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Abstract. We show that in many classical characterization theorems involving
parapolar spaces, we can lift the assumption of having only symplecta of finite
rank. At the same time, we present an example of a parapolar space of infinite
symplectic rank which shows that this is not possible in all characterizations.
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1. Introduction5

Buildings, sometimes also called Tits-buildings, were introduced by Jacques Tits6

[13] and provide a geometric interpretation of semi-simple groups of algebraic ori-7

gin (semi-simple algebraic groups, classical groups, groups of mixed type, (twisted)8

Chevalley groups). These buildings can be rather complicated combinatorial struc-9

tures; however, the properties of spherical buildings can be made more accessible10

using associated point-line geometries, the so called Lie incidence geometries [4].11

Classical examples are projective spaces, polar spaces and Grassmannians thereof.12

About 45 years ago, Bruce Cooperstein [5] initiated the study of parapolar spaces,13

which basically are point-line geometries in which the convex closure of two points14

at distance two is either a 2-path, or a non-degenerate polar space, which is then15

called a symp (Definition 2.11). However, unlike the fact that an irreducible spher-16

ical building of rank at least 3 automatically corresponds to a semi-simple group17

of algebraic origin, a parapolar space, even of constant symplectic rank at least18

3 or 4, is not known to automatically arise from a spherical building. Conse-19

quently, ever since the birth of the parapolar spaces, many efforts have been made20

to characterize certain Lie incidence geometries as parapolar spaces satisfying cer-21

tain regularity conditions, see for example [2], [8] and [11] and Chapters 13–18 in22

[12]. For a more recent one, see [6] and [7].23

Most of these characterization theorems assume, either implicitly or explicitly,24

that the symps of the parapolar space have finite rank, or even stronger, that25

the singular subspaces of the parapolar space are finite dimensional. In this short26

paper, we zoom in on some classification theorems, and prove that the finite-27

dimensionality assumption follows from the other regularity conditions. At the28
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same time, we provide an example of a parapolar space in which all symps have29

infinite rank, and where any two symps intersect in an infinite dimensional singular30

subspace. This proves that the finite rank assumptions of [6] and [7] are necessary.31

One of the reasons why we are able to dispense with the finite-dimensionality is,32

among others, the fact that we have now to our disposal the recent characteriza-33

tion of so-called lacunary parapolar spaces, from which we borrow the essential34

Proposition 2.16.35

One of the motivations to do this job, is because the Main Theorem is needed36

in forthcoming papers classifying certain strong parapolar spaces, the so-called37

Jordan spaces. These Jordan spaces on their turn help to classify certain Tits sets,38

which are the rank 1 analogues of Tits polygons defined in [9].39

Formulation of results. All necessary terminology regarding parapolar spaces40

can be found in Section 2. For any terminology regarding Lie incidence geome-41

tries, we refer to [12]. In [8, Theorem 2], Kasikova and Shult prove the following42

characterization result.43

Proposition 1.1. Let ∆ = (P,L ) be a strong parapolar space that satisfies the44

following axioms:45

(H′1) every point p is collinear to at least one point of each symp,46

(H′2) for each point p, the set {q ∈P | d∆(q, p) ≤ 2} forms a proper subspace of47

∆,48

(F′) if no symp has rank two, all singular subspaces are finite dimensional.49

Then ∆ is either a Lie incidence geometry of type (B|C)3,3, A5,3, D6,6 or E7,7 or50

the direct product of a line and a polar space of arbitrary rank at least 2.51

The Main Theorem of the present paper states that (F′) automatically follows52

from (H′1) and (H′2).53

Main Theorem. Let ∆ be a strong parapolar space that satisfies (H′1) and (H′2),54

then (F′) holds too. In particular, ∆ is one of the geometries obtained in Propo-55

sition 1.1.56

There is a range of other characterization theorems of which the proof makes57

use of Proposition 1.1. Also in these characterizations, one must no longer require58

that singular subspaces have finite dimension. We gather some of these results in59

Section 4.60

Any strong parapolar space that satisfies Axioms (H′1) and (H′2) also has the61

property:62

(L0) No two symps intersect in exactly a point.63
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In [6], all parapolar spaces that satisfy (L0) were classified, under the extra as-64

sumption that all symps have finite rank. In the light of the Main Theorem, it65

is hence natural to ask whether this latter assumption automatically follows from66

(L0). It turns out that this is not the case. In Section 5, we construct an example67

of a parapolar space that satisfies (L0), but where every symp has infinite rank.68

2. Preliminaries69

2.1. Partial linear spaces. Throughout, we will work with incidence structures70

called partial linear spaces. In this subsection, we introduce the general definitions71

we will need.72

Definition 2.1. A point-line space is a pair ∆ = (P,L ) with P a set and L a73

set of subsets of P. The elements of P are called points, the members of L are74

called lines. If p ∈ P and l ∈ L with p ∈ l, we say that the point p lies on the75

line l, and the line l contains the point p, or goes through p. If two points p and q76

are contained in a common line, they are called collinear, denoted p ⊥ q. If they77

are not contained in a common line, we say that they are noncollinear. For any78

point p and any subset P ⊂P, we denote79

p⊥ := {q ∈P | q ⊥ p} and P⊥ :=
⋂
p∈P

p⊥.

A partial linear space is a point-line space in which every line contains at least three80

points, and where there is a unique line through every pair of distinct collinear81

points p and q, which is then denoted with pq.82

Example 2.2. Let V be a vector space of dimension at least 3. Let P be the83

set of 1-spaces of V , and let L be the set of 2-spaces of V , each of them regarded84

as the set of 1-spaces it contains. Then (P,L ) is called a projective space (of85

dimension dimV − 1).86

Definition 2.3. Let ∆ = (P,L ) be a partial linear space.87

(1) A path of length n in ∆ from point x to point y is a sequence (x =88

p0, p1, . . . , pn−1, pn = y) of points of ∆ such that pi−1 ⊥ pi for all i ∈89

{1, . . . , n− 1}. It is called a geodesic when there exist no paths of ∆ from90

x to y of length strictly smaller than n, in which case the distance between91

x and y in ∆ is defined to be n, notation d∆(x, y) = n.92

(2) The partial linear space ∆ is called connected when for any two points x93

and y, there is a path (of finite length) from x to y. If moreover the set94

{d∆(x, y) | x, y ∈ P} has a supremum in N, this supremum is called the95

diameter of ∆.96

(3) A subset S of P is called a subspace of ∆ when every line l of L that97

contains at least two points of S, is contained in S. A subspace that98

intersects every line in at least a point, is called a hyperplane. A subspace99
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is called convex if it contains all points on every geodesic that connects any100

two points in S. We usually regard subspaces of ∆ in the obvious way as101

subgeometries of ∆.102

(4) A subspace S in which all points are collinear, or equivalently, for which103

S ⊆ S⊥, is called a singular subspace. If S is moreover not contained in104

any other singular subspace, it is called a maximal singular subspace. A105

singular subspace is called projective if, as a subgeometry, it is a projective106

space (cf. Example 2.2). Note that every singular subspace is convex.107

(5) For a subset P of P, the subspace generated by P is denoted 〈P 〉∆ and is108

defined to be the intersection of all subspaces containing P . The convex109

closure of P is denoted 〈〈P 〉〉∆ and is defined to be the intersection of all110

convex subspaces that contain P . A subspace generated by three mutually111

collinear points, not on a common line, is called a plane. Note that, in gen-112

eral, this is not necessarily a singular subspace; however we will only deal113

with geometries satisfying Axiom (PP3) (see below), which implies that114

subspaces generated by pairwise collinear points are singular; in particular115

planes will be singular subspaces.116

2.2. Polar spaces. We recall the definition of a polar space, and gather some117

basic properties. Since we insist on including infinite rank, we take the viewpoint118

of Buekenhout–Shult [1]. All results in this section are well known.119

Definition 2.4. A polar space is a partial linear space in which every point is120

collinear to one or all points of every line. It is called non-degenerate if no point121

is collinear to all other points.122

Lemma 2.5 (Theorem 7.3.6 and Lemma 7.3.8 of [12]). Let Γ be a non-degenerate123

polar space. Every singular subspace of Γ is projective. Either every maximal124

singular subspace of Γ has finite dimension1 n, in which case we say that Γ has125

rank n + 1, or every maximal singular subspace of Γ is infinite dimensional, in126

which case we say that Γ has infinite rank.127

Remark 2.6. If a partial linear space contains no points, or contains at least two128

points but no lines, it is automatically a (non-degenerate) polar space, of rank 0129

or rank 1, respectively.130

Lemma 2.7 (Lemma 7.5.2 of [12]). If a non-degenerate polar space contains lines,131

it is the convex closure of any two noncollinear points contained in it.132

Definition 2.8. Let Γ be a non-degenerate polar space and let N be a singular133

subspace of Γ. We define ResΓ(N) to be the point-line space (P,L ) with134

1we will always work with projective dimensions
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P := {singular subspaces K of S with N ⊂ K and codimK(N) = 1},
L := {singular subspaces L of S with N ⊂ L and codimL(N) = 2},

where any element of L is identified with the set of elements of P contained in135

it.136

Lemma 2.9 ([10]). Let Γ be a polar space and let N be a singular subspace of Γ.137

The point-line space ResΓ(N) is a polar space, which is non-degenerate if and only138

if N⊥⊥ = N .139

If the polar space Γ is non-degenerate and has finite rank, then the polar spaces140

ResΓ(N) are non-degenerate for all singular subspaces N . If Γ is non-degenerate141

and has infinite rank, this is no longer the case. The following lemma ensures that142

we can still find a lot of such singular subspaces.143

Lemma 2.10 ([10]). Let Γ be a non-degenerate polar space of infinite rank and144

let M be a maximal singular subspace of Γ. For every k ∈ N, there is a singular145

subspace Nk of Γ contained in M with codimM(Nk) = k and N⊥⊥k = Nk. For such146

Nk, the polar space ResΓ(Nk) is non-degenerate and has rank k.147

2.3. Parapolar spaces. We also recall the definition of a parapolar space, and148

state some corollaries of classification theorems that will be useful later on.149

Definition 2.11. A parapolar space ∆ is a connected partial linear space, which150

is not a polar space, and which satisfies the following two axioms.151

(PP1) For points p and q with d∆(p, q) = 2 and |p⊥ ∩ q⊥| ≥ 2, the convex sub-152

space 〈〈p, q〉〉∆ is a non-degenerate polar space. Any subspace that can be153

obtained like this is called a symp of ∆ (which is short for symplecton).154

(PP2) Every line of ∆ is contained in a symp of ∆.155

A pair of points p and q with d∆(p, q) = 2 is called special if |p⊥ ∩ q⊥| = 1 and156

symplectic if |p⊥∩ q⊥| ≥ 2. A parapolar space is called strong when it contains no157

pair of special points.158

Remark 2.12. In the definition of parapolar spaces, one often also adds the follow-159

ing axiom:160

(PP3) Every point is collinear to zero, one or all points of any line.161

This however automatically follows from (PP1), which is why we do not explicitly162

include it in the axioms.163

We will need the following lemma.164
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Lemma 2.13. Let ∆ be a partial linear space in which the convex closure of any165

two noncollinear points is a non-degenerate polar space (of rank at least two). Then166

either all points of ∆ are mutually collinear, or ∆ is a polar space, or ∆ is a strong167

parapolar space of diameter 2.168

Proof. Suppose that not all points of ∆ are mutually collinear. Then there are169

points x1 and x2 which are noncollinear. Suppose that some point x is collinear to170

all points of ∆. Then it is in particular collinear to x1 and x2, and hence contained171

in 〈〈x1, x2〉〉∆. By assumption, this is a non-degenerate polar space, so there is some172

point in 〈〈x1, x2〉〉∆ which is noncollinear to x, a contradiction.173

It is clear that ∆ is connected and that (PP1) holds. It hence suffices to check174

(PP2). To that end, let l be any line of ∆, and let p and x be two distinct points175

on l. By the arguments in the previous paragraph, there exists some point q that176

is noncollinear to x. The convex closure ξ := 〈〈x, q〉〉∆ is a non-degenerate polar177

space of rank at least two, which of course contains x. Let p1 and p2 be two points178

of ξ collinear to x such that p1 is not collinear to p2. If p is collinear to both p1 and179

p2, the point p is contained in a geodesic connecting p1 and p2, implying that p is180

contained in ξ, and in particular that l = xp is indeed contained in some symp.181

We may therefore assume without loss of generality that p is not collinear to p1.182

Then 〈〈p, p1〉〉∆ is a non-degenerate polar space which contains x and p, and hence183

also l. This concludes the proof. �184

Definition 2.14. A parapolar space has symplectic rank at least d (for d ∈ N)185

when every symp has rank at least2 d. It has infinite symplectic rank when every186

symp has infinite rank.187

Lemma 2.15 (Lemma 4.1 of [6]). In a parapolar space of symplectic rank at least188

d ∈ N, every singular subspace of dimension d−1 is contained in a symp. If d ≥ 3,189

every singular subspace is projective.190

Proposition 2.16 (Lemma 6.9 of [7] and Lemma 7.14 of [6]). Let ∆ be a strong191

parapolar space where every symp has finite rank at least three.192

(1) If the intersection of any two symps contains at least a point, and there is193

a line which is contained in two symps, then every symp of ∆ has rank at194

most 5.195

(2) If the intersection of any two symps is never exactly a point, then every196

singular subspace of ∆ has finite dimension.197

2Every symp of infinite rank has of course rank at least d.
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3. Proof of the Main Theorem198

In this section, we prove the Main Theorem. To that end, we denote with ∆ a199

strong parapolar space of symplectic rank at least three that satisfies Axioms (H′1)200

and (H′2). We aim to prove that ∆ satisfies the following property:201

(F′) Every singular subspace is finite dimensional.202

In [8], Kasikova and Shult characterize all strong parapolar spaces of symplectic203

rank at least three that satisfy axioms (H′1) and (H′2), and (F′). However, for many204

of the results they gather on the way, they do not use (F′). We start by gathering205

two of these results that will still prove to be useful.206

Lemma 3.1 (Theorem 17.2.6 of [8]). No two symps intersect in exactly one point.207

Lemma 3.2 (Proof of Theorem 17.2.9 of [8]). Let ξ1 and ξ2 be two symps intersect-208

ing in a singular subspace M of dimension at least 2. For any point x1 ∈ ξ1 \M ,209

with M 6⊆ x⊥1 , we find x2 ∈ ξ2 \M such that x1 ⊥ x2.210

We can use this to obtain the following properties.211

Lemma 3.3. Let ξ be a symp and x a point not in ξ, then x⊥ ∩ ξ is either a point212

or a maximal singular subspace of ξ.213

Proof. It is well known that M := x⊥ ∩ ξ is a singular subspace of ξ. Moreover,214

Axiom (H′1) ensures that M is not empty. Suppose for a contradiction that M215

contains a line, but is not a maximal singular subspace of ξ. There exists some216

point y in M⊥ ∩ ξ \M . The set x⊥ ∩ y⊥ contains M , implying that x and y are217

symplectic. The intersection ξ∩〈〈x, y〉〉∆ contains y and M and is hence a subspace218

of dimension at least two. Applying Lemma 3.2 with x, y, 〈〈x, y〉〉∆, ξ taking up the219

role of x1, ξ1, ξ2, then yields some point in ξ \ (ξ ∩ 〈〈x, y〉〉∆) which is collinear to x;220

but M = x⊥ ∩ ξ is contained in ξ ∩ 〈〈x, y〉〉∆, so we find a contradiction. �221

Lemma 3.4. Two different symps intersect either trivially, in a line or in a sub-222

space which is a maximal singular subspace of both symps.223

Proof. Let ξ1 and ξ2 be two symps. It is well known that ξ1 ∩ ξ2 is a singular224

subspace. If ξ1∩ξ2 6= ∅, then it follows from Lemma 3.1 that M := ξ1∩ξ2 contains225

a line. Suppose that M is a subspace of dimension at least two. Take y ∈ M226

and x ∈ ξ2 such that x and y are not collinear. It follows from Lemma 3.3 that227

M1 := x⊥∩ ξ1 is a maximal singular subspace of ξ1. The point y is contained in ξ1,228

so y⊥ ∩M1 is a hyperplane of M1. Each point of this hyperplane is contained in229

x⊥ ∩ y⊥ ⊂ 〈〈x, y〉〉∆ = ξ2. We hence find that y⊥ ∩M1 is contained in ξ1 ∩ ξ2 = M .230

It is at the same time a hyperplane of M , implying that M is a maximal singular231

subspace of ξ1. �232
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Lemma 3.5. For any two symps ξ and ξ′, there exists a sequence of symps233

(ξ0, ξ1, . . . , ξn) such that ξ0 = ξ and ξn = ξ′ and such that, for every i ∈ {1, . . . , n},234

the intersection ξi−1 ∩ ξi is a maximal singular subspace of both ξi−1 and ξi.235

Proof. Let ξ and ξ′ be any two symps. First suppose that ξ ∩ ξ′ contains a plane.236

It follows from Lemma 3.4 that either ξ = ξ′ or that ξ ∩ ξ′ is a maximal singular237

subspace of both ξ and ξ′, in both cases, the claim follows immediately. Next,238

suppose that ξ ∩ ξ′ is a line l. The symp ξ has rank at least three, so there is some239

point x ∈ ξ ∩ l⊥, with x /∈ l. By Lemma 3.3, the set x⊥ ∩ ξ′ is a maximal singular240

subspace M of ξ′ that contains l. Since ξ′ also has rank at least three, there exists241

some x′ ∈ ξ′ ∩ l⊥, with x′ /∈ M . The points x and x′ are symplectic, and the242

symp 〈〈x, x′〉〉∆ intersects both ξ and ξ′ in at least a plane. The claim then follows243

from the arguments above. Finally, assume that ξ ∩ ξ′ does not contain a line. It244

follows from Lemma 3.4 that the two symps intersect trivially. Take x ∈ ξ. By245

Axiom (H′1), there is some point x′ ∈ x⊥ ∩ ξ′. The line xx′ is moreover contained246

in some symp, which, by Lemma 3.4, intersects both ξ and ξ′ in at least a line.247

The claim again follows from the arguments above. �248

Our next aim is to prove that there exists some symp of finite rank.249

Definition 3.6. Let N be a singular subspace of ∆. We define Res∆(N) to be the
point-line space (P,L ) with

P := {singular subspaces K of ∆ with N ⊂ K and codimK(N) = 1},
L := {singular subspaces L of ∆ with N ⊂ L and codimL(N) = 2},

where again, any element of L is identified with the set of elements of P contained250

in it. It is clear that Res∆(N) forms a partial linear space.251

Remark 3.7. Let ξ be a symp and N be a singular subspace of ∆ contained in252

ξ, denote with N⊥ξ := N⊥ ∩ ξ. The point-line geometry Resξ(N), as defined in253

Definition 2.8, is a subspace of Res∆(N). By Lemma 2.9, it is a polar space, which254

is non-degenerate if and only if N = N⊥ξ⊥ξ .255

We aim to construct singular subspaces N of ∆ for which Res∆(N) forms a256

parapolar space. From now on we assume, for a contradiction, that there is no257

symp of finite rank.258

Notation 3.8. Fix some symp ξ. Using Lemma 3.5, we find a maximal singular259

subspace M of ξ that is contained in at least one other symp. Take k ∈ N≥3, and260

use Lemma 2.10 to find a singular subspace Nk in M for which codimM(Nk) = k261

and Resξ(Nk) is a non-degenerate polar space of rank k.262

Lemma 3.9. For any symp ξ′ of ∆ that contains Nk, the subspace Resξ′(Nk) of263

Res∆(Nk) is a non-degenerate polar space of rank k.264
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Proof. If ξ = ξ′, the claim holds trivially, so suppose that this is not the case.265

Denote with M ′ the intersection of ξ and ξ′. The subspace Nk is contained in M ′,266

so using Lemma 3.4, we obtain that M ′ is a maximal singular subspace of both ξ267

and ξ′. The subspace M ′ induces a maximal singular subspace in Resξ(Nk), which268

implies that codimM ′(Nk) = k. It follows from Lemma 2.9 that, in order to show269

that Resξ′(Nk) is a non-degenerate polar space of rank k, it suffices to prove that270

Nk = N
⊥ξ′⊥ξ′
k .271

It is clear that Nk ⊆ N
⊥ξ′⊥ξ′
k , so we prove the opposite inclusion. The subspace272

M ′ is contained in N
⊥ξ′
k , which implies that N

⊥ξ′⊥ξ′
k ⊆ M ′⊥ξ′ = M ′, where the273

latter equality holds because M ′ is a maximal singular subspace of ξ′. Take p ∈274

M ′ \ Nk. The polar space Resξ(Nk) is non-degenerate, so N
⊥ξ⊥ξ
k = Nk, and in275

particular, there exists some point x ∈ N⊥ξk which is not collinear to p. The set276

x⊥ ∩M ′ is a hyperplane N ′ of M ′ that contains Nk but not p. By Lemma 3.3, the277

set x⊥ ∩ ξ′ is a maximal singular subspace Mx of ξ′ with M ′ ∩Mx = N ′. For any278

point x′ ∈Mx \N ′, the set x′⊥ ∩M ′ contains N ′. Since M ′ is a maximal singular279

subspace of ξ′, and x′ is not contained in M ′, this implies that x′⊥∩M ′ = N ′. The280

point x′ is hence a point of ξ′ which is noncollinear to p and collinear to all points281

of Nk, which implies that p 6∈ N⊥ξ′⊥ξ′k . �282

Lemma 3.10. The partial linear space Res∆(Nk) is a strong parapolar space of283

diameter two in which all symps have rank k, and any two symps intersect in a284

singular subspace of dimension k − 1.285

Proof. We first prove that the convex closure in Res∆(Nk) of any two noncollinear286

points of Res∆(Nk) forms a non-degenerate polar space of rank k. To that end, let287

K1 and K2 be any two such points of Res∆(Nk). By definition, both K1 and K2 are288

singular subspaces of ∆ that contain Nk with codimNk(K1) = codimNk(K2) = 1.289

Let xi ∈ Ki \ {Nk}, i = 1, 2, be arbitrary. Then Ki = 〈xi, Nk〉∆. It follows290

immediately that x1 and x2 are collinear in ∆ if and only if K1 and K2 are collinear291

in Res∆(Nk). We hence find that x1 and x2 are not collinear. We have that292

Nk ⊆ x⊥1 ∩ x⊥2 , which implies that x1 and x2 are symplectic in ∆, and that the293

symp 〈〈x1, x2〉〉∆ of ∆ contains Nk. The subspace Res〈〈x1,x2〉〉(Nk) is, by Lemma 3.9,294

a non-degenerate polar space of rank k which of course contains K1 and K2. It295

is clear that 〈〈K1, K2〉〉Res∆(Nk) is contained in Res〈〈x1,x2〉〉∆(Nk). Using Lemma 2.7,296

one obtains that equality holds.297

We have picked the subspace Nk of ∆ in such a way that it is contained in two298

distinct symps of ∆. As a consequence, Res∆(Nk) contains points that are not299

collinear to each other, and is not a polar space. We can hence conclude using300

Lemma 2.13 that Res∆(Nk) is a strong parapolar space of diameter two. All symps301

have rank k. By Lemma 3.3, any two symps of ∆ that contain Nk intersect in a302

maximal singular subspace of both symps, so this translates to the fact that every303
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two symps of Res∆(Nk) intersect in a maximal singular subspace of both symps,304

which in this case, is a singular subspace of dimension k − 1. �305

Proposition 3.11. The parapolar space ∆ contains some symp of finite rank.306

Proof. Suppose this is not the case. For k ≥ 6, it then follows from Lemma 3.10307

that Res∆(Nk) is a parapolar space which satisfies the assumptions of Proposi-308

tion 2.16 but where all symps have rank k > 5, a contradiction. �309

Using the previous proposition, we find some symp of ∆ that has finite rank d.310

Then d ≥ 3 by assumption.311

Lemma 3.12. All symps of ∆ have rank d.312

Proof. By assumption, there exists some symp ξ of rank d. Let ξ′ be any other313

symp for which ξ∩ ξ′ is a maximal singular subspace of both ξ and ξ′. Then ξ′ has314

a maximal singular subspace of dimension d− 1, which implies that it has rank d.315

The claim now follows directly from Lemma 3.5. �316

Proposition 2.16 now finishes the proof of the Main Theorem.317

4. Corollaries of the Main Theorem318

Our first consequence improves a theorem of Shult, namely Theorem 2 of [11].319

Corollary 4.1. Let ∆ be a parapolar space of diameter 3 and symplectic rank at320

least 3, that satisfies321

(H1) no point is collinear to exactly one point of a symp.322

Then ∆ is either a Lie incidence geometry of type F4,1, E6,2,E7,1 or E8,8 or the line323

Grassmannian of a non-degenerate polar space of arbitrary rank at least 4.324

Proof. In [11], Shult classifies these geometries ∆ under the extra condition that,325

if ∆ has no symp of rank three, all singular subspaces have finite dimension. So if326

∆ contains a symp of rank three, the claim follows. Suppose this is not the case.327

Let M be any singular subspace of ∆, and take p ∈M . In [8], it is proved that the328

residue Res∆(p) is a strong parapolar space of symplectic rank at least 3 satisfying329

Assumptions (H′1) and (H′2). Our Main Theorem then proves that Res∆(p) is finite330

dimensional, implying that M itself is also finite dimensional. �331

The next corollary improves a result of Cohen & Ivanyos, namely Theorem 1332

of [3]. The proof is similar to the one of Corollary 4.1 and we omit the details.333

The original statement, along with all relevant definitions, can be found in [3]. We334

content ourselves with describing the point-line space E (P,H).335
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Example 4.2. Let P be projective space and H be a set of hyperplanes of P such336

that H forms a subspace of the dual of P and ∩H∈HH = ∅.337

The partial linear space E (P,H) is defined as follows. The point set is the set338

{(p,H) ∈ P × H | p ∈ H}. The line set consists of two types: subsets of the form339

{(p,H) | p ∈ l} where l is a line of P that is contained in H, and subsets of the340

form {(p,H) |K ⊂ H} where K is a codimension-2 subspace of P that contains p341

for which there are at least two elements of H containing it.342

If P is finite dimensional, the set H necessarily consists of all hyperplanes of P,343

and E (P,H) is a Lie incidence geometry of type An,{1,n}.344

Corollary 4.3. Let ∆ be a non-degenerate root filtration space. Then ∆ is either345

a generalized hexagon, a Lie incidence geometry of type F4,1, E6,2,E7,1 or E8,8, the346

line Grassmannian of a non-degenerate polar space of arbitrary rank at least 3, or347

a point-line space E (P,H).348

5. Example of a parapolar space of infinite symplectic rank349

In this section, we aim to prove the following proposition.350

Proposition 5.1. There exists a strong parapolar space of diameter two such that351

all symps are infinite dimensional, and every two symps intersect in an infinite352

dimensional projective subspace.353

We will construct such an example Ω using a free construction process. Hence354

the construction is inductive: we start with some partial linear space Ω0 = (P0,L0),355

and in every step i ∈ N>0, we add some points and lines to Ωi−1 to obtain a new356

partial linear space Ωi = (Pi,Li). That way, we obtain a chain357

Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ωn ⊂ . . . .

We will then use this chain to construct a new partial linear space, namely358 ⋃
i∈N Ωi which will satisfy the desired properties. Here, the union is just the359

direct limit. Each Ωi will also be defined as a union of two nondisjoint partial360

linear spaces. In order to obtain a partial linear space, we need some necessary361

conditions.362

Definition 5.2. Let ∆i = (Pi,Li), i = 1, 2, be a partial linear space with P1 ∩363

P2 6= ∅. Assume that two points in P1∩P2 are contained in some l1 ∈ L1 if and364

only if they are contained in some l2 ∈ L2, in which case l1 and l2 are assumed365

to coincide. The union ∆1 ∪∆2 is defined to be (P1 ∪P2,L1 ∪L2), which is a366

partial linear space.367

Every partial linear space Ωi that we will construct, is what we call a preparap-368

olar space.369
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Definition 5.3. A preparapolar space ∆ is a connected partial linear space in370

which Axioms (PP′1), (PP2) and (PP3) hold, where (PP′1) is defined as follows.371

(PP′1) For points p and q with d(p, q) = 2, one of the following holds:372

(a) The set p⊥ ∩ q⊥ contains a pair of noncollinear points. The convex373

closure of p and q forms a non-degenerate polar space. Any subspace374

that can be obtained like this is called a symp.375

(b) The set p⊥ ∩ q⊥ is a singular subspace. The convex closure of p and q376

in ∆ is 〈p, p⊥ ∩ q⊥〉 ∪ 〈q, p⊥ ∩ q⊥〉.377

Note that every parapolar space is a preparapolar space. Constructing prepara-378

polar spaces is significantly easier than constructing parapolar spaces. One exam-379

ple is the following.380

Construction (Construction of Ω0 and φ0). Let V be a vector space over a count-381

able field k with basis {ei}i∈N. For j = 0, 1 and 2, define Vj be the vector subspace382

of V generated by {ei}i>2 and ej, and denote with Mj the subspace P(Vj) of383

P(V ). Define Ω0 = (P0,L0) to be the partial linear space with is the union of384

M0 ∪M1 ∪M2. One easily checks that Ω0 is a preparapolar space, but of course385

not a parapolar space. Note that there exists a bijection φ0 : N→P0 ×P0.386

The preparapolar space Ω0 is constructed such that it satisfies the following387

conditions.388

(A1) The point set is countably infinite.389

(A2) There is some field k such that every singular subspace is a projective space390

over k.391

Moreover, Ω0 contains a singular subspace M of countably infinite dimension (for392

example M0), for which the following holds.393

(AM) For every point p, the subspace p⊥ ∩M has finite codimension in M .394

Remark 5.4. Any preparapolar space that satisfies (AM) has only symps of infinite395

rank, and has diameter at most two.396

Starting from a preparapolar space that satisfies the axioms above, we can397

construct a strictly bigger preparapolar space that still satisfies the same axioms.398

We make this explicit in the next lemma.399

Lemma 5.5. Let ∆ = (P,L ) be a preparapolar space that satisfies (A1), (A2),400

and that contains some singular subspace M of countably infinite dimension for401

which (AM) holds. Let x and y be noncollinear points of ∆ for which x and y are402

not in a symp of ∆. There exists a partial linear space ∆x,y for which the following403

hold.404

(1) The point-line space ∆x,y is a preparapolar space.405
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(2) The point-line space ∆, and hence also M , is a subspace of ∆x,y.406

(3) The point-line space ∆x,y satisfies (A1), (A2) and (AM).407

(4) For noncollinear points p and q of ∆, the following hold:408

(a) if 〈〈p, q〉〉∆ contains x and y, then 〈〈p, q〉〉∆x,y is a symp,409

(b) if 〈〈p, q〉〉∆ does not contain both x and y, then 〈〈p, q〉〉∆x,y = 〈〈p, q〉〉∆.410

Proof. Let ∆, x, y and M be as in the statement. Denote Mx,y := x⊥ ∩ y⊥, Mx :=411

〈x,Mx,y〉 and My := 〈y,Mx,y〉. Using (A2), we see that the singular subspaces412

Mx,y,Mx and My are projective spaces over some field k, with codimMx(Mx,y) =413

codimMy(Mx,y) = 1. Since M ∩Mx,y is the intersection of two subspaces of M414

of finite codimension of M , it has finite codimension in M , implying that the415

projective subspace Mx,y has countable infinite dimension.416

By (PP′1), the convex closure of x and y in ∆ is given by Mx∪My. We construct417

a polar space Γx,y which intersects ∆ in Mx ∪My. To that end, let V be a vector418

space over k with basis {ei}i∈N. Denote with Vx the vector subspace generated419

by {e2i}i∈N, with Vy the vector subspace generated by {e2i}i>0 and {e1}, and with420

Vx,y the intersection Vx ∩ Vy. Using the arguments in the previous paragraph, it is421

clear that we can identify Mx,y,Mx and My with the subspaces P(Vx,y),P(Vx) and422

P(Vy) of P(V ) respectively. Consider the symmetric bilinear form f : V × V → k423

with f(
∑

i aiei,
∑

i biei) =
∑

i(a2ib2i+1 + b2ia2i+1). A subspace S of V is called424

isotropic when f(s, t) = 0 for all s, t ∈ S. The point-line space Γx,y with as point425

set the isotropic 1-dimensional vector subspaces of V , and as line set the isotropic426

2-dimensional vector subspaces of V , is a polar space. Note that Mx and My are427

maximal singular subspaces of Γx,y and that we have constructed Γx,y in such a428

way that it intersects ∆ in Mx ∪My. Moreover, every point of Γx,y is collinear429

with a subspace of codimension at most one of M ∩Mx,y.430

It is clear that Γx,y and ∆ satisfy the conditions of Definition 5.2, we can hence431

consider the partial linear space ∆∪Γx,y. It is straightforward to check that ∆∪Γx,y432

is indeed a preparapolar space that satisfies the required properties. �433

We will apply Lemma 5.5 to inductively construct the chain of preparapolar434

spaces Ωn. Along the way, we use the following bijection:435

f : N× N→ N : (n1, n2) 7→ (n1 + n2)(n1 + n2 + 1)

2
+ n2.

Construction (Construction of Ωn and φn). Suppose that we have constructed436

preparapolar spaces Ω0,Ω1, . . .Ωn−1 that satisfy (A1), (A2) and (AM), but such437

that none of these is a parapolar space. Suppose moreover that for all i = 1 . . . n−1,438

the partial linear space Ωi = (Pi,Li) contains Ωi−1 as a subspace and that φi :439

N → Pi ×Pi is a bijection. Set (n1, n2) = f−1(n). Note that n1 ≤ n, which440

implies that the map φn1 is defined. If the pair φn1(n2) of Pn−1 ×Pn−1, is not441

contained in a symp of Ωn−1, define (x, y) := φn1(n2). If the pair φn1(n2) is already442
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contained in a symp of Ωn−1, use the fact that Ωn−1 is not a parapolar space to find443

a pair of points (x, y) ∈ Ωn−1 ×Ωn−1 that is not in a symp of Ωn. Use Lemma 5.5444

to construct Ωn from Ωn−1 and the points x and y. It follows from Lemma 5.5445

that Ωn is a preparapolar space that contains Ωn−1 as a subspace and that satisfies446

axioms (A1), (A2) and (AM). Let φn : N → Pn ×Pn be a bijection. No pair of447

points in (Pn−1 \ 〈〈x, y〉〉Ωn)× (Pn \Pn−1) is contained in a common symp of Ωn,448

which implies that Ωn is not a parapolar space.449

Proof of Proposition 5.1. Define Ω =
⋃
i∈N Ωi. Let x and y be any two non-450

collinear points of Ω. There exists some n1 for which x and y are contained in Ωn1 .451

Set n2 := φ−1
n1

(x, y). By construction, the convex closure of x and y in Ωf(n1,n2) is452

a non-degenerate polar space S. But then S is the convex closure of x and y in453

Ωi for all i ∈ N≥f(n1,n2). This implies that the convex closure of x and y in Ω is454

S. �455
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