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Abstract. B.C. Kestenband [9], J.C. Fisher, J.W.P. Hirschfeld, and J.A. Thas [3], E. Boros, and
T. Szonyi [1] constructed complete (q2 - q + l)-arcs in PG(2, q2), q > 3. One of the interesting
properties of these arcs is the fact that they are fixed by a cyclic protective group of order q2 — q + 1.
We investigate the following problem: What are the complete k-arcs in PG(2, q) which are fixed
by a cyclic projective group of order k? This article shows that there are essentially three types of
those arcs, one of which is the conic in PG(2, q), q odd. For the other two types, concrete examples
are given which shows that these types also occur.

1. Introduction

A k-arc in PG(2, q) is a set of k points, no 3 of which are collinear. A point
p of PG(2, q) extends a k-arc K to a (k + l)-arc if and only if K U {p} is a
(k + l)-arc. A k-arc K is complete if it is not contained in a (k + l)-arc. The
point set of a conic is a (q + l)-arc of PG(2, q) [4].

In PG(2, q), q odd, every conic is complete as (q + l)-arc. A (q + l)-arc of
PG(2, q), q even, is always incomplete. It can be extended in a unique way to a
(q + 2)-arc by a point r which is called the nucleus of this (q + l)-arc [4].

B. Segre's famous theorem: Every (q+ 1)-arc of PG(2, q), q odd, is a conic [15]
was for many geometers a stimulus and motivation to study finite geometry. This
theorem is however not valid in PG(2, g), q even. In PG(2, 5), q even, q > 16,
different types of (q + 2)-arcs are known. The collineation groups which fix these
(q+ 2)-arcs have all been determined. A survey of all known types of (q + 2)-arcs
in PG(2, q), q even and q = 64, can be found in [11]; for q = 64, see [12].

The following question arises: For which values of k does there exist a complete
k-arc in PG(2, q)? This problem has been investigated by many geometers. The
bibliographies of [4, 5, 6] contain a large number of references to articles in
which complete k-arcs of PG(2, q) are constructed. One example of a complete
k-arc in PG(2, q) (k < q + 1 when q is odd and k < q + 2 when q is even) merits
special attention. B.C. Kestenband [9], J.C. Fisher, J.W.P. Hirschfeld, and J.A.
Thas [3], E. Boros and T. Szonyi [1] constructed in PG(2, q2), q > 3, a complete
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(q2 - q + l)-arc which was the intersection of two Hermitian curves. These arcs
differ in two ways from the other known complete k-arcs: They are fixed by
a cyclic projective group of order q2 - q + 1 and in PG(2, q2),q even, q > 4,
these complete (q2 - q + l)-arcs are the largest arcs of PG(2, q2) which are not
contained in a (q2 + 2)-arc.

A lot of complete k-arcs in PG(2, q) were constructed by using the following
idea, due to Segre and Lombardo-Radice [10, 16], as a starting point: The
points of the arc are chosen, with some exceptions, among the points of a conic or
cubic curve.

We will look for complete k-arcs in PG(2, q) in a different way. We look
for all types of complete k-arcs K which are fixed by a cyclic projective group,
i.e., a cyclic subgroup of PGL(3, q), G of order k which acts transitively on the
points of K. This will result in new examples of complete k-arcs in PG(2, q) for
specific values of q.

2. Known results

Here follow the known complete k-arcs K of PG(2, q) which are fixed by a cyclic
projective group of order k, acting transitively on the k points of K.

2.1. A conic in PG(2, q), q odd

The conic C : X2
0 - X1X2 in PG(2, q), q odd, is a complete q + 1-arc. It is fixed

by a sharply 3-transitive projective group G which is isomorphic to PGL(2, q) [4,
p. 143].

Consider two conjugate elements r1, r2 of C in a quadratic extension of
PG(2, q). The subgroup H (of G) which fixes r1 and r2 is a cyclic subgroup
of order q + 1 of G. This group H acts transitively on the q + 1 points of C.
Moreover, all cyclic subgroups of order q + 1 of G are conjugate to H. So, C is
a complete (q + l)-arc of PG(2, q) which is fixed by a cyclic projective group of
order q + 1.

2.2. Complete (q2 - q + 1)-arcs in PG(2, q2),q > 2

These arcs were first discovered by B.C. Kestenband who found these arcs as
one of the possible types of intersection of two Hermitian curves in PG(2, q2)
[9]. They were then studied in detail by Boros and Szonyi [1] and by Fisher,
Hirschfeld, and Thas [3]. They also proved that these arcs are fixed by a cyclic
projective group H of order q2 - q + 1. Moreover, this group H is a subgroup
of a cyclic Singer group of PG(2, q2).
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2.3. Two examples in PG(2, 11) [14]

1. A complete 7-arc K1 which is fixed by a projective group G1 of order 21 which
is isomorphic to 7:3, i.e., a group of order 21 which is the semidirect product
of the cyclic groups Z7 and Z3 where Z7 is a normal subgroup of G1.

2. A complete 8-arc K2 which is fixed by a projective group G2 of order 16 which
is isomorphic to the semidihedral group of order 16.

3. k odd

In this section we show that in case k is odd, the cyclic group is necessarily a
subgroup of a cyclic Singer group, i.e., a cyclic group acting regularly on the
set of points of PG(2, q). As usual, a Singer-cycle is a generator of a cyclic
Singer group.

THEOREM 3.1. Let K be a complete k-arc in PG(2, q) with k odd and suppose
G < PGL(3, q) is a cyclic group acting regularly on K. Then G is generated by
a power of a Singer-cycle (so G is a subgroup of a cyclic Singer group) and hence
all orbits of G are complete k-arcs, partitioning PG(2, q) into (q2 + q + 1 ) / k such
arcs. If moreover G < PGU(3, /q), then k = q - ^/q + 1 and K is equivalent to
the complete (q — ̂ /q + 1)-arc discovered by B. C. Kestenband (see 2.2).

Proof. Let us denote by a a generator of the cyclic group G. Suppose G has
a point-orbit of length s < k (so a\k). Denote this orbit by {p1, ...,ps}. Then
as fixes each pi, i = 1, 2, ..., s. Suppose now a > 3 and at least 3 points of
{Pi\\i - 1,2,..., s} lie on a common line M. Clearly, as induces the identity on
M (since it fixes at least 3 points), so as is a perspectivity with axis M and some
center c. Note c e K since as acts semiregularly on K. Since k is odd, there is
at least one line L through c tangent to K. But as must fix L n K, contradicting
the semiregular action of as on K.

Hence if s > 4, then { p 1 , . . . , p4} is a basis fixed point by point by as, so as is
the identity and s = k, a contradiction to our assumption. Consequently s < 3.
Now suppose s = 3. By the above, p1,P2, and p3 form a nondegenerate triangle.
Putting p1(1, 0, 0), P2(0, 1, 0), and p3(0, 0, 1) and assuming pa

i = pi+1, subscripts
to be taken modulo 3, then a can be expressed as follows:

But one computes that in this case a3 is trivial, so k = s = 3, again contradicting
our assumptions.

Now s = 2 since k is odd, so a = 1 and a fixes a point p\. Let L be a line
through p1 tangent to K (L exists since k is odd). Then La' is tangent to K for
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all i = 1,..., k and contains p1. Since G acts regularly on K, every point of K
is on La' for some i, 1 < i < k. Hence K U {p 1} is a (k + l)-arc contradicting
the completeness of K. So we conclude that every orbit of G on the pointset of
PG(2, q) has size k. Consequently k\(q2 + q + l).

Now note that neither 2 nor 9 divides q2 + q+ 1. So since k > 3, there exists a
prime p > 3 dividing k. Put k' = k/p and consider a' = ak', then a' has order p.
Let H be a Sylow p-subgroup of PGL(3, q) containing a'. Since p|(q2 + q+1) and
therefore p |(q3(q + l)(q - 1)2 (which is equal to \PGL(3, q)\/(q2 + q + 1)) since
(q2 + q + 1, q*(q + 1)(q - 1)2) < 3, we have \H\ \(q2 + q + 1) and so H is a Sylow
p-group in a cyclic Singer group S. Since G is an abelian group, G normalizes
a', but that implies (since the normalizer of a' is the same normalizer of 5 in
PGL(3, q), which is a group S : 3; see e.g. [8, p. 188]) that G < S : 3 and so
clearly G < S. It follows easily that every orbit under G is a complete k-arc (since
S is transitive) and that K is unique up to equivalence. So the cyclic complete
(q - ^/q + l)-arcs in PG(2, q), q square, (2.2) are unique up to equivalence.

Suppose G < PGU(3, ^q), then G fixes a Hermitian curve H and since all
orbits of G in PG(2, q) are equivalent, assume K C H. Then k|(\q3 + 1)• A
similar argument as above readily implies G < S*, where S* is the subgroup of
order q — ̂ /q + 1 of S (alternatively, k\(q^/q + 1, q2 + q + 1) and this is equal
to q - V<q + 1)• Since 5* itself partitions H into complete (q - Jq + l)-arcs
(2.2, [1, 3]), G must be equal to S*, otherwise K is strictly contained in such a
complete arc. This completes the proof. D

3.1. Examples

The cyclic 7-arc K1 in PG(2, 11), discovered by A. R. Sadeh [14] (see also 2.3),
is an example of a cyclic complete k-arc in PG(2, q) for which k is odd. Since
k must be a divisor of q2 + q + 1 (Theorem 3.1), the order k of cyclic complete
k-arcs, with k odd, in PG(2, q) depends on the factorization of q2 + q + 1. The
three following examples are cyclic k-arcs in PG(2, q) (k odd) which are fixed
by a cyclic projective group of order k which is a subgroup of a cyclic Singer
group. Let r = q2 + q + 1 and t = r/k. Then a is the Singer-cycle which is
considered and B = at is the generator of the cyclic group G which fixes K. If
K = {p0, ..., Pk-1}, then pa

i = pi+1 (indices modulo k). In the second and third
example, we also state the total number of points of PG(2, q) which extend K
to a larger arc in PG(2, q) and we also give an example of such a point.

STORME AND VAN MALDEGHEM
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3.1.1. A complete 21-arc in PG(2, 37).

3.1.2 An incomplete 21-arc in PG(2, 67).

Exactly 63 points of PG(2, 67) extend K to a 22-arc, f.i., the point (28, 65, 11)
extends K to a larger arc.

3.1.3. An incomplete 7-arc in PG(2, 53).
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For this arc, there are 1848 points of PG(2, 53) which extend K to a 8-arc, f.i.,
the point (12, 24, 43) extends K to a larger arc.

4. k even

In this section, we shall always assume that K = [q 0 , . . . , qk-1} is a complete
k-arc, with k even and k > 8, of PG(2, q), which is fixed by a cyclic projective
group G of order k acting transitively on the points of K. This arc K will
be called a cyclic complete k-arc. Let a be a generator of G. Assume that
a(qi) = qi+1 where the indices are calculated modulo k.

THEOREM 4.1. Let G be a cyclic collineation group of a finite projective plane n.
Assume that n* is the dual plane of n. Then n and n* have the same cyclic structure
under G.

Proof. See [7, p. 256]. D

LEMMA 4.1. Let K = {q0,..., qk-1}. The k(k-1)/2 bisecants of K partition (under
G) into (k - 2)/2 orbits of size k and one orbit of size k/2. This last orbit consists
of the k/2 lines qiqk/2+i(i = 0, ..., k/2 — 1).

Proof. Assume that there is an orbit of length r (r < k). It can be assumed that
q0qr is a line of this orbit.

The transformation ar must fix this line q0qr. So ar(q0qr) = qrq2r = q0qr.
Equivalently 2r = 0 mod k. This shows that r = k/2.

The lines qiqk/2+i(i = 0,.. . , k/2 -1) constitute an orbit of size k/2 since these
lines are fixed by ak/2. D

Remark 4.1. Lemma 4.1 and Theorem 4.1 imply that there exists an orbit (of
points) of size k/2.

THEOREM 4.2. The cyclic group G fixes exactly one point r and exactly one line M
of PG(2, q). This point r is the center and the line M is the axis of the involutory
perspectivity ak/2.

Proof.

• Part 1: Let r be a point of PG(2, q) which is fixed by G. This point r does
not belong to a unisecant of K. For assume that rq0 is a unisecant of K.
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Then a(rq0) = rq1 is also a unisecant of K. Continuing in this way shows
that all lines rqi (i = 0,..., k - 1) are unisecants of K. So r extends K to a
(k + l)-arc. This contradicts the assumption that K is complete. This means
that r belongs to k/2 bisecants of K.
The k(k -1)/2 bisecants of K partition, under G, into (k - 2)/2 orbits of size
k and one orbit of size k/2. This point r cannot belong to a bisecant of K in
one of those orbits of size k. Otherwise, r would belong to k bisecants of K.
So r belongs to the bisecants of K in that orbit of size k/2. This shows that r
is the intersection of the lines qiqk/2+i(i = 0,..., A/2 - 1). So, if a point r of
PG(2, q) is fixed by G, then r belongs to the lines qiqk/2+i(i = 0,..., k/2 -1).
Consequently, G can fix at most one point of PG(2, q).

• Part 2: The bisecants qiqk/2+i(i = 0,..., k/2-1) constitute (under G) an orbit
(of lines) of size k/2. It now follows from Theorem 4.1 that there exists an
orbit O (of points) of size k/2.
The transformation ak/2 fixes O point by point. Assume that O contains a
4-arc. The projective transformation ak/2 is then the identity. This is false
since a is a generator of a cyclic group of order k.
So O does not contain a 4-arc. There exists a line M which has at least 3
points in common with O. Hence, ak/2 fixes M point by point. This signifies
that ak/2 is a perspectivity with axis M and with a center c. The line M and
the point c are the axis and center of the unique involution ak/2 in G. Hence,
G must fix c and M. It now follows from Part 1 that G fixes exactly one point
r = c of PG(2, q). Theorem 4.1 then shows that G fixes exactly one line M
of PG(2, q). D

THEOREM 4.3. In PG(2, q), q even, no cyclic complete k-arcs with k even, exist.

Proof. It follows from Theorem 4.2 that ak/2 is a perspectivity with axis M and
with center r where M and r are fixed by a. But ak/2 is an involution. So ak/2

is an elation since q is even [2, p. 172]. Hence r € M. The elation ak/2 only
fixes the points on the axis M. So, all the points of PG(2, q) which belong to an
orbit to size k/2 (under G) must belong to this line M. This line M contains at
least one orbit of size k/2 (see Remark above).

Now, a induces an element a' (of PGL(2, q)) on the line M. The order of a'
must be k/2 since M contains an orbit of size k/2 and since ak/2 is the identity
on M. Assume that G has an orbit O of size t , 1 < t < k/2, on M. (G fixes
only one point r on M, see Theorem 4.2). Then at fixes r and the t > 2 points
of M in that orbit O. Hence of fixes M point by point, so a* is a perspectivity
with axis M and center r1. This center r1 does not belong to K since the points
of K constitute one orbit (under G) of size k. The perspectivity at fixes K. So
it can only interchange the points of K on a bisecant through r1 and it must
fix the points of K on a tangent through r1. Then a2t fixes K point by point.
Equivalently a2t = 1 or k\2t. This is false. Therefore, the q points of M\{r}
partition into orbits of size k/2. This implies that (k/2)\q. Consider the element
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a' of PGL(2, q). Then

(t € GF(q)+; GF(q)+ = GF(q) U {i}; i e GF(q)).
This transformation a' fixes one point of M. Assume that a'(i) - i. Then c =
0 and a': t -> at + b (assume d = 1). Assume a = 1. Then a '2 : t -» a2t + ab + 6.
In general, a'i : t->a i t + bi for some element bi of GF(q). But a'k/2 = 1. Hence
ak/2 = 1. Let u be the order of a. Then u\(k/2), so u\q. But u|(q - 1). Hence
u = 1. Therefore a = 1 and a': t-> t + b. So a'2 :t-> t + 2b = t. This means
that 2 = k/2. This contradicts k > 8. We always obtain a contradiction. There
are no cyclic complete k-arcs in PG(2, q), q even, for which k is even. n

THEOREM 4.4. Let K be a cyclic complete k-arc (k even) in PG(2, q), q odd, which
is fixed by a cyclic protective group G of order k. Let r and M be the unique point
and line which are fixed by G. Then r e M and G partitions M into orbits of size
k/2 So (k/2)\(q + 1).

Proof. The transformation ak/2 is an involutory perspectivity with axis M and
center r (see Theorem 4.2). Since q is odd, ak/2 is a homology. So r e M [2,
p. 172]. Hence, a does not fix any point of M in PG(2, q). But a induces an
element a' of PGL(2, q) on M. So a' fixes 2 conjugate points r1, r2 of M in a
quadratic extension of PG(2, q).

The subgroup H of PGL(2, q) which fixes the two conjugate points r1,r2 of M
in PG(2, q2)\PG(2, q) is a cyclic subgroup H of order q + 1, acting transitively
on the points of M in PG(2, q). The homology ak/2 fixes M point by point. So
a' partitions M into orbits of size at most k/2. There is at least one orbit O in
PG(2, q) of size k/2 (4.1). The points of this orbit O are fixed by ak/2 . So O
is contained in M.

Assume that there exists an orbit of length t (1 < t < k/2) on M. Then a't

fixes the * points of M in this orbit and or also fixes r1 and r2. So a" fixes M
point by point. By using the same reasoning as in the proof of Theorem 4.3, we
obtain t > k/2. This contradicts t < k/2. Hence, a' partitions M into orbits of
size k/2. Therefore (k/2)\(q + 1). D

Remark 4.2. Assume again that q is odd. The cyclic group G fixes one point r and
one line M with r e M. It also fixes the conjugate points r1, r2 of M in a quadratic
extension of PG(2, q). Assume i2 = d1 with d1 a nonsquare of GF(q). Choose
the reference system in such a way that r(l, 0, 0),M : X0 = 0, r1(0, 1, i) and
r2(0,1, -i). Consider all conies C such that (1, 0, 0) e C, (0,1, i), (0, 1, -i) e C
and such that r and M are pole and polar line with respect to C. Then

with c a certain nonzero element of GF(q).
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All projective transformations a of PGL(3, q) which fix r, M and which fix the
points r1, r2 on M are of type

Let

Then a maps the conic C onto

So a fixes the conic C if and only if a'2 - b'2d1 = det(a-1) = 1. This means,
when det(a) = 1. From now on, we will work with affine coordinates x = x\
and y = x2. Then (x, y) = (1, x1, x2), r(0, 0), M is the line at infinity and C :
1 - cd1X2 + cY2 = 0, c e GF(q)\{0}.
Then

and a fixes C if and only if det(a) = 1.
The conies C : 1 - cd1X2 + cY2 = 0 are concentric ellipses w.r.t. the origin.

THEOREM 4.5. Let K be a cyclic, complete k-arc in PG(2, q), q odd, with k even
(k > 8). Then K lies in an affine plane AG(2, q) and (i) K is an ellipse; or (ii) K
is the disjoint union of k/2 points on an ellipse C1 and k/2 points on an ellipse Ci
where C1 and C2 are concentric.

Proof. Let G = (a) be the cyclic projective group of K with involutory homology
ak/2 (4.4). Choose the reference system as prescribed in 4.2. Then ak/2 must be

Here is det(ak/2) = 1 = (det(a))k/2. Hence, the order v of det(a) divides k/2.
It follows from Theorem 4.4 that (k/2)\(q + 1). So v\(q + 1). But v\(q - 1) since
det(a) is an element of GF(q). Therefore v\(q + 1, q - 1), which implies that
v\2. So det(a) = 1 or det(a) = -1. If det(a) = 1, then a fixes the ellipses
C: 1 - cd1X2 + cY2 = 0 (c = 0; see 4.2). So all orbits, not contained in the line
at infinity and different from {r}, are a subset of an ellipse. The orbit K is a.
complete k-arc, which is contained in an ellipse. So K is an ellipse.
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If det(a) = -1, then a maps the ellipse C1 : 1 - cd1X2 + cY2 = 0 onto
C2 : 1 + cd1X2 - cY2 = 0, but a2 fixes C1 (c = 0; see Remark 4.2).

Hence, the complete k-arc K consists of k/2 points on an ellipse C1 : 1 -
cd1X2 + cY2 = 0 and k/2 points on C2 : 1 + cd1X2 - cY2 = 0 where c is a
certain nonzero element of GF(q). These ellipses C1 and C2 are concentric
w.r.t. the origin. D

THEOREM 4.6. Let K be a cyclic, complete k-arc in PG(2, q), q odd, k even,
consisting of k/2 points on two conies. Then q = — 1 mod 4 and k = 0 mod 8.

Proof. Let G be the cyclic projective group of order k which fixes K. Choose
the reference system as indicated in Remark 4.2. Assume furthermore that K
consists of k/2 points on the ellipse C1 : 1 - cd1X2 + cY2 = 0 and k/2 points
on C2 : 1 + cd1X2 - cY2 = 0 (c = 0) (see the proof of Theorem 4.5). The
involution ak/2: (x, y) -> (-x, -y) fixes K (see the proof of Theorem 4.5). Here
det(ak/2) = 1, so ak/2 fixes C1 and C2 (Remark 4.2). This involution ak/2 fixes
C1 and the 2 conjugate points r1, r2 of C1 on the line at infinity. The conic C1

is fixed by a sharply 3-transitive projective group G1. The subgroup H1 (of G1)
which fixes these conjugate points r1,r2 of C1 on the line at infinity is a cyclic
group of order q + 1, acting in one orbit on the q + 1 points of C1. So ak/2 is an
element of order 2 in H1 and ak/2 partitions C1 into (q + l)/2 orbits of size 2.
But ak/2 fixes K. Hence, ak/2 fixes K n C1. So 2|(k/2) where k/2 - |AnC1 | .
This shows that k = 0 mod 4. Hence, ak/4 exists. Let

So 2ab = 0 and a2 + d1b
2 = -1.

Assume 6 = 0. Then a2 = -1. This implies q = 1 mod 4. Let a = w with
w2 = -1. (Note that w e GF(q).) Then ak/4 : (x, y) -> (wx, wy). This means
that ak/4 is a homology of order 4, with center r(l, 0, 0) and with axis the line
at infinity, which fixes K.

So K consists of k points on k/4 lines through r(0, 0). This contradicts
the definition of a k-arc. Therefore b=0. Hence a = 0 and d1b

2 = -1.
Consequently, -1 is a nonsquare of GF(q). This shows that q = -1 mod 4.

Since d1 and -1 are nonsquare, select d1 = -1. Then b e {1, -1} and
ak/4 : (x, y) -> (y, -x) or ak/4 : (x, y) -> (-y, x). In both cases, det(ak/4) = 1.
So ak/4 fixes the conies C1 and C2. The transformation ak/4 is an element of
the cyclic subgroup H1 (see also in this proof). This implies that ak/4 acts on
the conic C1 in orbits of size 4. But ak/4 also fixes K n C1. So 4|(k/2). Hence
k = 0 mod 8. D
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LEMMA 4.2. Let K be a cyclic complete k-arc in PG(2, q), k even, q = -1 mod 4,
consisting of k/2 points on 2 conies. Then it can be assumed that K consists of k/2
points on C1: 1 + X2 + Y2 = 0 and k/2 points on C2:1 - X2 - Y2 - 0.

Proof. This arc K consists of k/2 points on C1 : 1 - cd1X
2 + cY2 - 0 and k/2

points on C2 : 1 + cd1X2 - cY2 = 0 with c = 0 and d1 nonsquarc in GF(q)
(Theorem 4.5). Since q = -1 mod 4, select d1 = -1, so C1: 1 + cX2 + cY2 = 0
and C2 :1 - cX2 - cY2 = 0.

Assume that c is a square (if c is a nonsquare, then -c is a square). The
homology 0 : (x, y) -> (dx, dy) with d2 = c maps C1 onto B(C1): 1 + X2 + Y2 = 0
and C2 onto B(C2) : 1 - X 2 - Y 2 = 0. D

In the following theorem, we again introduce homogeneous coordinates.

THEOREM 4.7. Let K be a cyclic complete k-arc (k even) consisting of k/2 points on
the 2 conics C1 : X

2
0 + X2

1 + X2
2 = 0 and C2: X

2
0 -X 2

1 X 2
2 = 0 in PG(2, q), q = -1

mod 4. Assume that K contains (1, 1, 0) and suppose that the cyclic group G (which
fixes K) is generated by

Then K is fixed by the involution y : (x0, x1, x2) -> (x0,x2, x1) which interchanges
r1(0, 1, i) and r2(0, 1, -i) (i2 = -1).

Proof.

• Part 1: (Note that, with respect to Remark 4.2, the values of 6 and -6 are
interchanged in the matrix of a). We can assume that K contains (1, 1, 0)
since C2 is fixed by a sharply 3-transitive protective group [5, p. 233].
Let (1, aj, bj) (j = 0,.. . , k-1) be the points of K. Choose the indices j such
that (1, 1, 0) = (1, i, b0) and such that (1, aj, bj)

a = (1, aj+1, bj+1) (indices
modulo k). Identify (1, aj, bj) with (aj, bj) and with the element aj + ibj
of GF(q2).
Then a(l, 1, 0) = (1, a1, b1) = (1, a, b) = a1 + ib1 = a + ib.

• Part 2: For all indices j (0 < j < k - 1) is (a + ib)j = aj + ibj. This is proven
by induction on j.

Suppose that (a+ib)j = aj+ibj = (aj, bj). Then (a+ib)j+1 = (aj+ibj)(a+ib) =
aaj - bbj + i(abj + baj) (i2 = -1). But aj + ibj corresponds to (1, aj, bj)
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and (1, aj, bj)
a = (1, aaj - bbj, ajb + b ja) - (1, aj+1, bj+1) (Part 1). Hence

(a + ib)j+1 = aj+l + ibj+1.
• Part 3: Part 2 shows that the points of K can be identified with the powers of

a + ib. A point (1, aj, bj) of K either belongs to C1 or C2. If (1, aj, bj) € C1

(resp. C2), then a2
j + b2

j = -1 (resp. a2
j + b2

j = 1). The arc K contains k
points. So (a + ib)k = 1 and (a + ib)j=1 1 for 0 < j < k. Since k = 0 mod 8
(Theorem 4.6), the following equalities hold:

Assume that (a + ib)k/4 = i (The possibility (a + ib)3k/4 = i gives analogous
results). Then (a + ib)3k/4 = -i.
Assume that (1, aj, bj) e C1, then (aj + ibj)(bj + iaj) = —i. So bj + iaj =
(a + ib)3k/4-j. Analogously, if (1, aj, bj) e C2, then (aj + ib j)(b j + iaj) = i.
So bj + iaj = (a + ib)k / 4 - j . In both cases, bj + iaj is a power of a + ib. So
(1, bj, aj) is also a point of K. Hence, if (1, aj, bj) e K, then (1, bj, aj) € K.
This proves that K is fixed by 7. D

COROLLARY 4.1. Let K be a cyclic complete k-arc in PG(2, q), k even, q = -1
mod 4, consisting of k/2 points on the conies C1 : X2

0 + X2
1 + X2

2 = 0 and
C2 : X2

0 - X
2
1 - X2

2 = 0. Then K is fixed by a semidihedral projective group of
order 2k.

Proof. Let K consist of k/2 points on C1 : X
2
0 + X2

1 + X2
2 = 0 and k/2 points on

C2 : X
2
0 - X2

1 - X
2
2 = 0 and assume that (1, 1, 0) e K. Then K is fixed by a cyclic

group of order k which fixes the 2 points (0, 1, i) and (0, 1, -i) (i2 = -1) (see
Remark 4.2). But K is also fixed by an involution 7 which interchanges (0, 1, i)
and (0, 1, -i) (Theorem 4.7) and, by using the matrices of a and 7 (see Theorem
4.7), yay-1 = a(k/2)-1. Hence, K is fixed by a semidihedral projective group of
order 2k (This is a group of order 2k (k even) generated by two elements a
and 7 where a is an element of order k and where 7 is an involution such that
yay-1 = a(k/2)-1). D

Remark 4.3. Alternative proofs of some of the theorems of this section could
be provided by using the results of Pickert, particularly [13, Proposition 3].
Possibility (ii) of Theorem 4.5 does occur. The cyclic complete 8-arc in PG(2,11)
(see 2.3) is of this type.

Here follow some new examples of cyclic k-arcs K in PG(2, q), k = 0 mod 8,
q = -1 mod 4, which are the disjoint union of k/2 points on two conies. Most
of them are however incomplete.

The arcs always consist of k/2 points on the conies C1 : X
2
0 + X2

1 + X2
2 - 0

and C2:X2
0-X2

1-X2
2 = 0. Furthermore, K always contains (1, 1, 0). The arc

K is fixed by the cyclic group generated by
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where (1, a, 6) is the first point of K and if K = {q0, • • • , qk-1}, then qa
i = qi+1

(indices modulo K). Finally, K is fixed by the involution 7 : (x0, x1, x2) ->
(x0, x2, x1).

(1) An incomplete 8-arc K in PG(2,19).

There are 56 points of PG(2, 19) which extend K to a 9-arc, 8 of which
belong to the line X0 = 0 fixed by the cyclic group. For instance, the point
(0, 1, 2) extends K to a larger arc.

(2) A complete 16-arc K in PG(2. 23).

(3) A complete 24-arc K in PG(2, 59).

(4) An incomplete 32-arc K in PG(2, 239).
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This arc is extended by 4672 = 146.32 points, 128 of which belong to X0 = 0,
of PG(2, 239) to a 33-arc. The point (1, 192, 53) is one of those points which
extend K to a larger arc.

(5) An incomplete 40-arc in PG(2, 179).

Only two orbits of the cyclic group on the line X0 = 0 extend K to a 41-arc.
Hence exactly 40 points of PG(2, 179) extend K to a 41-arc. The points
(0, 1, 128) and (0, 1, 83) are the representatives of these orbits. By selecting
two of these 40 points, K extends to a complete 42-arc, so K is extendable
in precisely 40 • 39/2 = 780 ways to a complete 42-arc.

(6) An incomplete 48-arc K in PG(2, 311).

The point (1, 231, 260) extends K to a larger arc. In total, there are 960
points in the plane which extend K to a 49-arc, 96 of which are points on
the line X0 = 0.

(7) An incomplete 56-arc K in PG(2, 307).
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This arc can be extended by 168 points, 56 of which lie on the line X0 = 0,
to a 57-arc. For instance, the point (1, 218, 260) extends K to a larger arc.
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