© 1992 Kiuwer Academic Publishers. Manufactured in The Netherlands.

Desarguesian Finite Generalized Quadrangles are
Classical or Dual Classical

H. VAN MALDEGHEM* AND J.A. THAS
Seminar of Geometry and Combinatorics, State University of Ghent, Krijgslaan 281, B-9000 Gent, Belgium

S.E. PAYNE
Department of Mathematics, Box 170, University of Colorado at Denver, Denver, Colorado 80204, U.S.A.

Communicated by R.L. Mullin
Received October 1, 1990. Revised May 24, 1991.

Abstract. Let 8 = (P, B, I) be a finite generalized quadrangle of order (s, ), s > 1, ¢+ > 1. Given a flag (p,
L) of 8, a (p, L)-collineation is a collineation 6 of § which fixes each point on L and each line through p. For
any line N incident with p, N # L, and any point u incident with L, u # p, the group G(p, L) of all (p, L)-
collineations acts semiregularly on the lines M concurrent with N, p not incident with M, and on the points w
collinear with u, w not incident with L. If the group G(p, L) is transitive on the lines M, or equivalently, on
the points w, then we say that 8 is (p, L)-transitive. We prove that the finite generalized quadrangle 8 is (p, L)-
transitive for all flags (p, L) if and only if 8 is classical or dual classical. Further, for any flag (p, L), we in-
troduce the notion of (p, L)-desarguesian generalized quadrangle, a purely geometrical concept, and we prove
that the finite generalized quadrangle 8 is (p, L)-desarguesian if and only if it is (p, L)-transitive.

1. Introduction

Let 8§ = (P, B, I) be a finite generalized quadrangle (GQ) of order (s, #), s > 1,1 > 1,
that is, 8 is an incidence structure of points and lines, with a symmetric point-line incidence
relation satisfying (i) each point is incident with 1 + 7 lines (# = 1) and two distinct points
are incident with at most one line, (ii) each line is incident with 1 + s points (s = 1)
and two distinct lines are incident with at most one point, and (iii) if x is a point and L
is a line not incident with x, then there is a unique pair (y, M) € P X B for which x/
MIyIL. Results on generalized quadrangles may be found in the monograph (Payne and
Thas 1984).

Given a flag (p, L) € P X B of 8, a (p, L)-collineation is a collineation ¢ of § which
fixes each point on L and each line through p. By 2.4.1 of (Payne and Thas 1984) 6 acts
semiregularly on the set P\p* and also on the set B\L* (i.e., 0 is an elation about p
and an elation about L in the terminology of (Payne and Thas 1934)). In particular it follows
that the group G(p, L) of (p, L)-collineations has order dividing sz. For let N be a line
incident with p, N # L, and u a point incident with L, u # p. Then G(p, L) acts semi-
regularly on the lines M concurrent with N, p not incident with M. It follows that |G(p,
L)| = stiff G(p, L) is transitive on the set of st lines meeting N at points different from
p iff G(p, L) is transitive on the set of points collinear with # but not incident with L.
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If these equivalent conditions hold, we say 8 is (p, L)-transitive. Note that § is (p, L)-
transitive iff (the point-line dual of) 8 is (L, p)-transitive. Further, one can check that each
finite classical or dual classical GQ is (p, L)-transitive for all flags (p, L).

This note has two main results. The first is:

THEOREM 1. The GQ 8 is (p, L)-transitive for all flags (p, L) iff 8 is classical or dual classical.

Let V = (py, Ly, ..., ps, Ly) be an ordered quadrilateral of 8. So py, ..., ps are four
distinct points, L,, ..., L, are four distinct lines, and p,IL;Ip;,,, where subscripts are taken
modulo 4. The quadrilateral V is said to be opposite a flag (p, L) provided p is not incident
with L; and p; is not incident with L, i = 1, 2, 3, 4. So let V be a quadrilateral opposite
a flag (p, L), and let 6 be a nonidentity (p, L)-collineation. Then V? is also a quadrilateral
opposite (p, L) and V, V? are in perspective from the flag (p, L) according to the follow-
ing definition: Two (ordered) quadrilaterals V = (py, Ly, ..., Ly and V' = (p{, L{, ...,
Lj) which are opposite a flag (p, L) are said to be in perspective from (p, L) provided
Di, pi are collinear with a common point on L, and L;, L/ are concurrent with a common
line through p, i = 1, 2, 3, 4. Note that this definition is also self-dual.

The GQ 3, with flag (p, L), is said to be (p, L)-desarguesian provided the following
condition holds: For any quadrilateral V = (p;, L,, ..., L) opposite (p, L) and any flag
(p1, Ly) satisfying (i) p{ is not on L and p is not on L{, (i) p; L r; L p{ for some r,
on L, (iii) L; L M; 1 Li for some M, through p, there is a quadrilateral V' = (p{, L,
..., Lj) opposite (p, L) and in perspective with ¥V from (p, L).

Note that 8 is (p, L)-desarguesian iff (the point-line dual of) 8 is (L, p)-desarguesian.

It is easy to see that if 8 is (p, L)-transitive, then 8 is (p, L)-desarguesian. The converse
yields our second main result.

THEOREM 2. For a given flag (p, L), 8 is (p, L)-transitive iff 8 is (p, L)-desarguesian.
There is an immediate corollary.

CoroLLARY 1. The GQ 8 is (p, L)-desarguesian for all flags (p, L) iff § is classical or
dual classical.

2. (p, L)-Transitivity

Let 8 = (P, B, I) be a finite GQ of order (s, #), as in Section 1. This section is devoted
to a proof of Theorem 1, and for that we need the concept of property (H). For distinct
points x, y, recall that the closure of the pair (x, Y iscl(x,y) = {z€ P:z* N {x, y}++
# @}. Then a point p has property (H) provided that, whenever T = {x, y, z} is a triad
of points contained in p* and x € cl(y, z), then y € cl(x, z). By 5.6.2 of (Payne and Thas
1984) we see that property (H) is a fundamental property for points (or lines) in the classical
or dual classical GQ.

LEMMA 1. Suppose 8 is (p, L)-transitive for fixed p and all lines L through p. Then p has
property (H).
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Proof Let T = {x, y, z} be a triad in p~ for which x € cl(y, z) say wipx with w € {y, z} *+.
By hypothesis there is a (p, pz)-collineation § mapping w to x. Then y’Ipy and 6 : {w, y,
= {x, ¥, 2}, forcing y € cl(x, z). Hence x € cl(y, 2) implies y € cl(x, 7).

A panel of $ is an ordered triple (L, p, M), where L and M are distinct lines incident
with the point p, or an ordered triple (x, L, y) where x and y are distinct points incident
with the line L. For a given panel (x, L, y), let H(x, L, y) be the group of all collineations
of 8 which are both (x, L)— and (L, y)—collineations. For each line M through x, M #
L, H(x, L, y) acts semiregularly on the points of M different from x. Hence |H(x, L, y)|
divides s. We say the panel (x, L, y) is Moufang provided |H(x, L, y)| = s. For a panel
(L, p, M) the group H(L, p, M) is defined in a dual manner. And (L, p, M) is Moufang
provided |H(L, p, M)| = t. If every panel of § is Moufang, then $ is said to be a Moufang
GQ. By a theorem of P. Fong and G.M. Seitz [1974] (cf. J. Tits [1976]), a Moufang GQ
must be classical or dual classical. The main result of (Thas, Payne and Van Maldeghem
1991) is that if every panel of $ of one type (say of the form (x, L, y)) is Moufang, then
every panel is Moufang.

LeEmMA 2. If S is (p, L)-transitive for every flag (p, L), then 8 is Moufang, and hence
classical or dual classical.

Proof. Suppose 8 is (p, L)-transitive for all flags (p, L). So all points (and dually, all lines)
have property (H). By 5.6.2 of (Payne and Thas 1984) we have the following:

(1) Each point is regular, or
(ii) each hyperbolic line {x, y}**, x L y, has just two points, or
(i) 8 = H(4, s).

And dually,

(1)" Each line is regular, or
(ii)" for each pair of nonconcurrent lines L, M, {L, M}*+ = {L, M}, or
(1)’ 8 = H*4, 1), the point-line dual of H(4, s).

We may assume S % H(4, s) and 8§ £ H*(4, ). Suppose all lines are regular, so s < .
If each point is regular, then s = f and 8§ = W(2°) (cf. 5.2.1 of (Payne and Thas 1984)).
So we may assume each hyperbolic line has two points. Let p, p’ be distinct points on
aline L; so (p, L, p') is a panel for which we shall show 8 is (p, L, p’)-transitive. Let
g, q' be any points (# p) on a line N (# L) through p. We show there is a § € H(p, L,
p') mapping g to g'. Let N’ be any line (# L) through p’, and M, M’ the lines through
g, q' meeting N'. Let x be any point of L, p # x # p’ By the regularity of lines there
is a line K through x meeting M at a point y and M’ at a point y’ Then the (p, L)-collineation
¢ mapping M to M' maps g to q', y to y', and fixes K and N'. Now let N” be any line through
p, N # N" # L. Define lines M" and T by yIM" L N" and pIT L M’. By regularity
of the pair (M", L), the line through y’ meeting T also meets N". As 6 fixes 7 and maps
y to y’, clearly 6 fixes N". So § fixes all lines through p’ (Actually, this shows 0 is an or-
dinary symmetry about L, i.e., it fixes all lines meeting L.) As 8 is (p, L, p’)-transitive
for all panels (p, L, p') of this type, 8 is classical or dual classical.
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By duality, the only remaining case has all hyperbolic lines of size 2 and all spans {L,
M}*++, L L M, of size two. Also, by duality we may assume s < ¢.

Fix a point p, and let Ly, ..., L; be the lines through p. Each (p, L;)—collineation is
an elation about p. If G = (0 : 6 is a (p, L;)-collineation for some L;, 0 < i < 1), then
by 8.2.4(iii) of (Payne and Thas 1984) G is a group of elations about p. Now let L; , L;
be any two of the lines through p, x, on L;, x; on L; , xo L x;. Let Ny, M, be two lines
(# L;) through x, and N;, M, the two lines through x; with Ny L N;, My L M;. Say
NolqIN,, MoIrIM,. Let 6y be the (p, L;)-collineation mapping N, to M,. Clearly 6, also
maps Ny to M. Similarly, 6, is the (p, L; )-collineation mapping Ny to M, and hence map-
ping N; to M;. Then both 6,, 0, € G, and they both map g to . So 8§ = 6, = 0, is the

unique element of G mapping g to r. Hence 8 € H(L;, p, L;). It follows that | H(L, p,
L’) !; t for each nanel of the form (L. ». [ '). By (Thas. Pavne and Van Maldechem 1901)
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the dual result holds; so 8 is classical or dual-classical. (However, by 9.5.1 of (Payne and
Thas 1984) S cannot exist.)

3. (p, L)-Desarguesian Implies (p, L)-Transitive

To prove Theorem 2 it must be shown that, if 8 is (p, L)-desarguesian, then it is (p, L)-
transitive. So suppose 8 is (p, L)-desarguesian for a given flag (p, L). Let L’ be an ar-
bitrary line through p, L' # L. Suppose MIp'IL', M'Ip"IL', p' # p # p" # p', M #
L' # M' To show that 8 is (p, L)-transitive, it will suffice to construct a (p, L)-collineation
8 mapping M to M. Since any GQ with ¢ = 2 and s > 1 is classical, hence (p, L)-transitive,
we may assume that 1 > 2.

The set of all points incident with a line N will be denoted by N* The idea of the proof
is to define a bijection § from the pointset (P\p'*) U L* U M* onto the pointset (P \
p"t) U L* U M'* which preserves collinearity, and then to extend 6 to an automorphism
a of 8§ for which « is a (p, L)-collineation mapping M to M.

The definition of # proceeds according to six cases determined by the type of point
involved.

Type (i) For x € I* %% = x.

Type (ii) For x = p', x’ = p".

Type (iii) For p’ # xIM, put x’ = x’, where x'IM' and x L r L x' for some point r,
re€ ¥ So6:M—> M*

Type (iv) Suppose y is any point of P not on any line of {L, M}~*. Let (N, x) be the
flag defined by yINIxIM, and define the line L” by pIL” 1L N. If x' = x°, N’ is the line
defined by x'IN' L L" Theny’ = y’ where y’IN’andy L r L y' for some point 7 on
L. By hypothesis N cannot meet L; so L” # L, forcing y’ to be on no line of {M', L}*.
Hence a counting argument shows that 0 is a bijection from the set of points of type (iv),
i.e., on no line of {L, M}* to the set of points on no line of {M’, L}, which is the set
of points of type (iv)’. Note that each point of N* other than x is of type (iv). The points
of N* are mapped bijectively to the points of N'* and each point of V' other than x’ is
of type (iv)?. Note that if y L p, then L” = yp and y? is the unique point for which
x'Ix'y’I’hp. So 6 : {yp}* - {p}*
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Let y;, y, be distinct collinear points of type (iv). We shall prove that y§ 1 . By the
preceding comments we may assume that p ¢ (y;y,)* and y;y, L M. Let MIx; 1 vy,
i =1, 2. Then

V= ()72’ YaXo, X2, XoX1, X1, X1Y15 V1> ylyZ)

is a quadrilateral opposite (p, L). Since 8 is (p, L)-desarguesian, there is a quadrilateral
V' = (8, 3, ...) opposite (p, L) and in perspective with V from (p, L). Clearly V' =
OB, Y88, x5, xx5, X, x%y%, 8, ?), forcing the last line to be yJy5. Moreover, as in the earlier
two cases, y;y, and y%y% must be concurrent with the same line through p. So 6 yields a
bijection from the set of points of type (iv) to the set of points of type (iv)’ which preserves
collinearity. A counting argument shows that it must also preserve noncollinearity.

Type (v) Let ull, p # u # p' If y L u with y of type (iv), then let u® be the point
of L' collinear with y°. Note that since > 1 there are such points y. We now show that
1’ is independent of the choice of y. So let y; be of type (iv) with u L y, and y # y1-
If y;Iuy, then y¥ 1L y§ and L' 1 y%)! by case (iv). Now assume that y; ¢ (uy)* Suppose
L'Iu’ L ¥ with u’ # u’. If y,Juy and ysluy,, with y, and y; of type (iv), then necessarily
¥5 L 5. (By the last line of case (iv).) In (yu)* U (y;u))* \ {u} there are at least s
points of type (iv). Since points y3 and ¥4, respectively, on u’y’ and u'y] are never collinear
(so the point of yfu’ collinear with y§ must not be the image of a type (iv) point of y,u),
it follows that ((yu)* U (y;u)*) \ {u} has at least s points on lines of {L, M}, hence
exactly s points on lines of {L, M}*. Since t > 2, there is a line Y through u for which
all points of Y* \ {u} are of type (iv). Let y, € Y* \ {u}. Then by the preceding argu-
ment, 5 L «’ and y§ 1L u’ Hence u’ = u’, a contradiction. Consequently u’ is indepen-
dent of the choice of y.

Type (vi) Let z be on a line of {L, M}*, z¢ M* U [* U L™ Let L'lu L z, LIr L
z, and let R’ be defined by rIR' L M’ Then 2’ is defined by R'Iz’ L u®. So the s> — s
points of type (vi) are mapped bijectively to the s> — s points (of type (vi)?) on a line of
{L, M'}* but not on M’ or L or L'

Now we prove that the restriction of  to P \ p’* preserves collinearity. If y; L y, with
y1, ¥2 of type (iv), then we already have proved that y} L y,’. Solety L z, with y, z
€ P\ p'*, yof type (iv), z on a line of {L, M}~*. If zIL, clearly 2 1 y°. Suppose z
€ L, but yz meets L’ at a point u. Let LIr L z, and let R be any line through r with L
#Z R # rz. If RIm L u, clearly m is of type (iv). If YIulm®, then y L m, a contradic-
tion. Hence )’ is not on the line through #’ and concurrent with R’ = rm’. It follows that
y? is a point of the line through #’ and concurrent with rz’ (which meets M"), i.e., y/Iu’z’.
Hence Y’ 1 z° and ’, 2% are collinear with the common point u’ of L’

Let z;, 2, be distinct elements of type (vi), with z; L z, and z;, 2, collinear with a com-
mon point u of L’ Assume that z} L D Wehave 2 L u® 1L 5. Letz; L riIL and
u’Zly, L r,. Then y, is not on iz, so is not on a line of {M’, L}*, so y; = } for a
y, of type (iv). Analogously, on 1’z there is a point ¥ (§ L r,, 2, L r,IL) with y, of
type (iv). Since y; and y, are on uz; = uz, and y; L y,, we have y| L 4, a contradic-
tion. Hence z{ L z§, and zf, 2§ are collinear with the common point u’ of L’

Let y be of type (iv), z of type (vi), y L z, and assume that L'lu L y with u [ z. Let
L'Im L z. First assume that all points of (mz)* \ {m} are of type (vi). Then z is the only
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point of yz which is of type (vi), while the s other points are of type (iv). The images of
the points of (yz)* \ {z} are incident with a common line V. Let z’ be the remaining point
of V. Since m is collinear with no point of (yz)* \ {z}, m’ is collinear with no point of
V*\ {z'}. Hence m’ L z' Let LIr L z. Since (z')°  is of type (vi), we have rz’ = rz’.
And since m” L 7, necessarily z’ = 7’. Consequently y* L z¥. Now assume that in (mz)*
there is at least one point y; of type (iv). Let yzIy, L p. Then y, is of type (iv). Further,
let yj[R 1L M and RIy; 1 y,. Then y; is of type (iv). Since 8 is (p, L)-desarguesian, there
is a quadrilateral V' = (9, %4, . . .) in perspective with V = (y,, Y2¥3, Y3, Y3Y1s Yi» YiZ»
z, Zy;) from (p, L). Consequently Y5 1 7z°. Hence we may assume that y # y, and
¥ L 7. Since y§ L 2%, the line y%y} is not concurrent with m’z’. Let m® L z”I%)3. Then
z" is of type (vi)?, for otherwise there arises the triangle m(z ”)0_1z. No point v of type
()% of GP¥H* \ {z"} is collinear with a 1point w of type (iv)? of (m®z%* \ {m®}, for then
¥~ on yy, would be collinear with w’~ on mz. On (yz)* U (mz)* there are at least s
points of type (iv). Hence on ((*y)* \ {z"}) U ((m%H* \ {m’}) there are at least s
points of type (iv)?, and hence also at least s points of type (vi)’. Consequently in (yz)*
U (mz)* there are exactly s + 1 points on lines of {L, M}~*. Let T be a line through z
withmz # T # yzand T L L. (Since z > 2 the line T exists.) All points of 7* \ {z}
are of type (iv). By the preceding arguments (7*)° is the pointset of a line through 2. Let
¥y L Y4 e T Thenyyzisa triangle, giving a contradiction. We conclude that y¥ 1 2.

Finally, let z;, z, be distinct collinear points on lines of {L, M}* but notin p’*. If z;IL,
then clearly z L z§. So we may assume that z;, z, ¢ I* If on 712, there are at least two
points y;, y, of type (iv), then by preceding cases 27 L y!,i = 1, 2, ¥J L )5. Hence
z‘f 1 zg. If, on the other hand, z,z, has at least s points on lines of {L, M}, then by
(the point-line dual of) 1.3.4(iv) of (Payne and Thas 1984), all points of z,z, are on lines
of {L, M}*, implying z;z, L L'’ Again by a preceding case z L z5.

Hence 6 induces a bijection of P \ p’* onto P \ p”*, and collinear points are mapped

o I et o . 4o ~EDN\ 7L _

onto collinear points. A counting argument shows that noncollinear points of P \ p’~ are
mapped to noncollinear points of P \ p”+.

Let T be a line of 8 not incident with p’, with L’ L T L M, and let TIg L p’ All
points of T different from g are mapped by 6 onto the s points of a line 7" not collinear
with p”. Let T'Iq" L p". Suppose T) (# T) is a second line through g and not incident
with p’ Assume that the corresponding line 7] is incident with ¢g;, g, L p”. Since no
point of (77)* \ {q’} is collinear with any point of (77)* \ {q{}, clearly T’ meets T}
at g{ = q" Put ¢’ = g Now let g, g; be on a line through p’, withg # ¢q; # p’ # q.
If ¢ L 4, then let n' be a point for which ¢’ L n’ L ¢landn’ L p” Soq L (n")’
1 g; with (n’ )9-1 L p', a contradiction. Consequently ¢° L ¢%. Now 6 is defined on all
points of 8, and is the restriction to P of a uniquely defined collineation « of 8. Clearly
the restriction of o to (P \ p’l) U L'* U M* is 8. The collineation o« is a (p. I)-
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collineation mapping (p', M) to (p", M"). We conclude that 8 is (p, L)-transitive.
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