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Abstract

We give a general construction for unitals of order q admitting an action of SU(2, q).
The construction covers the classical hermitian unitals, Grüning’s unitals in Hall
planes and at least one unital of order four where the translation centers fill precisely
one block. For the latter unital, we determine the full group of automorphisms and
show that there are no group-preserving embeddings into (dual) translation planes
of order 16.
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Introduction

Let U = (U,B) be a unital of order q, and let Γ B Aut(U). For each point c ∈ U we
consider the group Γ[c] of translations with center c, i.e., the set of all automorphisms
of U fixing each block through c. We say that c is a translation center of U if Γ[c] is
transitive on the set of points different from c on any block through c.

The main result of [9] states that the unitalU is classical (i.e., isomorphic to the hermi-
tian unital corresponding to the field extensionFq2/Fq) if it has non-collinear translation
centers. Unitals with precisely one translation center seem to exist in abundance (we
indicate several quite different classes of examples in Section 5 below). If there are two
translation centers c and c′ then the orbit of c′ under Γ[c] fills the complement of c in the
block joining c with c′. We give an example of a unital (of order 4, see Section 1 below)
where the translation centers fill just one block. As far as we know, this unital is the
first (and up to now, the only) one with that property.
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1 A curious unital of order four

Let Syl2(A5) be the set of all five Sylow 2-subgroups in the alternating group A5, and
let S B 〈(01234)〉. We consider the subsets E1 B {id, (023), (024), (123), (03421)} and E2 B

E(1243)
1 = {id, (041), (043), (124), (01342)}. For later reference, we abbreviate E B {E1,E2}.
We construct an incidence structureUE with two kinds of points: elements of A5 and

elements of Syl2(A5). The blocks are the following:

• cosets Tg for T ∈ Syl2(A5), g ∈ A5,

• cosets Sg for g ∈ A5,

• sets E jg for g ∈ A5 and j ∈ {1, 2},

• a single block named [∞].

Note that the elements of Syl2(A5) are used as (labels for) points and also as certain
blocks. Incidence between points in A5 and subsets is the obvious one. A point
T ∈ Syl2(A5) is incident with [∞], with each left coset gT ( = Tgg), and with no other
block.

In the present paper, we show that the incidence geometryUE is a non-classical unital
of order 4, with the following properties: The action of A5 by multiplication from the
right on itself and on the blocks apart from [∞] is an action by automorphisms of UE.
Each T ∈ Syl2(A5) acts by translations with center T. There are no other translations
of UE. The full automorphism group of UE is isomorphic to a semi-direct product
of A5 with a cyclic group of order four, where a generator of that cyclic group induces
conjugation by (1243) on A5.

2 A general construction

Motivated by the action (see 3.1 below) of SU(2, q) on the classical (hermitian) unital of
order q, we study geometries as follows.

2.1 Lemma. Let G be a group, let T be a subgroup such that conjugates Tg and Th have trivial
intersection unless they coincide (i.e., the conjugacy class TG forms a T.I. set). Assume that
there is a subgroup S and a collection D of subsets of G such that each set D ∈ D contains 1,
and the following properties hold:

(Q) For each D ∈ D, the map (D ×D) r {(x, x) | x ∈ D} → G : (x, y) 7→ xy−1 is injective.
We abbreviate D∗ B {xy−1

| x, y ∈ D, x , y}.

(P) The system consisting of S r {1}, all conjugates of T r {1} and all sets D∗ with D ∈ D
forms a partition of G r {1}.

Then the incidence structure with point set G and block set

B
∞ B {Sg | g ∈ G} ∪ {Thg | h, g ∈ G} ∪ {Dg |D ∈ D, g ∈ G}

is a linear space. Each involution of G is contained in S ∪
⋃

g∈G Tg.
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We consider each conjugate Th as a point at infinity, call [∞] B {Th
| h ∈ G} the block at

infinity (incident with each point at infinity, and no point in G), and extend the incidence
relation in two different ways:

(a) Make each conjugate Th incident with each coset Thg−1
g = gTh (and no other block inB∞).

This gives an incidence structure UD B
(
G ∪ {Th

| h ∈ G},B∞ ∪ {[∞]}, I
)
.

(b) Make each conjugate Th incident with each coset Thg (and no other block in B∞). This
gives an incidence structure U[

D
B

(
G ∪ {Th

| h ∈ G},B∞ ∪ {[∞]}, I[
)
.

Then both UD and U[
D

are linear spaces, and the following hold.

1. Via multiplication from the right on G and conjugation on the point row of [∞], the
group G acts as a group of automorphisms on UD.

2. On U[
D

the group G also acts by automorphisms via multiplication from the right on G
but trivially on the point row of [∞].

Now let G be finite, and abbreviate q B |T|. Assume that |G| = q3
− q, that there are q + 1

conjugates of T, and that |S| = q + 1 = |D| holds for each D ∈ D. Note that we have |D| = q− 2
in that case.

3. Both UD and U[
D

are 2 − (q3 + 1, q + 1, 1) designs; i.e., unitals of order q.

4. On the unitalUD each conjugate of T acts as a group of translations. Thus each point on
the block [∞] is a translation center, and G is two-transitive on [∞].

5. On the unital U[
D

the group G contains no translation except the trivial one.

Proof. Assume first that some involution s ∈ G lies outside S ∪
⋃

g∈G Tg. Then the
assumptions yield that s is of the form s = xy−1 with x, y ∈ D for some D ∈ D. Then
xy−1 = s = s−1 = yx−1 contradicts assumption (Q).

We consider blocks through 1 first. Cosets like Thg or Sg contain 1 if, and only if, they
coincide with the subgroups Th and S, respectively. The situation is different for Dg with
D ∈ D: here 1 ∈ Dg ⇐⇒ g−1

∈ D. Thus Dg passes through 1 precisely if Dg ⊆ D∗ ∪ {1}.
Now the partition required in condition (P) secures that each element in Gr {1} is joined
to 1 by a unique block in B∞. As G forms a transitive group of automorphisms of
(G,B∞), that structure is a linear space.

The conditions imposed on the orders of G, T, S, and |D| make it immediate that
both UD and U[

D
are 2 − (q3 + 1, q + 1, 1) designs.

Each orbit of each conjugate of T is contained in a block, but these blocks are assigned
points at infinity in different ways in the two incidence structures UD and U[

D
. For

(g,Th) ∈ G × [∞] the unique joining block in UD is Thg−1
g. Thus UD is a linear space.

In U[
D

the unique joining block for (g,Th) is Thg, and U[
D

is a linear space, as well.
We note that the subgroup Th

≤ G fixes each block through the point Th in UD
because Thg−1

g = gTh. Thus Th is a group of translations with center Th on UD. As Th
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acts transitively on the set of points on the block Th that are different from Th (considered
as a point), the point Th is a translation center.

In U[
D

the group T fixes [∞] and precisely |NG(T)/T| blocks through each point
Th
∈ [∞], namely the blocks of the form Thg = gThg with hg ∈ NG(T). As every element

of G fixes each point at infinity, the group G contains no translations of the unital U[
D

apart from the trivial one. �

2.2 Remarks. It may come as a surprise that the incidence relation for points at infinity
is not determined by the affine part of UD (i.e., the linear space (G,B∞) together with
the action of G on that geometry). We have at least one other possibility, namely the
unital U[

D
where G acts trivially on [∞], and there are no translations of the unital in G.

Grüning’s unital (see 5.5 below) is obtained by such a completion of (G,B∞).

3 Examples

3.1 Classical unitals. Let C be a field with an involutory automorphism κ : x 7→ x.
On C2 we consider the affine lines, the hermitian form (x, y) 7→ x x−y y and the subset
A B {(x, y) | x x−y y = 1}. The special unitary group with respect to the given form is

SU(2,C) =
{( x y

y x

) ∣∣∣∣ x, y ∈ C, x x−y y = 1
}
. It is known that SU(2,C) � SL(2,R), where

R = Fix(κ). Note that SU(2,C) acts regularly on A; we identify (x, y) ∈ A with
( x y

y x

)
∈

SU(2,C). We may even extend this to an identification of C2 r {(x, y) | x x = y y} with a
subgroup of the group of similitudes of the hermitian form.

We describe the interesting intersections of A with lines through (1, 0); in particular,
all the blocks through (1, 0):

1. The line (1, 0) + C(0, 1) is a tangent to the unital, it meets the unital only in (1, 0).

2. The (stabilizer of the) block induced by the line (1, 0) + C(1, 0) is the subgroup
S = {(x, 0) | x x = 1} of SU(2,C).

3. The (stabilizer of the) block induced by the line (1, 0) + C(1, 1) is the subgroup
T1 B {(1 + x, x) | x + x = 0}. For each s ∈ {c ∈ C | c c = 1} the line (1, 0) + C(1, s)
induces the block Ts = {(1 + x, xs) | x + x = 0}which is a conjugate of T1; in fact, we
have (u−1, 0)T1(u, 0) = Tu /u.

4. For t ∈ {c ∈ C | c c < {0, 1}}, the block induced by the line (1, 0) + C(1, t) is Ht B
{(1 + x, xt) | x + x = (t t−1)x x}. These subsets of SU(2,C) are not subgroups; the
corresponding stabilizers are trivial.

We note that Ĥt B {ab−1
| a, b ∈ Ht} equals the union

⋃
s∈C : s s=1 Hst of the orbit of Ht

under conjugation by S. Mapping (x, y) to xy−1 gives a bijection from (Ht r {(1, 0)})2

onto Ĥt.

If C is the finite field of order q2 = p2n with p = char C then Ts is a Sylow p-subgroup of
SU(2,C) = SU(2, q), the group S is cyclic of order q+1, and there are q−2 orbits of blocks
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of type Ht under conjugation by S. We choose an arbitrary set Hq = {H1, . . . ,Hq−2} of
representatives for these orbits. Then UHq is the classical (hermitian) unital.

Grüning’s unitals (embedded in Hall planes and their duals, see [10] and 5.5 below)
are obtained asU[

Hq
. For q > 2 the unitalsUHq andU[

Hq
are not isomorphic becauseU[

Hq

contains O’Nan configurations (see [10, 5.4]).

3.2 Example. There is only one isomorphism type of unitals of order 2 because such a
unital is actually an affine plane of order 3. Our construction yields that unital from the
group S3 � SL(2, 2), its Sylow 2-subgroups, and S = 〈(012)〉; the collectionH2 is empty.
The two possibilities for incidences on [∞] lead to isomorphic unitals UH2 � U[

H2
but

different actions of SL(2, 2).

Unitals of order 3 exist in abundance, see [4]. However, there is only one candidate
for D∗, and essentially only one choice for D:

3.3 Theorem. Assume q = 3 and G = SL(2, 3) � SU(2, 3), and letD be a collection as in 2.1.
Then S is cyclic of order 4, andD consists of just one set D. Moreover, the pair (S,D) is unique,
up to conjugation in SL(2, 3). Thus we obtain two unitals, namely UH3 and U[

H3
.

Proof. Clearly we have |D| = q − 2 = 1. We consider the element δ B
(

1 1
0 1

)
of order 3,

the element ϕ0 B
(

0 1
−1 0

)
of order 4, and the conjugates ϕ j B δ− jϕ0δ j for j ∈ {1, 2}. The

group SL(2, 3) contains the elements

id (of order 1), − id (of order 2),
δ, δ2, ϕ jδ = δϕ j+1,−ϕ jδ2 = −δ2ϕ j−1 (of order 3),
±ϕ j (of order 4), and
−δ,−δ2,−ϕ jδ = −δϕ j+1, ϕ jδ2 = δ2ϕ j−1 (of order 6).

Up to conjugation, we may assume that S is generated by ϕ0. The point 1 is joined by
blocks to the elements of the union T = {id, δ, δ2

} ∪ {ϕ jδ,−ϕ jδ2
| j ∈ {0, 1, 2}} of Sylow

3-subgroups (these are the blocks that also meet the block at infinity), and joined by the
block S to the elements of S = {id,−id, ϕ0,−ϕ0}.

Without loss, we assume ϕ1 ∈ D. Then the conditions S ∩ (D r {ϕ})(−ϕ1) ⊆ S ∩
D∗ = ∅ and S ∩ (D r {ϕ})(−ϕ1) ⊆ S ∩ D∗ = ∅ yield D = {id, ϕ1, b, c} with {b, c} ⊆
{−δ,−ϕ1δ,−ϕ2δ, ϕ2δ2

}. For b = −ϕ1δ we find bc−1
∈ S ∪ S for each c ∈ {−δ,−ϕ2δ, ϕ2δ2

};
i.e., for each remaining choice of c. Thus −ϕ1δ < D. Analogously, the choice b = −ϕ2δ is
excluded. The last remaining possibility is D = {id, ϕ1,−δ,−ϕ2δ}. �

3.4 Example. The isomorphisms SU(2, 4) � SL(2, 4) � A5 allow to give an alternative
description for the classical unital of order 4 which will come handy if we compare
UH4

and UE. We use Syl2(A5), the subgroup S = 〈(01234)〉 and C = {C1,C2} with
C1 B {id, (032), (134), (02134), (03214)} and C2 B C(1243)

1 . ThenUC � UH4
andU[

C
� U[

H4
.

3.5 Example. In G = A5, we take Syl2(A5), the group S = 〈(01234)〉 and the sets
E1 B {id, (023), (024), (123), (03421)}, E2 B E(1243)

1 = {id, (023), (024), (123), (03421)} as in
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Section 1. ThenE B {E1,E2} together with the Sylow 2-subgroups of G and S = 〈(01234)〉
satisfies the conditions in 2.1, so UE and U[

E
are unitals.

We show the table for Ê1 on the left, on the right there is the table for Ĉ1 (leading
to the classical unital, see 3.4); the entry in the row starting with δ on the left and the
column starting with γ on top is the quotient δγ−1:

(032) (042) (132) (01243)
(023) (234) (013) (04312)
(024) (243) (01324) (04123)
(123) (031) (04231) (01432)

(03421) (02134) (03214) (02341)

(023) (143) (04312) (04123)
(032) (01432) (01243) (124)
(134) (02341) (042) (04231)

(02134) (03421) (024) (031)
(03214) (142) (01324) (013)

4 Automorphisms and Embeddings

Recall that an O’Nan configuration consists of four blocks such that any two of them
meet. The hermitian unitals do not contain such configurations (cp. [8, 2.2]), so the
following observation secures that the unitals UE and U[

E
are not classical.

In UE we have the O’Nan configuration

D0 = {id, (023), (024), (123), (03421)} ,
D1(013) = {(013), (043), (04)(13), (01243), (03421)} ,

T B {id, (01)(34), (03)(14), (04)(13)} ,
(123)T = {(123), (01243), (03412), (04)(12)} ;

note that the blocks T and (123)T = T(132)(123) share the point T ∈ [∞] in UE.
In U[

E
we have the O’Nan configuration

D0 = {id, (023), (024), (123), (03421)} ,
D1(013) = {(013), (043), (04)(13), (01243), (03421)} ,

T B {id, (01)(34), (03)(14), (04)(13)} ,
T(024) = {(024), (01243), (03241), (13)(24)} ;

now the blocks T and T(024) share the point T ∈ [∞] in U[
E

.
The following result on the full automorphism group gives an alternative argument

to see that UE is not classical.

4.1 Theorem. The unital UE is not classical, and Aut(UE) � C4 nA5.

Proof. Consider the stabilizer L of the block [∞] in Aut(UE). As the subgroup A5 ≤

Aut(UE) is generated by the translations with centers on [∞], it is normal in L. Since A5
acts transitively on the points not on [∞], the stabilizer Lid of the point id acts (via
conjugation) faithfully by automorphisms of A5. This means that Lid is a subgroup
of S5, acting by conjugation on A5, cf. [16].

The block S is the only block through id with non-trivial stabilizer in A5 and not
meeting [∞]. Thus Lid normalizes S, and is a subgroup of 〈(1243), (01234)〉. Conjugation
with (01234) does not leave {D̂0, D̂1} invariant, but σ = (1243) does.
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Analogously, we find that the stabilizer of a block in the classical unitalUH4
is a semi-

direct product (C4 n C5) nA5. So the stabilizers of blocks are different, and UE � UH4
.

As the classical unitals are characterized by the fact that they have non-collinear
translation centers (see [9]), the full group of automorphisms of UE coincides with the
block stabilizer L. �

4.2 Corollary. The unital UE is not isomorphic to a Buekenhout-Metz unital.

Proof. Every Buekenhout-Metz unital of order q admits an automorphism group of
order q3 (see [7, Theorem 1] for the case of even q), but by 4.1 the order of Aut(UE) is
not divisible by 43. �

We observe that Aut(UE) has index 5 in the stabilizer of the block [∞] in Aut(UH4
).

The latter group is isomorphic to PΓU(3,F4), and has order 28
· 3 · 52

· 13 = 249 600. The
block stabilizer has order 24

· 3 · 52 = 1 200.
We can repeat the arguments from the proof of 4.1 to conclude that the normalizer of

A5 in Aut(U[
E

) is isomorphic to C4 nA5. From Grüning [10, 5.6] we know that Aut(U[
E

)
is isomorphic to a block stabilizer in the automorphism group of the classical unital. So
Aut(U[

E
) � C4 nA5.

4.3 Lemma. Let U be a unital of order q embedded in a projective plane P of order q2. If
ϕ ∈ Aut(P) leaves U invariant and induces a translation of the unital U then ϕ is an elation
of P; the center is the unique fixed point x in U, and the axis is the tangent to U at x in P. �

Computer based results

Using our knowledge of Aut(UE), we notice that UE does not occur in the collection of
unitals of order 4 presented in [15].

According to the results of a computer-based search by Bamberg, Betten, Praeger, and
Wassermann (see [3]), there are just two orbits of unitals in PG(2, 16), containing the
hermitian unitals and Buekenhout-Metz unitals, respectively. Combining that result
with 4.1 and 4.2, we obtain:

4.4 Theorem. There are no embeddings of UE into the desarguesian plane of order 16. �

4.5 Theorem. The unital UE has no embedding into any (dual) translation plane of order 16
such that every translation of the unital extends to a collineation of the plane.

Proof. Assume that such an embedding exists. Then the translations generate a non-
solvable group isomorphic to A5 � SL(2, 4).

The plane is not desarguesian by 4.4. Up to duality, it is then one of the planes listed
in [12] (cf. also [6]). Inspection of the list yields that the involutions in that group
(i.e., the collineations inducing the translations on the unital) are Baer involutions. This
contradicts 4.3. �
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4.6 Remarks. Among the known projective planes of order 16 (as found on Gordon
Royle’s homepage, see http://staffhome.ecm.uwa.edu.au/˜00013890/), the ones ad-
mitting groups with orders divisible by 5 are the desarguesian one, the Hall plane, the
Dempwolff plane, a plane called BBH2 in the list, and the duals of the last three planes.
Apart from BBH2, all these planes are translation planes (up to duality), and treated
in 4.5. Peter Müller (Würzburg) has checked that the automorphism group of BBH2
is solvable, using the generators for this group from the homepage of Eric Moorhouse
(see http://www.uwyo.edu/moorhouse/pub/planes16/) and the computer algebra sys-
tem Sage.

Therefore, there do not exist any embeddings of UE into any of the known projective
planes of order 16 such that the translations extend.

5 Unitals with just one translation center, or none at all

There is an ample supply of unitals having precisely one translation center. We give
various examples, starting with unitals in planes over twisted fields:

5.1 Definitions. Let q be a power of an odd prime, and let d be a divisor of q such
that −1 is not in {xd−1

| x ∈ Fq}. Then δ : x 7→ xd is an automorphism of Fq; the additive
map δ + id : Fq → Fq : x 7→ xd + x is injective, and thus also surjective.

The new multiplication ∗ defined1 by (ad + a) ∗ (bd + b) B 2(adb + bda) yields a semifield
Sd

q B (Fq,+, ∗). If 1 < d < q then Sd
q is not associative (cf. [5, 5.3.8]); but S1

q = Fq. We will
describe the affine translation plane as usual, using the sets [m, t] B {(x,m ∗ x + t) | x ∈ Sd

q}

for the non-vertical lines2.
For each v ∈ F×q we find3 that γv : (xd + x, y) 7→ ((vx)d + vx, vd+1y) is a collineation of

the (affine) plane over Sd
q; the line [ad + a, b] is mapped to the line [(va)d + (va), vd+1b].

The projective planePSd
q admits polarities: one of these is ˆid, interchanging (x, y) with

[x,−y]. The absolute points form an oval O B U(Sd
q, id). If q is a square then there exists

a (unique) involution κ : x 7→ x in Aut(Fq). Since κ commutes with δ ∈ Aut(Fq) we find
that κ is also an automorphism of Sd

q, and obtain a polarity κ̂ interchanging (x, y) with
[x,− y]. The absolute points form a unital U(Sd

q).
If q = r2 is a square thenPSd

q contains another unital, with rather surprising properties
(see [2]): One combines translates of the polar oval O, forming the point set Et B
{∞} ∪

⋃
s∈Fr

(O + (0, st)) for some t ∈ Fq which is not a square. Then Et B (Et,Bt) is a
unital, where Bt consists of the traces of secants of Et in PSd

q . The unital Et is invariant
under the affine collineations of the form

ϕu,s : (Sd
q)2
→ (Sd

q)2 : (x, y) 7→
(
x + u, y + u ∗ x + 1

2 (u ∗ u) + st
)

1 We have introduced the factor 2 in the definition in order to ensure that 1 ∈ Fq is still the neutral element
of the multiplication ∗— without that factor (such as in [1]) this neutral element would be 1 + 1.

2 We deviate from the description in [1], [2] here. This implies changes in the formulae for certain
collineations.

3 See [1, Prop. 1]. Our description of the collineation differs from that in [1, Prop. 1] because we use a
different description for the lines.
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with u ∈ Fq and s ∈ Fr. It is easy to see that {ϕu,s |u ∈ Fq, s ∈ Fr} is an elementary abelian
group acting sharply transitive on Et r {∞}. There are further collineations leaving Et
invariant, namely the maps γv with v ∈ F×r .

5.2 Theorem. The group Ξ B {ϕ0,s | s ∈ Fr} consists of translations of the unital Et, and the
group {γv | v ∈ F×r } acts transitively on Ξ r {id}. Thus Ξ is a transitive group of translations
of Et. The center∞ is fixed by all automorphisms of Et, and Et does not admit any translations
apart from those in Ξ.

Proof. The unitalEt is not classical because the classical unitals do not admit any abelian
groups transitive on the complement of a point. If some automorphism of Et would
move ∞ then Aut(Et) would act two-transitively on Et, which is impossible on a non-
classical unital by Kantor’s result [13] (the Ree unitals also occurring in Kantor’s list do
not admit any translations at all, see [8, 1.8]). �

5.3 Examples. We conjecture that many polar unitals in semifield planes (among them
U(Sd

q) as in 5.1 and 5.2) are examples of unitals with precisely one translation center. In
fact, each of these polar unitals has at least on translation center (namely, its point at
infinity); it only remains to prove that the unital is not classical.

See [11] for an explicit example where the full group of the unital is determined.

5.4 Examples. If the polar unital in a Coulter–Matthews plane of order r2 (cf. [14, Sect. 6])
is not classical then it has precisely one translation center. In fact, the centralizer of the
polarity acts on the unital with three orbits (cf. [14, 5.6]), of lengths 1, r2, and r3

− r2,
respectively. In particular, there is no invariant block, and the translation centers cannot
form the point row of a block. Thus either every point is a translation center (and the
unital is the classical one by [9]), or the fixed point of the centralizer of the polarity is
the unique translation center. One knows that the unital is not classical in many cases,
see [14, 6.8].

5.5 Example. For each prime power q > 2, Grüning [10] constructs a unital U(q) of
order q that is embedded both in the Hall plane of order q2 and its dual. He also shows
that every automorphism of that unital extends to an automorphism of the Hall plane.

In particular, there is a block [∞] invariant under every automorphism of U(q) (see [10,
5.5]), and SL(2, q) acts faithfully on U(q). The proof of [10, 5.6] actually shows that U(q)
is isomorphic to the unital U[

Hq
constructed in 2.1, using the standard collection Hq in

G = SU(2, q) � SL(2, q). One can use the action of the group Aut(U(q)) on the Hall plane
(and 4.3) to see that it contains no translations of the unital, apart from the trivial one.

The phenomenon that G acts trivially on [∞] is due to the fact that the derivation
set used to obtain the Hall plane from the desarguesian one is just our block [∞]; the
process of derivation then replaces a regulus with a transitive action of SL(2, q) by the
opposite regulus, where SL(2, q) acts trivially. The confluent affine lines fixed by T are
turned into Baer subplanes.

5.6 Example. Ree unitals do not admit any translations at all, see [8, 1.8].
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[10] K. Grüning, A class of unitals of order q which can be embedded in two different planes of
order q2, J. Geom. 29 (1987), no. 1, 61–77, ISSN 0047-2468, doi:10.1007/BF01234988.
MR 895943 (88j:51015). Zbl 0623.51002.

[11] A. M. W. Hui and P. P. W. Wong, On embedding a unitary block design as a polar unital
and an intrinsic characterization of the classical unital, J. Combin. Theory Ser. A 122
(2014), 39–52, ISSN 0097-3165, doi:10.1016/j.jcta.2013.09.007. MR 3127677.

10

http://www.worldcat.org/search?q=n2:0012-365X&qt=owc_search
http://www.worldcat.org/search?q=n2:0012-365X&qt=owc_search
http://dx.doi.org/10.1016/S0012-365X(99)00055-2
http://www.ams.org/mathscinet-getitem?mr=1725514
http://zbmath.org/?q=an:0943.51007&format=complete
http://zbmath.org/?q=an:0943.51007&format=complete
http://www.worldcat.org/search?q=n2:0012-365X&qt=owc_search
http://www.worldcat.org/search?q=n2:0012-365X&qt=owc_search
http://dx.doi.org/10.1016/S0012-365X(00)00301-0
http://www.ams.org/mathscinet-getitem?mr=1821943
http://zbmath.org/?q=an:0985.51008&format=complete
http://zbmath.org/?q=an:0985.51008&format=complete
http://www.worldcat.org/search?q=n2:0378-3758&qt=owc_search
http://www.worldcat.org/search?q=n2:0378-3758&qt=owc_search
http://dx.doi.org/10.1016/j.jspi.2012.10.006
http://www.ams.org/mathscinet-getitem?mr=3131366.
http://zbmath.org/?q=an:06247942&format=complete
http://www.ams.org/mathscinet-getitem?mr=655065
http://zbmath.org/?q=an:0557.51002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0233275
http://zbmath.org/?q=an:0865.51004&format=complete
http://www.worldcat.org/search?q=n2:0046-5755&qt=owc_search
http://dx.doi.org/10.1007/BF00147760
http://www.ams.org/mathscinet-getitem?mr=737954
http://zbmath.org/?q=an:0532.51003&format=complete
http://www.worldcat.org/search?q=n2:0195-6698&qt=owc_search
http://dx.doi.org/10.1016/0195-6698(92)90042-X
http://www.ams.org/mathscinet-getitem?mr=1158804
http://www.ams.org/mathscinet-getitem?mr=1158804
http://zbmath.org/?q=an:0758.51006&format=complete
http://www.worldcat.org/search?q=n2:0925-1022&qt=owc_search
http://dx.doi.org/10.1007/s10623-010-9428-2
http://www.ams.org/mathscinet-getitem?mr=2795696.
http://zbmath.org/?q=an:05909195&format=complete
http://www.worldcat.org/search?q=n2:1063-8539&qt=owc_search
http://dx.doi.org/10.1002/jcd.21329
http://www.ams.org/mathscinet-getitem?mr=3090721.
http://zbmath.org/?q=an:1276.05021&format=complete
http://www.worldcat.org/search?q=n2:0047-2468&qt=owc_search
http://dx.doi.org/10.1007/BF01234988
http://www.ams.org/mathscinet-getitem?mr=895943
http://zbmath.org/?q=an:0623.51002&format=complete
http://www.worldcat.org/search?q=n2:0097-3165&qt=owc_search
http://dx.doi.org/10.1016/j.jcta.2013.09.007
http://www.ams.org/mathscinet-getitem?mr=3127677.


[12] N. L. Johnson, The translation planes of order 16 that admit nonsolvable
collineation groups, Math. Z. 185 (1984), no. 3, 355–372, ISSN 0025-5874,
doi:10.1007/BF01215046. MR 731683 (85j:51004).

[13] W. M. Kantor, Homogeneous designs and geometric lattices, J. Combin. Theory Ser.
A 38 (1985), no. 1, 66–74, ISSN 0097-3165, doi:10.1016/0097-3165(85)90022-6.
MR 773556 (87c:51007). Zbl 0559.05015.

[14] N. Knarr and M. J. Stroppel, Polarities and unitals in the Coulter-Matthews
planes, Des. Codes Cryptogr. 55 (2010), no. 1, 9–18, ISSN 0925-1022,
doi:10.1007/s10623-009-9326-7. MR 2593326. Zbl 1189.51008.
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