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Abstract

We define the notion of d
i

-regularity and regularity in generalized polygons, thus

generalizing the notion of ‘regular point’ in a generalized quadrangle or hexagon. We

show that a thick generalized polygon cannot contain too many regular points unless

it is a projective plane, quadrangle or hexagon. For certain polygons (thick ‘odd’-

gons and 8-gons), we show that even a certain number of d2-regular points cannot

exist. As an application, we present a geometric and rather elementary proof of the

non-existence of thick buildings of spherical type H3.

1 Introduction and Main Result

Let S = (P ,L, I) be a connected rank 2 incidence geometry with point set P , line set L
and incidence relation I. A path of length d is a sequence v0, . . . , vd

2 P [ L with v
i

Iv
i+1,

0  i < d. Define a function � : (P [ L) ⇥ (P [ L) ! N by �(v, v0) = d if and only if d
is the minimum of all d0 2 N such that there exists a path of length d0 joining v and v0 (d
always exists by connectedness).

Then S is a generalized n-gon, n 2 N \ {0, 1, 2}, or a generalized polygon if it satisfies the
following conditions:

(GP1) There is a bijection between the sets of points incident with two arbitrary lines.
There is also a bijection between the sets of lines incident with two arbitrary points.

(GP2) The image of (P [ L) ⇥ (P [ L) under � equals {0, . . . , n}. For v, v0 2 P [ L with
�(v, v0) = d < n the path of length d joining v and v0 is unique.

⇤
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(GP3) Each v 2 P [ L is incident with at least 2 elements.

Generalized polygons were introduced by Tits [8]. Note that we have excluded the trivial
case of generalized digons here. Usually, generalized 3-gons, 4-gons, 5-gons, 6-gons and
8-gons are called (generalized) projective planes, quadrangles, pentagons, hexagons and
octagons respectively. A generalized polygons is called thick if every point is incident with
at least three lines and dually, every line is incident with at least three points. Infinite
examples of thick generalized n-gons exist for all n 2 N \ {0, 1, 2} (via free constructions).
Finite thick generalized n-gons exist only for n 2 {3, 4, 6, 8} by a result of Feit & Higman
[3] and examples are known in each case. For instance, the natural geometries of the groups
of Lie-type which have an irreducible (B, N)-pair of rank 2 are generalized polygons (viewed
as buildings of rank 2) and they all satisfy the so-called Moufang condition (see Tits [10]),
which is a condition on the existence of certain automorphisms (root-elations). By a
theorem of Tits [12] and Weiss [17], thick generalized n-gons satisfying the Moufang
condition exist only for n 2 {3, 4, 6, 8} and a classification in each of these cases is possible
by work of Faulkner [2] and Tits (unpublished) for n = 6; Tits [13] for n = 8; Tits
(unpublished) for n = 4 (the case n = 3 being a classical result on alternative division
rings).

There exists a notion of topological generalized polygon, which was introduced in general
by Grundhöfer & Van Maldeghem [1], and Knarr [5] and Kramer (unpublished)
prove that thick connected compact generalized n-gons exist only for n 2 {3, 4, 6}. In the
disconnected case, Van Maldeghem [14] defines the notion of a generalized polygon with
valuation and shows that thick generalized n-gons with valuation exist only for n 2 {3, 4, 6}.
So the numbers 3, 4, 6 and 8 play a special role in the theory of generalized polygons. In
the present paper, we want to add to the list above another theorem having the same
conclusion, but now assuming a purely geometric condition. Motivated by work of Payne
& Thas [6] on finite generalized quadrangles and by Ronan [7] on generalized hexagons,
we take as geometric condition regularity.

Indeed, a very important notion in the theory of (finite) generalized quadrangles is the
notion of a regular point: a point p is called regular if for all points x at distance 4 from p,
the set S2(p)\S2(x) is determined by any two of its elements (where S

i

(p) denoted the set
of elements at distance i from p). This notion is generalized to half regular in generalized
hexagons by Van Maldeghem & Bloemen [15] (for reasons made explicit in loc. cit.)
as follows: a point p of a generalized hexagon is half regular if for all points x at distance
6 from p, the set S2(p) \ S4(x) is determined by any two of its elements. In the present
paper, we would like to call this distant-2-regularity, or briefly d2-regularity and say that
p is d2-regular. It is now easy to see how to define d

i

-regularity in a generalized n-gon,
2  i  n/2. Indeed, a point p of a generalized n-gon is d

i

-regular if for all elements v
at distance n, the set S

i

(p) \ S
n�i

(v) is determined by any two of its elements. Clearly, a
similar definition for i = 1 or i > n/2 would make every point of every generalized n-gon
d

i

-regular for i = 1 and i > n/2, so we do not consider that. As a result, we say that,
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by definition, all points (and dually all lines) of any projective plane are regular, and for
n � 4, we define a regular point in a generalized n-gon as a point which is d

i

-regular for
all i, 2  i  n/2.

Remark that we choose the notation d
i

-regular in stead of i-regular in order not to confuse
with the already existing notion of 3-regularity in finite generalized quadrangles (of order
(s, s2), see Payne & Thas [6]).

As for generalized quadrangles and hexagons, one could define a derivation of a generalized
polygon in a d2-regular point and investigate assumptions under which this derivation is a
projective plane.

Dually, one can define d
i

-regular lines, 2  i  n/2, and regular lines in generalized n-gons.

Note that, a priori, there is no reason why d
i

-regularity of a point or line should imply
d

j

-regularity of the same or any other point or line, for any i and j, 2  i, j  n/2, in any
generalized n-gon.

If every point or every line of a generalized n-gon S is d
i

-regular, 2  i  n/2, then
we briefly say that S is d

i

-regular (in points or lines respectively). If S is d
i

-regular (in
points or lines) for every i, 2  i  n/2, then we say that S is regular (in points or lines
respectively). If S is d

i

-regular in points and in lines, then we call S super-d
i

-regular.

Now we observe that every point of every (thick) Moufang generalized hexagon or its
dual is d2-regular and d3-regular. This follows immediately from Ronan [7] (in Ronan’s
notation, a hexagon which is d2-regular in points is a hexagon with ideal lines, and a
d3-regular hexagon is a hexagon satisfying the regulus condition). Hence every Moufang
generalized hexagon is regular. By the same reference, the converse is also true: every
regular generalized hexagon is Moufang. So for n = 6, the geometric notion of regularity
coincides with the group-theoretical notion of Moufang. Naturally one can ask if there is
more similarity, and motivated by the result of Tits and Weiss mentioned above, we will
prove in this paper:

MAIN RESULT. If a thick generalized n-gon is d
i

-regular, 2  i < n/2, then i 
(n + 2)/4. If moreover i is even or S is super-d

i

-regular, then n = 6 or i  n/4 and i
divides n.

As a consequence, we will show:

COROLLARY. Thick regular generalized n-gons exist only for n 2 {3, 4, 6}.
A direct proof of this result is extremely easy. We will consider much weaker hypotheses.
In fact, we believe the following statement is true:

CONJECTURE. Thick d2-regular generalized n-gons exist only for n 2 {3, 4, 6}.
We will prove this conjecture for n odd (this is a direct consequence of our main result)
and n = 8 (which we consider as the most important case). Surprising in these cases is
that we only need a few d2-regular points (or lines), only depending on n, and in fact, for n
odd, we do not even need the full d2-regularity of these points (or lines). We make precise
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statements in the next section. Note that our main result is not the best we can do, indeed,
the case n = 8 and d

i

= d2 is not covered by it. In section 4, we give a reformulation which
cannot be improved.

From the corollary above, one would be tempted to say that regularity can be seen as a sort
of geometric counterpart to the Moufang condition. This idea is stressed by the following
fact. Tits [9] shows that, whenever a generalized polygon appears as a residue in a thick
spherical building of rank � 3, then it satisfies the Moufang condition. From this, it follows
that no thick buildings of spherical type H3 exist, since there are no Moufang pentagons,
see Tits [11]. We will show in a rather geometric way that every residue of a thick building
of type H3 is regular. From our corollary above follows the non-existence of thick buildings
of type H3. This is the content of section 5.

As far as generalized polygons are concerned, we will use the following notation. A sub-
“generalized” n-gon (of a given generalized n-gon S) in which every point and every line
is incident with exactly two elements will be called an apartment (of S). A cycle C is a
closed path all of which elements appear only once in C (except of course the first element,
which appears also as the last element). The length of the cycle is the number of distinct
elements in it and this is always at least 2n. Two elements of a given generalized n-gon at
distance n will be called opposite. For two opposite elements v, v0, the set S

i

(v) \ S
n�i

(v0)
is called a d

i

-trace and denoted by vv

0
[i], generalizing the notation of Ronan [7]. As in the

latter paper, we will occasionally delete the subscript “[i]” when i = 2. For two collinear
points p1 and p2, we write p1 ⇠ p2 and denote the line joining them by p1p2.

Remark that the thickness assumption is really needed. If we allow weak polygons, in
particular generalized polygons in which every point (or line) is incindent with exactly two
lines (or points), but not dually (so excluding usual polygons, which are always super-
regular in a trivial way), then there exist also weak regular generalized 12-gons. And every
weak generalized 2m-gon as described above is d2-regular in both points and lines in a
trivial way. See section 4 of this paper for more details.

2 Weakening of the hypotheses

Let n 2 N \ {0, 1, 2, 3, 4, 6} and suppose i 2 N does not divide n, 2  i < n/2. There
exists a unique positive integer k such that n

k+1 < i < n

k

. Let S be a thick generalized
n-gon. Consider a (k + 2)-tuple � = (v0, v1, . . . , vk+1) of elements (points and lines) of
S, all contained in one apartment and such that �(v0, v↵

) = i↵ for 0  ↵  k, and
�(v0, vk+1) = 2n� i(k +1). Let v be an element opposite v

↵

, ↵ 2 {1, 2, . . . , k}, and assume
v

↵�1, v↵+1 2 (v
↵

)v

[i]. If for every element w opposite v
↵

, |(v
↵

)w

[i] \ (v
↵

)v

[i]| � 2 implies that
(v

↵

)w

[i] = (v
↵

)v

[i], and if this holds for all ↵, 1  ↵  k, then we call � a semi-d
i

-regular
sequence (of length k + 1). Clearly every generalized n-gon which is d

i

-regular, i even, or
super-d

i

-regular, i odd, contains such sequences.

We will show:
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THEOREM 2.1 Suppose i does not divide n, 2  i  n/2, and k 2 N is such that
n

k+1 < i < n

k

, then there does not exist a thick generalized n-gon having a semi-d
i

-regular
path of length k + 1, m � 2.

To see the strength of this result, just put n = 5 and i = 2. Then k = 2 and hence already
2 collinear d2-regular points cannot live in a thick generalized pentagon.

Now let v and w be two opposite elements of some thick generalized n-gon S. Let 2 
i  n/2. Then we call the pair (v, w) d

i

-regular if |vw

[i] \ vw

0
[i] | � 2 implies vw

[i] = vw

0
[i] , for

every element w0 opposite v, and |wv

[i] \ wv

0
[i]| � 2 implies wv

[i] = wv

0
[i], for every element v0

opposite w. If n is even, then all pairs of opposite points (respectively lines) are d
i

-regular
if and only if S is d

i

-regular in points (respectively lines). If n is odd, then all pairs of
opposite elements are d

i

-regular if and only if S is super-d
i

-regular. These are immediate
consequences of the definitions.

THEOREM 2.2 Let 2  i < n/2. If a thick generalized n-gon has a d
i

-regular pair of
elements, then i  (n+2)/4. Also, if a thick generalized n-gon has two d

i

-regular elements
at distance j, i  j < n/2, from each other, then i  (n� j)/2.

Putting n = 8 and i = 3 in the theorem above, one obtains the non-existence of a thick
generalized octagon having a d3-regular pair of points (or lines). We will show that a thick
generalized octagon cannot contain 4 d2-regular points in a certain position (and we leave
it to the reader to deduce from the proof that position). This will immediately imply:

THEOREM 2.3 There does not exist a thick d2-regular generalized octagon.

Note that by Joswig & Van Maldeghem [4] the classical Moufang Ree octagons all are
super-d4-regular, so Theorem 2.3 is the best that we can do.

As a further contribution to our conjecture (above), we will also show:

THEOREM 2.4 There does not exist a thick super-d2-regular generalized 10-gon.

Finally, we remark that Theorem 2.1 for odd n is also valid for a slightly more general class
of geometries, namely the thick Moore geometries (generalizing the notion of d

i

-regular
point in the obvious way to Moore geometries), and the same proof can be used.
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3 Proofs

PROOF OF THEOREM 2.1. Let � = (v0, v1, v2, . . . , vk+1) be a semi-d1-regular path in
a generalized n-gon S. By definition, � lies in some apartment A. Let w0 be the element of
A opposite v1. Then �(w0, vk+1) = n�ki. Let w1 be any element at distance i from w0 and
at distance n� i from v1. We choose w1 62 A (this is possible by the thickness assumption).
Clearly v0 and w1 are opposite and so there are elements (w2, w3, . . . , wk+1) on a path �0

of length n from w1 to v0 with the property �(w0, w↵

) = i↵, for all ↵ 2 {0, 1, . . . , k + 1},
and v1 and w2 are opposite (this follows again by the thickness assumption). Now let v01
be the unique element at distance i from v1 and n� 2i from w1.

The d
i

-trace (v1)
w0
[i] contains v0, v

0
1 and v2. The d

i

-trace (v1)
w2
[i] contains v0 and v01, hence by

assumption, it should also contain v2, so �(w2, v2) = n � i. Let v02 be the element on the
path �2 connecting v2 with w2 at distance i from v2. Note that �2 has only v2 in common
with A and only w2 in common with �0 (otherwise there is a cycle of length j with j < 2n
arising from a shortcut of the way from w0 to w1, to v02, to v3, back to w0, or of the way from
v0 to v02, to w3, back to v0, a contradiction). So it follows that the i-trace (v2)

w1
[i] contains

v1, v
0
2 and v3. The i-trace (v2)

w3
[i] contains v1 and v02, hence also v3 and so �(w3, v3) = n� i.

Define v03 as the element at distance i from v3 on the unique path �3 connecting v3 with w3.
Considering the i-traces (v3)

w2
[i] and (v3)

w4
[i] , we obtain similarly �(w4, v4) = n� i. Going on

like this, we finally obtain �(w
k+1, vk+1) = n � i and the path �

k+1 connecting w
k+1 with

v
k+1 has only one of its extremeties in common with A and �0. So there are two di↵erent

paths going from w0 to w
k+1 and having length (n� i) + (n� ki), namely one via v0 and

one via v
k+1. Hence 2n� ki� i � n, implying i  n

k+1 , contradicting our assumption on i
and k. This proves the theorem. 2

PROOF OF THEOREM 2.2. First suppose that a thick generalized n-gon S has a
d

i

-regular pair (v, w), 2  i < n/2. Let A be an apartment containing v and w. Let
v0 and w0 be opposite elements in A at some fixed distance j from v and w respectively,
i  j < n/2. Let v1 and v2 be the two elements of A at distance i from v and let w1 and
w2 be the two elements of A at distance i from w. By the thickness assumption, there
exist paths � and �0 joining v and w, respectively v0 and w0, and � nor �0 is not contained
in A. Let w0 and v0 be the elements on � at distance i from w and v respectively. Let
w0

0 and v00 be the elements on �0 at distance j from w0 and v0 respectively. The d
i

-traces

vw

[i] and wv

[i] contain v0, v1, v2 and w0, w1, w2 respectively. But the d
i

-traces v
w

0
0

[i] and w
v

0
0

[i]

contain v1, v2 and w1, w2 respectively. Hence, by the d
i

-regularity of (v, w), we must have
�(v0, w

0
0) = �(v00, w0) = n� i. So there are paths �

v

and �
w

of length n� i connecting w0
0

with v0 and v00 with w0 respectively. The path �
v

has only w0 in common with �0 (otherwise
there is a cycle of length  2n through such common element and v) and it has only v0

in common with the unique path joining v0 and v. Similarly for �
w

. This means that the
closed path �⇤ starting in w0

0, going to v0, to w0, to v00 and back to w0 contains a cycle C.
The length of C is at most (n� i) + (n� 2i) + (n� i) + (n� 2j) and this must be at least
2n. This implies

2i  n� j.
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If n is odd, then we can take j = n�1
2 , so in this case

i  1

2
(n� n� 1

2
) =

n + 1

4
.

If n is even, then we can choose j = n�2
2 . In this case, we have

i  n + 2

2
.

This proves the first part of the theorem.

Now suppose the thich generalized n-gon S has two d
i

-regular elements v, w at distance j
from each other, with 2  i  j < n/2. Let A be any apartment containing v and w and
let v0 and w0 be opposite v and w respectively inside A. By the thickness assumption, there
exist paths �

v

and �
w

connecting v with v0 and w with w0 respectively and not lying in A.
Let v00 2 �

v

and w00 2 �
w

be at distance j from v0 and w0 respectively; let v1, v2 and w1, w2

be the elements in A at distance i from v and w respectively, and let v0 2 �
v

and w0 2 �
w

be at distance i from v and w respectively. The d
i

-traces vv

0
[i] and ww

0
[i] contain v0, v1, v2 and

w0, w1, w2 respectively. The d
i

-traces vw

00
[i] and wv

00
[i] contain v1, v2 and w1, w2 respectively.

Hence �(w00, v0) = �(v00, w0) = n� i. Completely similar to the first part above, we obtain
a cycle C in the path starting at w00, going to v0, then to v00, to w0, back to w00 (this is
indeed a cycle if the path going from v00 to w0 does not pass through w00, but in this case
we have a cycle through v0, v00, w00 and w0 of length 4j, contradicting j < n/2). The length
of C is at most (n� i) + (n� i� j) + (n� i) + (n� i� j). This should be at least 2n. The
result follows. 2

PROOF OF THEOREM 2.3. Let (p0, p1, p2, . . . , p7) be an apartment in a thick general-
ized octagon S, and we assume S to be d2-regular in points (p0, . . . , p7, p0 are consecutively
collinear points of S). Let p00 be incident with p0p7 but di↵erent from both p0 and p7 (this
is possible by the thickness assumption). Construct the path (p00, p

0
0p

0
1, p

0
1, p

0
1p

0
2, p

0
2, p

0
2p

0
3, p

0
3)

such that p03 is incident with p3p4. Let (p1, p1p
00
2, p

00
2, p

00
2p

00
3, p

00
3, p

00
3p

00
4, p

00
4, p

00
4p5, p5) be a path

of length 8 with p2 6= p002 6= p0 (again possible by the thickness assumption). The traces

pp5
1 and p

p

0
2

1 have the points p0 and p2 in common, so �(p02, p
00
2) = 6 and there is a path

(p02, p
0
2x1, x1, x1x2, x2, x2p

00
2, p

00
2). Clearly x1 is incident with neither p01p

0
2, nor p02p

0
3.

Suppose first that x2 is not incident with p002p
00
3. Let x3 be the unique point on p002p

00
3 at

distance 6 from p03. Clearly p002 6= x3 6= p003. But the traces (p002)
p

0
1 and (p002)

p

0
3 share the points

x2 and p1, hence �(p01, x3) = 6, so p01 and p003 are opposite. The traces pp1
5 and p

p

0
1

5 share
the points p4 and p6, and so there is a path (p01, p

0
1y1, y1, y1y2, y2, y2p

00
4, p

00
4). Clearly y1 is

incident with neither p00p
0
1 nor p01p

0
2. And if y2 were incident with p003p

00
4, then �(p01, p

00
3) = 6,

contradicting the fact that they are opposite. So p002 and y1 are opposite, but this contradicts
{p00, p02, y1} ✓ (p01)

p5 and {p00, p02} ✓ (p01)
p

00
2 . We conclude that x2 must be incident with p002p

00
3.

So suppose x2 is incident with p002p
00
3. By symmetry, y2 (defined as in the previous para-

graph), must be incident with p003p
00
4. But then (p01, y1, y2, p

00
3, x2, x1, p

0
2, p

0
1) forms a cycle of

length 14 in S, a contradiction. 2
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Still the geometry of the traces in the Ree octagons has some very nice properties (see
Van Maldeghem [16]), but it can never be similar to the geometry of the traces in a
d2-regular quadrangle or hexagon.

PROOF OF THEOREM 2.4. Let S be a thick super d2-regular generalized 10-gon.
Let (p0, p0p1, p1, . . . , p8p9, p9, p9p0, p0) be an apartment of S. By the thickness assumption,
there is a point p00 on p0p9, di↵erent from p0 and p9. There is a unique point p04 on p4p5 at
distance 8 from p00. Let p00 ⇠ p01 ⇠ p02 ⇠ p03 ⇠ p04. Again by the thickness assumption, there
are points p002, p

00
3, p

00
4, p

00
5 not in A and such that p1 ⇠ p002 ⇠ p003 ⇠ p004 ⇠ p005 ⇠ p6. The d2-trace

(p1)
p6

[2] contains p0, p2 and p002. But (p1)
p

0
3

[2] does also contain p0 and p2, hence by the super
d2-regularity, �(p03, p

00
2) = 8. Let p002 ⇠ x1 ⇠ x2 ⇠ x3 ⇠ p03. Note that x3 is not incident

with neither p02p
0
3, nor p03p

0
4. By the dual argument, �(p03p

0
4, p

00
2p

00
3) = 8 (look at the d2-trace

(p4p5)
p0p9

[2] ). But if x1 is not incident with p002p
00
3, this distance is 10 (measured along the path

starting in p03p
0
4, going to p03, x3, x2, x1 and ending via p002 in p002p

00
3). Hence x1 is incident with

p002p
00
3. Note however that x1 6= p003, otherwise x1, x2, x3, p

0
3, p

0
4, p5, p6, p

00
5, p

00
4 defines a cycle of

length 18. Similarly, there are points y1, y2, y3 with p004p
00
5 I y1 ⇠ y2 ⇠ y3 ⇠ p01, y1 6= p004 and

y3 not on p00p
0
1 nor on p01p

0
2. Now look at the d2-trace (p01)

p6

[2]. It contains p00, p
0
2 and y3. Also

(p01)
x1
[2] contains p00 and p02. Hence �(x1, y3) = 8, but x1 ⇠ p003 ⇠ p004 ⇠ y1 ⇠ y2 ⇠ y3 defines a

path of length 10 connecting x1 with y3, a contradiction. The result follows. 2

PROOF OF THE MAIN RESULT AND THE COROLLARY. Suppose S is a
thick d

i

-regular generalized n-gon, 2  i < n/2. If n is even, then by the first part of
Theorem 2.2, i  n+2

4 < n+3
4 . If n ⌘ 1 mod 4, then we use the second part of Theorem 2.2,

putting j = (n � 1)/2, to obtain i  n+1
4 < n+2

4 . If n ⌘ 3 mod 4, then we use the second
part of Theorem 2.2, putting j = (n� 3)/2, to obtain i  n+3

4 . But in this case, i  n+1
4 ,

because n+3
4 is not an integer. This shows the first part of the Main Result.

Suppose now moreover that i is even or S is super-d
i

-regular. By Theorem 2.1, i must
divide n. If i would be equal to n/3, then by the preceding paragraph, n/3  (n + 2)/4,
hence n  6, implying n = 6 or n = 3 (a trivial case). This shows the Main Result
completely.

The Corollary follows immediately from the Main Result noting that for a thick d
i

-regular
generalized n-gon with i = 2, n must be even, and for one with n � 8 even, there is always
an integer between (n + 2)/4 and n/2. 2

4 Weak buildings of rank 2

A generalized polygon as defined in this paper corresponds with a weak building of rank 2
with order, i.e. the number of points on a line is a constant and the number of line through
a point is a constant. This is due to axiom (GP1). Deleting this axiom, we obtain the
definition of what we could call a weak polygonal geometry, a notion corresponding to a
weak building of rank 2.
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For example, consider a thick generalized n-gon S. We construct for m � 2 a weak
polygonal geometry Sm as follows. Define for every incident point-line pair (p, L) an

(m�1)-tuple (v(p,L)
1 , v

(p,L)
2 , . . . , v

(p,L)
m�1 ). The elements of Sm are the points, lines and symbols

v
(p,L)
i

, 1  i  m � 1, p I L in S. Denote the incidence relation in Sm by Im, then we
define incidence in Sm by

p Im v
(p,L)
1 Im v

(p,L)
2 Im . . . Im v

(p,L)
m�1 Im L,

and no other incidences occur. The points of Sm are the points of S together with all
symbols v

(p,L)
i

, i even, and, only if m is even, also all lines of S. The lines of Sm are the
other elements. It is straight-forward to see that Sm is a weak mn-gonal geometry. In fact,
Tits [10] shows that every weak polygonal geometry arises in this way (also considering
generalized digons), except if it consists of the union of a number of paths of length n
between two fixed opposite elements.

Remark that the weak mn-gonal geometry Sm of the preceding paragraph is super-d
m

-
regular in an almost trivial way.

Let S now be any weak n-gonal geometry. Then we call S d
i

-thick, 1  i  n, if for every
element v of S the following property holds: whenever v is incident with at least three
elements, then also every element at distance i from v is incident with at least three ele-
ments. In the proof of Theorem 2.1, we only used the d

i

-thickness of the generalized n-gon.
Noting this, and noting the remark of the preceding paragraph, we can now reformulate
our main result as follows.

MAIN RESULT – SECOND VERSION. Let S be a d
i

-thick, d
i

-regular (for i even)
or super-d

i

-regular (for i odd) n-gonal geometry, 1  i  n/2, then i divides n. For each i
dividing n, there exist d

i

-thick, super-d
i

-regular n-gonal geometries (which are however not
thick in general).

Note that “d1-thick” is the same thing as “thick”.

This second version does not cover the first version entirely. Indeed, the first part of the
first version has no analogue in the second version.

5 Thick buildings of type H3

The classification of all spherical buildings of rank � 3 contains a little theorem stating
that no thick building of type H3 or H4 exists. This result (as practically the whole
classification) is due to Tits [11], see also [10] and [9], addendum. The proof can be split
into two major parts: the first part is the reduction theorem, see Tits [9],4.1.2, implying
that all spherical buildings of rank � 3 satisfy the so-called Moufang condition (which is
a condition on the existence of many automorphisms of a certain type); the second part
is, after noting that the residues which form generalized pentagons must also satisfy this
Moufang condition, showing that there are no Moufang generalized pentagons. So the
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main ingredients of this proof are group-related. To the best of my knowledge, no other
proof is available in the literature. It is my aim to show in this section Tits’ result in a
rather geometrical and combinatorial fashion, a little bit modelled on the classical proof
of the fact that all projective planes of a projective spaces of rank 3 are desarguesian.

For definitions and notations not explained in this section, and related to buildings, we
refer to Tits [9].

We are now ready to prove

THEOREM (Tits [11]). There does not exist a thick spherical building of type H3 or
H4.

PROOF. Clearly, it is enough to show that there are no thick buildings of type H3.
Suppose by way of contradiction, that ⌦ is such a building. Then ⌦ has three types of
vertices: points, lines and planes, pictured in the diagram:

eeline

planeepoint

Let ⌃ be any apartment of ⌦. Note that ⌃ is an icosahedron. We fix a point p of ⌃ and
the unique point q of ⌃ opposite p. We define the distance d(x, y) of two points in ⌦ by
the distance of x and y in the point-collinearity graph of ⌦, i.e. the graph with vertex set
the set of points of ⌦ and two points form an edge if they lie on the same line in ⌦ (we
say that these two points are collinear). We have d(x, y) = 3 if and only if x and y are
opposite (this follows immediatley from the icosahedron). Let L be any line through p.
By considering an apartment through p, L and q, one sees that that exists a unique point,
denoted x

L

, incident with L and at distance 2 from q. Similarly, if ↵ is a plane through p,
there exists a unique line L

↵

incident with ↵ and all points of which have distance 2 from q.
It follows that the set pq of points at distance 1 from p and distance 2 from q, and the set of
lines having all their points in pq, forms a generalized pentagon naturally isomorphic to the
residue R(p) of p in ⌦. We denote that generalized pentagon by S(pq). It is not so hard to
see that the generalized pentagon S(qp) is isomorphic to the dual of S(pq). Indeed, every
point x collinear with p and at distance 2 from q is collinear to all points of a line lying
in a plane through q; reversing the roles of p and q, we thus obtain an anti-isomorphism
�(p, q) from S(pq) to S(qp). In the future, we will view this anti-isomorphism also as one
from R(p) to R(q). If p0 is any point collinear with p and opposite q it follows that S(pq)
is isomorphic with S((p0)q). By connectedness one deduces that S(pq) is self-dual. Let the
points of ⌃ collinear with p be cyclically ordered and denoted by p1, p2, . . . , p5 (consecutive
points are collinear) and let q

i

be in ⌃ opposite p
i

, i 2 {1, 2, . . . , 5}. Let x be any point on
the line pp2, p 6= x 6= p2. Every point x1 of the line p1x has a unique closest point y1 on the
line qq1. There follows that the collineation �(p, q)�(q, x)�(x, y1)�(y1, p), q1 6= y1, maps
the line pp1 of R(p) to the line px1. But one can check that it fixes the lines pp2 and pp3.
Together with the fact that R(p) is self-dual, this implies (using a standard argument) that
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the collineation group of R(p) acts transitively on the set of paths of length 4 (bounded
by points respectively lines). This is a first major result.

Now consider S(pq1
1 ). Since this cannot be a regular generalized pentagon, we may suppose

that at least two d2-traces containing the points q4 and p5 do not coincide. In fact, this
means that the subgeometry G (not necessarily subpentagon) of S(pq1

1 ) containing the points
p, p2, q4, q3 and p5, containing all lines through q3 and through every point of (q3)

pp2

[2] ,
generated by the rules

1. if G contains a line, then it contains all points of that line,

2. if G contains two collinear points, then it contains the joining line,

contains at least one line meeting q3q4 in a point di↵erent from both q3 and q4. This is a
second step in our proof.

Now consider in S(p
q

) the d2-trace (p1)
p3p4

[2] . Clearly, this is exactly the intersection of qp

with pq1
1 . Consider any line L of S(pq) meeting p4p5 in a point p04 6= p5 and at distance 3

from p2. Let p03 denote the point incident with L collinear with p2. The anti-isomorphism
�(p, q) maps the line p03p

0
4 to a point q01 and the line p2p

0
3 to a point q05. Note that q05 lies on

q4q5. In fact we have an apartment ⌃ of ⌦ containing the points p, q, p1, p2, p03, p04, p5, q01,

q2, q3, q4 and q05. As before, the d2-trace (p1)L

[2] in S(pq) is the intersection of pq and p
q

0
1

1 . Let

G be the intersection of pq1
1 and p

q

0
1

1 . Clearly G contains p, p2, p5. q3 and q4. Since by the
anti-isomorphism �(qp1, q1), the lines of S(pq1

1 ) through q3 are in one-to-one correspondence
with the points on the line qq3, and since both q1 and q01 are collinear with all points of
that line, G contains all lines through q3. A line X through q4 in S(pq1

1 ) corresponds with
a point x on qq5 in S(qp1

1 ). But it is readily verified that all points of X are collinear with
the intersection x0 of q4x and qq05 (these two lines lie in the projective plane spanned by q,
q4 and q5). Hence, since x0 is collinear with q01, it follows that G contains all lines through
q4. Similarly it contains all lines through every point of (q3)

pp2

[2] . By the second step of this
proof, it also contains a line through a point z on q3q4, q3 6= z 6= q4. Again similarly as
above, G contains all lines through z and hence G contains at least one line M through p
for which pp2 6= M 6= pp5. If u is the unique point of pq on M , then it is clear that, since
u 2 G, we have u 2 (p1)

p3p4

[2] \ (p1)L

[2]. Combined with the first part of this proof, we have in
fact shown that for all points p1, p2 and p5 of S(pq), p1 collinear with both p2 and p5 but
p2 not collinear with p5, and for all lines L⇤ through p5 (with p1 not on L⇤; in the above
reasoning, L⇤ is the line p4p5), there exists a point u collinear with p1 such that u 2 (p1)L

[2]

whenever L is a line meeting L⇤ and such that (p1)L

[2] contains p5 and p2. But then a similar
point u0 exists for the points p1, p2, p3 and the line L⇤ = p3p4. The line L1 (respectively
L0

1) through u (respectively u0) meeting p3p4 (respectively p4p5) lies at distance 3 from u0

(respectively u). Hence the cycle (u, L1, . . . , u
0, L0

1, . . . , u) has length 8, a contradiction. 2
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