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Abstract. This article investigates cyclic complete k-caps in PG(3, ¢). Namely, the different types of
complete k-caps K in PG(3, g) stabilized by a cyclic projective group G of order &, acting regularly
on the points of K, are determined. We show that in PG(3, ¢), g even, the elliptic quadric is the only
cyclic complete k-cap. For g odd, it is shown that besides the elliptic quadric, there also exist cyclic
k-caps containing k /2 points of two disjoint elliptic quadrics or two disjoint hyperbolic quadrics and
that there exist cyclic k-caps stabilized by a transitive cyclic group G fixing precisely one point and
one plane of PG(3, g¢). Concrete examples of such caps, found using AXIOM and CAYLEY,} are

presented.

Mathematics Subject Classification (1991): 51E22.

1. Introduction

A k-cap K in PG(n, q) is a set of k points, no three of which are collinear. A
point 7 of PG(n, q) extends a k-cap K to a (k + 1)-cap if and only if K U {r} isa
(k + 1)-cap. A k-cap is complete if it is not contained in a (k + 1)-cap. The k-caps
of PG(2, q) are also called k-arcs ([7, p. 285]).

In [11], we described the different types of complete k-arcs K in PG(2, q)
stabilized by a cyclic projective group G, so G < PGL(3, ¢), acting regularly on
the points of K. The results of [11] show that either G is a subgroup of a cyclic
Singer group of PG(2, ¢), K is a conic in PG(2, ¢), g odd, or K is a k-arc in an
affine plane AG(2, ¢), ¢ = —1 (mod 4), which is the union of k/2 points on two
concentric ellipses C and C>.

We now apply the same method to cyclic complete k-caps in PG(3, ¢). A
description of the possible types of complete k-caps K, stabilized by a cyclic
projective group G, so G < PGL(4, q), acting regularly on K, is given.

An important difference with the results of [11] is that we are able to show that
in PG(3, q), q even, the elliptic quadric is the only cyclic complete k-cap. In other
words, the problem is completely solved for even characteristic.
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If ¢ is odd, it is shown that, besides the elliptic quadric, there exist cyclic k-caps
stabilized by a cyclic projective group G fixing one point » not on K, and that there
exist cyclic k-caps having & /2 points in common with two disjoint elliptic quadrics
or two disjoint hyperbolic quadrics. This means that results analogous to [11, Th.
4.5(ii)] are obtained. In that theorem, cyclic k-arcs in an affine plane AG(2, ¢), ¢ =
—1 (mod 4), having k /2 points on two disjoint concentric ellipses were constructed.
Now cyclic k-caps containing points on two quadrics are presented.

Throughout the article, let K be a complete k-cap of PG(3, ¢), and let G be a
cyclic projective group acting regularly on K. Put G = (a) where « is induced
by the linear transformation o:  — Az, with A a 4 x 4 matrix over GF(¢). By
looking at the different anthlllﬁPQ for the el oenvalnes of A, the distinct types for
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the cyclic complete l"-ﬂaps are obtained. For each type, using AXIOM ([9]) and
CAYLEY ([2]), concrete examples are presented.

2. Eigenvalue in GF(q)
2.1. MAIN THEOREM

If the matrix A has an eigenvalue in GF(gq), then there is a point z of PG(3, q)
fixed by G. We first show that this point is unique.

LEMMA 2.1. There is exactly one point x in PG(3, q) fixed by o, or equivalently
by G.

Proof. Let z be a point fixed by «. Since K is complete, there is at least one
bisecant to K through z. By the transitivity of G, the point z lies on k/2 bisecants
to K. Let z and 2’ be two points of K collinear with z. The unique element 6 of G
mapping z to 2’ must map 2’ to z and hence @ is the unique involution in G. Since
K is complete, £ > 5 and so 2 is uniquely determined as the intersection of the
lines z2%, z € K. O

The unique involution = a*/2 of the preceding lemma fixes more than (\/i q+
1)/2 lines through 2z ([6, Th. 18.1.9]), so @ fixes at least four lines through z if ¢ > 5.
The first possibility is that § fixes four lines through 2, no three of which belong
to a plane. Then 6 fixes all lines through z, so 6 is an involutory perspectivity. The
other possibility is that all, but possibly one, fixed lines are contained in a plane
7 through z. This however is impossible. Indeed, if all fixed lines lie in 7, then
K C 7 and K is not complete. Suppose all fixed lines through z, except the fixed
line Z, lie in a plane 7. Then |K N w| = k — 2. By the transitive action of G on
the bisecants to K through z, this line L must aiso belong to a plane 7’ containing
k — 2 points of K. This is impossible. Hence 6 is an involutory perspectivity if
g > 5 and fixes some plane 7 pointwise. This plane 7 is also stabilized by « since
it is the unique axis of the unique involution 6 in {a).

For the small values of ¢, assume ¢ = 2. A complete k-cap K in PG(3, 2) is either
an elliptic quadric or the complement of a plane in PG(3, 2) ([6, p. 96]). The cyclic
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group stabilizing an elliptic quadric does not fix a point of PG(3, 2) ([4, p. 1170]).
Suppose that there is a cyclic group G, |G| = 8, which has the complement of a
plane 7 as an orbit. Since |G| = 8, G fixes a point z in 7 and G fixes a line L
through z in 7. This gives the situation discussed at the end of the proof of Lemma
2.3 below and this leads to a contradiction.

Suppose we have a 6-cap K in PG(3, 3). Then K consists of six points
on three lines L;, Ly, L3 through the fixed point z. The involution 6 = a3
interchanges the points of K N L;, ¢ = 1, 2, 3, and fixes a point 7; on L;.
Selecting z = (1, 0, 0, 0), 1 = (0, 1, 0, 0), » = (0, 0, 1, 0), r3 =
(0, 0, 0, 1), 8:(z0, =1, T2, ©3) — (Zo, —T1, —T2, —3), $0 6 is an involutory
perspectivity.

If ¢ = 4, since K is complete, |K| > v/2 ¢+ 1 > 6 ([6, Th. 18.1.9]). As | K| is
even, | K| > 8, so the reasoning for ¢ > 5 can be used.

With the notations used in these paragraphs, we have the following two results.

LEMMA 2.2. If q is odd and G fixes a point x ¢ K, then G fixes a plane  not
passing through z, k is even and k /2 divides @ +q+1.

Proof. If ¢ is odd, then 7 does not contain z since an involutory perspectivity
is a homology. If we take z = (1, 0, 0, 0) and 7: X = 0, then the matrix A has
the form

1000
0

A= 0 A
0

Since there is only one point fixed by «, all eigenvalues of A; must lie in
GF(q*)\GF(q) and are conjugate. Hence A is the matrix of a power of a Singer
cycle in 7 ([11, Th. 3.1]). This means that the action of G on the points of 7 is
semi-regular. Since k/2 is the smallest number of which a2 fixes all points of
T, k/2 divides ¢*> + ¢ + 1. O

We will give an example of a complete cap, and also of some incomplete ones, of
the above type at the end of this section. For g even, we now show that no complete
cyclic cap K of that type exists.

LEMMA 2.3. If q is even, then the group G does not fix any point .

Proof. Suppose the contrary and let « be the unique point fixed by G. Since ¢
is even, the fixed plane = contains z. The residual geometry in z is a projective
plane of which 7 is a line and of which the points are the lines of PG(3, ¢) through
z. Since « stabilizes 7, applying [8, p. 256] for this residual geometry, it must
stabilize some line L through z. The action of o on L\{z} must be fixed-point
free, hence it must be a ‘translation’, implying that a? fixes I pointwise.

If I is not contained in 7, then we may assume that o does not fix any line
through z in 7. But since « fixes the point z in 7, it must stabilize some line M in
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T ([8, p. 256]). Hence A? has two distinct eigenvalues w and w? in GF(¢?)\GF(q)
with corresponding fixed points on M. This implies that § = a*(?+1) fixes both L
and M pointwise, so we can pick a basis such that the matrix of 4 is

1 0 0 O
01 0 O
O 0 a O
0 06 0 a

Since g is even, the order of § is not equal to 2. But one easily checks that for
any point y of K, the points y, y’ and yé'2 are collinear, hence & is the identity.
Now Iet z be a point of K and let § be the plane generated by z and M. Let 2’
be the intersection of 3 and L, let n be any integer and consider ®". Clearly,
this stabilizes 8 and 2’. If it fixed a line N through 2’ in 3, then it would fix the
intersection point of N and M and hence it would fix M pointwise as it already
fixes two points of M in PG(3, ¢*), implying, as for §, a®” = 1. So (a?) acts
semi-regularly on the lines through 2’ in 8. Since K is contained in 8 U 3%, it is
now easily seen that 2z’ extends K. The cap K is however complete, so we have a
contradiction. This means that there is a line L in 7, with z € L, fixed by G.

Selecting z = (1, 0, 0, 0), L: X, = X3 = 0 and 7: X3 = 0, and taking into
account that A can only have one eigenvalue in GF(q) as there is only one fixed
point,

1 a b ¢
A= 0 1 d e
B |0 0 1 f]
\0 0 0 1/
It now easily follows that a* is the identity. Hence k = 4, a contradiction. a

We now have

THEOREM 2.4. If the matrix A belonging to o has at least one eigenvalue
in GF(q), then q is odd and G fixes exactly one point © and one plane T not
through z.

2.2. EXAMPLES

Suppose « fixes the point z = (1, 0, 0, 0) and the plane 7: Xo = 0 of PG(3, ¢), ¢
odd, then
1 0 0 O

o (330, L1, T2, 333) = (:vOa 1, T2, $U3)
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The matrix A to construct the transformation « is obtained in the following
way. Using a primitive polynomial of degree 3, the matrix B of a Singer cycle ina
projective plane is constructed ([5, p. 44]). By calculating A = B (a°=1)/k , a matrix
of order k is obtained and this matrix then is used to define a. These examples are
obtaincd using AXIOM ([9]) and CAYLEY ([2)]).

(1) A complete 134-cap in PG(3, 29)
Here X3 — 3X?% — 25X — 27 is the primitive polynomial of degree 3 over

GF(29) defining
0 1 0 15 0 4
B=|l0 0 1 and A=B1%¥=|21 28 12
27 25 3 5 2 6

is the matrix used to define a. The orbit of (1, 1, 0, 0) is a complete 134-cap.
(2) An incomplete 122-cap in PG(3, 47)
The primitive polynomial X 3 _ 46X — 43 over GF(47) defines

0 1 0 18 39 31
B=|0 0 1 and A=B%'=|17 34 39
43 46 0 32 25 34

defines .. The orbit of (1, 1, 0, 0) under («) is an incomplete 122-cap K . Nine
orbits in Xy = 0 and 30 orbits, not contained in Xy = 0, consist of points
extending K.

(3) An incomplete 86-cap in PG(3, 49)
The primitive polynomial X 2 + X + 3 is used to define GF(49). Let w be a
root of this polynomial. Then X 3 + wX + w? is a primitive polynomial of
degree 3 over GF(49) defining

0 1 0 w3 W% W38
B = 0 0 1 and A= B3 = | ¥ w* P
—wB —w 0 w0 5 34

is the matrix defining .. Once again, the orbit of (1, 1, 0, 0) is an incomplete
86-cap which can be extended by the points of 23 orbits in Xo = 0 and of 276
orbits, not contained in Xy = O, to a larger cap.

3. Eigenvalues in an Extension of Degree 4

3.1. MAIN RESULT

In this section, we suppose that A has four different conjugate eigenvalues w, w?,

w?, w? in GF(¢*)\GF(¢?). It follows that o, and hence also G, fixes exactly four
different points z;, ¢ = 1, 2, 3, 4, in PG(3, ¢*)\PG(3, ¢*) which correspond to
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the eigenvalues w, w?, qu, w?’ , and we can choose the coordinates in such a way
that 29 = 2f = ol = 2.

The line z1z3 has no point in PG(3, ¢), otherwise such a point z lies on both
z1z3 and (z123)? = 2224. Since both z1z3 and z,z4 are stabilized by «, this
would imply that o fixes their intersection z, and so A would have an eigenvalue
in GF(¢), a contradiction.

On the other hand, (x1m3)q2 = z3z; and so z;z3 is a line in PG(3, qz), as
similarly z,z4 is. Hence « stabilizes the regular spread R defined by the lines z1z3
and z,24 of PG(3, ¢*) which are conjugate to each other over PG(3, ¢) ([1, Th.5.3]).
If, for some positive integer n the element o™ fixes a point of PG(3, ¢?) on z123,
then o™ fixes three points on 23, so o fixes z1z3 pointwise and then also the
conjugate line z,z4 is fixed pointwise.

In this case, all lines of the regular spread R are stabilized. Since any line can
contain at most two points of K, this implies that o?" is the identity. So we have
shown that the action of G on the points of z23, or equivalently on the points of
T2Z4, has a kernel of order at most 2 and that the faithful factorgroup acts semi-
regularly on the points of z123 in PG(3, ¢?). So there are two possibilities. Either
this kernel is trivial and then & divides g% + 1. Or the kernel has order 2 and then
k/2 divides ¢* + 1 while 2 divides ¢ + 1 because the kernel acts fixed-point free on
the points of a line of the regular spread R. Hence in this latter case, g is odd.

Now note that the subgroup of PGL(4, ¢) which fixes z;, i = 1, 2, 3, 4, is
a cyclic Singer group 5. Hence G is a subgroup of S. By Ebert ([4, p. 1170], see
also [3, Th. 3.7] and [10]), the orbits of the unique subgroup of order ¢ + 1 of any
cyclic Singer group ' partition PG(3, ¢) into ¢ + 1 disjoint elliptic quadrics.

This now enables us to present the main result of this section.

THEOREM 3.1. If A has four different conjugate eigenvalues in GF(q*), then G
is a subgroup of a cyclic Singer group S and either K is an elliptic quadric, so
k = ¢*>+ 1, or q is odd and K has k|2 points on two disjoint elliptic quadrics.

Proof. Suppose first that the kernel mentioned above is trivial. Then k divides
¢> + 1 and hence a2 *! is trivial. So G is a subgroup of the unique subgroup of
order g2 + 1 of the cyclic Singer group S. Hence K is a subset of an elliptic quadric
([4, p. 11701, [3, Th. 3.7], [10]) and since K is complete, it coincides with that
quadric.

Suppose now that the kernel mentioned above has order 2. A similar argument
as above shows that GG is now a subgroup of the unique subgroup C of order
2(q2 + 1) of §. Using the previously mentioned result by Ebert ([4, p. 1170]), any
orbit of C' is the union of two disjoint elliptic quadrics. The result follows. O
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3.2. EXAMPLES

The following three k-caps, found using AXIOM ([9]) and CAYLEY ([2]), consist
of k /2 points on two disjoint elliptic quadrics.

In all examples, by using the method described in [5, p. 44], the Singer cycle §
of the cyclic Singer group S = (f3) is determined. Then by taking a suitable power
of /3, the generator « of the cyclic group G' = (a), fixing the cap, is constructed.

(1) A complete 772-cap in PG(3, 81)
Consider the field GF(81) generated by a root w of the primitive polynomial
X%+ X + 2 over GF(3). Then the primitive polynomial X* + wX + w over
GF(81) can be used to construct the Singer cycle

0 0 0 —w
1 0 0 —w
B: (zo, =1, T2 3) — (T0, T1, T2, T3) 010 0
O 01 O

Then

a = ﬁ697:(x07 T, T2, 333)

W2 W WM 2

W0 ST LIS W28

— (%o, T1, T2, ¥3) W3 W0 ST LIS
W15 WP W0 W7

partitions PG(3, 81) into 697 disjoint complete 772-caps consisting of 386
points on two disjoint elliptic quadrics.

(2) An incomplete 116-cap in PG(3, 41)
By using the primitive polynomial X* + X3 + X2 + X + 6 over GF(41), the

Singer cycle
0O 0 0 -6
1 0 0 -1
B: (zo, z1, 2, 23) — (T0, 1, T2, T3) 01 0 —1
0 01 -1
is constructed. Then
5 17 2 28
40 1 31 34
609,
a = ﬂ -($07 T1, 22, 5173) = (370, Ty, T2, 333) 31 36 15 22

4 27 9 6
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partitions PG(3, 41) into 609 incomplete 116-caps consisting of 58 points on
two disjoint elliptic quadrics. Each cap can be extended by the points of 24
orbits under () to a 117-cap.

(3) An incomplete 164-cap in PG(3, 73)
Here the primitive polynomial X* + X3 4+ X2 + 5 over GF(73) is used to
construct the Singer cycle

0 0 0 -5
1 0 0 O
B: (20, o1, 32, 23) = (20, 21, 725 23) | 1 o, K
\6 0 1 -1/
Then
10 27 37 32
10 10 27 37
42405
a = 7 (o, 21, T2, T3) — (o, 1, 22, T3) 31 30 32 48
53 51 52 53

partitions PG(3, 73) into incomplete 164-caps consisting of 82 points on two
disjoint elliptic quadrics. All caps can be extended by the points of 220 orbits
under () to a larger cap.

4. Eigenvalues in a Quadratic Extension
4.1. MAIN THEOREM

From now on, assume that A does not have eigenvalues in GF(g) and does not
have 4 conjugate eigenvalues in GF(g*). Then A has at least two conjugate eigen-
values w and w? in GF(q?). Hence o fixes two conjugate points p and p? in
PG(3, ¢*)\PG(3, q).Let L = pp? be the line of PG(3, ¢) stabilized by G.

THEOREM 4.1. The k-cap K contains 2(q + 1) points and the group G stabilizes
a second line M skew to L when q is odd.

Proof. Consider the action of G on L. This group stabilizes the two conjugate
points p and p? of L in PG(3, ¢*)\PG(3, ¢). So G partitions L into orbits of equal
size and a?t! stabilizes L pointwise.

The group G cannot fix a plane through L as the action of a on the planes
is defined by the matrix (A7)~ and (A7)~! has no eigenvalues in GF(q). This
shows that G also partitions the planes through  into orbits of equal size and so

a?t! stabilizes all planes i, ..., B, through L.
In §;, a2*! induces a perspectivity with center r; and axis L. Only an involutory
perspectivity can fix K N GB;, i = 1,..., ¢ + 1, so o2+ = 1 which shows that

k|2(g+1). Since K iscomplete, k > /2 ¢+1 ([6, Th. 18.1.9]),s0 k = 2(g+1).



CYCLIC CAPS IN PG(3, q) 279

If ¢ is odd, then the center r; of the involutory perspectivity a?t! in 3; does not
belong to the axis L ([8, p. 172]). So a?t! fixes I pointwise, together with ¢ + 1
other points 71, ..., T¢4+1. This can only occur if r1,..., rq+1 belong to a line M
skew to L.

Since G' = () contains precisely one involution, M must be fixed by G. O

THEOREM 4.2. InPG(3, q), q even, there does not exist a complete cyclic k-cap
K stabilized by the cyclic group G = (o) where a: T — AZ and where A only has
eigenvalues in GF(q?).

Proof. Since A has eigenvalues in GF(g?), also the matrix (AT)~! which gives
the action of « on the planes of PG(3, ¢) has two conjugate eigenvalues in GF(¢*).
This means that « fixes two conjugate planes 8 and 37 in PG(3, ¢%)\PG(3, ¢).

Then L = S N B9 is a line of PG(3,¢q) stabilized by «. Since a does not
have eigenvalues in GF(¢), o fixes two conjugate points p; and pi of L in
PG(3, ¢°)\PG(3, 9).

Consider a as a projective transformation in PG(3, qz) and look at the action
of « in the plane 3. In that plane, « fixes the two points p; and p}. Hence, oo must
fix two lines in 3 ([8, p. 256]). One of these lines is L. Let L1 be a second line in 3
fixed by a. Then L1 is not defined over GF(g), so « fixes the conjugate line L{ of
Ly in B9. These two lines L1 and L{ are two conjugate skew lines of PG(3, q%).
Hence they define a regular spread R ([1, Th. 5.3]).

Suppose that o only fixes the point L N Ly of L. Then « is a ‘translation’
on L. So a? fixes L; pointwise and then also L] is stabilized pointwise by a?.
Equivalently, o fixes the lines of the regular spread R and this means that the
(2g + 2)-cap K is the union of two lines. This is false.

It follows from the preceding reasoning that « fixes a second point p; on Lj.
Then « also fixes the conjugate point pJ on L{ and this all implies that « fixes the
skew lines p1p! and p,pj of PG(3, q).

Since « does not fix a point of PG(3, q), a?t! stabilizes p;p] and p;p3 point-
wise. In a plane (p1p?, ), 7 € pap3, ot is an involutory perspectivity with
center r and axis p1p{ (see also the proof of 4.1). This is false since ¢ is even, and
thus a?*! should be an elation in (p;p], r) ([8, p. 172]).

We have a contradiction. The cap does not exist. a

Remark 4.3. From now on, let ¢ be odd.

Suppose that G = () fixes the lines L: Xg = X; = 0and M: X, = X3 =0
(Theorem 4.1). Choose the reference system in such a way that « fixes the points
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(1, £, 0, 0) and (0, 0, 1, +:) with i*> = d; nonsquare in GF(q). Then, from [11,

Remark 4.2],
Zo a b 0 O zo
Zi bd1 a 0 0 i
o — .
z9 i 0 0O e J[ijx
I3 k 0 0 fd1 e} $3}

LEMMA 4.4. Using the notatlons of Remark 4.3.

The hyperbolic quadrics Q.: X3 —d7' X2 — cdiX2+¢X? =0, ce GF(g)* =
GF(q)\{0}, partition PG(3, ¢)\(L U M).

All these quadrics Q. contain (1, *i, 0, 0) and (0, O, 1,+3), the lines L
and M are polar lines with respect to Q. and o stabilizes Q. if and only if
a? — b%d; = e* — fd;.

Proof. One easily verifies that all quadrics contain (1, £+¢, 0, 0) and (0, O, 1, £%),
and L and M are polar lines with respect to each quadric. Using [5, Table 5.1], it is
straightforward to check that all quadrics Q., ¢ # 0, are (nonsingular) hyperbolic
quadrics Hs ;.

We now check that all quadrics O, partition PG(3, ¢)\(L U M). Let (2, 21,

2z, z3) be a point of Q., and Q.,, ¢; # ¢z, then

—1_2 2 2
—d{ 21 —cd1z5 +c125 =0, (1)
z2 dl_] 27 — cpdi 22 + 273 = 0. (2)

Then (1)~(2) implies dy25 = 23, so zp = z3 = 0 since d; is a nonsquare.
Substituting 2, = 23 = 0 in (1) implies 23 = d'2? and so also 29 = 2; = 0. We
have a contradiction.

Since |H3,,] = (¢ + 1)2 (6, p. 23]), (¢ — 1)(g + 1)? points belong to a quadric
Q., ¢ # 0. Since |PG(3, q)\(LU M)| = (¢ — 1)(q + 1)?, these quadrics partition
PG(3, g)\(LU M).

Now let z = azo + bz, 2} = bdi2o + az1, 25 = exz + fz3 and 2§ =
fdizy + exs. Then

W2 =102 g 02 a2 (A2 B23 N2 1—1..2)
+(e? — f2dy)(- cdla:n. + ¢z} 2).
So Q. is fixed by « if and only if a® — b?d; = e? — f2d;. O

LEMMA 4.5. Using the notations of Remark 4.3, a* — b*dy = £(e? — f2d;).
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Proof. Since G = () fixes the two lines L: Xg = X; = 0and M: X, = X3 =
0, but does not fix a point of PG(3, ¢) on L U M, a?t! is the identity on L and
M, so

ro a b\ 0 vo

x T
adtl: :1:; — bd; a ( e f ) 9+l ac;

3 0 fd] € 3

In a plane (L, r) where r € M, a%t! defines an involutory perspectivity

(see also proof of 4 1). This implies ¢, = —e; and so € = (a? b2d1)‘1+1 =
(€2 — f2dy)it! = 62 Equ1valently,(a — b2dy)1t! = (a? — b%dy)? = (€2 — f2dy)?
which means that a® — b?d; = +(e? — f2d;). O

If a* — b*d, = €* — f*dy, then the (2¢ + 2)- cap consists of 2¢ + 2 points on a
hyperbolic quadric Q. (Lemma 4.4). If however a® — b%*d; = —(e? — f2dy), then
K has ¢q + 1 points in common with two hyperbolic quadrics Q. and Q..

We will now show that the first possibility does not occur.

THEOREM 4.6. Using the notations of the preceding parts, there does not exist a
cyclic complete (2q + 2)- cap K contained in a hyperbolzc quadric Q..

Proof. Consider Q.: X2 — d7'X? — cd1 X2+ ¢X3 =0, c #0.

This quadric contains the four lines ((1, £z, 0, 0), (O, 0, 1, *z)). Choose
coordinates so that the lines My = ((0, 0, 1, z'), (1, 4, 0, 0)) and M] =
((0, 0, 1, —4), (1, —1, 0, 0)) belong to the regulus R while M, = ((0, 0, 1, 7)(1,
—i, 0, 0)) and M = ((0, 0, 1, —3%), (1, ¢, O, 0)) belong to the complementary
regulus R'.

Let G = (o) where « is described in Remark 4.3. Let the fixed points (1, 1, 0, 0)

and (1, —i, 0, 0) correspond to the eigenvalues o and o of ( bz 2), while
1

(0, 0, 1, 7) and (0, O, 1, —¢) correspond to the eigenvalues o, and o) of

(ffil g)
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Then, since a9%1! fixes L and M pointwise,

o Zo (o 0 0 0\ [
Srea i BEL NN BTSN B R 0 off' 0 0 T1
| 22 T 0 0 g“ 0 o |’
z3 \#3/ L 0 0 0 aofft) \us
with oI t! = —a;“ (see proof of Lemma 4.5).
Let L1 ,. Lq+1 be the lines in PG(3, ¢) of the regulus R’ of Q.. Since each such

s~ b i~ mnirbe F I thaca linec mniiaf Frrmn mnme melhid 11 dae

11115 Ly carn bGllLal.ll al IIUDL lWU yUllllD Ul 1y, uleU 11RITD 1HIUDL fUllll UlLIT UlU.ll Unaer
G. This implies that a?t! fixes all lines L; and so o?t! fixes their intersection

points with M;. Hence a?*! is the identity on M;. This is only possible if the
eigenvalues a'f"'l and ag“ of A?t! corresponding to (1,%,0,0)and (0,0, 1, ) are
equal to each other.

This however contradicts o]

THEOREM 4.7. Let K be a cyclic complete (2q+ 2)-cap of PG(3, q), g odd, fixed
by a cyclic group G = (o) which stabilizes two skew lines L and M.

If g = —1(mod 4), then G acts on at least one of the lines L and M in orbits
of size strictly smaller than q + 1.

Proof. Choose the reference system as in Remark 4.3. So L: Xg = X; =
0, M: X, = X3 =0, and « of type given in that remark.

o _ q+1 . So K does not exist. O

Consider
'/CE()\I { ai b1 0 0 \l {wo\l
0 0 €1 fz ]

szs} 0 0 fidy

Since a?*! stabilizes all points of L and M and since a?*! defines an involutory
perspectivity in the planes (L, r) withr € M (see for instance the proof of Lemma
4.5), aq"‘l: (:E(), T1,T2, £IJ3) —> (GCU(), €xr1, —€X2, —6563), SO

o

1 3

2a1b1 = 261f1 =0
l a%—l— b%d] = —-6% - f12d1 = €.

If bl = f] = 0, then a(q+1)/’21 (580,331,:1:2,.’63) — (alxg,alml,elxz,elm) is
the identity on L and M. So o(?+1)/2 must be the involutory perspectivity in the
planes (L, ), 7 € M, and o?t! = 1. This is false.

If b1 = €1 = O, then a(q+1)/2: (CII(), r1,T2, a:3) — (almo, ayzry, f1£133, d1f1:L'2) is
the identity on M. So a acts on M in orbits of size at most (¢ + 1)/2. The equations
simplify to a% = € and d1f12 = —¢, so d; = —(ay/f1)* which implies that ¢ =
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—1 (mod 4). The case a; = f; = 0 gives the same conclusion since L and M play
an equivalent role.

Finally, if a; = e; = 0, then the preceding equations simplify to b3d; = e and
dy f# = —e which implies that —1 = (b1/f1)? and so ¢ = 1 (mod 4). O

4.2. EXAMPLES

The following examples of (2¢-+2)-caps consisting of ¢+ 1 points on two hyperbolic
quadrics all are incomplete. No complete examples of such caps were found.
Only the elements (a, b, e, f, d;) of the matrix

a b 0 O

bd] a 0 0
A=

0O 0 e f

0 O fdi e

of the transformation a: (g, 21, €2, 23) — (Zo, Z1, T2, z3)A are given.

For the given values of a, b, e, f and d;, the orbits under (), not contained in
Xo = X; =0or X, = X3 = 0, consist of ¢ + 1 points on two of the hyperbolic
quadrics

Qu:d7' X2 — X? — cX3 4+ ¢d1X3=0, cé€GF(q)

The equation of Q. differs slightly from the one in the lemmas and theorems of
this section since in the computer programs the coordinate vector (zo, Z1, Z2, £3)
had to be calculated on the left-hand side with the matrix A.

(1) A 20-cap in PG(3, 9)
The field GF(9) was generated by using a root w of the primitive polynomial
X2+ X +2.Byusing (a, b, e, f,d1) = (1,1,07,1,0%), the orbitof (1,1,1,1)
is a 20-cap. This cap can only be extended by the points of eight orbits, not
contained in Xg = X7 = 0or X, = X3 =0, to a21-cap.

(2) A 24-cap in PG(3, 11)
For (a,b,e, f,d;) = (1,2,8,1,2), the orbit of the unit point (1,1,1,1) is
a 24-cap. This cap is extended by the points of 10 orbits, not contained in
Xo = X1 =0and X, = X3 = 0, and by six pointson X, = X3 = 0toa
larger cap.

(3) A 36-cap in PG(3, 17)
The orbit of (1,1,1,1) under o where « is defined by (a,b,e, f,d1) =
(1,10,9,1,3)is a 36-cap. This cap is extended by 12 pointson X, = X3 =0
and by the points of 12 orbits, not contained in Xo = X; = Oor X = X3 =0,
to a larger cap.

(4) A 40-cap in PG(3, 19)
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For (a,b,e, f,d1) = (1,1,16,2,2),the orbitof (1,1, 1, 1) is a40-cap K. The
points of precisely 24 orbits under (), not contained in the two fixed lines
Xo = X; =0and X; = X3 =0, extend K to a 41-cap. There are also 10
points on Xo = X; = 0 extending K to a larger cap.
(5) A 48-cap in PG(3, 23)

In PG(3, 23), when (a,b,e, f,d1) = (1,1,5,8,5), the orbit of (1,1,1,1)
under (o) is a 48-cap extended by the points of 41 orbits, not contained in
Xo= X1 =00r X; = X3 =0, and by 20 pointson X9 = X; = 0,toa
49-cap.

4 N __ _W___° _ __
S. CONCIUSIOnN
From the preceding theorems follows

THEOREM 5.1. In PG(3, q), q even, a cyclic complete k-cap K is an elliptic
quadric. In PG(3, q), q odd, a cyclic complete k-cap K can only be

(a) an elliptic quadric,

(b) a k-cap K containing k /2 points of two disjoint elliptic quadrics,

(c) a(2q+2)-cap K containing g + 1 points of two disjoint hyperbolic quadrics,

(d) a k-cap K stabilized by a cyclic group G fixing one point x not on K and one
plane ™ withx & .

It should be emphasized that possibility (c) of this theorem may not occur. No
complete cyclic k-caps of type (c) are known to the authors.
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