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Abstract

We define the notion of regular point p in a generalized hexagon and show how a
derived geometry at such a point can be defined. We motivate this by proving that, for
finite generalized hexagons of order (s, t), this derivation is a generalized quadrangle if
and only if s = t. If moreover the generalized hexagon has also a regular line incident
with p, then one can amalgamate the two corresponding generalized quadrangles and
reconstruct in this way the generalized hexagon. The small Moufang hexagons of
order 3h, for small h, are characterized in this manner.

1 Introduction.

A generalized n-gon of order (s, t), n ≥ 2, s, t ≥ 1 is a point-line incidence geometry
S = (P ,L, I) with the following properties

(GP1) Every line is incident with s + 1 points;

(GP2) Every point is incident with t + 1 lines;

(GP3) The diameter of the incidence graph (i.e. the graph whose vertices are the points and
lines of S and edges the incidence relation) is equal to n;

(GP4) The girth (i.e. the length of the smallest non-trivial circuit) of the incidence graph
is 2n.

Generalized polygons, which are generalized n-gons for some n, were introduced by
Tits [12]. For n = 2, 3, 4, 6, 8, we call them respectively generalized digons, (generalized)
projective planes, generalized quadrangles, generalized hexagons, generalized octagons. A
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generalized digon is a trivial geometry where every point is incident with every line. A
generalized n-gon has a finite number of points or lines if and only if both s and t are finite,
in which case it has a finite number of points and lines. By a theorem of Feit & Higman
[2], finite generalized n-gons of order (s, t) with s, t ≥ 2 exist only for n = 2, 3, 4, 6, 8. A
number of other parameter restrictions are well known and we refer to an excellent survey
of Kantor [5] for more details. Finite examples are known for each n ∈ {2, 3, 4, 6, 8}, e.g.
arising from Chevalley groups with a BN-pair of rank two.

Let us look at one particular example. Consider a symplectic polarity in PG(3, q) and
consider the geometry of the points and the totally singular lines. This is a generalized
quadrangle W (q) of order (q, q). It is natural to look for conditions in order to be able to
reconstruct the projective space from the quadrangle and to do so, one could first try to
reconstruct the planes. Every plane Π corresponds to exactly one point p of the quadrangle
and the lines of Π consist of points collinear to p in W (q). The existence of the plane Π now
depends on a condition on p, which leads us to the definition of a regular point. Denote
by x⊥ the set of points collinear to x including x. A point p is called regular if for all
pairs of non-collinear points x, y ∈ p⊥ the set p⊥ ∩ z⊥ does not depend on the choice of
z ∈ x⊥ ∩ y⊥ \ {p}. In this case, the set p⊥ ∩ z⊥ is called a hyperbolic line. From this
definition, one can prove that, if a generalized quadrangle S of order (s, t) contains some
regular point p, then s ≥ t and if s = t < +∞, then the geometry of the points collinear to
p, the lines through p and the hyperbolic lines in p⊥, is a projective plane (this is still true if
s = t = ∞ and S is a topological generalized quadrangle in which the line pencils have the
same dimension as the point rows, see Schroth [11]). We call this plane the derivation
of S in p. If every point of S is regular, then we can reconstruct all lines of PG(3, q) and
show that S is isomorphic to W (s). This is probably the oldest characterization result
of any class of generalized quadrangles. For more information related to this, consult the
monograph by Payne & Thas [9].

Now, for q even, W (q) is isomorphic to its dual, and so, with a dual definition, W (q)
also has regular lines in this case. Payne [6] showed that, more generally, if a general-
ized quadrangle S contains a regular point p incident with a regular line L, then one can
reconstruct S by amalgamating the two corresponding projective planes. This “amalgama-
tion” procedure was explained algebraically and it is one of our goals to give a geometric
description below.

The main purpose of this paper however is to generalize this procedure to generalized
hexagons. So we consider the generalized hexagon H(q) of order (q, q) arising from the
adjoint Chevalley group G2(q). Tits [12] constructs this hexagon on a parabolic quadric
Q(6, q) in six-dimensional projective space. Reconstruction of that quadric would imply
the reconstruction of the point-residues, which are generalized quadrangles. We axiomatize
the conditions under which it is possible to define a generalized quadrangle “at a point”, i.e.
we define regular points and the derivation in a regular point. Afterwards, we reconstruct
the known self-dual generalized hexagons by amalgamating two generalized quadrangles,
which will turn out to be the derivations in some point, resp. some line, incident with each
other. We use the computer to say something more about small cases.
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It should be noted that the celebrated paper [10] by Ronan provided a solid basis to
build the present paper on.

2 Regular Points and Derivations of generalized hexagons.

Suppose S = (P ,L, I) is a generalized hexagon of order (s, t) and assume s, t ≥ 2. The
distance d(x, y) between two elements x, y ∈ P ∪ L is the length of a chain of minimal
length connecting x to y. The set of elements at distance i from some x is denoted by
Si(x). If d(x, y) = 4, there is a unique element z at distance 2 from both x, y and we
denote z by x ∗ y, see Ronan [10]. We call a point p half regular if for all pairs x, y
of non-collinear points in S2(p), the set pz := S4(z) ∩ S2(p) is independent of the choice
of z ∈ S4(x) ∩ S4(y) ∩ S6(p), in which case the set pz is called an ideal line. Note the
resemblance with the definition of a regular point and hyperbolic lines in a generalized
quadrangle as given above. But for a generalized hexagon, it turns out that we need a
little more (basically because the girth is larger). A point p is called regular if it is half
regular and if for every u ∈ S4(p) the set (p ∗ u)z := S4(z) ∩ S2(p ∗ u) is independent of
the choice of z ∈ S4(p) ∩ S4(u) ∩ S6(p ∗ u), in which case the set (p ∗ u)z is again called
an ideal line. Note that these ideal lines contain p. An immediate consequence of these
definitions is the following result, proved by Ronan [10]:

THEOREM 1. If every point of a generalized hexagon S is half regular, then every
point is regular and S is known (it is one of the Moufang hexagons arising from algebraic
groups).

Our next goal is to define the notion of a derivation in a regular point of a generalized
hexagon. Therefore, we need some preparation. So let S be a generalized hexagon with a
regular point p. Every pair x, y of points collinear to p is contained in either a line or an
ideal line of S. We denote that line by < x, y >. Similarly, we denote an ideal line through
p containing some other point u at distance 4 from p by < p, u > or < u, p >. The focus
of an ideal line < x, y > is the point x ∗ y.

Now let x, y be points collinear to p determining an ideal line < x, y > and let z be a
point collinear to x but not on < x, p >. Then z determines a unique ideal line tz for all
t ∈< x, y > \{x} and we put Π<x,y>

z equal to the union of < z, p > and all these ideal lines
tz as t ranges over < x, y > \{x}.

LEMMA 1. If < x, y > is an ideal line with focus p, and z is a point collinear to x
and at distance 4 from p, then Π<x,y>

z = Π<x,y>
u for all u ∈ Π<x,y>

z , u '= p.

PROOF. First suppose u ∈< z, p >, u '= z, p. So < z, p >=< u, p >. Let w ∈ tz for
some t ∈< x, y > \{x}. Since xw contains p and z, it is by definition of regular point equal
to < p, z >. So d(w, u) = 4 and w ∈ tu, hence tu = tz implying Π<x,y>

u = Π<x,y>
z .

Next, suppose u ∈ tz for some t ∈< x, y > \{x}. As in the first part, < z, p >= xu and
< u, p >= tz. Without loss of generality, we can assume y '= t. Now p(z∗u) contains x and
t and hence it equals < x, t >=< x, y >. So d(y, z ∗ u) = 4. But this implies that both yz
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and yu contain p and y ∗ (z ∗ u). So yz = yu. Since y was arbitrary on < x, t >, this shows
the result.!

So the set Π<x,y>
z is determined by < x, y > and any of its points distinct from p. But if

we take a point u of Π<x,y>
z such that u∗p '= z ∗p, then < x, y >=< u∗p, z ∗p > and hence

Π<x,y>
z is determined by u and z. The set {p, u, z} forms a triad of points at distance 4 with

no common point at distance 2 and we call such a triad a triangle. Also, we denote the set
Π<x,y>

z by( p, u, z ) and call it an ideal plane through p with focusline < u∗p, z ∗p >.

We define the following incidence geometry Sp: the points are the ideal planes through
p together with the sets S2(x) ∪ {x} for x collinear to p (including p). The lines are all
ideal lines containing p together with all customary lines through p. The incidence relation
is the natural one (symmetrized inclusion). We call Sp the derivation of S in p. To
avoid confusion, we will denote points of Sp by capital letters or we write x⊥ instead of
S2(x) ∪ {x} when we view this as a point of Sp. We now have the following theorem:

THEOREM 2. Suppose the generalized hexagon S of order (s, t) contains a regular
point p. Then s ≥ t. If moreover s = t < ∞, then Sp is a generalized quadrangle of order
(s, s) in which the point p⊥ is regular.

PROOF. Suppose s = t < ∞. It is easy to see that there are exactly 1 + s + s2 + s3

points (resp. lines) in Sp and every line (resp. point) is incident with s + 1 points (resp.
lines). Also, clearly, Sp does not contain digons. Suppose it contains three points P1, P2, P3

not on a line but two by two collinear. Then there are four possibilities:

1. P1 = p⊥. The lines P1P2 and P1P3 of Sp are two lines l1, l2 of S through p. From the
incidence relation in Sp now follows that the points P2 and P3 are of the form x⊥1 ,
resp. x⊥2 . The corresponding sets in S meet in p and hence they can not share a line
or ideal line.

2. p⊥ '= P1, P2, P3 but p⊥ lies on the line P1P2. Then PiP3 must be an ideal line < xi, p >
with (xi ∗ p)⊥ = Pi, i = 1, 2. However, these lines can never be contained in an ideal
plane (since the focusline would not be well-defined), nor can they be contained in a
set of points collinear to a certain point x collinear to p.

3. P1 is of the form x⊥, x collinear to p, and P2 and P3 are ideal planes. So the line
P1Pi in Sp is an ideal line < xi, p > contained in S2(x), i = 2, 3. But P2P3 must be
an ideal line < p, y > contained in both ideal planes P2, P3. Clearly p ∗ y '= x, so
both ideal planes P2, P3 contain y and hence they have focusline < p ∗ y, x >, but
this implies P2 = P3.

4. P1, P2 and P3 all are ideal planes. The line PiPj, i '= j, i, j ∈ {1, 2, 3}, is an ideal line
with some focus x3−i−j. Of course xi is not collinear with xj for i '= j (otherwise they
cannot be inside a common ideal plane). It follows that the focusline of Pi is exactly
< xj, xk > for {i, j, k} = {1, 2, 3}. If < x1, x2 >=< x2, x3 >, then P1 and P3 have the
same focusline and they have an ideal line in common, so they are equal. Hence we
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may assume x3 '∈< x1, x2 >. Now choose a point ti '= p collinear with xi, i = 1, 2, in
the ideal plane P3. So P3 =( p, x1, x2 ) and d(t1, t2) = 4. Put l = S1(t1) ∩ S3(t2).
Clearly, d(l, x3) = 5 (otherwise pentagons in S). Now let t3 = S2(x3) ∩ S3(l). So
t3 ∈ xt1

3 , so P2 =( p, t1, t3 ), implying that P1 =( p, t2, t3 ). Hence d(t2, t3) = 4
which is only possible if t1 ∗ t2 = t2 ∗ t3 = t1 ∗ t3, implying x1, x2, x3 ∈ pt1∗t2 , so
x3 ∈< x1, x2 >, a contradiction. Note that this argument also shows that on each
line (here l) through any point (here t1) of an ideal plane, there is a unique point
(here t1 ∗ t2) at distance 2 from exactly s + 1 points of the ideal plane. We will need
this in the proof of theorem 4 (see later).

This shows that the girth of the geometry is at least eight. But a counting argument
now shows that Sp is a generalized quadrangle of order (s, s).

We now show that in Sp, the point p⊥ is a regular point. Therefore, let x⊥, y⊥ be
two non-collinear points of Sp both collinear with p⊥. Any point in Sp collinear to x⊥

and distinct from p⊥ must be an ideal plane with baseline through x, so all points in Sp

collinear with both x⊥ and y⊥ (and distinct from p⊥), are ideal planes P with baseline
< x, y >. The set of points collinear to both P and p⊥ consists of points of the form z⊥

with z ∈< x, y >. Hence the result.

The derivation of Sp in p⊥ can be constructed directly as follows: the points are the
points collinear to p, including p in S, the lines are the lines through p together with the
ideal lines with focus p, and incidence is the natural one. For s = t, this is indeed a
projective plane. Suppose now s '= t. Choose a point x '= p collinear with p and an ideal
line l with focus p not through x. Every point u of l not collinear with x determines an
ideal line < x, u > and different choices for u correspond to different ideal lines. Hence,
there are at least t distinct ideal lines through x with focus p. But of course there are
exactly s such ideal lines, considering instead of l a line l′ through p. So s ≥ t.

This completes the proof of the theorem.!

REMARK 1. The above proof of the fact that the girth is at least eight does not
depend on the equality s = t. So in general, the derivation is a geometry with girth 8 and
with s + 1 points on every line, and s + 1 or t + 1 lines through a point and both values
occur.

REMARK 2. We could also define more homogeneously the following geometry S∗p
in a regular point p: the points are the ideal planes through p, the lines are the ideal lines
through p together with the ideal lines with focus p, and incidence is the natural one except
that an ideal line with focus p is incident with an ideal plane if it is the focusline of the
latter. This way, one obtains a geometry of order (s − 1, t + 1) which has, in all known
examples, an automorphism group transitive on the points, and which is in case s = t
again a generalized quadrangle. In general, we obtain a (4, 6, 6)-gon (with the terminology
of Buekenhout [1]).
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3 Geometric Amalgamations of Projective Planes.

In this section, we describe in a geometric fashion the amalgamation of two projective
planes. The purpose is to provide additional background information in order to deal
with the case of amalgamations of generalized quadrangles. It will turn out that alge-
braic conditions will follow more easily from geometric description rather than from an
entirely algebraic description. It provides anyway some more insight in the amalgamation
procedure.

Let S be a generalized quadrangle and suppose p is a regular point of S and l is a
regular line in S incident with p. So there are projective planes Sp and Sl, the respective
derivations of S in p and l. Now, the lines through p and the points on l can be viewed
as elements of both Sp and Sl. Abstractly, we can view Sp and Sl as disjoint planes; in
each of these planes there is an incident point-line pair (p, l∗), resp. (p∗, l) and bijections
θ (resp. σ) from the set of lines through p (resp. the set of points on l) to the set of lines
through p∗ (resp. the set of points on l∗) mapping l∗ to l (resp. p∗ to p). Given such a
system, we can define the following geometry:

The points are of two types: first all points of Sp and secondly, all pairs (m, m′), where
m is a line in Sl not through p∗, m′ is a line in Sp not through p and (m ∩ l)σ = m′ ∩ l∗.

The lines are similarly of two types: first all lines of Sl and secondly, all pairs (x, x′),
where x is a point in Sp not on l, x′ is a point in Sl not on l∗ and (xp)θ = x′p∗.

Incidence is defined as follows (with the above notation): a point x of Sp is incident
with a line m of Sl if and only if either x is on l∗ and xσ−1

is on m, or m contains p∗ and
mθ−1

contains x; every point x is incident with the pair (x, x′); every line m is incident
with the pair (m, m′); finally, the pair of points (x, x′) is incident with the pair of lines
(m, m′) if and only if x is on m′ in Sp and x′ is on m in Sl. This amalgamated geometry
Sp

⊎Sl (along σ, θ) is isomorphic to S and we give the isomorphism on the set of points:
a point of the form x in Sp

⊎Sl is mapped in the natural way onto itself; a point (m, m′)
defines a line m of S meeting l and a hyperbolic line m′ through m ∩ l. We map (m, m′)
to the unique point u of m collinear to all points of m′ (well defined by regularity of p).
Dually, we define a bijection from the set of lines of Sp

⊎Sl to the set of lines of S. It is
easy to check that these bijections induce an isomorphism.

We can now forget about the generalized quadrangle S and consider two projective
planes S1 and S2 with distiguished flags (p, l∗), resp. (p∗, l) and bijection as above. We
carry out the amalgamation procedure just described and if this yields a generalized quad-
rangle, then we can call (S1,S2, σ, θ) admissible and we call the generalized quadrangle
the amalgon (this is a contamination of words amalgam and polygon). If both projective
planes are Desarguesian, one can give an algebraic condition using the underlying planar
ternary ring structure of the coordinatizing fields and Payne [8] shows that every known
generalized quadrangle with an incident regular point-line pair arises in this way. Also, still
under the condition that the planes are Desarguesian, the field must have characteristic 2.
Let q be the order of the field, then for q = 2 and q = 4, only one generalized quadrangle
can be constructed (by uniqueness of the quadrangle in question, see Payne & Thas [9].
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If q = 8, only Desarguesian planes can be used and we have the following result:

THEOREM 3. There are, up to isomorphism, exactly two generalized quadrangles of
order (8,8) with an incident point-line pair each of which is regular.

PROOF. This has been checked by computer and the two examples can be described
as follows: amalgamate the two projective planes in such a way that, after an identifica-
tion of both planes (identifying p with p∗ and l with l∗ using the notation of above) the
map σ is the identity and the map θ is either the square or the fourth power (Frobenius
automorphism). No other possibilities occur. In the first case, we obtain the classical
symplectic quadrangle W (8) described in the introduction, and in the second case we have
the generalized quadrangle of order (8, 8) related to a non-classical oval in PG(2, 8), see
Payne [7]. Both examples are self-dual (even self-polar). !

4 Amalgamations of Generalized Quadrangles.

In this section, we give a geometric description of how to amalgamate two generalized
quadrangles to obtain a generalized hexagon. In the next section, we derive the algebraic
conditions under which this operation is succesful.

So let Sp = (Pp,Lp, Ip) and Sl = (Pl,Ll, Il) be two finite generalized quadrangles of
order (s, s). Suppose Sp has a regular point, say P , and Sl has a regular line L. Let L∗ (resp.
P ∗) be an arbitrary but fixed line (resp. point) incident with P (resp. L). Furthermore,
let θ (resp. σ) be a bijection from the set of lines (resp. points) on P (resp. L) to the
set of lines (resp. points) on P ∗ (resp. on L∗) mapping L∗ to L (resp. P ∗ to P ). We use
the notation “⊥” to denote collinear points and concurrent lines; the intersection of two
concurrent lines x, y will be denoted by x ∩ y and the line joining two collinear points u, v
by uv, as usual. We define the following geometry H = (P ,L, I)

The elements of P are of four distinct types:

(P1) the points of P⊥ in Sp;

(P2) the pairs (M, M∗) ∈ Ll × Lp with M ⊥ L, M∗ ⊥ L∗ and (M ∩ L)σ = M∗ ∩ L∗ '= P ;

(P3) the pairs (Q∗, M∗) ∈ Pl ×Lp with M∗ meeting a line L∗
0 through P distinct from L∗

and Q∗ '= P ∗ incident with (L∗
0)

θ;

(P4) the pairs (Q, Q∗) ∈ Pp × Pl with Q (resp. Q∗) not collinear with P (resp. P ∗) and
(P ∗

0 )σ = P0, where P0 (resp. P ∗
0 ) is the unique point on L∗ (resp. L) collinear with Q

resp. Q∗.

The lines are dually of four types as well:

(L1) the lines of L⊥ in Sl;

(L2) the pairs (Q, Q∗) ∈ Pp × Pl with Q ⊥ P , Q∗ ⊥ P ∗ and (QP )θ = Q∗P ∗ '= L;
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(L3) the pairs (M∗, Q∗) ∈ Lp × Pl with Q∗ collinear to a point P ∗
0 on L distinct from P ∗

and M∗ '= L∗ incident with (P ∗
0 )σ;

(L4) the pairs (M, M∗) ∈ Ll × Lp with M (resp. M∗) not meeting L (resp. L∗) and
(L∗

0)
θ = L0, where L0 (resp. L∗

0) is the unique line through P ∗ (resp. P ) meeting M
(resp. M∗).

Let us settle some notation: if x is a point or line of H, then we e.g. briefly write
“x = (Q, Q∗) is of type (P4)” to abbreviate “x is a point of H and x = (Q, Q∗) ∈ Pp×Pl

with Q (resp. Q∗) not collinear with P resp. P ∗ and (P ∗
0 )σ = P0, where P0 (resp. P ∗

0 ) is the
unique point on L∗ (resp. L) collinear with Q (resp. Q∗)”. Similarly for the other types
and for lines. We now define the incidence relation I in H: let (x, d) ∈ P × L, then xId if
and only if one of the following occurs:

(I1) x = Q is of type (P1), d = M is of type (L1) and either QIpL∗ and MIlQσ−1
or

MIlP ∗ and QIpM θ−1
(or both if Q = P and M = L);

(I2) d = (Q, Q∗) is of type (L2) and x = Q is of type (P1);

(I2)’ x = (M, M∗) is of type (P2) and d = M is of type (L1);

(I3) x = (M, M∗) is of type (P2), d = (M∗, Q∗) is of type (L3) and Q∗IlM ;

(I3)’ d = (Q, Q∗) is of type (L2), x = (Q∗, M∗) is of type (P3) and M∗IpQ;

(I4) x = (Q∗, M∗) is of type (P3), d = (M, M∗) is of type (L4) and Q∗IlM ;

(I4)’ d = (M∗, Q∗) is of type (L3), x = (Q, Q∗) is of type (P4) and M∗IpQ;

(I5) x = (Q, Q∗) is of type (P4), d = (M, M∗) is of type (L4), Q∗IlM and M∗IpQ.

If this geometry H is a generalized hexagon (necessarily of order (s, s)), then we call
the quadruple (Sp,Sl, θ, σ) admissible. In this case, we call the generalized hexagon an
amalgon.

THEOREM 4. Let, with the above notation, (Sp,Sl, θ, σ) be an admissible quadruple.
Then we can view the point P of Sp as a point of H and this is a regular point of H.
Dually, L is a regular line of H. Furthermore, the line L∗ (resp. point P ∗) of Sp (resp. Sl)
is not regular in the respective generalized quadrangle and s is odd. The derivation of H in
P (resp. L) is in a natural way isomorphic to Sp (resp. Sl). Moreover, every generalized
hexagon with a regular point incident with a regular line can be constructed in this way.

PROOF. First we show that P is regular in H. Let x and y be two non-collinear points
both collinear with P in H. Denote be X and Y the corresponding points in Sp. Suppose
X nor Y is incident with L∗. A point in H at distance 4 from both x and y and at distance
6 from P has necessarily type (P4) and so we can write (Q, Q∗) for it. Distance 4 from
both X and y then just means that Q and X resp. Y are collinear in Sp. So now it easily
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follows that P (Q,Q∗) is exactly the set of points z of H collinear with P whose corresponding
point Z in Sp is collinear to both P and Q. By regularity of P in Sp, this corresponds to
the hyperbolic line through X and Y and hence is independent of the choice of (Q,Q∗).
Similar argument if one of X or Y is incident with L∗. So P is half regular in H.

Now let x be a point at distance 4 from P in H. Suppose x ∗ P is not incident with L.
Then we have x = (Q∗, M∗) has type (P3) and x∗P corresponds to the unique point P0 on
M∗ collinear to P (in Sp). Now a point u at distance 4 from both P and x and at distance
6 from x ∗ P could have type (P2) or (P3). We leave (P2) to the reader and assume type
(P3), which is the most general case anyway. So let u = (Q∗

0, M
∗
0 ) be of type (P3). Then

d(x, u) = 4 just means that M∗ meets M∗
0 in Sp, say in the point P1 (not collinear with P )

and that, in Sl, the three points Q∗, Q∗
0 and P ∗

2 (where P ∗
2 IL and (P ∗

2 )σ is collinear to P1)
are collinear to a common point different from P ∗. Now any point y collinear to x ∗P and
not on L has type (P3), say y = (Q∗

1, M
∗
1 ) with P 0IM∗

1 . So if y is at distance 4 from u,
then, as above, first of all M∗

0 and M∗
1 meet, but this implies M∗ = M∗

1 (otherwise we have
a triangle, remember that M∗ and M∗

1 meet in P0 ⊥ P ); and secondly the three points Q∗
1,

Q∗
2 and P ∗

2 are collinear to a common point different from P ∗ in Sl (since now M∗
1 meets

M∗
0 ). The first condition just says that, given the line y(x ∗P ), the point y is independent

from u and the second condition means that, in the notation of Payne & Thas [9], every
triad of points collinear to P ∗ has exactly one other center and this implies in turn that the
point P ∗ cannot be regular in Sl and s is odd (see [9, propositions 1.3.6.(iii) and 1.7.1.(i)]).

We now show that the respective derivations of H are isomorphic to Sp and Sl.
Well, there is a natural bijection between the set of points collinear to P in H and

the set of points collinear to P in Sp, hence there is a natural bijection between the set of
points collinear with P in H and the set of points collinear to P⊥ in Hp (with the notation
of the previous sections). A point X in Hp not collinear with P⊥ is determined by a point
x of H collinear with P and a point u of H at distance 4 from P and 6 from x. Hence x
corresponds to some point Q in Sp collinear to P and u corresponds to a line M∗ in Sp

(yes, u = (Q∗, M∗) is of type (P3)). Expressing d(x, u) = 6 gives us Q is not incident with
M∗ and we let X correspond to the unique point on M∗ collinear with Q. We leave it as a
tedious exercise to the reader to verify that this is well-defined (use the fact that an ideal
line with focus P in H corresponds to a hyperbolic line in (Sp)2(P )). Similarly, we can
identify the lines and then it is easy to see that incidence is preserved by this identification.

There remains to be shown that, given a generalized hexagon H containing a regular
point p incident with a regular line l, the respective derivations can be amalgamated in
such a way that the amalgon is naturally isomorphic to H. Again, we give the bijection
on the set of points, the bijection on the set of lines is dual and the proof of the fact that
the incidence relation is preserved is left to the reader. The maps σ and θ are the identity.

The image of points of type (P1) is clear. Let, in the amalgon, (M, M∗) be a point of
type (P2). Then M defines a unique line m in H concurrent with l and M∗ defines a unique
ideal line through p with focus m∩ l, so we map (M, M∗) to the unique point of that ideal
line on m. Now let (Q∗, M∗) be a point of type (P3) in the amalgon. Then M∗ defines a
unique ideal line m through p by definition, let us say with focus x. The point Q∗ defines
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in H the dual of an ideal line, i.e. it defines a set of s + 1 line concurrent to a fixed line l1
and containing l. But the condition (P3) on (Q∗, M∗) and the choice of θ imply l1 = xp.
Hence there is a unique line through x among the s+1 lines that constitute the dual of an
ideal point, mentioned above. And on that line, there is a unique point of m. That point
is by definition the image of (Q∗, M∗). Finally, suppose (Q, Q∗) is a point of type (P4).
Then Q defines a set Γ of s2 + s + 1 points in H consisting of s + 1 ideal lines through p
with some focusline m. Denote by x the point of m on l. The Q∗ defines the dual of an
ideal line, so it defines a set Ω of s+1 lines concurrent with some line l0 through x (by the
condition (P4)). Clearly, there exists a unique line l1 in Ω incident with some point of Γ.
By the fourth part of the proof of Theorem 2, there is a unique point u on l1 at distance
2 from s + 1 points of Γ. The point u is by definition the image of (Q, Q∗). This way, we
have identified the points of the amalgon with the points of H. Dually, one identifies the
lines. It is a tiresome but easy exercise to check that this identification preserves incidence.

!.

5 Algebraic Conditions.

In this section we amalgamate two classical generalized quadrangles and write down the
algebraic conditions under which this operation produces a generalized hexagon.

By Theorem 4, characteristic 2 is ruled out, so we have to consider the classical gener-
alized quadrangle W (q) over the field GF (q) (which has order (q, q) and which has regular
points) and its dual Q(4, q) (which has regular lines). Let us first describe these quadran-
gles algebraically. This is best done by the coordinatization method of Hanssens & Van
Maldeghem [3].

In what follows, a, a′, b, k, k′, l are elements of GF (q) and ∞ is a fixed different sym-
bol. We define a geometry Sp = (Pp,Lp, Ip) as follows: the points are the elements
(∞), (a), (k, b) and (a, l, a′); the lines are the elements [∞], [k], [a, l] and [k, b, k′]; incidence
is defined by the chain:

(a, l, a′)Ip[a, l]Ip(a)Ip[∞]Ip(∞)Ip[k]Ip(k, b)Ip[k, b, k′]

and

(a, l, a′)Ip[k, b, k′] ⇔
{

a′ = ak + b
l = a2k + k′ + 2ab

We set P := (∞) and L∗ = [∞]. The geometry thus described is the generalized
quadrangle W (q) by Hanssens & Van Maldeghem [4]. Now, let Sl be the dual of this
geometry and we denote its elements with double brackets to make clearly the distinction.
So points are ((∞)), ((a)), etc. . . , lines are [[∞]], [[k]], etc. . . and incidence is as in the chain
above or

((a, l, a′))Il[[k, b, k′]] ⇔
{

k′ = ak + l
b = ak2 + a′ + 2kl

Now suppose θ is a permutation of GF (q) mapping a line [k] to the line [[kθ]] and σ is
likewise mapping a point ((a)) to (aσ). By the transitivity properties of W (q) and Q(4, q),
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we can choose the coordinates in such a way that 1θ = 1σ = 1 and 0θ = 0σ = 0. The
amalgamated geometry H has the following elements (and in the meantime we abbreviate
notation):

(P1) the point (∞) which we write as 〈(∞)〉;
the points (a) which we write as 〈(aσ−1

)〉;
the points (k, b) which we write as 〈(k, b)〉;

(P2) the points ([[a, l′]], [aσ, l]) which we write as 〈(a, l′, l)〉;

(P3) the points (((kθ, b′)), [k, b, k′]) which we write as 〈(k, b, b′, k′)〉;

(P4) the points ((aσ, l, a′), ((a, l′, a′′))) which we write as 〈(a, l′, l, a”, a′)〉;

(L1) the line [[∞]] which we write as 〈[∞]〉;
the lines [[k]] which we write as 〈[kθ−1

]〉;
the lines [[a, l]] which we write as 〈[a, l]〉;

(L2) the lines ((k, b′), ((kθ, b))) which we write as 〈[k, b, b′]〉;

(L3) the lines ([aσ, l′], ((a, l, a′))) which we write as 〈[a, l, l′, a′]〉;

(L4) the lines ([[kθ, b, k′]], [k, b′, k′′]) which we write as 〈[k, b′, b, k”, k′]〉;

With this new notation, the incidence relation in the amalgamated geometry becomes:

〈(a, l, a′, l′, a′′)〉I〈[a, l, a′, l′]〉I〈(a, l, a′)〉I〈[a, l]〉I〈(a)〉I〈[∞]〉I

〈(∞)〉I〈[k]〉I〈(k, b)〉I〈[k, b, k′]〉I〈(k, b, k′, b′)〉I〈[k, b, k′, b′, k′′]〉,
and

〈(a, l, a′, l′, a′′)〉I〈[k, b, k′, b′, k′′]〉 ⇔ (∗)






a′′ = aσk + b
a′ = (aσ)2k + b′ + 2aσb
k′′ = akθ + l
k′ = a(kθ)2 + l′ + 2kθl

This in fact amounts to the coordinatization of generalized polygons as described in
Van Maldeghem [13].

It is now convenient to recoordinatize as follows: substitute kθ−1
for k and set θ−1 = τ .

Everything remains the same, except the condition (∗) becomes

(∗∗)






a′′ = aσkτ + b
a′ = (aσ)2kτ + b′ + 2aσb
k′′ = ak + l
k′ = ak2 + l + 2kl

We denote the corresponding amalgamated geometry by W (q) σ
⊎

τ Q(4, q). For the rest
of the paper, we omit the “〈” and “〉” around the coordinates, since no confusion will be
possible (we do not consider other coordinates anymore).
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THEOREM 5. The almagamated geometry H := W(0) σ
⊎

τ Q(1,0) as defined above
is a generalized hexagon if and only if, under the given conditions, the following equalities
never occur in GF (q) simultanously (where 2 and 5 must hold for (φ, θ) = (τ,σ) and the
others for (φ, θ) = (τ,σ) and (φ, θ) = (σ−1, τ−1)).

1. CONDITION: a '= A '= b '= a and K '= k '= L '= K.
{

(K − k)2(A− a) = (L− k)2(A− b)
(Kφ − kφ)(Aθ − aθ) = (Lφ − kφ)(Aθ − bθ)

2. CONDITION: a '= A '= b '= a and K '= k '= L '= K.
{

(K − k)2(A− a) = (L− k)2(A− b)
(Kφ − kφ)(Aθ − aθ)2 = (Lφ − kφ)(Aθ − bθ)2

3. CONDITION: a '= A '= b '= a and K '= k '= L '= K.
{

(K − k)2(A− a) = (L− k)2(A− b)
(Lφ −Kφ)(Aθ − aθ)2 = (Lφ − kφ)(bθ − aθ)2

4. CONDITION: a '= A '= B '= b '= a '= B '= A '= b and k '= K '= P '= L '= k.





(K − k)2(A− a) + (P − k)2(B −A) + (L− k)2(b−B) = 0
(Kφ − kφ)(Aθ − aθ) + (P φ − kφ)(Bθ −Aθ) + (Lφ − kφ)(bθ −Bθ) = 0

(Kφ − kφ)((Aθ)2 − (aθ)2) + (P φ − kφ)((Bθ)2 − (Aθ)2) + (Lφ − kφ)((bθ)2 − (Bθ)2) = 0

5. CONDITION: B '= X '= A '= a '= B '= Y '= X '= A '= Y and k '= l '= P '= k '= K '= P '=
L '= l.





(P −K)2(X −A) + (P − k)2(A− a) =
= (P − L)2(Y −B) + (P − l)2(B − a)

(P φ −Kφ)(Xθ −Aθ) + (P φ − kφ)(Aθ − aθ) =
= (P φ − Lφ)(Y θ −Bθ) + (P φ − kφ)(Bθ − aθ)

(P −K)(X −A) + (P − k)(A− a) =
= (P − L)(Y −B) + (P − l)(B − a)

(P φ −Kφ)((Xθ)2 − (Aθ)2) + (P φ − kφ)((Aθ)2 − (aθ)2) =
= (P φ − Lφ)((Y θ)2 − (Bθ)2) + (P φ − kφ)((Bθ)2 − (aθ)2)

Moreover, the automorphism group of H is transitive on points (resp. lines) with five
coordinates and first coordinate fixed.

PROOF. The conditions all follow from expressing that certain pentagons and quad-
rangles cannot occur in H, similarly to the case of amalgamating projective planes, see e.g.
Payne & Thas [9]. The reader can easily reconstruct the calculations with the following
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information. All circuits of minimal length in H containing a point of type (P1) or a line
of type (L1) have length six. No circuits of length three can occur. The only circuits of
length five that could exist are of the following type (and we write the types of the elements
instead of the elements themselves; consecutive elements are incident as well as the first
and the last):

(C5.1) (P2),(L3),(P4),(L4),(P4),(L4),(P4),(L4),(P4),(L3) and the dual;

(C5.2) (P3),(L4),(P4),(L4),(P4),(L3),(P4),(L4),(P4),(L4) (self-dual);

(C5.3) (P3),(L4),(P4),(L3),(P4),(L4),(P4),(L4),(P4),(L4) and the dual;

(C5.4) (P3),(L4),(P4),(L4),(P4),(L4),(P4),(L4),(P4),(L4) and the dual;

(C5.5) (P4),(L4),(P4),(L4),(P4),(L4),(P4),(L4),(P4),(L4) (self-dual).

The types of the circuits of length four that can occur are to be constructed by short-
ening the above sequences of types of possible circuits of length five. We obtain:

(C4.1) (P2),(L3),(P4),(L4),(P4),(L4),(P4),(L3) and the dual;

(C4.2) (P3),(L4),(P4),(L4),(P4),(L4),(P4),(L4) and the dual;

(C4.3) (P3),(L4),(P4),(L4),(P4),(L4),(P4),(L4) and the dual;

(C4.4) (P3),(L4),(P4),(L4),(P4),(L4),(P4),(L4) and the dual;

(C4.5) (P4),(L4),(P4),(L4),(P4),(L4),(P4),(L4) (self-dual).

Condition 1 then is obtained by expressing circuits of the given types in (C4.1) and
(C5.1) cannot occur, condition 2 with (C4.2) and (C5.2), etc. . . . In choosing a “general”
point, one can make use of the fact that the amalgon H has certain automorphisms. It is
easy using (∗∗) to check that the following maps preserve incidence and hence are isomor-
phisms of H (since the action on elements with less than five coordinates is determined by
the action on the elements with exactly five coordinates, we only give the latter action):

α1 : (a, l, a′, l′, a′′) −→ (a, l + K, a′, l′, a′′)
[k, b, k′, b′, k′′] −→ [k, b, k′ + 2kK, b′, k′′ + K]

α2 : (a, l, a′, l′, a′′) −→ (a, l, a′ + B, l′, a′′)
[k, b, k′, b′, k′′] −→ [k, b, k′, b′ + B, k′′]

α3 : (a, l, a′, l′, a′′) −→ (a, l, a′, l′ + L, a′′)
[k, b, k′, b′, k′′] −→ [k, b, k′ + L, b′, k′′]

α4 : (a, l, a′, l′, a′′) −→ (a, l, a′ + 2aA, l′, a′′ + A)
[k, b, k′, b′, k′′] −→ [k, b + A, k′, b′, k′′]
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This shows also the last assertion of the theorem.!

Denote by α3 the permutation of GF (q) mapping x to x3.
THEOREM 6. The amalgamated geometry W (q) σ

⊎
τ Q(4, q) is isomorphic to the

classical generalized hexagon arizing from the adjoint Chevalley group G2(q) if and only if
q is a power of 3, both σ and τ are automorphisms of the field GF (q) and τσ−1 = α3, the
generating automorphism in GF (q).

PROOF. Suppose W (q) σ
⊎

τ Q(4, q) is a generalized hexagon. Expressing that its auto-
morphism group contains a “root elation” mapping (0, 0, 0, 0, 0) to (A, 0, 0, 0, 0) for some
A ∈ GF (q), e.g. an automorphism fixing all elements incident with one of (∞), [0],
(0, 0), [0, 0, 0], (0, 0, 0, 0), we obtain immediately that σ, and dually τ , has to be an au-
tomorphism (and the hexagon arising from G2(q) admits such automorphism since it is
Moufang, see Tits [12]. Furthermore, one can recoordinatize in the following way: For
x = a′, a′′, b, b′, substitute xσ by x in (∗∗). This amounts to substitute the identity for σ and
τσ−1 for τ . Now if W (q) σ

⊎
τ Q(4, q) is isomorphic to G2(q), then its automorphism group

should also contain some gemeralized homologies, see Van Maldeghem [14]. Expressing
that it contains a generalized homology fixing every point on the line [∞], stabilizing the
hexagon through (∞), (0, 0, 0) and (0, 0, 0, 0) and mapping the line [1] to [K], for arbitrary
K ∈ GF (q)∗, one sees easily that τσ−1 = α3, hence α3 is an automorphism of GF (q), so q
is a power of 3.

Conversely, suppose W (q) σ
⊎

τ Q(4, q) has the above mentioned properties. The gener-
alized hexagon G2(q) with q a power of 3 has regular points and regular lines (since it is
self-dual) and hence by theorem 4, it must arize as an amalgon of generalized quadrangles,
which are readily seen to be classical (indeed, one of them is the point-residue of a non-
degenerate parabolic quadric in PG(6, q); the other one is then the dual). Since the only
way that this can happen is as mentioned, by the first part of the proof, W (q) σ

⊎
τ Q(4, q)

must be isomorphic to G2(q) under the given conditions. !

Theorem 6 provides a construction (or representation) of the Moufang generalized
hexagon arising from G2(q), q a power of 3. This construction is extremely useful when
dealing with questions where one particular flag (an incident point-line pair) remains fixed.

THEOREM 7. The amalgamated geometry W (q) σ
⊎

τ Q(4, q) for 2 ≤ q ≤ 9 is a
generalized hexagon if and only if q = 3 or q = 9 and then it is isomorphic to G2(q).

PROOF. This has been checked by computer. The cases q = 2, 3, 4, 8 of course are
trivial. No attempt has been made to include more values for q since obviously only
powers of 3 will be of interest.!

FURTHER RESULTS: With the aid of a computer, we have checked that for q =
27, G2(27) always arises granted one of σ or τ is an automorphism. If both are field
automorphisms, then the conditions in theorem 5 simplify to a certain extent and we
conjecture that also in this case, no other generalized hexagons arise. We have checked
this by computer for all q = 3h, h ≤ 10.
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