 belongs to H, a contradiction. Hence the two singular lines of G′2
through x2 do not lie in 〈H〉 and consequently, the projection from 〈H〉 of [z1, x2] \ {x2}
coincides with the plane π2. Now, the arguments in the previous paragraph imply that
π1 and π2 span F , and this implies that the singular lines in G1 and G′2 through z1 span
a 4-dimensional space which must necessarily coincide with Tz1 , and which is projected
onto F . Consequently Tz1 is disjoint from 〈H〉, contradicting u ∈ Tz1 .
Hence we have shown that z1 = z2. Now let Mi be the singular line in Gi meeting Li,
i = 1, 2. Note that M1 6= M2 as otherwise the quadrangle M1, L1, L, L2 and Lemma 2.2
imply that G1 = G2. Remember that L1, L2 are contained in the hypo H1, and so there
is a singular line intersecting L1 and containing the intersection point of L2 and M2.
This gives us again a quadrangle of singular lines (it cannot degenerate to a triangle, as
this contradicts the hypothesis that we do not have singular planes). Again, Lemma 2.2
implies that z1 belongs to H1, a contradiction.

This contradiction finally implies that a singular plane exists. �

Next we show that if there is a singular 3-space in X, we obtain S1,3.

Lemma 2.10 Assume that (X,Ξ) satisfies (S3). If there is a 3-space entirely contained
in X, then X is S1,3.

Proof Suppose that some 3-space S is entirely contained in X. Let x be any point of
S and let H be a hypo through x. Then H cannot contain two lines of S. If none of the
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singular lines L1, L2 of H through x belongs to S, then (S2) implies that the intersection
of the plane 〈L1, L2〉 with S, which is a line by (S3), belongs to H, a contradiction. Hence
exactly one of L1, L2 belongs to S.

In fact, there is a unique singular line Lx through x not in S. Indeed, in the previous
paragraph we showed that there was at least one. If there were at least two, then the
plane generated by these would contain a third one (in S), and so this would be a singular
plane π by Lemma 2.2. If some point p in Tx did not belong to X, then we find two
intersecting lines LS and Lπ in S and π, respectively, such that p ∈ 〈LS, Lπ〉. As in the
proof of Lemma 2.2, this implies that LS ∪ Lπ is contained in a unique hypo HL. We
now consider another pair of intersecting lines MS,Mπ, in S and π, respectively, such
that LS ∩ Lπ 6= MS ∩Mπ, and such that p ∈ 〈MS,Mπ〉. Then MS and Mπ are contained
in a unique hypo HM 6= HL, implying that p, which belongs to 〈HL〉 ∩ 〈HM〉, belongs
to X after all. Hence we see that this would imply that all lines of Tx are singular, a
contradiction (this would imply that there are no hypos through x).

Considering a hypo through any point y ∈ X \ S and any point x ∈ S, we see that every
point y of X not in S is on a (necessarily unique) singular line that intersects X.

Now let y1, y2 be two points of X \S, and let x1, x2 be the unique points of S on a singular
line with y1, y2, respectively. Suppose that 〈y1, y2〉 is not a singular line. Since the hypo
containing y1, x2 automatically contains the singular line through x2 not contained in S,
it also contains y2 and hence it coincides with the hypo through y1, y2. We have shown
that all hypos have a unique line in S. This immediately implies that there is no hypo
containing two intersecting singular lines not meeting S. The same argument as in the
proof of Lemma 2.2 implies that all singular lines through a point y ∈ X \S distinct from
the one intersecting S in a point, form a singular subspace Sy, which is thus defined by
any of its points. It follows that, using the hypos through a point of S and a point of Sy,
there is a (bijective) collineation between S and Sy given by “lying on a common singular
line”, and hence Sy has dimension 3. Also, all points of X are on lines intersecting both
S and Sy (we can see this also by letting Sy play the role of S). Since S and Sy generate
a space of dimension seven, Theorem 3 of [25] implies that we obtain S(1, 3). �

From now on we assume that X does not contain a singular 3-space so that X is not a
Segre variety of type (1, 3).

Our next goal is to single out S1,2 and to show that otherwise every point of a singular
plane belongs to a second singular plane. We first show that, if X is not S1,2, then there
must be a lot of other singular lines through a point of such singular plane besides the
ones in that singular plane.
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Lemma 2.11 Assume that (X,Ξ) satisfies (S3). Let π be a singular plane and let x be
a point in π. Then either there are at least three singular lines through x not contained
in π, or N = 5 and X is projectively equivalent to S1,2.

Proof Considering an arbitrary hypo through x we see that there must be at least one
singular line through x not in π. Suppose now that there is only one such, namely Lx.
Suppose that there are at least two singular lines Ly, L

′
y not in π but through some other

point y ∈ π. Then there must be hypos H containing Ly and 〈x, y〉 and H ′ containing L′y
and 〈x, y〉. These must automatically contain Lx, but the intersection of the corresponding
hyperbolic spaces is then a plane, a contradiction. Hence through every point of π there
is a unique singular line not contained in π. As in the proof of Lemma 2.13, we deduce
that X is contained in the space generated by two disjoint planes. Similarly to the last
part of the proof of Lemma 2.13, we obtain the Segre variety S(1, 2).

Now suppose that there are exactly two lines Lx, L
′
x through x not in P . Then there is a

hypo Hx containing these.

Consider three points x1, x2, x3 on a line M in π not through x, and a point t on Lx.
Consider the hypos H1, H2 and H3 through Lx and x1, x2, x3, respectively. Denote the
lines through t different from Lx and contained in these hypos by M1,M2 and M3 respec-
tively. The points x1, x2 and x3 are collinear with points t1, t2 and t3 on M1,M2 and M3

respectively.

Suppose first that M1,M2 and M3 are not coplanar. Now consider the hypos H ′1, H
′
2 and

H ′3 determined by M and t1, t2 and t3, respectively. Since t1, t2 and t3 are not collinear we
obtain three different lines L1, L2 and L3 through x2 outside of π. Now looking at hypos
determined by Li and x yields three different lines through x, a contradiction.

Hence M1 and M2 are contained in a singular plane. Now choose a point z on L′x
and a point z′ on M1, but not on Lx. If 〈z, z′〉 were singular, then the quadrangle
Lx, L

′
x, 〈z, z′〉,M1 would show, using Lemma 2.2(2), that M1 belongs to Hx, a contradic-

tion. Let Hz be the hypo through z and z′. Let Lz be a singular line of Hz through z.
Suppose that Lz is contained in Hx. Let z′′ be the unique point on Lz such that 〈z′, z′′〉 is
singular, and let z′′′ be the unique point on Lz such that 〈t, z′′′〉 is singular. Considering
the quadrangle Lz, 〈t, z′′′〉,M1, 〈z′, z′′〉, it follows from Lemma 2.2(2) that M1 belongs to
Hx, a contradiction. Hence no singular line through z in Hz belongs to Hx. But now
interchanging the roles of Lx and L′x, and of t and z, we arrive at a contradiction as in
the previous paragraph.

The lemma is proved. �
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From now one, we assume that through any point x of any singular plane π, there are at
least three singular lines not contained in π. We can now show the penultimate step.

Lemma 2.12 Assume that (X,Ξ) satisfies (S3). Let π be a singular plane and x ∈ π.
Then there is a second singular plane through x. The union of both planes contains all
singular lines through x.

Proof By the previous lemma there are at least three singular lines through x not in
π, name them L1, L2, L3. If they are contained in a plane, then this plane is singular. If
they are not contained in a plane, then the 3-space they generate contains a line L4 of π
(using (S3)). If no pair of {L1, L2, L3} is contained in a singular plane, then the planes
〈L1, L2〉 and 〈L3, L4〉 are distinct and hence meet in line L5. Lemma 2.2(1) implies that
L5 is a singular line, and therefore, 〈L3, L4〉 is singular after all.

So we always have at least two singular planes. If another singular line through x existed
(not contained in either singular plane), then it would be contained in a plane together
with a line of each singular plane. This now leads to a singular 4-space, a contradiction.

�

It follows from the previous lemmas that through every point of the two singular planes
through x there are precisely two singular planes. By connectivity, this is true for all
points of X.

Lemma 2.13 Assume that (X,Ξ) satisfies (S3) and that there is a point x ∈ X contained
in two singular planes. Then N ≥ 8.

Proof Let L1, L2, L3, L4 be singular lines through x such that 〈L1, L2〉 and 〈L3, L4〉 are
the two singular planes through x. Let H be the hypo containing L1, L3 and let y be a
point in the hypo G defined by L2, L4, not on a singular line with x. Let M1,M2 be the
singular lines of G through y. Suppose for a contradiction that y is on a singular line
M with some point z of H. Then zdoes not belong to the singular planes through x as
otherwise there is a singular plane through y intersecting a singular plane through x in
a line. Now, the singular line 〈y, z〉 is contained in a singular plane with one of M1,M2

and this leads to the contradiction that z is collinear with at least two points of one of
the singular plans through x. Hence no point of H is on a singular line with y.

Suppose now some point u is contained in 〈H〉 ∩ T (y). Then there exist singular lines
N1, N2 through y such that u ∈ 〈N1, N2〉. But then Axiom (S2) ensures that u ∈ X,
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a contradiction to the conclusion in the previous paragraph. Hence N ≥ dim〈H〉 +
dimT (y) + 1 = 8. �

Now we can finish the proof of Theorem 2.1.

Consider two disjoint singular planes. By considering appropriate hypos, we see that
every singular plane intersecting one of them, intersects the other. We can use this to see
that, starting from two intersecting singular planes π, π′, the set X is the disjoint union
of all singular planes meeting π and likewise for those meeting π′. Moreover, as in the
proof of Lemma 2.13, the hypos define collineations between disjoint planes and this is
enough to conclude with Proposition 1.2 of [25] that N ≤ 8, hence N = 8 and Theorem 3
of [25] implies that we have a Segre variety of type (2, 2).

3 Hjelmslevian Veronesean Sets

In this section, we consider the Mazzocca-Melone axioms for the class of “tubes”. Let us
rewrite the general axioms (V1), (V2) and (V3) for this special case.

A tube C (as a short synonym for “cylinder”) in a 3-dimensional projective space Σ (over
K) is the set of points of Σ on some nondegenerate cone with base a plane oval O, except
for the vertex v (v will also be called the vertex of the tube, although it does never belong
to the tube). For every point x ∈ C, there is a unique plane π through x intersecting C
in the unique generator which contains x. The plane π contains all lines through x that
meet C in only x and is called the tangent plane at x to C and denoted Tx(C).

Let X be a spanning point set of PG(N,K), N > 3, and let Ξ be a collection of 3-
dimensional projective subspaces of PG(N,K), called the cylindric spaces of X, such
that, for any ξ ∈ Ξ, the intersection ξ ∩X is a tube X(ξ) in ξ (and then, for x ∈ X(ξ),
we sometimes denote Tx(X(ξ)) simply by Tx(ξ)). Conversely, for a tube C, we denote
Ξ(C) the unique member of Ξ containing C. We denote by Y the set of all vertices and
we obviously have X ∩ Y = ∅. We call (X,Ξ), or briefly X, a Hjelmslevian Veronesean
set (of index 2) if the following properties hold :

(H1) Any two points x and y lie in at least one element of Ξ, which we denote by [x, y]
if it is unique.

(H2) If ξ1, ξ2 ∈ Π, with ξ1 6= ξ2, then ξ1 ∩ ξ2 ⊂ X ∪ Y , and ξ1 ∩ ξ2 ∩ Y is contained in a
codimension 1 subspace of ξ1 ∩ ξ2. If Y ∩ ξ1 ∩ ξ2 6= ∅, then Y ∩ ξ1 6= ∅ 6= Y ∩ ξ2.
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(H3) For each x ∈ X, all planes Tx([x, y]), y ∈ X \ {x}, are contained in a fixed 4-
dimensional subspace of PG(N,K), denoted by Tx.

We again have that (H1) implies that |Ξ| > 1.

The rest of this section is devoted to prove the following theorem.

Theorem 3.1 If (X,Ξ) is a Hjelmeslevian Veronesean set in PG(N,K), N ≥ 4 (possibly
infinite), then either N = 6 or N = 8. In either case, the point set X and the set of
cylindric spaces Ξ are projectively unique.

A singular line L is a generator of a tube; if |K| > 2, then L is obviously characterized
by saying that it contains at least three points of X, and then all of its points belong to
X, except for one, which belongs to Y , and which we denote by y(L). The set L \ y(L)
is sometimes referred to as a singular affine line.

The case |K| = 2 will be treated separately at the end. So, for most of the results below,
we assume |K| > 2, although for the moment, we allow |K| = 2.

Lemma 3.2 Let C,C ′ be two tubes with common vertex. Then C and C ′ share a unique
generator.

Proof By Axiom (H2), the intersection Ξ(C) ∩ Ξ(C ′) is either a generator of both
C and C ′ (in which case there is nothing to prove), or it is a point t of X ∪ Y . In
our assumptions, t is the vertex, and so belongs to Y . But this contradicts (H2) as a
codimension 1 subspace of a point is the empty set. �

Lemma 3.3 Let C,C ′ be two tubes and suppose |Ξ(C) ∩ Ξ(C ′)| > 1. Then C ∩ C ′ is a
singular affine line. In particular, C and C ′ have the same vertex.

Proof From (H2) it follows that Ξ(C) ∩ Ξ(C ′) is a generator L of both C and C ′. It
suffices to show that the vertices of C and C ′ coincide. Let t and t′ be these respective
vertices, and assume t 6= t′. Then both t and t′ belong to X ∩ Y , a contradiction. �

A plane π in PG(N,K) will be called singular if it contains a unique line L all of whose
points belong to Y , and all other points of π belong to X. The line L will be referred to
as the radical line of π.
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Lemma 3.4 Let L and L′ be two singular lines intersecting in a point y ∈ Y . Then
either L and L′ belong to a unique common tube, or 〈L,L′〉 is singular.

Proof Suppose L and L′ do not belong to a unique common tube. Take a point p in the
plane π spanned by L and L′ arbitrarily, but not on L∪L′. We consider two lines M,M ′ in
π through p not incident with y. These lines intersect L and L′, respectively, in the points
xLM , xLM ′ and xL′M and xL′M ′ , respectively, using self-explaining notation. Arbitrary
tubes C and C ′ through xLM , xL′M and xLM ′ , xL′,M ′ , respectively, satisfy p ∈ Ξ(C)∩Ξ(C ′).
Now note that, if C = C ′, then C contains L and L′, a contradiction. Hence C 6= C ′.
By (H2), p belongs to X ∪ Y . It is impossible that p belongs to X for all legal choices
of p, since this would imply that there are lines all of whose points are contained in X.
Hence we may assume that p belongs to Y (if |K| = 2, then this is automatic, and we
have a singular plane; so from now on we may assume |K| > 2). Then all other points of
M ∪M ′ belong to X. The line N = 〈p, y〉 contains two elements of Y ; hence we claim
it can contain at most one element of X. Indeed, if it contained two points of X, then
it would be contained in some member of Ξ, which contains only one element of Y , by
Lemmas 3.2 and 3.3. Suppose now that N contains a unique point x ∈ X. Now note that
every point z of 〈L,L′〉 \N belongs to X, as the line 〈p, z〉 contains at least two points of
X, namely the intersections with L and L′. So any line through x in 〈L,L′〉 only contains
points of X, a contradiction. Hence 〈L,L′〉 is a singular plane. �

Lemma 3.5 Let C be a tube and c ∈ C. Then either N = 6 and X ∪ Y is projectively
equivalent to a cone with vertex some point t and base a quadric Veronese variety of
PG(2,K), with Y = {t}, or there exists some tube C ′ intersecting C in the singleton {c}.

Proof Suppose that all tubes whose intersection with C contains c have a generator
in common with C. Let x ∈ X be arbitrary. Then any tube through x and c must have
the same vertex t as C, by Lemma 3.3. Hence 〈x, t〉 is a singular line. Now we project
X from t onto some hyperplane H not containing x and denote the projection operator
by ρ. We define the following geometry G. The point set is ρ(X), and the line set is the
family of projections of tubes with vertex t. In H, the points of G are projective points,
and the lines of G are planar ovals. By Lemma 3.2, every pair of distinct lines of G has a
unique point in common. Now let L and L′ be two singular lines through t. Suppose that
〈L,L′〉 is singular. Let C ′ be any tube containing L. Choose a singular line M in 〈L,L,′ 〉
not though t and a tube D through M . Let z be a point of D not on M . Since by the
beginning of our proof, K := 〈t, z〉 is a singular line, we have, by Lemma 3.4, that either
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〈K,L〉 is a singular plane, or K,L are contained in a unique tube D′. In the latter case,
Ξ(D)∩Ξ(D′) violates (H2), because it contains the two points z and z′ := L∩M not on
a singular line. In the former case, the line 〈z, z′〉 is singular, again a contradiction.

So we conclude that 〈L,L′〉 is not singular, and so, by Lemma 3.4, there is a unique tube
containing both of them. This implies that every pair of points of G is contained in a
unique line of G. Hence G is a projective plane (since lines have at least three points).
Since the 3-spaces of two different tubes intersect in a line, we deduce that the two planes
generated by the two ovals corresponding to two lines of G meet in a unique point, which
implies that the dimension of H is at least 4. We claim that H has dimension 5. Indeed,
by the second main result of [13], the dimension of H is at most 5. So assume that H
has dimension 4. Let D be any oval corresponding to a line of G, and let x ∈ D. Let
D1, D2 be two distinct ovals corresponding to lines of G containing x, and distinct from
D. Let ζ be a 3-dimensional space containing D and not containing the tangent lines at
x of D1 and D2 (ζ exists since there are at least three 3-spaces through the plane 〈D〉).
Then ζ intersects D1 and D2 in distinct points x1, x2, respectively. There is a unique oval
D′ corresponding to a line of G containing x1, x2, and since x1, x2 belongs to ζ, the planes
〈D〉 and 〈D′〉 intersect in a point of 〈x1, x2〉, which is a point of G by Axiom (H3). But
then D′ contains three points on a projective line, a contradiction. Our claim is proved.

Now, again by the second main result of [13], G is isomorphic to the quadric Veronese
variety of the projective plane PG(3,K). Adding t, we see that N = 6. �

From now on we assume |K| > 2 and we may also assume that X is not a point over a
quadratic Veronese variety so that the second conclusion of Lemma 3.5 holds.

Lemma 3.6 Two singular lines L,L′ intersecting in a point x ∈ X generate a singular
plane.

Proof Let t and t′ be the members of Y on L,L′, respectively. Then every point z on
〈t, t′〉 except for t and t′ themselves is the intersection of two lines meeting (L∪L′)\{t, t′}
in two points. Since L∪L′ cannot be contained in a tube (since that tube would have two
vertices t and t′), these two lines are contained in distinct tubes. Hence z ∈ X∪Y . But at
most one point on 〈t, t′〉 can belong to X, as otherwise a tube through 〈t, t′〉 would have at
least two vertices. So, there exists a point z0 ∈ Y on 〈t, t′〉 contained in two singular lines
of 〈L,L′〉. Noting that the plane 〈L,L′〉 contains already at least four distinct singular
lines, the assertion follows from Lemma 3.4. �

21



Lemma 3.7 Let x ∈ X be arbitrary. Then the set of points of X on a common singular
line with x is either an affine plane, or an affine 3-space.

Proof Let Vx be the set of points of X on a common singular line with x. Lemma 3.5
tells us that there are at least two singular lines L,L′ through x. Hence, by Lemma 3.6,
the affine plane consisting of the points of X in 〈L,L′〉 belongs to Vx. If there is some other
singular line L′′ through x not contained in 〈L,L′〉, then a repeated use of Lemma 3.6
shows that the set of points of the 3-space 〈L,L′, L′′〉 belonging to X (and on a singular
line with x) is an affine 3-space. A similar argument shows that, if there was still another
singular line not contained in 〈L,L′, L′′〉, then an affine part of Tx would be contained
in Vx, but this contradicts the fact that Tx contains planes which intersect X in just an
affine line.

The proof is complete. �

We will call an affine 3-space as in the statement of Lemma 3.7 a singular 3-space.

Before stating the next proposition, we need a definition. Let k ≤ l;n = k + l + 1
and take complementary subspaces Π,Π′ in PG(n,K) of dimensions k and l respectively.
Now choose normal rational curves C and C ′ in Π and Π′ respectively and a bijection
φ : C ′ → C between them which preserves the cross-ratio. Then we define a normal
rational scroll Sk,l = ∪p∈C′〈p, pφ〉. From now on we call S1,2 a normal rational cubic
scroll.

Proposition 3.8 Let y ∈ Y and let Xy be the set of all members x of X such that 〈x, y〉
is a singular line. Then 〈Xy〉 is a 5-dimensional subspace. Also, Xy ∪ {y} is a cone with
vertex y on a normal rational cubic scroll. In particular, all tubes arise from quadratic
cones. Also, for every x ∈ X, the set of points of X on a common singular line with x is
an affine plane.

Proof Let C be a tube with vertex y. Pick a generator L on C, and a singular plane
π through L, which exists by Lemma 3.7. Let G be any generator of C distinct from
L, and let M be any singular line in π through y distinct from L. Suppose 〈G,M〉 is
singular. Take any point t 6= y in 〈G,M〉, with t ∈ Y . Let G′ be a line through t meeting
G in a point x′ of X, and let M ′ be a line through t meeting L in a point x′′ of X. If
G′∪M ′ is contained in a cylindric space, then the intersection with Ξ(C), which contains
〈x′, x′′〉, violates (H2), noticing that x′ and x′′ are not contained in a common generator
of C. Hence, by Lemma 3.4, the plane 〈G′,M ′〉 is singular. But that would mean that all
points of 〈x′, x′′〉 belong to X ∪ Y , also a contradiction (to X(Ξ(C)) = C).
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Hence G and M define a unique tube CGM . Now we fix two generators G,G′ on C distinct
from L. We denote by U an (N − 3)-space skew to the plane α := 〈G,G′〉, and we let ρ
be the projection operator from α onto U . With “projection”, we always mean ρ in the
rest of this proof, except for the last paragraph.

The projection of CGM , for any line M in π through y distinct from L, is an affine part of
a line LM ; we denote the projection of the tangent plane to CGM at any point of G ∩X
by pM (it is the point at infinity of LM with regard to the affine part alluded to above).
Likewise, the projection of CG′M is a line L′M minus a point p′M . All these lines have a
point in common with the projection of π, which is a line Lπ. As two tubes never belong
to the same 4-space due to (H2), we see that Lπ differs from any such LM and any such
L′M , and no LM coincides with any L′M ′ . Moreover, intersecting Lπ defines a bijection
from {LM : M a line in π through y distinct from L} into Lπ\{ρ(L)}. All this now easily
implies that all LM and all L′M above are contained in a unique plane β.

Now suppose that L is contained in a singular 3-space S. One easily checks that ρ(S)
cannot coincide with β. Consider a line N through y in S projecting outside β. As above,
there is a unique tube CGN containing G and N . This tube has to intersect all tubes
CG′M , with M a line in π distinct from L and incident with y, in distinct generators.
Since ρ is injective on the set of generators of CGN distinct from G, this easily implies
that the projection of CGN is contained in β, and hence ρ(N) belongs to β, contradicting
our choice.

We have shown that singular 3-spaces do not exist. Hence Lemma 3.7 implies that every
singular line is contained in a unique singular plane. Denote the singular planes through
G and G′ by πG and πG′ , respectively.

Now let P be any singular line through y, P /∈ {G,G′}. Then P cannot be contained in
both πG and πG′ ; suppose it is not contained in πG. Then P and G are contained in a
unique tube CPG, and the arguments in the paragraph preceding the previous one show
that the projection of this tube is contained in β. Hence 〈Xy〉 is a 5-dimensional subspace,
as it coincides with 〈α, β〉. But we can say more. Let LPG be the projection of CPG \G.
Then LPG and Lπ have a point z in common. Taking inverse images, we see that we have
two cases. First case: there is a generator of CPG, which we may take to be P , such that
the 3-space 〈α, P 〉 contains a line M of π through y. If 〈α, P 〉 ∈ Ξ, then P = L = M and
so P ⊆ π. If 〈α, P 〉 /∈ Ξ, then M 6= L. If P 6= M , then P 6⊆ π and so P and M determine
a unique tube, and (H2) leads to a contradiction. Hence, in this first case, we have shown
that P belongs to π.

Second case: the tangent plane to CPG at G belongs to a 3-space Σ containing G,G′ and
some line M of π through y. Then again (H2) implies that CPG and CG′M share a line
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in that tangent plane, which must necessarily be G, and so M = L. But then Σ = Ξ(C)
and Ξ(CPG)∩ Ξ(C) is a plane, contradicting (H2) once again. So the second case cannot
occur.

All in all, we have shown that every tube through G intersects π in an affine line. Varying
L, we conclude that every tube with vertex y intersects every singular plane containing y
in a singular affine line. In other words, the geometric structure Gy with point set the set
of singular lines through y and line set the set of tubes and singular planes through y is
a dual affine plane.

Now let A be a 4-space in 〈α, β〉 not containing y. We now project Xy from y onto
A. This yields a generalized Veronesean embedding of the projective completion of Gy
in 〈α, β〉, provided we let y play the role of the unique point at infinity. The Main
Result—General Version of Section 5 of [19] implies that the projection of Xy from y onto
A is a normal rational cubic scroll. Hence, since Xy consists of the union of lines through
y, the intersection of Xy with A is itself a normal rational cubic scroll, finalizing the proof
of the proposition. �

For the record, we explicitly write down a particular thing we proved in the course of the
previous proof.

Lemma 3.9 For y ∈ Y , the geometric structure Gy with point set the set of singular lines
through y and line set the set of tubes and singular planes through y is a dual affine plane.

�

There are a few interesting corollaries of Proposition 3.8, the first of which does not require
a proof since it follows immediately from the fact that for every x ∈ X, the set of points
of X on a common singular line with x is an affine plane.

Corollary 3.10 Every singular line L is contained in a unique singular plane, containing
all the singular lines that intersect L in a point of X. �

Corollary 3.11 The set Y is the point set of a plane πY of PG(N,K).

Proof Let y ∈ Y be arbitrary and let C be a tube with vertex y. Then, by Proposi-
tion 3.8, there is a unique singular plane through every generator of C, and the union of
the radical lines of all these planes is a plane πy.
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Now consider a second point y′ ∈ Y , and let x ∈ X be such that 〈x, y′〉 is a singular line.
We may suppose y′ /∈ πy and consequently 〈x, y〉 is not singular. If c ∈ C, then any tube
C ′ containing x and c has a vertex t belonging to πy (as t must belong to the radical line
of the singular plane through c). We clearly have y′ ∈ πt. Considering a tube through a
point of C \ 〈c, y〉 and C ′ \ 〈c, t〉, we see that some point of πy \ 〈y, t〉 belongs to πt. Since
also y ∈ πt, this implies that πy = πt. But now y′ ∈ πt = πy, a contradiction, and so
y′ ∈ πy after all.

The proof of the corollary is complete. �

We keep πY of the previous corollary as standard notation.

Corollary 3.12 Every line L of πY is contained in a unique singular plane. The union
of all these planes is precisely X ∪ Y .

Proof Let y ∈ L. Since, by Proposition 3.8, the projection of πY \ {y} is a line
(corresponding to the “vertex line” of the normal rational cubic scroll), the line L is the
radical line of some singular plane α. If L were the radical line of some second singular
plane α′, then we can consider a line M in α and a line M ′ in α′, with M ∩M ′ = {t},
t ∈ L. The plane 〈M,M ′〉 is not singular, as this would lead to a singular 3-space 〈α, α′〉.
Hence there is a tube CMM ′ containing M and M ′. Now Proposition 3.8 implies that the
projection of α\{t} and α′ \{t} from t are disjoint lines on a normal rational cubic scroll,
hence α ∩ α′ = {t}, a contradiction.

By Lemmas 3.5 and 3.6, every point x ∈ X is contained in some singular plane, which,
by Corollary 3.11, meets πY in some line. �

We can now determine the geometric structure of X.

Proposition 3.13 Let T be the set of all tubes. Then (X,T ) is a projective Hjelmslev
plane of level 2. More exactly this means the following: the map χ : X → π∗Y , where π∗Y
is the plane dual to πY , sending the point x ∈ X to the radical line of the unique singular
plane through x, is an epimorphism of (X,T ) onto π∗Y enjoying the following properties.

(Hj1) Two points of X are always joined by at least one member of T ; they are joined by
a unique member of T if and only if their images under χ are distinct.

(Hj2) Two members of T always intersect in at least one point; they intersect in a unique
element of X if and only if their images under χ are distinct.
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(Hj3) The inverse image under χ of a point, endowed with the intersections with non-
disjoint tubes, is an affine plane.

(Hj4) The set of tubes contained in the inverse image under χ of a line, endowed with all
mutual intersections, is an affine plane.

Proof Surjectivity of χ follows from Corollary 3.12. Now consider the image χ(C) of
an arbitrary tube C. Trivially, the radical lines of all singular planes containing points of
C contain the vertex t of C. By Proposition 3.8, all lines in πY through t can be obtained
this way. Hence χ is an epimorphism. Note that the image under χ of a tube is simply
its vertex.

We now show (Hj1). By definition, two elements of X are contained in a tube. From
Proposition 3.8 we deduce that this tube is not unique if and only if the two elements are
contained in a singular line. By the last assertion of Proposition 3.8 and Corollary 3.10,
this happens if and only if the two elements are contained in a unique singular plane,
hence if and only if their images under χ coincide.

Now we show (Hj2). Let C,C ′ be two tubes. If they have the same vertex (hence their
images under χ coincide), then they share a singular affine line (Lemma 3.2). Suppose now
that they have distinct vertices t and t′, respectively. Let πtt′ be the unique singular plane
containing t, t′ (see Corollary 3.12). Then Lemma 3.9 implies that C and C ′ intersect πtt′
in singular lines L and L′, respectively. Since both lines are contained in a common plane,
they intersect in a point (and one easily verifies that the intersection point belongs to X,
and not to Y !).

Given a point x, the affine plane in (Hj3) is the affine plane of Corollary 3.10 arising from
the unique singular plane containing x by removing its radical line.

Finally, (Hj4) follows immediately from Lemma 3.9, by dualizing. �

We say that a tube C and a point x ∈ X are neighbors if χ(x) is incident with χ(C). We
denote by C(X) all neighbors of C.

Now we prove the following major step.

Proposition 3.14 The set X contains a quadratic Veronese variety V whose conics are
conics on tubes and whose points are in canonical bijection with the singular planes. The
5-space generated by V is skew to πY , and N = 8.
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Proof Let us fix a tube C (with vertex y), and consider a subspace F complementary
to Ξ(C). We consider the projection ρ of X \ C from Ξ(C) into F . We first claim that
ρ is injective on X \ C(X). Indeed, suppose two points x1, x2 ∈ X \ C(X) are projected
onto the same point a ∈ F . Then the 5-space 〈C, a〉 contains x1, x2, and hence the line
〈x1, x2〉, which is contained in any member of Ξ through x1, x2, must intersect Ξ(C) in
a point u of X ∪ Y . If u ∈ X, then 〈x1, x2〉 is singular and x1, x2 are neighbors of C, a
contradiction. Hence u ∈ Y , which implies, by Proposition 3.8, that x1, x2 belong to a
singular plane containing a generator of C, leading to the same contradiction. Our claim
follows.

Now consider two tubes C1, C2, both intersecting C in unique points, and such that
|C1 ∩ C2| = 1. Applying χ, we see that x := C1 ∩ C2 is no neighbor of C. Let i ∈ {1, 2}
and put C ∩Ci = xi. Since 〈C,Ci〉 is 6-dimensional, the projection of Ci \{xi} from Ξ(C)
is isomorphic to the projection of Ci \{xi} from xi (onto a suitable plane), and hence it is
an affine plane αi with one “point at infinity” p∞i added (the projection of the generator
through xi). By injectivity of ρ, α1 ∩ α2 = {ρ(x)} and so 〈α1, α2〉 is a 4-space inside F .
This implies N ≥ 8. The line at infinity L∞i corresponds to the tangent plane to Ci at
xi. Note that, by (H3), all tubes intersecting C in just xi will be projected onto planes
containing L∞i . Considering the projections of all tubes connecting x1 with a point of C2

not in C(X), we see that X \ C(X) is projected bijectively into the affine 4-space A in
〈α1α2〉 obtained by deleting the 3-space A∞ := 〈L∞1 , L∞2 〉. It follows that N = 8.

In α1, we see that the lines through p∞1 are the projections of the generators of C1; all other
lines distinct from L∞1 are projections of conics on C1 through x1. Noting that every pair
of points is contained in a tube and every tube containing points of X \X(C) intersects
C in a unique point, we see that every line of A is the projection of either a conic on some
tube (and the conic intersects C nontrivially), or a generator of some tube intersecting C
in a unique point. The latter case happens if and only if the point at infinity of the line
is contained in the projection of ΠY \ {y}, which is a line L∞ connecting p∞1 and p∞2 .

We take a line L in A∞ skew to L∞, and meeting the non-intersecting lines L∞1 and L∞2 ,
say in the points z1 and z2, respectively. The set Bi of affine points on 〈x, zi, i ∈ {1, 2},
is the projection of a “pointed” conic. Hence, translated to the Hjelmslev plane (X,T ),
it corresponds to a set of points mapped bijectively under χ to an affine line B∗i of π∗Y ,
where the point at infinity of that affine line is incident with χ(C). Let z be any point
on L, then a similar property holds for the set B of affine points of 〈x, z〉; denote the
corresponding affine line of π∗Y with B∗. Suppose B∗ = B∗i for some i ∈ {1, 2}. Then
there are points u ∈ B and ui ∈ Bi, distinct from z corresponding to the same point of
π∗Y . Hence the corresponding points of X lie on a singular line, and so, by the above,
the line 〈u, ui〉 meets L∞, contradicting the fact that L is skew to L∞. By varying the
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point x in α := 〈x, L〉 \ L, we see that α corresponds to a set α′ of points of (X,T )
mapped bijectively under χ to an affine part of π∗Y , namely all points of π∗Y except those
corresponding to the image of C. Also, α′ defines an affine subplane of (X,T ). We now
claim that we can extend this to a projective subplane in a unique way.

Indeed, if we interchange the roles of C and C1, then the conics corresponding to those
lines of α intersecting 〈x, z1〉, project again onto affine lines. It is easy to see, since |K| > 2,
see also Lemma 3.1 of [19], that all these affine lines are contained in a unique affine plane
α1. Also, if two lines of α intersect 〈x, z1〉 in the same point, then it is obvious that the
corresponding lines in α1 are parallel, and so the line 〈x, z1〉 of α corresponds to the line
at infinity of α1. The plane α1 also contains an affine line LO that corresponds to a conic
O on C and which corresponds to the line at infinity of α. It follows that O extends
α′ to a projective plane, except possibly in the point that corresponds with the point at
infinity of LO (meaning that we do not know whether the unique point of O that does
not correspond to any affine point of LO is incident with all lines of π′ that neighbor that
point). But the same reasoning with now C2 in the role of C shows that O really extends
α′ to a projective plane, and the claim is proved.

Let us denote the point set of this projective plane by P .

Now, the conic O lies in the 6-space 〈C1, α1〉. The latter does not contain y. So, all
points of α which are the projection of a point of X that corresponds with an affine point
of α1 are contained in the two 6-spaces 〈C, α〉 and 〈C1, α1〉, which intersect in a 5-space
(since y ∈ 〈C, α〉; the intersection cannot have dimension < 5 as O spans a plane, hence
a codimension 1 subspace of 〈C〉). Consequently, we see that P spans a 5-space, and so
it defines a Veronesean embedding of PG(2,K). By [13], P defines a quadric Veronese
variety V .

By the properties of α′ mentioned above, it is now also clear that χ defines a bijection
between P and the point set of π∗Y . Also, as y does not belong to 〈V〉, and C can be
regarded as an arbitrary conic of V , we see that 〈V〉 and πY are disjoint. �

This proposition hints at the following construction of X. Consider the plane πY , and
consider the quadric Veronese variety V in a complementary 5-space. These objects are
projectively unique. As we saw, there is a collineation, which we denote by χ, from V to
π∗Y such that for each point p ∈ V , the point set 〈p, χ(p)〉 \χ(p) is contained in X, and all
points of X arise in this way. In order to show that X is projectively unique, it remains to
nail down the collineation χ. Since all linear collineations are projectively equivalent, it
suffices to show that χ is linear, i.e., χ preserves the cross-ratio. This will be established
in our last proposition.
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Corollary 3.15 Let p1, p2, p3, p4 be four points on a common conic of V corresponding
to the singular planes πL1 , πL2 , πL3 , πL4, respectively. Then L1, L2, L3, L4 are concurrent
lines of πY and the cross-ratios (p1, p2; p3, p4) and (L1, L2;L3, L4) are equal.

Proof The fact that L1, L2, L3, L4 are concurrent lines of πY follows from the fact that
χ defines a collineation. Now let y be the common point of the Li, i = 1, 2, 3, 4. The
points p1, p2, p3, p4 lie on singular lines together with y. If we consider the projection of all
points of X that lie on a singular line together with y, then, according to Proposition 3.8,
we obtain a normal rational cubic scroll, and p1, p2, p3, p4 can be seen as four points on
the base conic, while the projections of L1, L2, L3, L4 are the four corresponding points on
the vertex line. Just by the very definition of a normal rational cubic scroll, the assertion
follows. �

Now we treat the case |K| = 2. Let x ∈ X. Since Tx contains at most 7 planes sharing
pairwise at most a line, we see that there are at most 7 different tubes through x. This
implies that N ≤ 4 + 7 = 11, hence N is finite. Let n = |X| ∈ N be the number of points.
Notice that not all tubes contain x (indeed, consider two tubes C1, C2 through x, then no
tube through the points xi ∈ Ci, i = 1, 2, where xi is not collinear to x on Ci, contains
x). Let C be a tube not through x. Since C has three generators, there are at least three
tubes connecting x with C. So the number nx of tubes through x satisfies 3 ≤ nx ≤ 7,
and it follows from the previous that, if nx = 3, then the three tubes through x all meet in
a fixed singular affine line. Let x0 ∈ X be such that there are two tubes through x0 only
meeting in x (x0 exists by Lemma 3.5). Then nx0 ≥ 4. Let, for x ∈ X, gx be the number
of generators through x, then one calculates that |X| = 4nx + gx + 1, where obviously
1 ≤ gx ≤ nx. We also have gx0 ≥ 2 by assumption. Hence |X| ≥ 19.

For x ∈ X, let T ′x be the 3-space obtained from Tx by factoring out x. Then every tube C
through x gives rise to a point-line flag in T ′x, where the point corresponds to the singular
line of C through x, and the line to the tangent plane to C at x. It follows from (H2) that
the set of all tubes through x yields a set of such flags with the properties that, if two
lines of different flags meet, then they must meet in their point (and therefore they have
their point in common). It follows for instance that gx ≤ 5 since T ′x contains gx disjoint
lines.

Now we consider the different possibilities for gx. If gx = 1, then n ∈ {22, 26, 30}.
Note that, if gx = 2, then looking in T ′x, the only possibilities are nx ∈ {2, 3, 4, 5, 6},
hence if gx = 2, then n ∈ {19, 23, 27}. If gx = 3, then likewise nx ∈ {3, 4, 5, 6}, hence
n ∈ {20, 24, 28}. If nx = 4, then gx = 4 and n = 21. Finally, if gx = 5, then nx = 5 and
n = 26.
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Since all these possibilities yield different possibilities for n, except for n = 26, we see
that either nx is constant, or there exist x ∈ X with (gx, nx) = (1, 6) and y ∈ X with
(gy, ny) = (5, 5). Suppose first the latter happens, and let x′ be the other point on the
unique singular line through x.

The five points ui, i = 1..5 on a common singular line with y also have gui = 5. Let t
be the vertex of the tubes through x. Suppose there is some point w ∈ X \ {x, x′} with
gw = 1. Then all tubes through w also have vertex t, and so the singular lines of these
tubes coincide with the singular lines of the tubes through x. hence all points off the tube
X[x,w] are contained in singular lines that are contained in at least two tubes; hence
gz = 1 for all such points z. There are now not enough points u left with gu = 5. Hence
x, x′ are unique with gx = 1. Let y′ be any point different from x, x′, y, but contained in
the tube X[x, y]. Let C ′ be any tube through y not containing x. Then there are unique
tubes through y′ and the five respective points of C ′ \ {y}. Since these tubes can have
at most one point in common with C ′, these must all be different. But then one of these
must coincide with X[y, y′], since there are only 5 tubes through y′. That is clearly a
contradiction.

We conclude that gx = gy and nx = ny for all x, y ∈ X. By Lemma 3.5 we have gx > 1.
Moreover this implies that the number of cones nnx

6
has to be an integer. This excludes

(gx, nx, n) ∈ {(2, 4, 19); (2, 5, 23); (3, 4, 20); (5, 5, 26)}.
Consequently (gx, nx, n) ∈ {(2, 6, 27); (3, 5, 24); (3, 6, 28); (4, 4, 21)}.
If gx = nx = 4, then G(X) is a linear space. For any point x, there is a line L, of size 6,
not incident with x. hence the number of lines through x joining a point of L is at least
6, implying nx ≥ 6, a contradiction. This rules out the case (4, 4, 21).

Now suppose gx = 2;nx = 6, n = 27. Since nx > gx in this case, there is some singular line
L contained in at least two tubes C1, C2. Let L1 be a singular line of C1 with L1 6= L and
let L2 be a singular line of C2 with L2 6= L. Suppose Li = {t, xi, yi}, i = 1, 2. Suppose the
tube X[x1, x2] does not contain L1. Then neither X[y1, y2] contains L1, and, since X does
not contain three points on a line, the intersection 〈x1, x2〉∩ 〈y1, y2〉 is the common vertex
of the tubes X[x1, x2] and X[y1, y2], and so x1 and x2 are on a singular line. Likewise x1
and y2 are on a singular line. This implies gx1 ≥ 3, a contradiction. Hence the singular
lines through t form a linear space with line sizes 3 defined by the tubes through t. Such
a space has at least seven elements, and each singular line is contained in at least three
tubes. Hence we have shown that, if a singular line is contained in at least two tubes,
it is contained in at least three. In T ′x, this implies that we have two sets of point-line
flags, each set with common point, and one set contains at least three members. Then it
is obvious that this set contains at most four elements and the other set contains at most
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two elements, hence exactly one! Each point x is contained in a unique singular lines that
is contained in at least two tubes, with common vertex t. The inverse of the application
x 7→ t defines a partition of X, each partition set consisting of 2(2(nx− 1) + 1) = 4nx− 2
points. Hence there are 4nx+3

4nx−2 = 19
14

partition classes, which is not an integer, excluding
the case (2, 6, 27).

Hence gx = 3. Note that the structure of point-line flags in T ′x implies that every singular
line is contained in either one or two tubes. Let L = {t, x, y} be a singular line, with
t ∈ Y , and such that there are exactly two cylindric spaces through L. Let L,L1,M1 and
L,L2,M2 be the singular lines of the corresponding tubes. Then L1 cannot be contained
in tubes together with L2 and M2, as in that case L1 would be contained in at least three
tubes. As in the previous paragraph, we deduce that, if x1 ∈ L1 ∩X, and x2 ∈ L2 ∩X,
and L1 ∪ L2 is not contained in a cylindric space, then 〈x1, x2〉 is a singular line. Since
there are only three singular lines through x1, we deduce that we may assume that L1, L2

are contained in a cylindric space, and so are M1,M2, but L1 and M2 are not contained
in a cylindric space, and neither are L2,M1. By symmetry, it follows that there is a
unique additional singular line L′ through t contained in the cylindric spaces determines
by L1, L2 and by M1,M2. Hence the set of singular lines through a fixed point of Y covers
12 points of X. The intersection of two such 12-point sets contains at most 4 points (such
as those of L1 ∪M2). If n = 24, then every point is contained in a unique singular line
which is contained in a unique cylindric space. No singular lines of such unique cylindric
space is contained in a second cylindric space, as otherwise we can apply our argument
above and obtain a 12-set. So those cylindric spaces partition X, and there are exactly
4 of them. But every other tube intersects each of these cylindric spaces in at most one
point, contradicting the fact that a tube contains 6 points of X.

Hence n = 28. Now with the above, it is not difficult to see that any 12-set as defined
before forms the set of points neighboring a line in a level 2 Hjelmslev plane over the dual
numbers of size 4.

The result now follows as in the general case and the proof of Theorem 3.1 is complete.

4 Equivalence of V -sets

In this section, we consider the constructions of the various V -sets given in Subsection 1.2,
and show some equivalence amongst them. The merit of this section is that all proofs
are uniform, whereas many objects hidden in de V -sets for the different special cases of
V are treated separably in the literature. Most proofs are not deep, and we will content
ourselves by mentioning the main ideas.
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First we introduce our uniform point of view. To that aim, we note that any 2-dimensional
unital algebra over a field K is a matrix algebra over K. We now make this more explicit.
It will allow us to treat all cases in the same way.

If V is a quadratic field extension, say with respect to the quadratic polynomial x2−tx+n,
then V can be thought of to consist of the matrices[

x y
−ny x+ ty

]
, x, y ∈ K.

If V is the direct product of K with itself, then obviously we can identify V with the matrix
algebra of the diagonal matrices. However, in order to allow for a uniform treatment, we
identify the algebra with the algebra of matrices[

x y
0 x+ y

]
, x, y ∈ K.

If V is the ring of dual numbers of K, then it can be thought of to consist of the matrices[
x y
0 x

]
, x, y ∈ K.

In each case, the automorphism σ is given by assigning to each matrix A its adjugate
Aadj, i.e.,

σ : V → V :

[
a b
c d

]
7→
[

d −b
−c a

]
,

for all appropriate a, b, c, d such that the given matrix belongs to V .

Now we observe that the second and the third of the three above algebras can be de-
scribed in exactly the same way as the first one by putting (t, n) equal to (1, 0) and (0, 0),
respectively. In fact, isomorphic descriptions are obtained if one now varies (t, n) over
all possible values in K × K. If the quadratic polynomial x2 − tx + n has no solutions,
exactly one solution, or two distinct solutions in K, then we we obtain a matrix algebra
isomorphic to first, second or third case above, respectively.

So from now on, we assume that we have been given the pair (n, t) ∈ K × K arbitrarily,
and we consider the corresponding matrix algebra V . But we emphasize that there are
other matrix representations of these algebras not captured by assigning values to (t, n).
Also for these representations, the results below hold, with a similar proof.

We write each element of V as xR + yI, with

R =

[
1 0
0 1

]
and I =

[
0 1
−n t

]
.
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Although R is the identity matrix, we insist on keeping the notation R for it. The
advantage is that all results below will also hold for R different from the identity matrix,
hence for different representations of the algebra V . Hence all results below hold for
arbitrary 2× 2 matrix representations of V .

For an arbitrary element A of V , write x(A) and y(A) for the unique elements of K such
that A = x(A)R + y(A)I. This is a canonical way to write V as a 2-dimensional vector
space over K.

The following lemma is easily verified by direct computation.

Lemma 4.1 For every matrix M ∈ V , we have M =

[
x(RM) y(RM)
x(IM) y(IM)

]
. �

And also the next lemma is straightforward and requires no explicit proof.

Lemma 4.2 Let M,N ∈ V , then the six determinants corresponding to the six 2 × 2
matrices obtained by deleting two columns in the 2× 4 matrix constructed from M and N
by juxtaposition, equal, up to sign and as a multiset, the four entries of the matrix NadjM
and the two determinants detM and detN . �

With this set-up, the verification of the equivalence of the various V -sets becomes rather
easy. In the sequel, we fix the field K.

First equivalence: The V -set defined by reduction is projectively equivalent with the
V -set defined by juxtaposition.

Indeed, writing any element of V as xR + yI, and denoting this as (x, y), an arbitrary
point of G(V ) is a triple T = ((x, y), (x′, y′), (x′′, y′′)) of elements of V , up to a scalar factor
in V ∗, such that no common multiple of (x, y), (x′, y′) and (x′′, y′′) using a nonzero factor
in V is zero. The 1-space over V defined by T is given by all multiples over V of T , and
viewed as vector space over K, the 2-space over K defined by T is hence generated by RT
and IT . Lemma 4.1 implies that this space is hence generated by the two points obtained
by juxtaposition of the matrices of (x, y), (x′, y′) and (x′′, y′′) and taking the points with
coordinates in K given by the respective rows in this juxtaposition.

Second equivalence: The V -set defined by matrices is projectively equivalent with the
V -set defined by juxtaposition.

Indeed, the coordinates in PG(8,K) of the point corresponding with the point V ∗(M,N,L),
where M,N,L are elements of the matrix algebra V , are given by the nine values

detM, detN, detL, x(MadjN), y(MadjN), x(NadjL), y(NadjL), x(LadjM), y(LadjM).
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Now Lemma 4.2 implies that the line Grassmannian coordinates in PG(14,K) of the line
of PG(5,K) determined by the points whose coordinates correspond with the two rows of
the 2 × 6 matrix obtained by juxtaposing M,N,L, are given by the three determinants
detM, detN, detL, and by the twelve entries of the matrices MadjN,NadjL and LadjM .
But the entries in the first rows of these coincide with x(MadjN), y(MadjN), x(NadjL),
y(NadjL, x(LadjM) and y(LadjM), whereas the entries in the second rows are simple linear
combinations of the other entries. This determines a projective linear transformation
between these two V -sets.

Third equivalence: The V -set defined by matrices is projectively equivalent with the
V -set defined by juxtaposition.

Indeed, this is clearly equivalent with showing that the set S1 of rank 1 Hermitian 3×3 ma-
trices over V coincides with the set S2 of all scalar multiples of matrices (M N L)t(M N L)adj,
for V ∗(M,N,L) a point of G(V ). Obviously, S2 ⊆ S1. In order to show the converse, let

H =

 k1 R3 Radj
2

Radj
3 k2 R1

R2 Radj
1 k3

 ,
with k1, k2, k3 ∈ K and R1, R2, R3 ∈ V be a Hermitian matrix of rank 1. We show the
assertion for (k1, k2, k3) 6= (0, 0, 0), leaving the easier case k1 = k2 = k3 = 0 to the reader
(note that this case only occurs for V the direct product of K with itself). We may assume
k1 6= 0 and hence k1 = 0. Now we note that a Hermitian matrix of rank 1 with a 1 in
the position of the first row and first column is completely determined by the first row
and the first column (this is easily verified with standard arguments). Since both H and
(1, Radj

3 , R2)
t(1, Radj

3 , R2)
adj have rank 1, have the same first row and first column, and

both have a 1 on the position of the first row and first column, they coincide and the
assertion is proved.

Preparing the verification of the Mazzocca-Melone axioms, we here show that all V -sets
we considered span an 8-dimensional space. By isomorphism, it is enough to do so for
the V -sets defined by matrices.

Proposition 4.3 The V -set defined by matrices spans an 8-dimensional projective space.

Proof We consider the nine Hermitian matrices (M N L)t(M N L)adj with (M,N,L)
equal to (R, 0, 0), (0,R, 0), (0, 0,R), (0,RR), (R, 0,R), (R,R, 0), (0,R, I), (I, 0,R),
(R, I, 0), respectively. Then it is easily checked that these are K-linearly independent. �
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5 Every V -set is a C-Veronesean set

In this section we show the converses of Theorems 2.1 and 3.1 for N = 8, i.e., we show
that a Segrean and Hjelmslevian Veronesean set for N = 8 really exists. In order to do
so, it suffices to check the axioms (V1), (V2), (V3) for one of the equivalent V -sets of the
previous section—and we will do it for V -sets defined by matrices since the C-subspaces
are most conveniently described—and show that the set of C-subspaces is unique. It is
convenient to use transitivity properties of the V -set to reduce the calculations. We will
achieve this by first establishing these transitivity properties for G(V ), and then show
that the action of the group responsible for these properties extends to the V -set.

5.1 Transitivity properties for G(V )

In this section we essentially gather some (transitivity and neighboring) properties of the
geometry G(V ), for V a 2-dimensional unital algebra over some commutative field K, from
[23] (see also [14] in case the characteristic of K is not equal to 2 or 3).

The transitivity properties we need require the notions of “neighboring relations”. Hence
we first define these.

Definition 5.1 Two points V ∗(x, y, z) and V ∗(u, v, w) of G(V ) are called neighboring,
denoted V ∗(x, y, z) ∼ V ∗(u, v, w), if there exist elements k, ` ∈ V such that k(x, y, z) =
`(u, v, w). Similarly for lines. Also, a point V ∗(x, y, z) and a line V ∗[a, b, c] are neighboring,
denoted V ∗(x, y, z) ∼ V ∗[a, b, c], if ax+ by + cz ∈ V0.

We note that, if two distinct points V ∗(x, y, z) and V ∗(u, v, w) of G(V ) are neighboring,
and k, ` ∈ V are such that k(x, y, z) = `(u, v, w), then both k and ` are zero divisors
and k ∈ K`. Indeed, if k is invertible, then clearly the points are equal; if k and ` would
be linearly independent over K, then we know k2 ∈ Kk and k` = 0, hence k2(x, y, z) =
(0, 0, 0) without k2 being 0, a contradiction.

In order to provide a better understanding of these relations we list the following prop-
erties for the neighboring relations. Consider two lines L1 := V ∗[a1, b1, c1] and L2 :=
V ∗[a2, b2, c2]. We set

A :=

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ , B :=

∣∣∣∣ c1 a1
c2 a2

∣∣∣∣ , C :=

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ .
In the next Proposition, (i) is easy to show (but since we do not need it, we omit the
proof), (ii) is 2.6 of [23] and (iii) is 2.7 of [23].

35



Proposition 5.2 (i) With the above notation, the lines L1 and L2 are not neighboring
if and only if V ∗(A,B,C) is a point of G(V ).

(ii) A point P := V ∗(x, y, z) neighbors a line L := V ∗(a, b, c) if and only if P neighbors
some point of L if and only if L neighbors some line through P .

(iii) Two lines are neighboring if and only if they intersect in at least two common points.
�

Now we define the objects on which a certain group will act transitively.

Definition 5.3 A triple of points (P1, P2, P3) in G(V ) is called a proper ordered triangle
if P1, P2, P3 are pairwise non-neighboring and the unique lines determined by P1, P2, by
P2, P3 and by P3, P1, are pairwise non-neighboring.

Definition 5.4 A proper ordered quadrangle (P1, P2, P3, P4) of points is a quadruple for
which every ordered subtriple is a proper ordered triangle.

We now come to defining the group of collineations that we will consider acting on G(V ).

LetM be any 3×3 matrix with entries in V such that the usual determinant is an invertible
element in V . Then the transposed of the inverse exists, and we denote it by M∗. The
set of all these matrices forms a group GL3(V ).The action is defined in a standard way:
the point V ∗(x, y, z) is mapped onto the point V ∗(u, v, w), where (u v w) = (x y z)M .
We denote (u, v, w) = (x, y, z)M .

Standard arguments (which we will not repeat here) show that the above action is well
defined, i.e., the image of a point is a triple that represents a point. Moreover, every
member of GL3(V ) maps lines to lines (also this only requires a standard argument, which
we omit). Now (ii) and (iii) of Proposition 5.2 imply that GL3(V ) respects the neighbor
relations.

A special class of members of GL3(V ) are, in the language of [23], the “central transvec-
tions”, and the “dilatations”. These are conjugate to 1 0 0

α 1 0
0 0 1

 and

 β 0 0
0 1 0
0 0 1

 ,
respectively, where α ∈ V arbitrary and β ∈ V ∗. Hence, Corollary 4.25 of [23] implies the
following theorem.
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Theorem 5.5 The group GL3(V ) acts sharply transitively on the family of all proper
ordered quadrangles. �

Actually, Corollary 4.25 of [23] only asserts that GL3(V ) acts transitively on the family of
proper ordered quadruples. The sharp transitivity (which we will not need in the sequel)
follows from a standard argument (the only member of GL3(V ) fixing the points (1, 0, 0),
(0, 1, 0), (0, 0, 1) and (1, 1, 1)—which form a proper ordered quadruple—is the identity).

This now immediately implies the following transitivity properties. A flag is an incident
point-line pair.

Corollary 5.6 The group GL3(V ) acts transitively on the family of all flags of G(V ),
on the family of all triples (P1, L1, P2), where P1, P2 are non-neighboring points on the
line L1, on the family of all quadruples (P1, L1, P2, L2), where P1, P2 are non-neighboring
points on the line L1, and L1, L2 are non-neighboring lines through the point P2, and on
the family of proper ordered triangles. �

Note that the proof of Corollary 5.6 is not entirely trivial; one must show for instance show
that every flag is contained in a proper ordered quadruple, and similarly for the other
objects. As this is rather straightforward, we omit the proof. However, to emphasize that
the intuition is not the usual one, we mention that, in general, the group GL3(V ) does not
act transitively on the set of pairs (P,L), where P is a point and L is a line neighboring
P .

5.2 Action of GL3(V ) on the V -set defined by matrices

We now show that the action of the group GL3(V ) on G(V ) extends to the V -set X defined
by matrices.

Lemma 5.7 Let X be the V -set defined by matrices in PG(8,K). Then there is a group
G ≤ GL9(K) acting on X, and an isomorphism θ : G→ GL3(V ) such that for g ∈ G, and
for V ∗(x, y, z) a point of G(V ),

(V ∗(x, y, z))θ(g) corresponds to ((x y z)t(x y z)σ)g,

Proof This follows from the fact that, if M ∈ GL3(V ) and A is a Hermitian matrix
over V = KR + KI (the coefficient of R will be referred to as the real part, the one of
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I as the imaginary part) then the real and imaginary part of each entry of M tAM θ is a
linear combination of the real and imaginary parts of the entries of A, with as coefficients
quadratic expressions in the real and imaginary parts of the entries of M , also involving
the elements t, n ∈ K for which I2 − tI + n = 0. The latter uses the fact that V is a
quadratic algebra over K. �

5.3 V -sets defined by matrices satisfy the Mazzocca-Melone ax-
ioms

We now check that the V -sets defined by matrices satisfy the Mazzocca-Melone axioms.

Lemma 5.8 The V -sets defined by matrices are C-Veronesean sets, when endowed with
the set Ξ of 3-spaces obtained by considering the spans of the lines of G(V ), and where C
is the class of elliptic quadrics, of quadratic cones with removed vertex, or of hyperbolic
quadrics according to whether V0 is trivial, a 1-dimensional subspace of V , or the union
of two 1-dimensional subspaces of V .

Proof Recall that the coordinates (X0, · · · , X8) of the point in PG(8,K) corresponding
with the point V ∗(M,N,L), with M,N,L ∈ V , where V is viewed as matrix algebra, are

(detM, detN, detL, x(MadjN), y(MadjN), x(NadjL), y(NadjL), x(LadjM), y(LadjM)).

We first show the claim that the points on an arbitrary line of G(V ) span a 3-space which
intersects X in a point set lying on a quadric (corresponding to the class C). Indeed,
by Corollary 5.6, we may consider the line V ∗[0, 0, 1] = V ∗[0, 0,R], where this is easily
checked, denote the quadric by H.

Now we show that every regular point P of H is a point of the line V ∗[0, 0,R], and no
singular point is.

Suppose P has coordinates (x0, x1, 0, x3, x4, 0, 0, 0, 0). First assume that x0 6= 0; then
we may assume x0 = 1. Then one easily calculates that P corresponds to the point
V ∗(R, x3R + x4I, 0). Similarly if x1 6= 0, then P corresponds to a point of V ∗[0, 0,R]. If
H is elliptic, then there are no more points; if H is a cone, then the only point of H with
x0 = x1 = 0 is the vertex and we claim this does not belong to V ∗[0, 0,R]. Indeed, by
Corollary 5.6 it would follow that every point of H is singular, a contradiction. Finally, if
H is hyperbolic, then there are precisely two points with x0 = x1 = 0, and if one or both
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of them would not belong to V ∗[0, 0,R], then the collineation group stabilizing the set of
points H belonging to V ∗[0, 0,R] could not act transitively, contradicting Corollary 5.6.

Hence we have shown that the intersection of X with the space generated by the points
on V ∗[0, 0,R] is a member of C. Now Property (V1) is obvious.

By transitivity we can prove property (V3) by checking it at P = (1, 0, 0, 0, 0, 0, 0, 0, 0),
which is an easy calculation.

Finally, we show property (V2) and first the non-neighboring situation. By Corollary 5.6
we may take the lines V ∗[R, 0, 0] and V ∗[0, 0,R]. The corresponding subspaces in PG(8,K)
meet only in the point which corresponds to the point V ∗(0,R, 0) of G(V ).

Now we consider the neighboring situation. By Corollary 5.6 and Definition 5.1, we
may consider the lines V ∗[0, 0,R] and V ∗[0, kM,R + `M ], where M ∈ V0 \ {0}. Put
M = aR + bI, with a, b ∈ K. One calculates that the points V ∗(0,R + `M,−kM) and
(1,R + `M,−kM) belong to V ∗[0, kM,R + `M ], and the last four coordinates of these
points in PG(8,K) are (−ka,−kb, 0, 0) and (−ka,−kb, kx+ kyt,−ky), respectively. This
implies, in view of the fact that the last four coordinates of every point of V ∗[0, 0,R] are
0, that the set of points of PG(8,K) corresponding with the set of points of G(V ) on the
union of the lines V ∗[0, 0,R] and V ∗[0, kM,R + `M ] span a subspace of dimension at
least 5. But since these lines meet in at least 2 points, this dimension is exactly 5 and the
corresponding 3-spaces meet in a line T . Now, the intersection points of these two lines
can be generically written as V ∗(mR,M ′, 0), with m ∈ K and where MM ′ = 0, M ′ 6= 0
(we overlook at most one point, and that happens precisely when M and M are linearly
independent; then we have the additional point V ∗(M,M ′, 0)). Writing the coordinates
of such generic point in PG(8,K), we see that m appears linearly, so that we miss at most
one point of T . This shows Property (V2). �

To finish the proof of the Main Result, it now suffices to show the following uniqueness
result.

Proposition 5.9 Every (abstract) ovoid, tube and hypo contained in a Hermitian, Hjelm-
slevian and Segrean Veronesean set, respectively, is contained in an elliptic, cylindric and
hyperbolic space, respectively.

Proof If the groundfield has order at least 3, then there is a uniform approach. Let X
be a Hermitian, Hjelmslevian or Segrean Veronesean set with Ξ the set of corresponding
elliptic, cylindric and hyperbolic spaces, respectively. Let Q be an ovoid, tube or hypo
contained in X, and not contained in a member of Ξ. Let x, y ∈ X be two points such
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that the projective line spanned by x and y is not entirely contained in Q (and then x
and y are the only two points of X on that line). Such points exist since otherwise one
easily sees that the 3-space generated by Q is entirely contained in X, a contradiction.
Let H be the unique elliptic quadric, tube or hypo, respectively, contained in a member ξ
of Ξ and containing both x and y. Choose an oval O in Q through x and y. If O does not
belong to ξ, then we can select two points x′, y′ in O distinct from x, y, and a member ξ′

of Ξ containing x′, y′. Since ξ′ 6= ξ, the axioms imply ξ′ ∩ ξ ⊆ X, a contradiction (for the
Hjelmslevian case, it really follows from Lemma 3.3).

Hence O ⊆ ξ and so O ⊆ H. But we do the same for a second oval through x, y and
obtain Q ⊆ ξ.

Now we consider the cases of Hermitian and Segrean Veronesean sets over the field F2. In
the Segrean case, it is easily seen that a hypothetical hypo Q not contained in a member
of Ξ shares two generators with a hypo H contained in a member of Ξ. Now taking two
appropriate points of Q outside H and considering a hyperbolic space through them leads
to a contradiction, as above. In the Hermitian case, the same contradiction arises when a
hypothetical ovoid Q in X not contained in a member of Ξ intersects an elliptic space in
an ovoid; hence we may assume that it intersects some elliptic space ξ in just two points
x, y. But the projection from ξ of X \ ξ is injective and contained in an affine space of
dimension 4, see [12], and the three points of Q distinct from x, y would project on a line;
a contradiction.

For the Hjelmslevian Veronesean set X over F2, we note that it is easily seen that 4 points
in general position can never lie in a common plane. Suppose we have 4 points of X in a
common plane, then three of them must lie on singular lines through a common vertex t.
One now easily checks that the space generated by all points on a singular line through
t (a 12-set in the terminology of the last part of Section 3) does not contain more points
than those 12 points; hence the fourth point must also be in that set. It now follows easily
that a given tube must be contained in a cylindric space.

The proposition, and hence our Main Result, is completely proved. �

6 Further motivation

In this section we put our results in a broader perspective, at the same time motivating
why we look at these generalizations of Hermitian Veronese varieties, and explaining why
we stated the Axioms (V1), (V2) and (V3) in such generality.

40



Consider an alternative composition division algebra A, and suppose A is either 4- or 8-
dimensional over its center (hence we have a quaternion or octonion algebra). Then there
is a unique projective plane P2(A) associated with A, and this projective plane corresponds
to a real form of an algebraic group of absolute type either A5 or E6. The (standard)
Veronese varieties associated to these planes arise from a standard representation of the
spherical buildings of type A5 and E6, respectively, in a 15- and 27-dimensional vector
space, respectively, by suitably restricting coordinates. These Veronese varieties can also
be constructed directly as certain Hermitian matrices with entries in A. Now, if we take
for A the split version of the algebra, then we obtain in this way the aforementioned
representations of the respective spherical buildings.

So, we may conclude that there is a uniform construction of all Veronese varieties corre-
sponding to composition division algebras, and certain representations of spherical build-
ings. Our ultimate aim is to characterize all these structures in a uniform way by the
axioms (V1), (V2) and (V3). Moreover, by allowing not only split and non-split algebras,
but also certain other quadratic variants V , for which the associated geometry G(V ) as
defined in Section 1 has the properties that any two points lie on at least one common
line and any pair of lines has at least one point in common, we hope to include some
less standard varieties, such as the Hjelmslev planes of the present paper, which are still
connected to Tits-buildings. Indeed, the Hjelmslev planes of level 2 are precisely the
structures emerging from the set of vertices at distance 2 from a given vertex in an affine
building of type Ã2, see [6, 22].

The geometries referred to in the previous paragraph correspond to the second row of the
Freudenthal-Tits magic square (over any field). In particular, our characterization should
ultimately include a characterization of the standard module for groups of type E6 over
any field. It would be rather remarkable that this intricate geometric structure allows to
be caught by a rather simple and short list of axioms.

By intersecting the models of the C-Veronesean sets corresponding to the second row of
the Freudenthal-Tits magic square with an appropriate hyperplane (codimension 1 space),
we obtain models for the geometries and groups in the first row of this square. A second
aim of ours is to find adequate axioms for these representations. These axioms should
have the same spirit as those considered in the present paper. This would yield common
characterizations of certain representations of buildings of types A2 (the analogues of those
considered in [15] for arbitrary fields), C3 (the line Grassmannian representation) and F4

(the ordinary 25-dimensional module).

Of course, further perspectives include the third and the final row of the Freudenthal-
Tits magic square, where, amongst others, non-embeddable polar spaces and buildings of
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types E7 and E8 appear. The former, although already apparent in Tits’ original approach,
were formally proved to be in the Magic Square by Mühlherr in [11]. This indicates that
a geometric approach, as started here is worthwhile to pursue.

Finally we note that [2, 9] contain related approaches to the magic square, describing the
algebraic geometry and representation theory associated to the Freudenthal-Tits magic
square (hence restricted to certain fields, for instance not over finite fields).
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