Ovoids and windows in finite
generalized hexagons

V. De Smet H. Van Maldeghem *

Abstract

We characterize some finite Moufang hexagons as the only generalized
hexagons containing “a lot of” thick ideal subhexagons or as the only
hexagons containing ovoids all of whose points are regular.

1. Introduction

A generalized hexagon of order (s,t),s,t >1isal— (v,s+1,t+ 1) design
S = (P, B, I) whose incidence graph has girth 12 and diameter 6, also denoted
by S(s,t). If s = t, S is said to have order s. The only known finite generalized
hexagons with s, > 1 arise from the Chevalley groups G2(q) and 3D4(q) and
have respective order (q,q) and (q,q®), g power of a prime. We denote the
3D4(q)-hexagon by H(q,q?), its dual by H(q? q) and we denote the Ga(q)-
hexagon by H(q), its dual by H*(q). An explicit description of these is given
in Kantor [2].

Note that H*(q) is always a subhexagon of H(q,¢%); dually H(q) is a
subhexagon of H(q?, q). A subhexagon S’ of order (s',t') is called ideal if
t = t' (see Ronan [4]). Furthermore, S is called thick if s,z > 1. Note that
s =1 ort =1 corresponds to the incidence graph of a projective plane. With
these definitions, H(q) is a thick ideal subhexagon of H(q%, q). Now consider
the following configuration in a generalized hexagon S. Let L; and L, be two
lines at distance 6 (in the incidence graph) from each other and let p1, p2, pa
be three distinct points on L;. There are points p}, pj, p5 on Ly at distance 4
from resp. p1, P2, p3 and there are unique chains p; I M;Ip/IMIp;, 1 =1,2,3.
The configuration consisting of the lines L1, L,, M;, M], 1+ = 1,2,3 and the
points p;,p.,pY, i =1,2,3, is called a window of . By the transitivity of
the collineation group of H(q%, q) there is a subhexagon isomorphic to H(q)
containing any given window. It is our aim to show the contrary, namely that
if every window of a thick generalized hexagon S is contained in an ideal
subhexagon, then S is isomorphic to H(g>, q).

Let d(z,y) denote the distance between z and y in the incidence graph
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of a generalized hexagon S = (P,B,I), z,y € P U B. Denote by I';(z), with
r € PUDB, the set of all elements of P U B at distance 7 from z. If d(z,y) =4
for z,y € P, then there is a unique point 2z collinear to both and we denote
z = z xy. Define W(z,y) = Ts(z) NTs(z) NTu(y). If v € W(z,y) then we
denote by 2z* the set of points collinear with z and at distance 4 from u. If
this set is independent from the choice of u, then 2% is called an ideal line (see
Ronan [4]) and is denoted by (z,y). Now fix a point p € P and suppose that
(z,y) is an ideal line for every pair (z,y) € P? such that d(z,p) = d(y,p) = 2
and d(z,y) = 4, then we call p half-regular. If moreover (p,z) is an ideal
line for every point z at distance 4 from p, then we call p regular. This
is motivated by the facts that (1) if all points of S are regular and S has
order s, then S = H(q), see Ronan [4], (2) a derivation can be defined in a
regular point of S and if s = ¢, then this is a generalized quadrangle (see Van
Maldeghem - Bloemen [7]). These properties are very similar to properties of
generalized quadrangles with regular points (see Payne - Thas [3]). In fact,
for generalized quadrangles of order s, one can show that, if every point of an
ovoid is regular, then the generalized quadrangle is classical and arises from a
Chevalley group S4(2¢). In this paper, we extend this property to generalized
hexagons, an ovoid of a generalized hexagon of order s being a set of s* + 1
points at distance 6 from each other. There is one difference though: the
existence of ovoids in H(q) is only proved for ¢ = 3°. For q even, there are
no ovoids (see e.g. Thas [6]) and for other values of g, the question remains
open.

Also our characterization of H(g? q) has an analogue for generalized
quadrangles, (see Payne - Thas [3], 5.3.5. ii, dual), a window in a generalized

quadrangle being a quadrilateral with one more “transversal”.

2. Proof of the results

2.1. Characterization by windows

Lemma 2.1 Let S(s,t) be a finite generalized hexagon which contains a
proper subhexagon S'(s',t), which in turn contains a proper subhexagon
S§"(s",t). Then s =13, ' =t and s" = 1.

Proof. From Haemers and Roos [1] it follows that s < 3 (1).

From Thas [5] we have s > st (2) and s’ > s"%¢ (3).

So (1) and (2) gives s < t? or ' <t (4).

Now (3) and (4) gives s” =1, and so s’ = ¢.

From (1) and (2) it then follows that s = ¢3. O
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Theorem 2.2 Let S = (P,B,I) be a finite generalized hexagon of order
(s,t) with s > 3.

There exists a proper ideal subhexagon through every window of S iff § is
isomorphic to H(q% q), s =¢* and t = q.

Proof.

< See introduction.

= In order to proof that S is Moufang we have to proof that S has
ideal lines. [4] So we must proof that for all a,b € P with d(a,b) = 4 and
a * b = c we have (a,b) = ¢* for all z € W(a,b).

Step 1: We show that ¢ = ¢ for all z, 2’ € W(a, b) such that ¢, z and
z' form a window with the same two lines , say L and M. Suppose 2; and 2z
are such elements of W(a, b).

all \/ bII

L 23 M
a \/ o
al_ 2 e
~__—
21
Figure 1.

Let Si2(c, 21, 22) be the proper ideal subhexagon through the window
c,21,23,L and M. Since s > 3 and Sy, is proper, there exists another point
b on M, with b"” € S;5. The shortest path between " and L gives rise to
the point 23 € W(a,b) (see figure 1). Let Siz(c, 21, 23) be the proper ideal
subhexagon through the window c, 21, 23, L and M. Remark that z, & Sis.
Finally, let Sy3(c, 22, 23) be the proper ideal subhexagon through the window
¢, 22, 23, L and M. Note that z; &€ S,3. We will now look at some intersections
of those subhexagons. Let D, = Sia(c, 21, 22) N Saz(c, 22, 23), then D, is a
proper (z; & S23 and z3 & Si2) ideal subhexagon of Si; and Sy3. Let D3 =
S1a(¢, 21, 23) N Saz(c, 22, 23), then Dy is a proper (z1 & Sz and z; € S13) ideal
subhexagon of S13 and S,3. If we apply the lemma to
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S(S,t) D) 512 2 Dz,
S(S,t) D) 513 D Dg
and S(s,t) D Sz D Ds
we have that S has order (¢3,1), Si2, S13 and S»3 have order (¢,t) and D, and
D3 are thin ideal subhexagons. Now we can apply a corollary of the theorem
of Thas [5] to the following pairs of generalized hexagons:
(1) S12 D Ds.
z1 € 512\ D, and not collinear with a point of D,

so z; is at distance 3 from 1 + ¢ lines of Dy C Sa3.
C.. YD,

(2) i3 — &3
z; € 513\D3 and not collinear with a point of Ds,
so z; 1s at distance 3 from 1 + ¢ lines of D3 C Sa3.
(3) S D Ss3.
21 € 8\ 523 and not collinear with a point of S,3,
so z; 1s at distance 3 from 1 + ¢ lines of Sa3.
From (1), (2) and (3) it follows that D, and D5 have 1 + ¢ lines in common
which are at distance 3 from z;.
Case 1: Suppose that all those 1 +¢ lines are at distance 3 from ¢. From
the thinness of D, and D; it follows that ¢ = ¢*2 = ¢*3
Case 2: Suppose at least one of those 1 + ¢ lines is at distance 5 from c,
say L,. Let (¢, Lo, lo, L1, 11, Ly) denote the shortest path between the line L,
and c. Since ¢ and Ly € D, (Ds) it follows that Lo, lo, L1,l; € D5 (D3). From
D, it then follows that d(z;,lo) = 4 and d(2s,l;) = 6. So there is a second
point on L, at distance 4 from z;. We deduce d(a’,l;) = 4. But /; and L liein
Ds so the shortest path between them is also in D3, a contradiction. So case

2 cannot occur and case 1 proves step 1.

Step 2:

mb

Figure 2.
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Suppose z € W(a,b) so that c,z1,2,L and M do not form a window.
There exists a thin ideal subhexagon D through ¢, z;, L and M (see step 1).
So L' and M' € D. Let I’ and m' be the respective second points on L' and M’
in D and denote I' * m' = 2’. Then from the thinness of D we have ¢* = .
But applying step 1 we obtain ¢ = ¢*. O

2.2. Characterization by subhexagons

Lemma 2.3 Let S = (P, B, 1) be a finite generalized hexagon of order (s, t).
Through every 2 opposite, half-regular points there exists exactly one thin
ideal subhexagon.

Proof. Let p; and p, be two opposite, half-regular points of S. Since they
are opposite, we can take all lines through p; and consider the unique ¢ + 1
shortest paths of length 4 between p, and those ¢t + 1 lines. So we get in an
unique way, t + 1 points collinear with p; and ¢ + 1 points collinear with p,.
Call them respectively zo,...,z; and yo,...,y: with z; ~y;, 2 =0,...,¢.
Because d(z;,¥i+1) = 6, 1 = 0,...,t (mod t + 1), we can do the
same construction with each of these ¢ + 1 couples of opposite points to get
for each z;, in a unique way t — 1 points collinear with z;. We call them

zi, k=1,...,t — 1. Similarly we obtain for each y;;1, ¢t — 1 points collinear
with 4;11 and call them y}t', k=1,...,#— 1 and we can do this in such a

way that zi ~ yit?l.

Now we have all the 2(t* + ¢ + 1) points we need for a thin ideal
subhexagon. We still have to consider the lines through z: and through
yi, 1=0,...,tand k=1,...,t—1. Since p; and p, are half-regular, the hy-
perbolic lines (z;, z;) = {zo, ..., z:} and (vi,y;) = {¥o, ..., ys} are ideal. Now
each of the yi belongs to W(z;, z;_1), so d(yi,z;) = 4 foreveryj € {0,...,t}.
So for each 7, there is a line (z;, a:f) containing a point collinear with 3. But
the point z on that line belongs to W(y;, ¥;41), so d(m{, y;) = 4. Since y; ~ yi
it must be that z] ~ yi. In this way we obtain all other lines of the thin ideal
subhexagon.

Remark that for a fixed y; , all yi are collinear with some point a:{ , Vg €
{0,...,t}\{k} and that no two of the yi’s can be collinear with the same ;.
Moreover, for two points yi and ylj with 7 # j, there is exactly one zI* collinear
with both.

Indeed, there cannot be more than one, otherwise we would have a quad-
rangle in S. So if we look at all ¢ — 1 points 2z ~ vy}, m € {0,...,t}\{¢,7},
there is always one and only one 3¢, s = 1,...,t — 1, collinear with one of
those z* ’s. Since we have t — 1 such y’s and ¢ — 1 such z]} ’s, there is
exactly one of the z]' collinear with ylj . The same arguments hold for the zi.
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It is now straightforward to check that there is always a path of length
< 6 between two of the constructed elements. So we indeed have a thin ideal
subhexagon. O

Lemma 2.4 Let § = (P,B,I) be a finite generalized hexagon of order s
which contains an ovoid O for which all points are half-regular. Then every
thin ideal subhexagon of S contains exactly 2 points of O.

Proof.

F4\ T e ' Za

(1) From lemma 2.3 it follows that through every 2 points of O there is
exactly one thin ideal subhexagon D. Moreover D cannot contain more
than 2 points of O since every other point of D is at distance < 4 from

3 3
s7+1)s o
% thin ideal

one of those 2 points of 0. So in total there are

subhexagons which contain two points of O.

(2) Suppose there are a thin ideal subhexagons in §. We count in two
different ways the number of pairs (z, D) with ¢ € P, D a thin ideal
subhexagon of § and z € D. It then follows that

(14s).(1+s+s5%.s% (s®+1).s°
= 2.(1 + s + s2) B 2

The lemma follows from (1) and (2). O

Corollary 2.5 From the equality in the proof of lemma 2.4 it follows that
through every point z € P there are s* thin ideal subhexagons. This means
that through every 2 points of S there exists a thin ideal subhexagon.

Theorem 2.6 Let S = (P,B,I) be a finite generalized hexagon of order s

containing an ovoid. Every point of an ovoid O is regular iff S is isomorphic
to H(q); q=3:.

e
= Due to Ronan [4] we have to prove that S has ideal lines. So, for

inmts z v e P withdlz =4 2 —=2%xu we 1et nrove that (» ) —
ts T,y € ~ with aiz,y) L, 2 T xy we must prove that (z,7)

From lemma 2.4 it follows that there are s thin ideal subhexagons
D;, » = 1,...,s containing z and y. They can be obtained by choosing a
point y; on a line through y at distance 5 from z and they all contain 2
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points of @. Since z¥ = 2% Yw,w' € W(a,b) N D;, we have to prove that
21 =2z =, . =2z withw;, €D;, 1=1,...,s.

Case 1: £ € O or y € O then it is immediate that (z,y) is ideal.

Case 2: z and z are collinear with the same unique point p, of O. Let
py be the unique point of O collinear with y and denote the line through y
and p, by L. With every point p on L\{y} there corresponds a thin ideal
subhexagon D, through z,y and p.

First we look at Dp, and the hyperbolic line (z,y)p, in Dp,. We will
show that the hyperbolic lines (z,y), in the other s — 1 D,’s are the same.
Let k be a point of L\{y, p,} and let Dy be the thin ideal subhexagon through
z,y and k. From lemma 2.4 we know that Dy contains two points of O. Since
every point of Dy is at distance < 4 from at least one of those two points of
O, the point z is at distance 4 from one of them, say p. Since p and L are in
D, also the shortest path between them lies in Dg. Denote p * k by a. Also
the shortest path between a and the line through z and z lies in Di. Denote
axz by b (see figure 3).

Pz
T )
r! Dy
b k
a
Figure 3.

Suppose that (z,y)r = 2° is different from (z,y)p,. So there is a line
M through z on which the point ¢ at distance 4 from a 1s different from the
point d at distance 4 from r. Denote ¢ *x a by e and d *x 7 by f. Since p, and
p are regular, we have ideal lines (r',p,) and (b,r) = (b, k) (see figure 3) .
From z € W(b, k) it follows that e € (b, k), so d(r, e) must be 4. Denote r x e
by g. From a € W(r', p,) it follows that g € (r',p,) and so d(z, g) must be 4
which is a contradiction.
Case 3: y and z are collinear with the same unique point p, of O. This
is similar to case 2.
Case 4: z,y and z are collinear to different points of O, say respectively
Dz, Dy and p,.
(i) If p, € 2* for some w € W(z,y) then (z,y) is ideal since p, is regular.
(ii) So suppose there is a point ¢ on the line through z and p, at distance
4 from a point w € W(z,y). By case 2 we have that (t,y) is ideal , so
(z,y) is ideal. O
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