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A CHARACTERIZATION OF Ez -BUILDINGS BY FLOCRS

G. Hanssens® and H. Van Maldeghem*

communicated by F. Buekenhout

The atR floor with basement b of an affine building A
of type Ez is the geometry arising from the vertices
at distance n from the given vertex b. We show that
these geometries are Hjelmslev quadrangles of level »n
forming an HQ-Artmann sequence (in the sense of [8])
and that A is completely determined by this sequence.

INTRODUCTION

When J.Tits classified all affine buildings of rank =24 showing
they all arise from algebraic groups over a local field (see
Tits [12]), there were counterexamples (so called non-classical
affine buildings) for the rank 3 case (see e.g. Ronan [10] and
Van Maldeghem [14]). There are actually three classes ¢f rank 3

affine buildings, belonging to the respective diagrams

(fiiE& type A

———b—— type
== tvpe
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A systematic approach to the first type was attempted in Van

* Both authors are supported by the National Fund for Scientific
Research (Belgium).
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Maldeghem [14] and [15], resulting in the following
characterization. All affine buildings of type Kz arise from
planar ternary rings with valuation in a sense explained in
these papers. The most important intermediate step in the proof
of this result is the characterization of the ath floors of such
affine buildings and the reconstruction of the building from
these ath floors. The analogue for buildings of type Ez of this
step is proved in the present paper. The complete algebraic
characterization will be completed elsewhere (see Van Maldeghem
[16] and [18]) after putting a valuation on quadratic gquaternary

rings {(introduced by the authecrs in [8], it is the algebraic

L L LAIIL IVOCELETT & - R

structure coordinatizing generalized quadrangles).

In section 1, we define affine buildings of type 52 {as discrete
systems of apartments of that type) and their building at
infinity. All definitions are due to Tits [12]. 1In section 2,
we list some known properties of Ez-buildings {pxroved in Tits
[12]) and we define the atD floor of a C,-building with given
basement. We show some preliminary results which we will need
in section 4. Section 3 summarizes Hanssens and Van Maldeghem
[8]. We define the notion of a Hijelmslev quadrangle of level 2
and of an HQ-Artmann sequence and show how such a sequence
defines in an explicit way a Ez-building. Section 4 is devoted
to the proof of our main result : any nth floor of a Ez-building
is a Hjelmslev quadrangle of level 2. 1In section 5, we combine
the results of sections 3 and 4 obtaining a characterization cf
all Ez—buildings by means of their nth fioors with a fixed but

arbitrary basement.
MOTIVATION
This paper is the second one in a series of four which have as

goal to obtain a characterization of Ez—buildings by means of

guadratic quaternary rings with valuation, and it is the sequel
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to Hanssens and Van Maldeghem [8]. Later, we will use the
results of this paper to construct explicitly defined (non
classical) Ez—buildings (see Van Maldeghem [16]). The motivation
for treating the geometric part seperately in this paper is
basicly fourfold

{1) The paper treats Ez—buildings in an axiomatic abstract
way. We devellop a lot of geometric properties that can be
easily generalized tc affine buildings of other types and higher
rank. A Dbetter geometrical understanding will improve our
understanding of e.g. the automorphism groups.

{2) A natural generalization of the notion of a projective
plane is the notion of a projective Hjelmslev plane, an object
investigated by a number of people. A generalization in another
direction yields the notion of generalized polygon {including
the generalized gquadrangles). Our definition c¢f Hjelmslev
quadrangle of level =n offers a generalization in both
directions. Questions beyond the scope of this paper can be
asked and may be interesting (e.g. combinatorial properties,
spectral sequences, etc...). But there are also possibkble
applications within the theory of buildings where this 1local
study has proved useful in distinguishing different isomorphism
classes of certain affine buildings (see Tits [13]).

{3) Our geometrical construction has the advantage of
knowing the building at infinity, which is the inverse limit of .
a sequence of Hjelmslev quadrangles. Hence, automorphisms may
be described in terms of these Hjelmslev quadrangles. This
analogue situation for iz—buildings has led to the construction
of wvertex transitive Ez—buildings with non classical finite
residues, showing there might be hope of finding finite gznGABs
with non classical residues. So we may say that our construction
is in a way complementary to Ronan's beautiful universal
construction in [10]. Of course the latter applies to a lot of
diagrams, but it is somewhat unclear how free this construction

really is, because using the same set of residues, one can
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obtain non isomorphic buildings. That question is settled for
the Xz-case in Hanssens and Van Maldeghem [7] wusing our
geometrical appraoch.

(4) The Ez—case is not just a rewritten copy of the iz-case.
It is much different in various ways, and therefore, it 1is
interesting. Eventually, it must help us to construct and
understand other types of buildings which are not understood yet
such as other rank 3 buildings (of hyperbolic type). As a
consequence, we consider the Ez-case as uninteresting since it

is similar to the C,-case.

1. AFFINE BUILDINGS OF TYPE Ez'

1.1. The standard apartment.

Let A be the real Euclidean plane endowed with the wusual
distance map d_ . Denote by J a solid triangle with respective
angles 45°, 45° and 90°. The length of the two shortest sides
is 1. We denote the lines supporting the sides of T by ﬁé, (=1,
2,3. Let W be the group of automorphisms of A generated by the

reflections about the lines £,, i=1,2,3. The group ¥ is called

N

the Weylgroup of type C,. The image of J under an arbitrary

element of W is called a chamber. The set of all chambers
determines a tessellation T of A in congruent isosceles right
triangles. We call (A,T) the standard apartment of type 52.
The vertices of the triangles of T are briefly called vertices
and the sides of these triangles are called panels. Vertices,
panels and chambers are also called simplices. Two vertices are
called adjacent if they lie on a common panel. Panels of length
1 are called short panels, the other ones are called long. The
lines supporting the panels are called walls. A line £ is a wall
if and only if the reflection about £ is an element of W. A
vertex X is called special if for every wall M, there exists a

wall M* parallel to # and incident with x. So x is special if
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and only if it lies on exactly four walls or eight panels. Now
note that W defines two orbits on the set of walls. One orbit
consists of all walls containing only special vertices and long
panels. We call such walls straight. The walls of the other
orbit, <called diagonal walls, contain both special and non
special vertices, but they contain only short panels. A straight
(resp. diagonal) interval [a,l] is a closed interval bounded by
vertices a and 4 and contained in a straight (resp. diagonal)
wall. Let X be a special vertex and denote by £, the set of all
walls through x. The topological closure of any connected
component of A—Lng (where we consider A and the elements of 2x
as sets of points) 1is called a sector (with source X}. The
closure of any connected component of bvﬁx—{x} is called a
sectorpanel (with source X). Suppose @, (é=1,2,...,8) is a
sector with source X, Q;# Q; for (# 4 and Q; meets Q;,, in a
sectorpanel (taking the subscripts modulo 8). Then Q, U Q,
(resp. O U...VUQs, 0</4<8) is called a double (resp. f-fold)
sector. A 4-fold sector is also called a half apartment.
Most of the above definitions are standard concepts and can be
found in Bourbaki [2]. In fact, the standard apartment we just
described is a geometric realization of the Coxeter complex of

irreducible type Ez,

1.2. Discrete systems of apartmehts of type Ez.

An affine building of type Ez, also called a discrete system of
apartments of type 62 {or briefly, a Ez-building), is by
definition a pair (A,¥), where A is a set and ¥ is a family of
injections from A into A satisfying the axioms (SAl), (SA2), (SA3)
and (SA4) below. The building (A,¥) is called complete if it
also satisfies (SA5). Usually, we identify the building (A,¥)
with the set A and talk by abuse of language about the building
A. The image of A under an arbitrary element of ¥ is called an

apartment. We suppose that A is provided with the tessellation 7T
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and we call the image of a chamber, panel, vertex, wall, etc...
under the action of any element of ¥ also a chamber, resp. a
panel, a vertex, etc... In particular, the elements of A are
called points (just like the elements of A). Here are the first

four axioms.

(sa1) ¥ . W =79,
A A _ p— Y .n_i R .
(Sa2) Let £,/ € . The set B = (£ ~- £)(A) is a (not
necessarily finite) union of simplices, it is closed and
convex (with respect to dA and the topology induced by

dA) and there exists weW such that £/3 = £°. w/3B.
(SA3) Every two points of A lie in a commom apartment.

(SAR4) If fe€¥ and X is an arbitrary point of f(A), then there
exists a retraction (i.et an idempotent surjection} p :
A -/ (A) such that the restriction to every apartment
diminishes distances (i.e. [1 -p-£' diminishes distances

A, for every £'€¥) and such that p.1 (x) = {x}.

(=]
=]
[
s
[¢/]
a_l
:
[t
=
N

This set of axioms was introduced by .

J.Tits [12] shows that, in view of our slightly modified axiom
{Sa2), this definition is equivalent to the definition of an
abstract building of type Ezs The way to go from a discrete
system of apartments to an abstract building is symply by
ignoring all points which are not vertices. Hence there exists
a type map Ipp from the set of vertices of any affine building A
of type Ez to {1,2,3} turning A into a Buekenhout-Tits geometry

of rank 3 with Buekenhout-diagram (see [4]) :

—F—
1 2 3
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There exists a similar type map tygh defined over the set of
vertices of (A,T) and Tpp can be considered as the image of tyga
under the action of the maps fe€ 7. This is well defined by
(SA2). The vertices of type 1 and 3 are special. The residue
(cp. Buekenhout [4]) of such vertex is a generalized guadrangle
(for definitions and properties, see the excellent monograph
[9]) and the residue of a non special vertex (a vertex of type
2) is a generalized digon. We call two varieties of a
generalized digon opposite if they have the same type but are
distinct. We call two varieties of a generalized quadrangle
opposite if they have the same type and no other variety is

incident with both of them.

Now, the set of apartments of an affine building of type 52 is
not uniquely determined, but Tits proves that it always contains
a maximal set of apartments (see Tits [12,théorémel ] ). Hence

the following axiom :
(SAS) The set {£f((A)|f€F} is a maximal set of apartments for A.

Throughout, we will always assume that every affine building of
type 62 is thick, i.e. every panel 1is contained in at least
three chambers. This conforms to the notion of buildings in

Tits [11].

Let A be a2 thick complete building of type Ez, then we denote by
d the path metric, i.e. a distance map defined on the set of
vertices denoting the minimum number of panels needed to join
two given vertices. Also, by (SA2) and (SA3), dA induces a well
defined metric dA in A {in the obvious way, see also Tits [12]).

Now by the choice of the unit length in A, we have :

PROPCSITION 1.2.1. If x and p are two arbitrary vertices of a

Ez— building A, then one has
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2.d(x, ) 2dA(x,;:)
and equality holds if and only if [x,p] is a straight interval.

PROOF. This is obvious since by (SA2) we only need to check

this in an apartment containing X and . Q.E.D,
Note that by the definition of a combinatorial building we have

PROPOSITION 1.2.2. Every two simplices of a 62—building lie in

an apartment.

1.3. The geometry at infinity.

Let A be an affine building of type 62. A germ of sectors is an
equivalence class in the set of all sectors of A with respect to
the equivalence relation “Q, and Q, are egquivalent if Q N Q,
contains a sector”. Two sectorpanels p and ¢ are called parallel
if they are at bounded distance from one another, i.e. the sets
{dA(x,q)lxesﬁﬂ and {dA(y,p)lye 4} are bounded (where dA(x,q)
inf{dA(x,y)l g€ q} and similarly for dA(y,p)). This relation is
apparently an equivalence relation and we denote the egquivalence
class of a sectorpanel p by c(p). One can easily see that such a
class contains either straight or diagonal sectorpanels {(in view
of Tits [12, proposition 17.3]). We can now define the following
point-line incidence geometry A, = (P(AJ.L(AJ,I). The points
{(elements of P(A.)) are the parallel classes of straight sector
panels ; the lines (elements of £ (A, J) are the parallel classes
of diagonal sectorpanels and a point c(p) is incident with a
line c(f) if there exists a sector containing at least one
representative of both c(p) and c({). By [12,proposition 5], we
can identify the set of incident point-line pairs (the flags)
with the set of germs of sectors. Proposition 5 of Tits [12}”

can now be rewritten as
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PROPOSITION 1.3 (Tits [12]). The geometry B/, as defined above
is a generalized quadrangle. The eight germs of sectors in an
arbitrary apartment ¥ define eight flags in A, which determine a
customary non degenerate quadrangle L, in A,. The map X = Z,
is a bijection from the set of apartments of A to the set of
customary non degenerate quadrangles in A.. The "trace at
infinity"” of a straight (resp. diagonal) wall of A is a paixr of

opposite points (resp. lines) in A.

We call A the geometry at infinity of A or also the generalized
quadrangle at infinity of A. The spherical building naturally
associated with A, {for definitions, see Tits [11]) is called

the (spherical) building at infinity of A (see Tits [12]).

1.4. Notation.

From now on, A always denotes a complete thick affine building
of type Ez. Its geometry at infinity i1s denoted by AL =
(P(AL) L (A ,I) as above. Also, L denotes a special vertex of A

chosen conce and for all. Furthermore, we denote :

Ap(A) = set of apartments of A,
Ch(A) = set of chambers of A,
Pa{A) = set of panels of A,
Ve (A) = set of vertices of A,
Se{A) = set of sectors of A,
Sp{A) = set of sectorpanels of A,
Se (A, L) = set of sectors of A with source 4,

Sp(A,Ls) = set of sectorpanels of A with source b.

REMARK. In contradistinction to [2] and [3], our simplices are
closed subsets in any apartment X they lie (X viewed as
Euclidean plane). This has only practical reasons and has no

further significance.
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2. SOME PROPERTIES OF A.

2.1. Definitions.

* A convex (in the usual sense) subset &€ ¢ A is called chamber
convex if it is the union of simplices.

* Two chambers meeting in a panel are called adjacent.
* A gallery joining two points x and p is a chain (6,,¢,,...,%,)
of chambers such that xe €, pe€, and two consecutive chambers
of the sequence are adjacent. The positive integer A is called
the length of the gallery. A gallery of minimal length joining
x and p is called a gallery stretched between X and § {(see Tits
(11]).

* Suppose again & ¢ A. The intersection of all chamber convex

sets containing € is called the chamber convex closure of & and

denoted by cl(&). It is the smallest chamber convex subset of A
containing €. If & = & U¥,u... V¢ vi{r,tu{v,}u ...u{r},
then we denote cl(8) by cl(&,,&,,..., & ,v,v,,..., 0. ).

2.2. Known results and preliminary results.
In this section we collect a number of results either already
known or with a short proof. We will nead these results in the

next paragraph and in section 4.

RESULT 2.2.1 (Tits [12]). (1) In every germ of sectors $, there
exists a unique sector Q € § with source b.
(2) In every parallel class cip) of

sector panels, there exists a unique one p' e c(p) with source b.
RESULT 2.2.2 (Tits [12])). Every convex subset of A which can be
isometrically embedded in the standard apartment A is contained

in an apartment of A.

RESULT 2.2.3 (Tits [11]). Let x,p € Ve(A). If cl(x,p) containes

t one chamber, then cli{x,y) 1is the union of all chambers

[p 1 ¥y



of all galleries stretched between X and . In particular,

cl(x,y) is contained in every apartment through X and p.

RESULT 2.2.4 (Tits [12]). Suppose Z,L' € Ap(A) and let Z, Il be
the corresponding quadrangles in A, as in proposition(l.3).
Suppose

o = {lej € Z(mod8) and X, I Xj+1},

Iy = {X} |# € Z2(mod8) and X; I X}n}-

If X, = X}, X, = X}, Xy = X}, X, = X, and X; = X!, then X NZX'
is a half apartment bounded by a wall M having {X,,X;} as trace
at infinity. The wall M is straight if X, € P(Ay and M is
diagonal if X, € £(Ay) .

PROOF. Follows from the discussion in Tits [12,paragraph 8].

Q.E.D.

We now define a point-line geometry W, = (P(W) ,2(Wo,I) as
follows.

P(W,) = set of straight sectorpanels with source UL,

£ (W,) = set of diagonal sectorpanels with source b.

A straight sectorpanel p is incident with a diagonal sectorpanel
£ if puUl bounds some sector (necessarily with source £). Result

2.2.1 readily implies

RESULT 2.2.5. The geometry W, 1is a generalized quadrangle

isomorphic with A..

NOTATION. Let pe Sp(A). Then we denote by pw € c(p) the unique
sectorpanel parallel to p having source 4 and we call poo the
trace at infinity of p. Let Q € Se({A) and suppose @ is bounded
by the two sectorpanels p and £. Then we denote Qm = {poo,f.oo}

and call this the trace at infinity of Q. The trace at infinity
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of a wall M is the pair {pw,quﬁ if ﬁfii“uESp(A,b) and they are
parallel to some respective sectorpanel contained in M.
Similarly for the trace at infinity of an apartment. Note that,
if Ze Ap(A) and if we identify W, with A, in the natural way
induced by result 2.2.1, then we have identified = with Z of

proposition 1.3.

From now on, we assume that every sector and every sectorpanel
we mention has source f, except when explicitly mentioned.

RESULT 2.2.6. Suppose (...,V_, ... U_o U 14Vsi U s VsreeesV,,..0)
is an infinite sequence of consecutive adjacent vertices of A
such that cl(v,_,,V,,,) = [V,_,,¥,,,] for every integer k. Then
there exists a unique wall M for which the set of vertices on M

is exactly {v, |k € Z}.

PROOF. If M exists, then M is apparently unique since all

points of M are determined by the vertices on M via chamber

convex closure. We now show that cl(v_,,v;) = {v_},v}}ﬁ Vji € N*
by induction on /4. For 4=1, this 1is part of the assumptions.
Suppose now 4#>1. Consider an apartment ¥ through the simplices

[v;j,u;}+1] and [v,,v,_ ;] (I exists by proposition 1.2.2). By

—Z. Hence cl(u;m
is contained in a wall M* of X. But since also cl(v;,vymz) and

induction, cl (v, ,,v_,,1) =[v,

i-11V

-,j+1} 1117

-j-‘rli

cl(v_;,v;}+2) are intervals in X, apparently cl{v;j,qj} iz an
interval contained in M#'. The result now £follows from result

2.2.2. Q.E.D.
For every vertex v of A, we denote by R(v) the residue of v in
A, It is a rank 2 geometry corresponding to a generalized digon
O0r a generalized guadrangle. In both cases we defined the

notion of opposite varieties.

The next result follows readily from the previous,
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RESULT 2.2.7. Supppose (..[v_,;,..-[v_zlv_llvolvllvzl---Iv,;l-')
is an infinite sequence of consecutively adjacent vertices of A
such that v,_, and v,,, are opposite 1in R(v,) for every integer
k. Then there is a unique wall having as set of vertices

exactly {v, |k € 2Z}.
RESULT 2.2.8. Suppose p,G € Sp(A,bL) en let vy resp. vg be the
vertex on p resp. § adjacent to L. If cl(v g = [vp,vq] or if

vy and vy are opposite in R(L), then puU g is a wall.

PROCF. Let v, resp. V_,; be the vertex on p resp. ¢ for which

¢ ¢
d(bvv})==j resp. d(b,v_j) = 4, 4 € N. Then (v,),c, satisfies
the assumptiond of result 2.2.6 or 2.2.7 and hence there is a
wall M containing v, for all k. By looking in an apartment
containing M, one easily sees # = -p U q. Q.E.D.

RESULT 2.2.9. Suppose Q,,Q, € Se(A, L), O NQ, = p € Sp{A,l) and
let ZeAp(A) with QTKJQ? cC Z&. Then there exist sectors Q@ ¢ 0,
Q3 € Q,, not necessarily with source L, but with common source
& € p and such that Q' UQ; < X.

PROOF. Let ¥, be the germ of sectors containing Q,, ¢=1,2. By
the assumptions, X contains sectors Q: € §,. By definition of
germ, there exist sectors 0} C Q,r\Qf and Qf € 9[, {=1,2. Hence
also Q7 ¢ X. Let 3; be the source of Qf, {=1,2, then 3; lies in

Q;,. Let p, be the unique element of c(p) with source 3;. It is

clear that we can join p, and p, via QO U Q, by a sequence of

sectorpanels (pP,=¢ /s -1 % =Pr-.-1G,=P,) wWhere q} c @ for
1<i<k ¢ € for A<4<n and two consecutive sectorpanels are
at minimal distance from one another. But a similar seguence

with the same properties can be found in Z since 3,,3, € L. By
Tits [12,proposition 1] both sequences must have same length and

.th .th
moreover the 4 element of one sequence must meet the jt

element of the other sequence in a sectorpanel. Hence p meets Z.
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Let & be a vertex on p in X and Q) € %, with source 3, i=1,2,

then the result follows. Q.E.D.
This result is crucial in the proof of the next one.

RESULT 2.2.10. Suppose {Q;|é=1,...,A}, k € {2,3,4,5,6,7,8} but
fixed, is a set of k distinct sectors with source Il and such
that Q, NQ,,, =p, €Sp(A, L), i=1,2,...,k=1. Suppose Q, = {po:rpy}
(that defines p,) and Q:=={ﬁ}_1,ﬁ%} (that defines p, ). We assume
pNp; = {4} for all i,je€ {0,1,...,k}Y, i#f. If {PorPrv---ePs}
as a set of varieties of W, is contained in an ordinary
quadrangle of We, or if A £ 5, then JQ,1é=1,...,A} is a k-fold

sector.

PROOF. In this proof, we take all indices modulo 8. We prove

the result in two steps.

(1) If A#8, then we show that there exist sectors Q. ,.-.,

Qs such that

(8) 9, NQ;,, = P, € Sp(A, L), for all ¢,

(B) p; NP, = {L} for all ¢ # 4,

(C) {p;1¢ € Z(mod 8)} is an ordinary gquadrangle in ¥

For A = 8, this is equivalent to the assumptions. If A& = 5,6

or 7, then we complete {po,p;,...,#,} to a quadrangle in ¥,

(possible by assumption). This quadrangle defines 8-4 new

sectors . .

it
|
o~
~
[
N
']
.l
4
N
gl
.
S

holds.

Now suppose k£ = 2,3 or 4. For every given sector { € Sel(A,l},

S .

0 = {p,L}, there exists at least one sector Q' € Se(A,l) such
[= =] -

that Q' ={p, s}, where L nsn = [} (indeed, consider an arbitrary

apartment through Q). We call in this procf Q' a p-neighbour of
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Q. Now define Q,,, as an arbitrary p,-neighbour of Q, and let
Pr.1 be the sectorpanel with source I distinct from p, and lying
on the boundery of Q;,,. For A = 2 or 3, we define similarly
Qp,, @s a p,,,-neighbour of Q,,, and p;,, is distinct from p,,,
and bounds Q,,,. For A = 2 we define similarly again a sector
Q. and a sectorpanel pg. Similarly as above, we see that the
five sectors Qs...rQ5 meet the assumptions of the present
proposition for A= 5. Hence the assertion will follow if we
show that 9, U Q, U ... UQ, is an apartment, Q,,...Q; defined

above and satisfying (&), (B), (C).

(2) Let I € Ap(A) be such that £ = {p,1é=0,1,...,7}. By
result 2.2.9, ¥ contains double sectors ?i,i+1 ego PRV No FIT By
the same result, X contains the sectorpanels $1,z N p and
D, ¢ Nps. But by (B) and result 2.2.7, p U p; is a wall (look
at the residue of 54). Since a wall is convex, p U p; is
contained in X. Hence 4 lies in I and so do all sectorpanels
;0 =0, 1,...,7, en hence also all sectors Q;r ¢=1,2,...,8.

Hence the result. Q.E.D.
The next result is an immediate consequence of result 2.2.10.

RESULT 2.2.11. ILet TeAp(A), Z ={p,li(mod 8), p, Ip,,, in W}
and for every special vertex 3, let p,(3) be the unique element
of c(p,) with source 3. Then the following conditions are

equivalent.

(1) 2 € Z,

(2) the sectorpanels p, (3), p;(3), p;(2) and p, (3) have
pairwise intersection {3},

(3) the sectorpanels p, (3), p, (3) and p, (3) have pairwise

intersection {3}.

231



RESULT 2.2.12. (1) (A,dA) is a metric space.
(2) If x,p € Ve(A), then there exists a unigue
point # € A such that for given n < dA(x,;z)
we have dA(x,;) =n = d.A(x,y:)-dA(;,y:) .

PROOF. (1) follows from Tits [12].
(2). The proof in [3, §2.5.4] can be modified for

axiomatic affine buildings. Q.E.D.

2.3. The nth floor of A with basement b.
DEFINITION. We define a rank 2 geometry ¥, = (P(# ), L(W,),I) as
follows.

W)

{Peve(d) |1PepeP(AL) and d(P, L) =n},

LW,

{Leve(A)|Lel el (A and d(L,b) =n},

An element P of P(W,) is incident with an element & of L (W,) if

P and £ lie on some common sector with source 4.

The geometry W, is called the nth floor of A with basement 0L, »a
a positive integer. If n=0, W, = ({4},{4},I) with bIbL. 1If n=
1, then W, is exactly the residue R({).

There exists a natural canonical epimorphism I'I;';_l : W - W _,
mapping a point or a line ¥ of W, to the vertex X' of [4,%]

adjacent to X.

If ¥ is a point or a line of ¥, and x is a sectorpanel through

X, then we say that x represents ¥.

Now we will show some lemmas which will allow us to prove our

main theorem in section 4.

@i

LEMMA 2.3.1. The inverse limit lim W, with respect to If_, is

(-_
. , TEN
isomorphic to W..
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PROOF. Let (P ), ey be a point of the inverse limit with P, €
PW) and IL_,(P,) = P,_,. This defines a unique straight
sectorpanel p=[4,P,] In€ N} by result 2.2.2 (or result 2.2.6).
Similarly for any line (£,),¢y (it defines a unique diagonal
sectorpanel {). Keeping this notation, we assume now that P I
£,, for all neN. Then we can embed Ucl(L,P, ,%, )in€eN} in the
standard apartment (A,t) (since cl(4,P,,£,) is a subset of
cl (b, P, ,,.L
bounded by p and £. Hence » I £ in ¥,. The inverse mapping is

and hence Jcl((,?,,% )Ine N} is a sector

75++))

obvious and hence both geometries are indeed isomorphic. Q.E.D.

LEMMA 2.3.2. Suppose PeP(W ) and Led(¥,) for n#0 and let P I
L. For every sectorpanel p representing P, there exists a

sectorpanel L representing £ and such that pI¥& in ¥_.

PROOF. Let X be an apartment containing 4, P and ¢ (existing
since Pr¥). Let p' resp. &' be the unique sectorpanel in X
representing P resp. £. Denote by ¢ and m the unique sector-
panels in X such that £'Ig@Im in W, with g#p' and m#{'. Since
¥ is a generalized quadrangle, there exists a unique chain of
sectorpanels mIp" I L Ip. Looking in W,, one can see that the
sectors bounded by these sectorpanels satisfy the assumptions of
result 2.2.10. So mup bounds a 3-fold sector 30. The inter-
section ZN>3Q contains m and P and hence also cl(m,P), which

clearly contains £. Hence { represents . Q.E.D.

LEMMA 2.3.3. Suppose P,P*ePM ), Lcdl W), PI1LIP* and [4,P]
N[bL,P*] = {4}. Then Ub,P,L£,P* lie in a common apartment and
hence there exist sectorpanels p,{,p* representing resp. P,€,P*

such that pIL Ip* in W,.
" PROOF. Suppose X is an apartment containing 4,P and € and

suppose X* is an apartment containing 4,P* and £. Let ;,E resp.

;*,—i—* be the sectorpanels in X resp. I* representing #P,£ resp.
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Px, L. Let m resp. m* be the sectorpanel in X resp. X* incident
with p resp. p* but distinct from £ resp. L*. Since [4,P] n
[£,P*] = {4}, mnW, and m*NW, are opposite in ¥,, hence by
result 2.2.8, m um* is a wall. Let mZ resp. m% be the unique
sectorpanel with source £ and parallel to m resp. m*. By looking
in R(¥) and applying result 2.2.8. again {for € playing the role
of L), we see that mzumi is a wall. But looking in X and X%,
we see that this wall contains P, € and P*. By Tits [12,

proposition 17.3]1, mum* and "ziumﬁ lie in a common apartment

sz containing 4,P,P* and £. This shows the first part of the
lemma. The second part now follows by considering the sector-
panels in Zi representing P resp. P*. €. Q.E.D.

LEMMA 2.3.4. Suppose P,PxeP (W), LedW,), PILIP* and [4,7]
N[L,P*] = {L}. For every sectorpanel p representing P, there
exists an apartment containing p,£,P* and hence there exist

sectorpanels £,p* representing resp. £,P* such that pI L I p* in
W,

oo
PROOF. Similarly to the proof of lemma 2.3.2, using lemma
2.3.3. Q.E.D.
LEMMA 2.3.5. Suppose PePW ), L, L*xed W ), LI1PI14L* and {b,%]
N[b,€x] = {b}. For every sectorpanel p representing P, there

exists an apartment containing p,£,£* and hence there exist
sectorpanels £,1* representing resp. £ and £* such that L I pIf&~*

in ¥..

PROOF. This is a consequence of result 2.2.10 and lemma 2.3.2.

Q.E.D.
NOTATION. Two lines &£ and &' of ¥, are called concurrent
(notation £ 1 £') if they share a common point. Dually, one

defines collinear points (denoted with the same symbol 1).
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LEMMA 2.3.6. Suppose £,&* € LW, ), £ L £* and [L, L] n[L,£*] =
{L}. For every sectorpanel L representing &, there exists an
apartment containing £ and £* and hence there exists a sector-

panel L* representing £* such that L IL* in W..

PROOF. Similarly to the proof of lemma 2.3.2 using lemma 2.3.5.
Q.E.D.

LEMMA 2.3.7. Suppose P, PxeP (W ) and [L,P] n[L,P*] = {L}. The

following conditions are equivalent.

(1) P 1 P,

(2) dA(?,?*) 2n,

(3) dA(?,?*) < 2n.

PROOF. This is trivial for n=0, so suppose n#0.

(1) = (2) by lemma 2.3.3.

(2) = (3) is trivial.

(3) = (1). Suppose that P is not collinear with P*. Denote by
P, resp. Pr the vertex on [4,P] resp. [4,P*] adjacent to b.

Assume for a moment that P, and P} are opposite in W,. Then
cl(P,Px) = [P,P*] by result 2.2.8. Since this is a straight
interval, we have dA(fP,fP*) = “E.n > n by proposition 1.2.1.
Hence P, and P are collinear in ¥,. But by assumption, they

are distinct. Let I be an apartment through ¥ and {4,P¥} and
let p be the sectorpanel in X representing P. Let £ be the
sectorpanel in I incident with p in W, but such that £, =% Nt
is not incident with P¥ in #,. Let p* be an arbitrary sector
panel representing P*. By result 2.2.10, the unique chain (in
Wo L I g I mg I p* (defining ¢ and mg) determines a 3-fold
sector {with boundary £ Up*) lying in some apartment Zq'ﬂ; the
sectorpanels c¢f this apartment are given by {(and this defines

Lx,n* ,m, and r) LI GImgIp*I LT r*Im,InIL (see figure 1).
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Note that EmEq,ﬂ contains P and & and hence also P, (in Z
obviously P, € c1(&,P¥)!). So [4,P] Nng contains more than just
L. So put [L,P] ng = [L,P,] with P, e P(W,), 0<k<n (Ak=n implies
P, =P and hence P.LP*). BAs above, the chain pImyIg* IL* (and
this defines uniquely My and @*) determines a 3-fold sector. It
lies in the apartment Zﬂrf) determined by (ZZJ,UD)(,<> = {c(p),c(mp),
c(g*),c(L*),c(s*),clm,) ,c(s),c(L)} since by result 2.2.11, 2 €
Zﬁ!p. Hence Zﬁ:P contains the sectorpanels p,mp,q*,i*,ﬂ*,mﬂ,ﬁ
and £. But by result 2.2.4, the intersection Zq”ﬁ N Zﬂ,p is a
half apartment bounded by a wall M parallel to Luf* in both
apartments. Since pn ¢ = [4,P,], we see that P, e M.
Considering the sectorpanels with source P, belonging to resp.
c(p)rcmy) ,c(g%) ,c(d*) ,c(p*),clmg),c(g) and c(), then looking

3 -
411

R, < o - R o 5 - e . - -
q,nn @nd z.ﬂ,p, we See that the apartment z,p,q defined by

(Zp, deo = {cipl,clmy),clg*),cd*),c(p*),clmg),cl@g),c(B)} is
exactly equal to ((Zg , U Zp p)=(Zg n NIy p)) WM. Now figure 2
shows us the situation in that apartment. We easily deduce that
dZ(fP,fP*) = 2(27~,—/c)2 +2 A% and so dA(fP,?*) > 2.n since A<n.

Q.E.D.
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LEMMA 2.3.8. Suppose PeP(W ) and Lef(#,). Then the following

conditions are equivalent.

(1) Pr1r¢g,

I

n,

(2) dA(?,Y-)

(3) dA(?,Z) < n.

PROOF . This is trivial for =n= 0, so =suppose an> 0.
(1) = (2) follows by looking in any apartment containing L, ® and
L.

(2) = (3) is trivial.

(3) = (1). Suppose dA(fP,SC) <»n and let P resp. £, be the vertex
on [4,P] resp. [04,%€] adjacent with 4. If P, and &, are not
incident in W,, then (as before) any representative p of P
and any representative { of £ determine a 3-fold sector bounded
by puUl. Hence dA(f‘r’,ﬁi) - V5.5 > 5. so Po1€, in W . pPut € =
c1(s,P,,4£,) ; ¢ is a chamber. Let I be an apartment through &
and ¢ and let P* € (¥ ) be the vertex in X satisfying P* 1 € in
W, and the unique vertex of [4,P*] acdjacent to 4 is not P .
Then [4,P] n [4,P*] = {4} and dA(‘P,?*) < dA(?,£)+dA(?:,EP*> <
2.n. By lemma 2.3.7, P1P* and so dA(?,?*) =2.n, hence dA(?,ﬁﬁ) =
n. Let X* be the apartment through 4,P and P* (existing by
lemma 2.3.3) and let £xe £ (¥,) be such that €*x € Z* and PI&x TP+
in ¥,. Clearly n = d, (P, £%) = d, (&*,P*) = 2.d (P, P*) = d, (P, %) =

dA(Z,?*) and by result 2.2.12(2), £ = £* and hence $ 1 £. Q.E.D.

3. HJELMSLEV QUADRANGLES OF LEVEL =x.

3.1. Notation.
Suppose X= (P(X),£L(X),I) is a point-line incidence geometry with
point set P(X), line set £ (X) and symmetric incidence relation

I. We denote the set of points incident with a given line £ by
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6(£) and call it the shadow (of €) (see Buekenhout [4]). We
also keep the notation . previously defined. A flag in X is an
incident point-line pair of X. The set of flags of X is denoted
by ¥(X). A morphism from X to some other point-line incidence
geometry X' = (P(x*),L(X'),I) maps P(X) to P(X"), L£(X) to L£(X")
and the map induced on F(X) maps F({X) to F(X'). An epimorphism
is a morphism which is surjective on the set of flags. We call
X thick if every line is incident with at least three points and

every point is incident with at least three lines.

Suppose 4 is an arbitrary set and P, (d) and P, (d) are two
arbitrary partitions of 4. Then we say that P, (d) is properly
finer than P,(d) if every class of P,(4) is the union of at

least two classes of PI(A). In that case, we denote
P, (d) /P, (4) ={{€eP, (L) €D} IDep, (A},

which is a partition of P, (d). If DeP,(d), then we call the
set {€eP, (4) % cD} the canonical image of D in P, (4) /P, (d).

1.1.3. Definition of a Hjelmslev guadrangle of level n.
Throughout, n,é b and k denote positive integers.
We define a Hjelmslev quadrangle of level 2~ by induction on 2.
The induction will start with #n= 1. We give a separate
definition for the level 0. We abbreviate “Hjelmslev guadrangle

of level a” by “level an HQ”.

A level 0 HQ is any trivial geometry Vo==({*},{*},=), where * is
any arbitrary (but twice the same) symbol.

A level 1 HQ is any 6-tuple ¥, =

Py

11))iSl'(Li(vl))iﬁl’(wo(vl’{?})’{?})?E?(V1))’

-~
&,
)
—~
i
-
~—
-
24
—
it
>
~—r
-
=
-
—
LY
-
<t
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where (P(V,),&(Y,),I) is an arbitrary thick generalized
quadrangle ; PO(Vl) is the partition of ¥, determined by: every
class is a singleton ; P, (¥;) is the partition of P(V))
consisting of one class ; similar for (I%(v;))zﬁz , and for
every Pe P(V)), WO(Vl,{?})== {P}, {%},=). The 1last three
elements of ¥, do not add more structure to the generalized
quadrangle, but they are necessary to start the induction. So

in fact, a level 1 HQ “is” a generalized quadrangle.

Now suppose n= 2. Let (P(V,),£(V,),I) be a thick incidence
geometry with at least one non incident point-line pair.
Suppose (P, (V,)) <, resp. (L,(¥,)),;<, is a family of partitions

of P(V,),resp. £(¥,) satisfying

(ps1) P (V) ={{PHIPeP¥V,)} ; P, (V) ={P(V)},
(ps2) L (V) ={{&}1LeZ(V )} ; L, (V) ={L(V )},
(ps3) P, (V,) is properly finer than P,,, (¥,), for all i<n,

(Ps4) L, (V,) is properly finer than L,

i+1 V,)), for all éi<n,

The elements of P, (V,), resp L, (V,) are called (-point-neighbour
hoods, resp. {(-line-neighbourhoods (of their elements). An (-
point-neighbourhood is also called a point-neighbourhood, an i-
neighbourhood or briefly a neighbourhood. Similar definiticns
for {-line-neighbourhoods. If Pe P(V,) and £e £(¥,), then we
denote by Oi(?), resp. GI(Z) the unigque {-point-neighbourhood of

P, resp. i-line~- neighbourhood of £.

Suppose for every $€P,_, (V,), we have a level (n-1) HQ, denoted
by # _,(V,,%) (this is an element of a well-defined class of
objects by induction) and select in every ¥ _, (¥, ,¥) an (n-2)-

point-neighbourhood W%. Then we call the 6-tuple ¥, =

PE LW, TR V0 g0 (B V) g, 0 O, (Y, €0, 0

¢ %EPL‘- 1 (VI. ) )
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a level n HQ if V¥, satisfies the axioms (IS),(GQ) and (NP)
below. The geometry (P(V,),€(V,),I) is called the base geometry
of 7;. Before stating the actual axioms, we need some

preliminaries.

We first define the canonical {(n-1)-image of ¥, by induction on
n. The canonical 0O-image of a level 1 HQ ¥, is by definition
the trivial geometry ({P(V)},{P(V,)},=). Now let n22. Define
the geometry (P, (V,), (L, (V, ), I) as follows. If €ep (¥,) and De
(L (V,), then € I D if and only if there exist Pe € and L€ D
which are incident in (P(V,),L(V,),I). Furthermore, denote by
W, ., (V,,%) the canonical (n-2)-image of W, , (¥, ,%) (well-defined
by the induction hypothesis). Denote by N% the canonical image
of Ny in P, W,V e/, (W, V,,€)) if a> 2 and M=
{PH, (V,,6))} if »n= 2. Obviously, there is a bijective
correspondence between Ph_l(?;) and Ph_l(V;)/Pl(T;) and the
unique element of P, ,(V,)/P, (¥,) corresponding to the element
€ of P, ,(¥V,) is denoted by ¢*. 1In particular, all elements of
P, ,(V,)/P, (V,) are denoted with a *. We define the canonical

(n-1) -image of ¥, as the 6-tuple V _, =

(By (V) o (L, (V) I, (B, 4y (V,) /P, (V) <

Sn-17 (Li-i’l {V. \/T"! Ve 7)) i <n-1°¢

W _, V., N

¢ ).

trep, (V) /P (V)

We can now state the very natural axiom (IS).

Using a similar notation for ¥, _, as for ¥,, (IS) implies e.g.

P,(V, ;) =P, (V,)/P, (V) and similarly for the line-partitions.

Define inductively the canonical (n-j4)-image of V (0< i< n) as

the canonical (n-4)-image V;_j of the canonical (a-4+1)-image

V,_ 4+ of V,, or as ¥, (for 4=0). Note that ¢' defines a
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mapping from P(¥,) to P(¥,_,) and from £(V,) to £(¥, _,). By the
definition of the incidence relation in V;_l, we can see that
this mapping is an epimorphism from (P(V,),£(V,),I) onto
(P, V,), (L, (¥V,),I). We denote this epimorphism by fﬁ_l. By the
induction hypothesis, a similar epimorphism exists from the base

geometry of V; onto the base geometry of V;_. and we denote

~£+1 #

. -4+ 1 . .
it by fg_ﬁ . By induction, we can put
d I Al Y
rg;_j—- gy 0 ri;_}_}_l'
From now on, we denote the canonical j-image V; of ¥, by

(?[ (VJ),S.’" (VJ)III (Pl (Vj))ts,}’ (L‘ (V‘}))ISJ’ (wf—l (VJ I(G) ’/V%)%EPJ 2 (VJ’))I

for all 4, 0<4<n. The epimorphism Fg is called a projection or

a partition map. We define the valuation map
u: PV, x (PV,)uvl(Y,)) N

as follows. Let X,y be either both points or both lines of ¥, ,
then
w(x, ) = sup{<nlll, o) =TI, ()}

If PeP(V,) and £e€(V,), then

w(P, Ly =ull,? = (u, (?lz),Uuz (F, L))
with
Uy (P L) =uy (£,P) = 2up{f<n|3Q IE such that T (0)=IT (), 0eP(¥,)}

U, (P, L) =u, (£,P) = 2up{4<n|13MIP such that IT () =TT (£), MeL(V,)}

We now write down the axiom (GQ), consisting of two statements

(GQ1) and (GQ2).
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(Gol) If P,0eP(V,), £, MeL(V,), 0T L I P I M, w(® 0=0 and
£+ M, then
00 NoUl) 20 = 2.i<u(@, M

(602) If PeP(V, ), Lel(V,) and w(P,; %) = (£
ksg, then there exists a unique Me L (V,) such that P
I ML ¥. Moreover, w(f,M) =2k and w(P,Q) =0, for all

0eo(€) NoM). If k=0, then w(Q,,0,) 2>

Y for all Q,,

0, €c(l) no#).

We now define an affine structure on level 4 HQs. Suppose X, is

a level 4 HQ, 0<4<n, with X, =

PoX) 0L (X)) I (B (X)) ey r (g (X)) e yr (W, (X)W,

) ).
% %er_l (XJ.)

(x;)

Let X, = (P(X,),...) be its canonical l-image. ©Let D€ P, ;X

be arbitrary. We denote:

* Z;={2e£(x}) 16(L)ND= 2},

* $={?E?(XJ)'3£EZSD

* AP (X,,D) =P(X,) —?;,

such that P14},

* dL(X,,D) =£(X,) —35;.

We call the elements of A?(X”‘.,ﬂ)) the affine points (of (Xj,ﬁ'),
or of Xy if there is no confusion possible) and the elements cf
.dﬁ(xj,i?) the affine lines (of (Xf.,i))). The elements of ?;—fl),
resp. of ét; are called the points, resp. the lines at infinity
(of (X‘,j,i))) . The elements of 9 are the hyperpoints (of (Xj,ﬂD)).
The pair (X,,?) is called an affine HQ (of level n). In
Hanssens and Van Maldeghem ({8], it is shown that every element
of the (4-1)-point-neighbourhood of any affine point is again an
affine point. Hence every element of the (4-1)-point-neighbour

hood of any point at infinity, resp. hyperpoint, is again a
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point at infinity, resp. hyperpoint. This will give sense to

axiom (NP) below.

We now introduce the notion of a “strip of width ¢(” in an affine
HQ (Xj,i)). Suppose Pe ?(xj) is a point at infinity of (xj,i))
and £e&(Xx,;) is an affine line incident with P. If i<4, then we
call the set

| {0 dP(x,,D)| QI M IP for some MeC' (£)}

a strip of width ¢ (in (Xj,1>)). If {24, then the set
{oedP(x,, ]| 0 L 7}

is called a strip of width ¢( (in (xj,fi))). In every case, we
call P a base point (of the strip). It is not necessarily

unique, even if the strip has width > 0 (cp.[8,property(2.26}]).
We can now state the first part of (NP).

(NP1) If €eP®, ,(V), then AP, , (V,,€), N, =¢. Moreover,

the {(-point-neighbourhood of any point Pe€ % in
W, ., (V,,6) coincides with the i-point-neighbourhood of

P inV,, for all i<n-2.

7

Suppose ‘tl,;_j € Pn_j(VL) and let ¢, , be the unique element of

P, , (¥,) containing ‘é,'_} as a subset, 0<k</f<n. By (NPl),

3 —2 € P?.'_.Z (wn =1 (VI.' ’%1.__1 ))y

7

€, s €R, s, W V.6 10,8 5)), ete....
This way, we Jjustify the following notation.

W,

oy VB ) =%, (W

n! T4 7 —f 7o +1 ("'(wr._l (Vr.'(ér._l)"")"g

pge) 1)
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Moreover, ‘Gh_j = 4P (¥, _;

V, .6, ).l ) -

% 7 —f %"_}

The axiom (NPl) was about points of the point-neighbourhoods.
The last axiom, (NP2), which we call the strip axiom, says

something about the lines in the affine HQs corresponding to

these neighbourhoods.

(NP2) If PeP(V,), LeL(V,), 0<j<n and o(£) NG" 4 (P) 29,
then the set
s (P,£) =0 (£) NG ¢ (P)

, . , ;s 7= f

is a strip of width 4 in (W, _, (¥, ,0 f?)),ﬁbn_J(?)).
. . . Ti =

Every strip of width 1 in (W, , (V,,0 () ,/Vc,ﬁ,l (?))

can be obtained in this way (putting f=1).
This completes our list -of axioms for a level a HQ.

We keep the same notation as above. Suppose M is an affine line

of (W, _,(V, 0"~ (P)), O — (?))

points of M is a subset of () N ¢ (P) (with the notation of

such that the set of affine

(NP2) above), then we call M a component of £, or a component of
. 7 . PR ..

the strip S, (P,£) and we denote # < £. The set of affine points

of M is called the affine shadow of M. As an extension, we call

every point of ¥, incident with £ a component of ¥£.

Now let V! = (P(¥V!),£(V}!),...) be a second level n HQ and suppose

Yo (P, LV, D - (P, L),

7 7 7’

-

Ty
L)

™

is an isomorphism of incidence geometries mapping the affine
shadow of every component of any line £ onto the affine shadow
of a component of W(£) and mapping {-neighbourhoods onto i-
neighbourhoods, for all {, 0< (< n, then we call 7/'_,; and V]

equivalent. This way, we can extend ¥ to the set of all
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components of all lines of ¥, and this extended map, which we
also denote by ¥, preserves “being component of”. We call ¥ an

equivalence.

We now define by induction the notion of an isomorphism between
V, and ¥V} = PV, L(V}),...).- If n=1, then V¥, and V] are
called isomorphic 1f their base geometries are isomorphic
generalized gquadrangles. Now let ~a22, then we call V; and 7}
isomorphic if they are equivalent (denote in that case the
corresponding equivalence by ¥ and if for all $e P, , V).
W, (V,,€) is isomorphic to W, , (¥}, ¥(%)) and this isomorphism
9% coincides with ¥/% over €. We can now extend ¥ with every ?%
and if we denote this extension still by ¥, then we call ¥ an
isomorphism. Obviously, isomorphic 1level 2 HQs are also

equivalent.

Recall that Tﬁ_l is the projection mapping the base geometry of

VE onto the base geometry of the canbnical (n-1)-image V'_1=

PV, 1)) We can extend r¢_1 to all ﬁ;_/(V;,%), ¢ €
P,_;(V,) and 0<4<a, with the projection of ¥, _, (¥ ,%) onto
ﬂ;_j_l(v;_l,rt_l(%)). We denote that extension still by Iﬁ_l.

Suppose now that ¥, _, is isomorphic with some level n-1 HQ X, _,
and call the corresponding isomorphism ¥. Then we call Yo Fcnl
a HQ-epimorphism. Suppose now that (Xi,Vi*l)LEN is an infinite
sequence with X,  a level n HQ and V¢+1 an HQ-epimorphism from
X, ,, onto X , then we call (X;,V¢+1)LEN an HQ-Artmann-sequence.
This name is inspired by the work o¢f Artmann [1], who studied
similar sequences of level n Hjelmslev planes, giving rise to
affine buildings of type 52 (by Hanssens and Van Maldeghem [6]

and Van Maldeghem [14] and [153]).

If Z, is the base geometry of X,, for all n €N, then we call the

s+ 1 4+ 1
sequence (z,‘,V;“/Z“l),_EEN the base sequence of (X;,Vi+ ), ex -
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Hanssens and Van Maldeghem [8] have shown :

LEMMA 3.2. Let, with the same notation as above, Vn be a level

and £ed(V ). Then «(¥,&) =0 if and

only if I'g (P) is not incident with 111 £y .

W

.3. The building corresponding to an HQ-Artmann-seguence.

Y

b an HQO-Artmann-
7. EN

[

) . L+ 1
I'n this paragraph, we denote by V= (‘l’j,ﬂ_‘,]i'

sequence with ¥, as above. Suppose Pe F(V,). Denote O (P)
briefly by ¢. By Hanssens and Van Maldeghem [8], there is a

natural projection

Vi W (V6 o W (Y, %), 0Si<h<j<n~1.
We define a simplicial complex A(V) = (X,4) with X de set of
vertices and 4 the set of simplices. The dimension of (X,4)
will be 2, i.e. the cardinallity of the maximal simplices is 3.
We denote

B = {Ledl (W, (V, &), N)l6er, (V,)}, 0<j<n,

% ¢
0

Br.- = ?(‘Vr. )

B =£(V, ).

In all other cases Bﬁ is the empty set (4 and »n integers).
define

x= U{B/10<j<neN)

We now define 4. let xe€ B',f and pe X, then {x,p} e if one of

the following conditions are satisfied

(A1) peB’ ~ and x<pg,
/- y
(rl') peB and p<Xx,

(n2) pe B‘f"l and Vﬁ_l (x) = g,
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(a2") peB,,; and V' (p) =x,
(A3) yezBi_l and ;_1(x)<:¢ and 4 is even,
(A3") yezBi+l and ;_l(¢)<<x and 4 is even,
(a4) pe Bfo and p< V;_l (x) and 4 is even,
(Ad4') pe Biii and X<V;::‘1? () and 4 is even.
where we identified for shortness'sake "ri" with "Vi". The 2-

dimensional simplices are by definition the 3-sets {X,}, #} where
every 2-subset is a l-dimensional simplex. We define a type-map

Typ on the set X of vertices\:
tyr X - {{0},{1},{0,1}} : xeBi - {n(mod2),n-4 (mod2)}.

The two following results were proved in Hanssens and Van

Maldeghem [8].

RESULT 3.3.1. The rank 3 incidence structure A(Y), as defined

above, 1s a thick geometry of type 62 with diagram

i T 1

i [

{or {o,1} {1}

RESULT 3.3.2. Egquivalent HQ-Artmann-sequences give rise to

isomorphic buildings by the above construction.

4. PROQOF OF THE MAIN RESULT.

In this section we show, with the notations of paragraph 3 and

section 3

th . }
MAIN THEOREM, The n floor of A with basement Iy is the base

geometry of a level n HQ Vf =

@y, e o0h) I, (P, V) e, <Vf’) Yoo (L7 K gen 0Py

7.
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PROOF. We show this result in a number of paragraphs.

4.1. Definition of Vf.
We define Vf by induction on the non-negative integer a for

. , ) /s
every special vertex 4 (so here, L can vary) in A. For n=0, ¥V,

o
= ({L},{b}.=). For n=1, Vf is the unique level 1 HQ having R{{)
as base geometry. Suppose now n22. The base geometry of Vf is

C s h .
by definition the at floor of A with basement L. We denote the
natural canonical epimorphism onto the (n—i)th floor by Ii_i
(see paragraph 2.3). It will turn out below that Iﬁ_l is the
partition map of Vf, justifying this notation. Define

; i+ 1 i + 2 ;
Tﬂ = r§ ° r§+1 ° .. ® ri—l
3 -1 .

P,(Vﬁ’) ={I_,) (P | Pe ?(‘Vf_‘.)}, 0<i<n, .
and P, (¥#,) is as in (PS1). Similarly for the line-neighbour-
hoods. By abuse of language, we can identify the point Pe¢
?(Vf—z) with the {-point-neighbourhood (rﬁ_()‘1<?), 0< (< n.
Now let € be an (a-1)-point-neighbourhood, then ¢ can be
regarded as a special vertex adjacent to L. We define

¥, e = v

Pr-1 =17

well defined by induction. Reciprocally, 6 can be regarded as
an (n-2)-point-neighbourhood of ﬂQ_I(Vf,%). Well, we define
/V% = b. The conditions (PS1), (PS1'), (PS2) and (PS2') are

readily verified (since A is a thick building, cp. Van Maldeghem
[15,§4.3.3]). It is also clear that rg is a partition map. The
axiom (IS) follows immediately by an easy inductive argument.

The other axioms are less trivial and we show them in detail.

Throughout n 2 2.
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4.2. V,b satisfies axiom (NP).

4.2.1. 'V,b satisfies axiom (NP1).

Let V71 it vl ote v ole, ¢
et Vv, be the partition map V, V) oWV, ,%8), €

P,._I(Vf). The set of affine points of (¥ _I(Vf_",‘é),b) is the

2
union of the sets (V:-l)-1 P, Pe P, (Vf,‘é)) and P not
collinear with 4 in R(%) = ¥, (Vf_’,‘é) (this is a general property
of level (n-1) HQ following directly from Hanssens and Maldeghem
[8, properties(2.3) and (2.4])). So # and L are opposite in
R(¥¢). By result 2.2.7, (Iﬁ)—1 () = .A?(W,___l (Vf,‘ﬁ),b) . The second
assertion of (NPl) follows immediately from the definition of

point-neighbourhoods.

4.2.2. Vf’ satisfies axiom (NP2).

We show (NP2) only for the case /< % The case jz% is proved
in the same way. Suppose ?e?(Vf),. Consider O ¢ (P) and denote
?‘}. = l'g (P). Note that we identified 0" ¢ (P) and ?} above, but
for clearness' sake, we will have to treat them here as distinct

objects. Let £e€ 2(1’,{") with P1 £. Let X be an apartment

FIGURE 3
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containing 4,P and €. Let p, resp. £ be the sectorpanel in Z
representing ? resp. £. Let Q€ ?(WI._‘}(V?,OL—‘;(?))) and #e

SC(W,,_} (‘Vf,O';_‘j (P))) be defined as on figure 3. Also let #, €

—Zj

Ve (A) be as on figure 3. Then #, is the projection of # on

ﬂb 7. -2 4
P 19 Nh_j 1D\ 2 A = \77'-(’6 7 A o K. PO N
"7~'2j A \v j ig¢ d .. J"'I.'-Zj '7.-2} ) wilicLe v,,_2j LD Llic

appropriate partition map. We show (NP2) in four steps.

(1). We first show that, given Px e (¢ (P)y no(€), we can find
a unique #M*e LW, _, (V,L,',C‘"'f(?))) such that P*I MxI O in
w,i_j(v,f’,c"""m). Moreover V, 5, () = M,_,,. So let P* e
(3"_'}(3’) No(). By result 2.3.8, dA(fP*,ffi) = n and hence since
dA(.‘f.,Q) = n-24, dA(fP*,Q)S 2n=-24. By lemma 2.3.7, P*1 Q in
¥, _, (Vf’,o""’ (P)) and d, (P*,0) = 2n-24. By result 2.2.12(2) we
also have £€ [P*,0]. So let I* be an apartment containing 3’”‘.,
P* and Q0 (Z* exists by lemma 2.3.3), then X* also contains £ and

hence also #

i-24 € cl (?j,i) . One deduces # =V "¢ (M*) where

7 -2 4 =24
M* is the unique vertex (in X*) on distance n-4 from P* and Q.

(2). We now show that, given #* eSﬁ(W‘_J. (Vf,@n-‘; (P))) satisfying
QI M in W, _, @26 @) ana V4 ) = M

-2 247 and given any

point o* € ?(Wn_j (Vf’,o"'”‘ ) incident with M* in
‘W,i_} (Vf,('i"_"i (7)) and such that «'(Q,0*) =0 («4' is the valuation
map in W;_/ (Vf,@ﬁ-j (P))), then this implies that Q% e ¢ (P) and
o I¢ in ‘V,b Well, any apartment through ?j, Q and M* contains
M,y 7 -2 4
d,(M*,£) = 4. Denote Ot = R(P,) N[P,,0%], 0, = R(P)) n[P,, 0], Iy
= R(P;) n[P,, 4] and My = RP,) n[P,;,L] . Then O¥ L 0 L1 4 in

and hence also £e€ cl(o,# ) . So one can see that

R{P;) while clearly L, is not incident with M} and Qf is. Hence

~
[}
A
o
Wt
N

Ot and by are opposite in R(P,) and O* ed” But now, since
o* I M* in "WL_J, (‘Vf’,@"_‘; Py, dA(Q*,M*) = n-4. Hence d,A(Q*,fﬁ) <n

and by result 2.3.8, o*T¥¢ in ‘Vb

7.

(3) Let Iy, be as above. We show that every affine line X¢
; n-4 . .
AL (W,,_/. v, .0 (P)),b;) whose affine shadow is a subset of o (X)
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is incident with ¢ in ﬂ&_j(Vf,Oh_f(?)). Suppose therefore ¥ is
not incident with Q. Consider through an arbitrary peoint P* of

KX the line M* as in (1). By (2), the affine shadow of M* is a

subset of o(¥), but #M*x 2 X since M+ I Q. Hence there is an

affine point P** of K not incident with #M#*. Let M** be the
/{ -4

unicgue line of W,_i{Vj,@ ? (P)). corresponding to P** as in (1}.

then again M* ¢ M**, but both are incident with ¢. By induction
(using (GQ2)) and properties(2.9) and (2.14) cf [8], Mx = M**, a
contradiction. Hence X is incident with Q. Combining (1), {2)

and (3), the first part of (NPZ) follows.

(4) . There remains to show that for f£=1, every strip of width
1 arises in this way. So let Qez?(ﬂ;_l(Vf,G”_l(?)) be a point
at infinity and let #* be an a2ffine line of (ﬂ;_l(Vf,Gbnl{?)),b)
incident with Q. Let Z be an apartment through {P,,4} and ¢ and
let ¢ be the sectorpanel in X with source P, containing Q. By

lemma 3.3.2, @ and M* lie in a common sector with source ?1. Let

g

? be the double sector in X bounded by the sectorpanels in

g

FIGURE 4
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with source P, containing resp. ¢ and 4. Since R(P)) n[P ,H*]
is not incident with 4 in R(l,), by result 2.2.10, there is an
apartment X* containing ? and #*. Let £ and P be as on figure 4
(figure 4 pictures ZX*). By the proof of the first part of
{NP2), ‘(,; (P,£) is exactly the strip of width 1 with base point @

and containing M* as an element.

4.3. V,b satisfies the axiom (GQ).
4.3.1. Vb satisfies the axiom (GQ1l).

Let P,0 € P(V") and £, M € £(V°) be such that 0ILIPIM, w(®, Q)
=0, u(€,M) = k' < nand £ # # (u is the valuation map in V,b)
Assume A' is odd, then, since cl(l'T;. (£),?) contains I'I;.+1 (L), we
have 1'(;.” &) = l';f.” (M), whence w(€,M) =2 A'+1, a contradiction.
Hence &' is even en we put A' =2k. Since «(P,Q) =0, we can find

representatives p,q,{ of resp. P,0,¢£ lying in a common apartment

Z (by lemma 2.3.3). We show (GQl) in two steps.

(1). Suppose P* e?(Vf) incident with M and put «(F*,Q) =4. We

show < k. So assume 4> k. Since 4> 0 there exists by lemma

FIGURE 5
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3.2.2 an apartment XI* containing 4,P,# and P* (note w (P, P*) =0).
So XN X* contains cl (?,r(;(Q)) which itself contains l'f‘f(i(’.), {=

inf{n,24/} (see figure 5). Hence I'f;(i) = I'I';(M) contradicting
u@. M = 2k.

(2). It suffices to show that there is a point P* in V,b
incident with M and such that «(P*,Q) 2 4. If A= 0 this is

trivial, so suppose £>0. Let ¢g* be the sectorpanel in X (with
source I») opposite to p, i.e. g*xuUp is a wall. Let m be any
sectorpanel representing #. and let X** be an apartment through
g* and m (X** exists by result 2.2.10 and the fact that mnNR(L)
(= LNR{L)) is not incident with @* "R(LH) in R(L)). Let £*,pxe
Sp(A, ) be such that g* I&* T p* Im in W, then L*,p*x c T**, So
Z** contains @* and l'g'k (€)= I'g',_ (M), hence also cl(q*,rg'k €£)).
The latter contains YQ(Q). Hence the unique point P* in . on

p* is incident with M and «(P*,Q) = 4.

4.3.2. Vf’ satisfies axiom (GQ2j.
Suppose PeP(#,) and Le& (W) with (P, %) = (k,2k) for some k<-g".

We show the assertion in six steps.

(1). We first show (GQ2) for £= 0. Let p, resp. £ Dbe
representatives of P, resp. L. Define m,q€ Sp(A,L) by pImIgI?t
in #¥,., then the conditions of result 2.2.10 are satisfied for
the sectors bounded by resp. pum, mug, guf. So pul bounds
some 3-fols sector. Let M=mm‘Vf {obvious notation}, then P71
ML €., Since Me c1(P, L), M is unique. Clearly every point Q€
o(€) Nno(#) has the property «(P,Q) =0 (look in R(L)) and if Q. .
0, € o) no(#), then l'; (Q;) € clb, 4, My, i=1,2, for all 4< _’l‘.;l
Hence &(Q,,0,) 2 %

From now on we assume &> 0.
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(2). We now show that for every ﬁC*eﬁC(‘Vf’) with the properties

u(@,L*) =2k and P1L€*x, there exists P* e?(Vf’) such that «(P,P*)
k, P*I1¢ and cl(b,P,L*) ncl(b,P*,£) = cl(b, I (P ,IL, (£)). set
1'; (P) = P, and I'é, £y =€,,. Let £* be as just described and
let £ be an apartment through 4,7 and L*. Let p,{* and {' be
the sectorpanels in X defined as on figure 6. Let £ be any
sectorpanel (with source L) representing £. Define p* € 3p(A, D)
by p* 1 p*I £ in ¥,. Since £ > 0, p'uUf bounds a 3-fold sector

30 containing p*. et P*x =px r\Vf, then we see in >Q that P*x I1¢.

4

FIGURE 6

Since 3Q contains £,, and p', it will also contain P, €
cl{pt, &y, . Hence «w(P,P*) 2 k. Suppose that cl(4,P,2*) N

cl (b, P*,£) contains more than only cl Ly P ,L,,), say a vertex ¢,

3

then te€30NZX and since cl(p',?) c 30, cl(p',?) would contain a

£ b m A e L. D @y
P }) > A&, contradicting U, (T, L) =

¢
k. Hence cl (4, P, L*) Nncl(L,P*, L) < cl (b, P, L,,). The inverse
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(3). We now show that there exists a line Mesﬁ(Vf) such that P I
ML ¥ and w(E, M) = 2k. Let £*,Px,p,p*x,L,8* be as in (2) (the
existence of £* follows from u, (P,£) = 2k). Let Ly, = &,, and
consider the level n-2k HQ Vf?Zk. Let py resp. p%,L,,1% be the
unique sectorpanel with source Ly and parallel to p, resp. p*, &,
Lx. Let Py resp. €., P5' be the intersection of R(b,) with pg
resp. £,, p%5. Define the vertices Ké, Kgl and jé==rgk_l($) as
on figure 7. They are all points or lines in R(bg). If ?é I Zé

in R(bg), then the chain £3 1 XKi'Ll X, L1 £y constitutes a

\PO
0
WJ
0 1
1, 0
Q*
0 bo
Jl
C

triangle in R(Lg) (by (2), it is non-degenerate), hence ?é and

FIGURE 7

ﬁé are not incident in R(lg). Now p, represents in VfPZk some
point P,, and by lemma 3.2 and the induction hypothesis,
u' (£,P,) = (0,0), where «' is the valuation map in Vf92k- So we
can apply induction <(or (1)) and obtain a line M in VfPZk
incident with ¥, and concurrent with & in Vf?hk. Moreover,
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there exists a sectorpanel mg € Sp(A,bO) containing M and
contained in a 3-fold sector bounded by p, and £,. Let m be the
sectorpanel with source 4 parallel to m,, then pIm+f in ¥,. We
show that j‘lo and the vertex Mé (which is the 1line in R(ly)
represented by m,) are opposite in R(/}Q). Assume therefore
UL M. Well, §y # My since P, is incident with Mg but not with
L; J5 # X&' (by definition, see figure 7); X&' # My since &£j is
concurrent with Mlo (because ML ¢ in Vi’?zk), but not with Kgl
(otherwise X'l €51 XL+ Xx' is a triangle in Rbg)): Py is
incident with Kgl and with Mé, but not with j%. Hence M%).LKE;I_L
Jo+ My forms a triangle in R(b,). So §3 and My are opposite in
R(bgy) . By result 2.2.7, [b,bLy] um, is a sectorpanel parallel to
my and m. But it has the same source as m, hence m=[b,bo] umg.
But then m represents Mei(fo) and PIM+ L. Since mnl 2[4, 4],
w(@, M) 22k. Equality follows from u, (P, %) = 2k.

(4) . Let M be as in (3) and let P* e?(?ff) be such that «(P,P*)
=k, P*1& and cl (b, P, M Nncl (L,P*,L) = cl(LP,,€,,) with P, and
£,, as in_(2). We show that there exists an apartment I,
containing all the vertices P, P*, 7., &,,, M and £. Set L, =%,
and denote IL, (P) = P}, I, , (P*) = Psl. Let 7T denote the
vertex of A adjacent to 4, and lying on [b,,0,] (with the above
notation) and let 32%, resp. 92{1 be the middle of [?i,?“ , resp.
[P#',71]. 1In R(Ly), we have PI LT 1 Px'. Now if P] L Pr!, then
by the foregoing, Rl =®R#! e cl (L, P, M) Nncl(b,P*,£). But R is not
in c1(4,%,,£,,), a contradiction. Hence ?i and .‘P{fl are opposite
in R(f,). Let, with the same notation as above, ¢ be such that
mIgIXt in %, and let p¥, resp. £,, ¢, m, p Dbe the sector-
panel with source /4, and parallel to p*, resp. &, @, m, p.
Since p* 1L IqImIp in W,, the elements of R({;) they represent

_ e

i a chain o five consecutive incident varieties and the

orI

Fh

extremeties are opposite, hence all these elements are pairwise
distinct. Hence &all sectors bounded by the union of two

consecutive elements of (p¥, L,, ¢, m, p,) meet one another in
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FIGURE 8
at most a sectorpanel. By result 2.2.10, there exists a half
apartment containing p¥, £,, ¢, m and p . Let X, be an

apartment containing that half apartment. Note that X, already
contains P, P* and P,. We show that Z, also contains £ and 4.
Let Q. be the point of R(b,) represented by ¢o (which is
parallel to @ and has source 0Lgy). We use the notations of (3).
Suppose Q. =P*!. We have: P. # Pxl x ox1 » P! (ox! as on figure
7): Mi is incident with ?é and with Qi = ngl; M}, is not incident

with Q*' otherwise J. + M), contradicting the result in (4).
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Hence P! 1 Px! 1 o*'1 P! forms a triangle in R(lL,). Hence Q) #

Px1 . Also, O is not collinear with ox!, otherwise PLioxt s Qi 1

P. forms a triangle in R(l,) (use the fact that J, and M are

opposite in R(Ly). As above, this implies the existence of an
apartment X' containing ¢, 20, p% and [bo,bl] . Hence X' also
contains P*, ¢ and £. This implies that L€ cl(g ,P*).

Similarly Me cl(g ,P). Hence I, contains £ and #. We picture

Z, in figure 8. It will play a crucial role in the last two

steps of the proof of (GQ2).
(5). We use 'the same notation as in (4). We show that # is
unique i.e. let M*r e Z(Vf_,’) with PI M*x1 £, then M= Mx. Since
u, (P,£) =2k, u(@,M*) <2k. There are two possibilities.

(i) Suppose u(f,M*) = 2k. Consider again Vf?zk and let P,
be as in (3). Every sector containing 4,P and M*, contains Lvo
and ? and hence cl(P,L,) 3%P,. Hence P, is incident with #* in
V£92A- Similarly one shows #M* + & in V;{.)Pz,e . By induction (or by
(1)), M=M* in Vf’?u and hence also in

(ii) Suppose w«(L,M*) = 2k* < 2k. Let bLx = IL,,(£) and

*
consider ¥,°,,,. Let O, be the vertex on [P, #] on distance 24*

N\

7

M
o |
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from P (see figure 9). Let Q* be the vertex on [L%,0,] on d-
distance A-4£*+1 from bg (same figure). Note that Q* does not
lie on the wall # in X, supporting [¥,,,P,]. As above, @, is
incident with both M and M* in Vfﬁgzkt. Let «* denote the
valuation map in Vfﬁgu,, then we have u* (Z,/&Z*)’= 0 and ux(E M =
2k-2k* > 0, hence ux (#,M*) =0. By lemma 2.3.5, there exists an
apartment EM containing L%, M; M* and Q,. Similarly, - there
exists an apartment Zi containing 4%, £ and M*. By looking in
Z, one sees Q*€ cl(£,,,M*). Since X, contains £,, and M*, it
also contains o*. Looking in ZM, we see dA(Q*.M) = dA(Q*,M*)(.
But in ZZ" we see dA(Q*,M*) = dA(Q*,Z) . Next, figure 9 tells us
o*e cl(P,,L,,,P, M) and hence Q*€ X,. But we just showed that
d, (ox, M) = dA(Q*,Z) and so Q* €ew, a contradiction.

A
Hence #*x = M.

FIGURE 10 FIGURE 11
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(6). We use the same notation as in (5). there remains to
show that, if Qe?(Vf) is incident with £ and #, then «(%#,0) =0.
So let Q@ I £,M and suppose u{P, Q) =4 > 0. Now 4 £ k& since

u, (P,£) = k. There are two distinct cases to consider.

(i) Suppose 4 = K. Consider Vf?u again. In Z,, there
exists a point Q*e?(Vb‘_’z,) lying on @ and incident with # and £
in Vf?z,:. The point Q)€ ?(Vb ©,,) defined as on figure 10 is
also incident with € and # in 7’{!_‘2, and we clearly have

u'(Q5,04) =0 (u' is the valuation map in 1/) 24) du' (L,M = 0.

(ii) Suppose 0 < 4 < k4. Let Qf be as above. We have
u(P*,0) =4 > 0 and hence there exists a vertex Xe [bg,08] not
lying on # and belonging to cl(b,Q,#) Nclib,0,L) N cl(h,P*, %)
(see figure 11). Looking in cl (L, P*.L), we see Xe€ cl(b,,P*) c
Z,. But as in (5)(ii), we have dA(X,Z) mdA(X,A{) and so Xew, a
contradiction.

This completes the proof of (GQ2) and of the main theorem.

Q.E.D.

4.4. Conseguences.
The next two corollaries follow immediately from the main

theorem and a theorem by M.A.Ronan [10].

COROLLARY 4.4.1. For every thick generalized quadrangle XA,
there exists an HQ-Artmann-sequence <'V,,-,Ti§”),,eu such that & is

the base geometry of V.
This is the analogue of Artmann's theorem [1] for projective

planes and projective Hjelmslev planes of level n. In

particular we have
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COROLLARY 4.4.2. For every thick generalized quadrangle 4 and
every positive integer n, there exists a level n HQ having as

canonical l-image a level 1 HQ with base geometry A.

5. A CHARACTERIZATION OF AFFINE BUILDINGS OF TYPE Ez .
THEOREM 5.1. Every affine building A of type Ez is completely
and unambigously determined by any special vertex UL and the
corresponding Hjelmslev-quadrangles of level n. More exactly,
given A and I, then the HQ's defined by the floors in A with
basement UL as 1in the previous section form an HQ-Artmann-
sequence V(A,L) such that the building A(V(A,bL)) (see 3.3) is
canonically isomorphic to A and this canonical isomorphism maps

L to the unique element of the level 0 HQ of v(A,l).

PROOF. We use the notation of 4.1. By the construction of Vf,
it is clear that ‘Vb

»-1 1S Aisomorphic to the canonical (a-1)-

image of V. Hence V(A,b) = (‘V,;,It*l)nex is an HQ-Artmann-
sequence. Now let X be any vertex of A. Set n=d(x,0l) and €N
with n2+(n—,¢')2 = dZ(x,b) and 4<n. Considering an apartment
containing L and x, one sees that, if 4#=0, then x is a point of
Vb ; if 0<4#<n, then x is an affine line in a certain unique /4-

%
point-neighbourhood of Y,b and if 4=a, then x is a line of Vf’
Every point, every line in every point-neighbourhood and every
line of every HQ of V¥ (A,L) can be reached this way. Hence this
defines a bijection ¥ : Ve(A) - Ve(A(v(A,L))) mapping L to the
unique element of Vé’. It is easy to check that ¥ and its
inverse preserve adjacency {(similarly to [15,propsition(5.1.5)1},

the case Zz). Q.E.D.

We keep the notation V(A,0) of the previous theorem and will now
show that every HQ-Artmann-sequence V¥ is equivalent to
VAWY),L)), for some well defined special vertex UL of A(Y).

This is in fact the converse of theorem 5.1.

261



THEOREM 5.2. Every HQ-Artmann-sequence V is equivalent to some
HQ-Artmann-sequence arising from some affine building of type
Ez. More exactly, given V, let L be the vertex of A(V) corres-
ponding to the unique element of the level 0 HQ of ¥V, then V is

equivalent to V{A{(V),b)).

PROOF. Let V= (V;.'Vyzﬂ)ne:a be an HQ-Artmann-sequence. We
denote the partition maps of all point-neighbourhoods also by Vi
{for the right indices). Consider the affine building A(V) of
type Ez. We will use here again the notation B‘;i (see section
3.3). Let Ir be the unique element of Bg and suppose C € B‘:; for
certain n and 4. By construction of A(Y), one easily verifies
d(l,c) =n. Consider the path y = (C,V:_l (c),‘j,:_z (c),...,V;‘ (c),b).
It has minimum length and so Y belongs to every apartment X
through 4 and c. Now looking in X, one can see that the
sequence of types of Y completely determines 4 and . Hence ¢
belongs to a certain J-point-neighbourhood of ‘V,b and this
defines a bijection from the set of affine lines of the j-point-
neighbourhoods of ¥, to the set of affine lines of the j-point-
neighbourhoods of Vf) It is straight forward to verify
(similarly to Van Maldeghem [15,proposition 5.2.1]) that this
bijection as well as its inverse preserves incidence (lines of
0-point-neighbourhoods are Jjust points), "being component of"
and Jj-point-(resp. line-)neighbourhoods. Hence, with obvious

. s+ 1 . . / o+ 1 R .
notation, (¥,,V.'") is equivalent to (¥, T["") ., i.e. V is

7 EN

equivalent to V(A(V),L)). Q.E.D.

COROLLARY 5.3. Suppose- ¥V is an HQ-Artmann-sequence, then the

gecmetry at infinity of A{Y) is isomorphic to the inverse limit
of the sequence of base geometries of V with respect to the
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PROOF. This is a direct consequence of lemma 2.3.1 and theorem

5.2. Q.E.D.

A classical example.
We now briefly describe a classical HQ-Artmann-segquence. We

will only construct the base geometries.

Let F be a field with discrete valuation v and valuation ring

F Denote by F, the set of all elements x of F with vix) 2 n

0 -
and set R =F,/F,. Note that R 1is exactly the residue field of
F. 1In general, R is a ring, called a Hjelmslev ring. Consider
the projective Hjelmslev space of projective dimension 4 and of
level n over R and denote it by PH(4,R)). Consider in PH(4,R))
a parabolic Hjelmslev quadric HQ(@,?H) containing lines but no
planes ("Witt-index 2"). We define an incidence structure ¥ =
(PV,),£¥,),I) as follows. The points (elements of P(V )) are
the points of HQ(4,®,). A general line is the intersection of
two non-neighbouring tangent hyperplanes (defined in the usual
way as polar hyperplane of a point of HQ(4,$;)) and the
Hjelmslev quadric. Incidence is the set-theoretical € or 3.
For n=1, this is the classical generalized quadrangle Q(4,$§).
If F is complete with respect to v, the inverse limit of these
geometries is the classical generalized quadrangle Q(4,F) which

is also the geometry at infinity of the associated affine

building of type C,.
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