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Abstract

Let S be a thick generalized quadrangle and let G be a group of au-

tomorphisms of S. If G acts transitively on the set of non-degenerate

ordered pentagons, then S is one of the classical generalized quad-

rangles W (q), Q(4, q), Q(5, q) or H(3, q2). The possibilities for G in

each case are determined. We do not use the classification of the finite

simple groups (from which this result also follows).

1 Introduction and Main Result

A finite generalized quadrangle (GQ) of order (s, t), s, t 2 N\{0}, is an inci-
dence geometry S = (P ,B, I) in which P and B are disjoint non-empty sets
of objects called points and lines respectively, and for which I is a symmetric
point-line incidence relation satisfying axioms (GQ1), (GQ2) and (GQ3).

⇤
Senior Research Associate of the National Fund for Scientific Research (Belgium)
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(GQ1) Each point is incident with 1 + t lines and two distinct points are
incident with at most one line.

(GQ2) Each line is incident with 1+s points and two distinct lines are incident
with at most one point.

(GQ3) For every non-incident pair (x, L) 2 P ⇥ B, there exists a unique pair
(y,M) 2 P ⇥ B for which x I M I y I L.

For terminology, notation, results, etc., concerning finite GQ, see the mono-
graph [5], hereafter denoted by FGQ. We now introduce some further ter-
minology. A finite GQ of order (s, t) is thick if s, t � 2 (the non-thick GQ
are the grids (order (s, 1)) and the dual grids (order (1, t))). A pentagon

in a GQ is a subconfiguration consisting of five distinct points and five dis-
tinct lines such that each line (respectively point) is incident with exactly
two points (respectively lines). An ordered pentagon is a pentagon in which
the elements are ordered in such a way that two consecutive elements are
incident. A skeleton is a subconfiguration ⌦ = (Q;L, p) where Q is a quadri-
lateral (i. e. a subquadrangle of order (1, 1)) and L (respectively p) is a line
(respectively point) not in Q but incident with a point p1 (respectively line
L1) of Q, where p1 I L1.

It follows easily from 9.8.3 of FGQ that the classical GQ W (q), Q(4, q),
Q(5, q) and H(3, q2) admit an automorphism group G acting transitively
on the set of skeletons (the automorphism group of the GQ H(4, q2) is not
transitive on ordered triples of concurrent lines). We will see in 2.1.1 that this
is equivalent with G acting transitively on the set of ordered pentagons. The
converse is also true. Suppose the GQ S admits a group G acting transitively
on the set of ordered pentagons. Then G is a group with a (B,N)-pair of
type B2 and using the classification of the finite simple groups one can show
that S must be classical (for an explicit proof, see [1]), but in the present
case di↵erent from H(4, q2). The aim of this paper is to give a proof of this
result without using the classification of the finite simple groups. We will
also characterize the groups G. Therefore, we need the following notation.

Let PGO5(q) be the projective general orthogonal group in 4-dimensional
projective space over the field GF (q) and let q be odd. This group has
a unique normal subgroup of index 2, namely the simple group PSO5(q),
sometimes denoted by O5(q). Now let ✓ be a field automorphism of GF (q)
and denote by g

✓

the element of P�L5(q) corresponding to the semilinear
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transformation with identity matrix and field automorphism ✓. Let g be any
element of PGO5(q) \ PSO5(q). Then we denote by PGO✓

5(q) the group
generated by PSO5(q) and g

✓

g. Now consider the projective general unitary
group PGU4(q) (still assuming q odd). This group has a unique normal
subgroup of index 2 (if q ⌘ 1 mod 4) or 4 (if q ⌘ 3 mod 4), namely the simple
group PSU4(q), also denoted by U4(q). The corresponding quotient group
is cyclic and hence PGU4(q) has a unique subgroup H of index 2 containing
PSU4(q). Let ✓ be a field automorphism of GF (q2) and let g

✓

2 P�L4(q2) be
defined similarly as above. Then we denote by PGU ✓

4 (q) the group generated
by H and g

✓

g, where g 2 PGU4(q) \H.

In this paper we will show :

MAIN RESULT. Let S be a finite thick generalized quadrangle and let G be

a group of automorphisms of S. Then G acts transitively on the set of ordered

pentagons if and only if S is one of the classical generalized quadrangles W (q),
Q(4, q), Q(5, q) or H(3, q2), and G contains one of the following groups:

(i) PGO5(q), if S ⇠= W(q) or S ⇠= Q(4,q),
(ii) PGO✓

5(q), if S ⇠= W(q) or S ⇠= Q(4,q) with q an odd square and ✓ a

field automorphism of GF (q) of order a power of 2,

(iii) PGU4(q), if S ⇠= Q(5,q) or S ⇠= H(3,q2),

(iv) PGU ✓

4 (q), if S ⇠= Q(5,q) or S ⇠= H(3,q2) with q odd and ✓ a field

automorphism of GF (q2) of order a power of 2.

The groups will be further discussed in Section 2.4.

Part of the motivation of our proof is to stimulate people to aim for weaker
hypotheses (such as the (B,N)-pair hypothesis above), still giving a proof
without relying on the classification of the finite simple groups.

2 Proof of the Main Result

In this section, we denote by S = (P ,B, I) a finite thick generalized quadran-
gle of order (s, t) and by G a group of automorphisms of S acting transitively
on the set of ordered pentagons.
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2.1 Some General Facts

2.1.1 Skeletons

Let ⇧ = (p1, L1, . . . , p5, L5), with p1 I L1 I p2 I . . . I p5 I L5 I p1, be an ordered
pentagon in S. Let p0

i

be the point of L
i+2 collinear with p

i

(where indices
are taken modulo 5). Consider the skeleton ⌦ = (Q;L5, p04), where Q is the
quadrilateral (p1, L1, p2, L2, p3, L3, p01, p1p

0
1). Then ⇧ completely determines

⌦ and vice versa. Hence G acts transitively on the set of skeletons.

2.1.2 Property (H)

Fix a point u of S and let (x, y, z) be a triad of points of u?. Suppose
z 2 cl(x, y). If z 2 {x, y}??, then y 2 {x, z}??. Now suppose z 62
{x, y}?? and let v respectively v0 be a point in {x, y}? \ z? respectively
{x, z}?\y?. This defines a unique skeleton (Q;L0, z0) respectively (Q0, L0

0, y
0),

where uz ⇠ L0 I v respectively uy ⇠ L0
0 I v

0, where z ⇠ z0 I vy respec-
tively y ⇠ y0 I v0z, and where Q = (v, vy, y, yu, u, ux, x, xv) respectively
Q0 = (v0, v0z, z, zu, u, ux, x, xv0). By the transitivity of G on skeletons, we see
that there is an automorphism mapping the ordered quadruple (u, x, y, z)
onto the ordered quadruple (u, x, z, y). Indeed, z is collinear with z0 and
incident with the unique line uy containing u and concurrent with L0; z0 is
mapped onto y0, and the unique line containing u and concurrent with L0

0 is
the line uy. As y0 ⇠ y I uy, the point z is mapped onto y. Hence y 2 cl(x, z)
and so u has property (H). By transitivity, every point of S has property
(H), and dually, every line has property (H). By 5.6.2 of FGQ S must satisfy,
up to duality, one of the following conditions:

(i) S is isomorphic to H(4, q2), q2 = s.

(ii) Every point and every line in S are regular.

(iii) Every hyperbolic line has exactly 2 points, and dually.

(iv) Every hyperbolic line in S has exactly 2 points and every line of S is
regular.
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It is readily seen that H(4, q2) does not admit a group of automorphisms
acting transitively on the set of skeletons. Also, case (ii) implies that S is
isomorphic to W (2e) for some positive integer e (see 5.2.1 and 3.2.1 of FGQ).
So from now on, we may assume that every hyperbolic line has exactly 2
points. Using the same kind of argument to show property (H), one pro-
duces a collineation mapping (u, x, y, z) onto (u, x0, y0, z0), where (x, y, z) and
(x0, y0, z0) are two arbitrary triads in u? (note that z 62 {x, y}?? as required
for the argument). So all triads in u? have a constant number of centers. By
1.7.1(i) of FGQ, this constant equals 1 + t/s, so s divides t.

Now we consider the cases (iii) and (iv) separately.

2.2 Case (iii)

In this case, also the dual of S has hyperbolic lines of length 2, hence also
1 + s/t is an integer. It follows that s = t. As each triad of points has either
0 or 2 centers, each point of S is antiregular (cf. 1.3.6(iii) of FGQ). Dually,
each line of S is antiregular. Also s = t is odd by 1.5.1(i) of FGQ.

Assume that S 0 is a thick subquadrangle of S of order (s0, t0), and that S 0

does not admit a proper thick subquadrangle. Let ⌦ and ⌦0 be skeletons
contained in S 0. Further, let ✓ be an automorphism of S mapping ⌦ to
⌦0. If S 0✓ 6= S 0, then S 0 \ S 0✓ is a proper thick subquadrangle of S 0, a
contradiction. Consequently S 0✓ = S 0, and so the automorphism group G0 of
S 0 acts transitively on the set of skeletons of S 0.

In S 0 any triad of points has at most two centers, that is, each point of S 0

is antiregular. Hence s0 � t0 by 1.3.6(i) of FGQ. Similarly, t0 � s0. Conse-
quently, s0 = t0 and then by 1.3.6(iii) of FGQ each triad of points respectively
lines has 0 or 2 centers. Also, s0 = t0 is odd. Let us now forget the GQ S; so
“?” means perpendicular in S 0, etc.

Since S 0 has no proper thick subquadrangles, the identity is the only automor-
phism of S 0 fixing a given skeleton of S 0. The group H 0 of automorphisms
of S 0 fixing an ordered quadrilateral Q := (p1, L1, p2, . . . , L4) and a line L
through p1, L4 6= L 6= L1, has even order s0 � 1. Let � be an involution of
the group H 0.

By 1.3.2 of FGQ an a�ne plane ⇡(p4, p1) of order s0 may be constructed as
follows. Points of ⇡(p4, p1) are the points of p?4 that are not on L4. Lines
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are the pointsets {p4, z}?? \ {p4}, with p4 ⇠ z 6⇠ p1, and {p4, u}? \ {p1},
with p1 ⇠ u 6⇠ p4. Let us denote the pointset of a line M of S 0 by M⇤.
The involution � induces either the identity or an involution �0 in the plane
⇡(p4, p1). In the latter case, �0 fixes the point p3, the line L⇤

3, the parallel
class of lines defined by L⇤

3, the line {p4, p2}? \ {p1} = U which contains p3,
the parallel class of lines defined by U (as L�

1 = L1), and the parallel class
containing the line {p4, v}? \ {p1} = V with p1 6= v I L (as L� = L)

If �0 is the identity, then, by 2.4 of FGQ, � is the identity, a contradiction;
if �0 is a Baer involution, then, again by 2.4 of FGQ, the fixed elements of
� form a subquadrangle of order (

p
s0,

p
s0) of S 0, a contradiction. Hence �0

is a homothety of ⇡(p4, p1) with center p3. Consequently � fixes every line
through p1 and every point of {p1, p3}?. As S 0 does not contain a proper thick
subquadrangle, the fixed elements of � are p1, p3, the points of {p1, p3}?, the
lines through p1, and the lines through p3.

Now let x and y be distinct points of S 0 on the line N of S 0, with p1 not
incident with N . By the transitivity properties of G0 there is an involution
� of S 0 fixing p1 linewise and fixing N . Let r� 6= r, with r a point of S 0 on
N . Further, let � be an element of G0 fixing p1, N , and for which r� = x and
r�� = y. Then ��1�� fixes p1 linewise and maps x onto y. Now it is clear
that the subgroup of G0 fixing p1 linewise acts transitively on P 0 \p?

1, with

P 0 the pointset of S 0. Then by 8.2.4 of FGQ the GQ S 0 is an EGQ (elation
generalized quadrangle) with base point p1 and elation group G.

Let u1 and u2 be distinct points of the plane ⇡(p4, p1). If ⇣ is the elation in
G mapping u1 onto u2, then ⇣ induces a translation ⇣ 0 in ⇡(p4, p1) mapping
u1 onto u2. Consequently ⇡(p4, p1) is a translation plane. Interchanging the
roles of p1 and p4, we see that ⇡(p1, p4) is also a translation plane. It follows
that, if 1 is the point at infinity of ⇡(p4, p1) defined by the parallel class of
lines containing L⇤

3, then the projective completion ⇡(p4, p1) of ⇡(p4, p1) is a
dual translation plane with translation point 1.

Next, let x1 and x2 be points of ⇡(p4, p1) not on L⇤
3 and not on {p2, p4}? \

{p1} = U . By the transitivity of G0 on the skeletons of S 0, there is an auto-
morphism ⌘ in G0 fixing p1, p2, p3, p4 mapping x1p4 onto x2p4 and mapping
x1 onto x2. Then ⌘ induces an automorphism ⌘0 of ⇡(p4, p1) fixing L⇤

3, U and
mapping x1 onto x2. Hence ⇡(p4, p1) is Desarguesian [4]. Then by 5.2.7 of
FGQ, the GQ S 0 is isomorphic to Q(4, s0). Consequently every line of S 0 is
regular, a contradiction.
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We conclude that case (iii) cannot occur.

2.3 Case (iv)

2.3.1 Some general observations

We first fix the notation.

Throughout, ⌦ will denote the skeleton ((p1, L1, p2, L2, p3, L3, p4, L4);L, p),
where Q = (p1, . . . , L4), L I p1 and p I L1. The group G⌦ of automorphisms
in G fixing ⌦ has order k 2 N \ {0}.
The line L1 is regular in S. For any two lines M and M 0 meeting L1 in
di↵erent points, we call the collection {M,M 0}?? of s + 1 lines the regulus

through M and M 0; it is denoted by MM 0. Every line of the regulus MM 0

meets L1. The set of all lines through a point p will be denoted by p⇤.

Consider an involution � that fixes p1, L1 and p2. Suppose that � does not
fix all points on L1. Let x be such a point on L1 which is not fixed by �,
and let M be a line through x di↵erent from L1. The regulus MM� meets
p⇤1 respectively p⇤2 in exactly one line R1 respectively R2. Clearly the regulus
MM� is fixed by �, and since p1 and p2 are fixed by �, also R1 and R2 are
fixed. Varying M through x, one sees that the number of fixed reguli MM�

is t. But this number also equals t1t2, where ti is the number of lines through
p
i

, di↵erent from L1 and fixed by �, i = 1, 2. If moreover � fixes a third
point u on L1, then the number t

u

of fixed lines through u (di↵erent from
L1) satisfies t1tu = t2tu = t1t2 = t implying t1 = t2 = t

u

=
p
t.

2.3.2 A useful lemma

Let ✓ ( 6= 1) be an automorphism in G fixing all points on L1 and the lines
L2, L4 and L. Let r I L1, p2 6= r 6= p1, p1 I M , M 6= L1, r I N , N 6= L1.
Then the regulus MN is fixed by ✓ if and only if M ✓ = M and N ✓ = N . Let
t
i

+ 1 be the number of fixed lines through p
i

, i = 1, 2, and let t0 + 1 be the
number of fixed lines through r. If w is the number of fixed reguli consisting
of s+1 lines concurrent with L1, then clearly w = t1t0. Analogously, w = t2t0

and w = t1t2. Hence t1 = t2 = t0. So ✓ fixes a constant number t0 + 1 of
lines through every point of L1. Let P 0 be the union of the points on all
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these lines and let B0 be the set of lines meeting P 0 in at least two points.
Clearly, every element of B0 is incident with exactly s + 1 elements of P 0

(by the regularity of L1). By 2.3.1 of FGQ, S 0 = (P 0,B0, I 0), with I 0 the
restriction of I to P 0 ⇥ B0 [ B0 ⇥ P 0, is a subquadrangle of order (s, t0). If
t0 < t, then by 5.3.5 of FGQ and the transitivity properties of G, the GQ S
is the classical GQ Q(5, s). Now let t = t0. As ✓ 6= 1, we have p✓3 6= p3 by
2.4.1 of FGQ. For every point x on L2 with p2 6= x 6= p3, the conjugate ✓⌘ of
✓, where ⌘ is a collineation fixing L1, L2, L4, p3 and mapping p✓3 to x, fixes
every line concurrent with L1 and maps p3 to x. Therefore S is half Moufang
and hence Moufang by [7]. Since all lines are regular, we have S ⇠= Q(4, s)
or S ⇠= Q(5, s) by 3.3.1 of FGQ.

Now we distinguish between several numerical cases.

2.3.3 k and s both odd

The subgroup H of G fixing Q and L has order (s� 1)k and hence contains
some involution �. If � would fix a third point u on L1, then � would be inside
G⌦ (taking without loss of generality u = p), contradicting the hypothesis
k odd. Hence � has no fixed points, di↵erent from p1 and p2, on L1. From
Section 2.3.1 follows immediately that t1t2 = t, where t

i

+1 is the number of
fixed lines (for �) through p

i

, i = 1, 2.

Suppose t
i

> 1 for i = 1, 2. Let M
i

6= L1 be any line fixed by � and incident
with p

i

and let x
i

be the point of M
i

collinear with p
i+2, i = 1, 2. Clearly x

i

is also fixed by � and considering the point x0
2 of M2 collinear with x1, one

sees that � fixes a skeleton unless x0
2 = x2. Since k is odd, � cannot fix a

skeleton and hence there arises a dual (t1+1)⇥ (t2+1)-grid having as points
the points p1, p2, the t1 points x1 and the t2 points x2 (obtained by letting
vary M1 and M2). So there are three points with at least t1 + 1 centers and
three points with at least t2+1 centers. By the observation in 2.1.2, t

i

 t/s
and hence t = t1t2  t2/s2, implying s2  t, so t = s2 (cf. 1.2.3 of FGQ)
and t1 = t2 = t/s = s. So we have |{p1, p3, x2}??| � 1 + s, hence the left
hand side is actually equal to 1 + s. By the transitivity on triads in x?

1 , we
have that x1 is 3-regular. By transitivity every point of S is 3-regular, and
consequently, by 5.3.2(i) of FGQ, S is the classical GQ Q(5, s).

Next we consider the case t2 = 1. Then of course t1 = t and so � fixes all
lines through p1. Consider two arbitrary points y, z on L2 with z 6= p2 6= y
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and y 6= p3. The subgroup H⇤ of G fixing p1, p2, y, L4 and L has also order
(s � 1)k and acts transitively on the points of L2 di↵erent from p2 and y.
Let ✓ 2 H⇤ map y� (which is di↵erent from y) to z. Then the map ✓�1�✓
maps y to z and fixes all lines through p1. Varying the point p2 on L1 and
varying afterwards the line L1 through p1, we see that there exists a group
K of automorphisms of S fixing all lines through p1 and acting transitively
on P \ p?

1. By 8.2.4(iv) of FGQ, there is a unique subgroup E E K of

order s2t acting regularly on P \p?
1; this normal subgroup is the set of all

automorphisms of S fixing all lines through p1 and having no fixed point in
P \p?

1. Let E
L2 be the subgroup of E, of order s, fixing L2.

Now consider the subgroup H1 of G which fixes L4, p1, L1, p2, L2 and L. This
group acts transitively on the points of L1 di↵erent from p1 and p2. Clearly
E

L2  H1. If ⌘ 2 E
L2 \ {1} and � 2 H1, then ��1⌘� fixes p1 linewise, fixes

L2, and has no fixed point collinear with p1. Hence ��1⌘� 2 E
L2 , and so

E
L2 E H1. Hence E

L2 acts on the points of L1 di↵erent from p1 and p2 in
orbits of equal length d. So d has to divide both s � 1 and s, hence d = 1.
It follows that every element of E

L2 fixes all points on L1. By the regularity
of L1 it is immediately clear that every element of E

L2 fixes each line of
{L4, L2}??. Now let M be a line meeting L1, with p1 not incident with M ,
p2 not incident with M , and M 62 {L4, L2}??. Let N be the line through
p1 which belongs to {M,L2}??. Each element of E

L2 fixes {N,L2}?? and
the common point of M and L1. Hence each element of E

L2 fixes M . It
easily follows that each element of E

L2 fixes each line concurrent with L1.
By transitivity of G on the lines of S, S is half Moufang and hence Moufang
by [7]. So, by [3], S is classical (cf. 9.1 of FGQ). Since all lines of S are
regular, we have S ⇠= Q(4, s) or S ⇠= Q(5, s).
This completes the case k and s both odd.

2.3.4 k odd and s even

We consider here the subgroup H1 of G fixing L4, p1, L1, p2, L2, L and p. This
group has order sk and hence it contains an involution �. If � would fix a
point not incident with L1, then it would fix a skeleton and this contradicts
the fact that k is odd. So the only fixed points for � are on L1. Let x be
any point on L1 and let y be any point collinear with x but not on L1. If
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y� ⇠ y, then clearly x is fixed by �. If y 6⇠ y� = y0, then {y, y0}? contains
a fixed point (indeed, it contains t + 1 elements and since s divides t, t is
even). Hence there is a point collinear with y which is fixed by �. This must
clearly be x and so we showed that � fixes every point on L1. By Lemma
2.3.2, S ⇠= Q(4, s) or S ⇠= Q(5, s).

2.3.5 k and s both even

From these assumptions follows the existence of an involution � fixing the
skeleton ⌦. This involution has as fixed elements the points and lines of
a thick proper subquadrangle S 0 of order (s0, t0). If s = s0, then by the
transitivity properties ofG, it follows from 5.3.5 of FGQ that S is the classical
GQ Q(5, s). Hence suppose s 6= s0. By Section 2.3.1, t0 =

p
t.

Let R be a line of S 0 and let z be a point of R not in S 0. Then any line through
z, di↵erent from R, has no point in common with S 0; so there exists a line
M external to S 0. The line M 0 = M� does not meet M and the s + 1 lines
of {M,M 0}?? are permuted by �. Since s + 1 is odd, {M,M 0}?? contains
at least one fixed line N , which contains in turn exactly s0 + 1 fixed points.
A line containing any of these s0+1 points and concurrent with both M and
M 0 is fixed by �. Hence there are exactly s0 + 1 lines of S 0 concurrent with
a given external line. By Proposition 2.2.1 of FGQ, we have 1 + s0 = 1 + t0.
But again by 2.2.1 of FGQ, we also have s � s0t0 = t. Hence s = t and S is
the classical GQ Q(4, q) (by the regularity of every line).

2.3.6 k even and s odd

We subdivide this case in two subcases: t odd and t even.

Subcase t even. Here we consider the subgroupH2 ofG fixing L4, p1, L1, p2, L
and p. This group has order stk and hence contains a non-trivial Sylow 2-
subgroup S. Suppose 2n respectively 2m divides t respectively k and 2n+1

respectively 2m+1 does not. Then |S| = 2n+m. Let � be an involution in the
center of S and suppose that � fixes a second line through p2, say L2. Since
s is odd � fixes a second point on L4 respectively L2. If � would fix all points
on L1, then its fixed elements would be the points and lines of a thick proper
subquadrangle of order (s, t0). Then, by the transitivity properties of G, it
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again follows from 5.3.5 of FGQ, that S ⇠= Q(5, s). Hence we assume now
that � does not fix all points of L1. By Section 2.3.1, � fixes

p
t lines di↵erent

from L1 through p2. The group S acts on these lines and the stabilizer S
M

in
S of any of these lines M has at most order 2m, since S

M

is a subgroup of a
conjugate of the group G⌦ of order k. So the length of the orbit of M under
S has at least order |S|/2m = 2n. Since M was arbitrary, this means that

p
t

must be divisible by 2n, hence 22n divides t, a contradiction. Hence � does
not fix any line through p2 besides L1. But then, by 2.3.1, � fixes every point
on L1. On L4 there is a second fixed point p4. If � does not fix all points of
L4, then, by 2.3.1, p4 is on at least two fixed lines, a contradiction as every
fixed line contains p1. Hence � fixes every point of L4, and similarly it fixes
every point of L. Now consider the group T generated by all conjugates of
� by elements of the subgroup H3 of G fixing p1, L1, p2. Every element of
T fixes each point of L1. Let M be a line di↵erent from L1 containing p1,
and let M 0, M

0
be distinct lines di↵erent from L1 containing p2. Then there

is a � 2 H3 such that L�

4 = M , N � = M
0
, N�� = M 0, where N is any line

through p2 di↵erent from L1. Then ��1�� 2 T fixes each point of M and
maps M 0 onto M

0
. Now let x be a point collinear with p2 and not incident

with L1. Denote by O
x

the orbit of x under T . Clearly, we have |O
x

| � t.
If |O

x

| = t, then by the transitivity property just mentioned, all points of
O

x

are collinear to one single point of M , M 6= L1 and M through p1. But
M is arbitrary, so we obtain a dual (t + 1) ⇥ (t + 1)-grid. Consequently we
have a regular pair of points and by 1.3.6(i) of FGQ, s � t. But all lines
are regular, so t � s implying s = t, which means that S is the classical
GQ Q(4, s). Hence we may assume |O

x

| > t. This means that there exists a
collineation � in T preserving L2 and not inducing the identity map on the
set of points of L2. By interchanging roles of p1 and p2, we see that there
exists an element ⇠ 2 G fixing all points of L1, all points of L2 and mapping
L�

4 onto L4. Then �⇠ = ⇣ fixes L2, L4, all points of L1, but not every point of
L2. Let x⇣ 6= x, x I L2. Choose on L2 distinct points y, z, not on L1. By the
transitivity properties of G, there is an element � 2 H3 which fixes L4, maps
x onto y, and x⇣ onto z. Then ��1⇣� fixes all points of L1, fixes L4 and L2,
and maps y onto z. Consequently the group T0 generated by all conjugates
of ⇣ by elements of H3 fixes all points of L1, fixes L4 and L2, and acts tran-
sitively on the s points of L2 not on L1. Hence s divides |T0|. Assume that
no element of T0 \ {1} fixes a third line through p1. Then T0 acts faithfully
and semi-regularly on the lines through p1, di↵erent from L1 and L4. Hence
|T0| divides t� 1, so s divides t� 1. As s divides t, we have a contradiction.
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Hence there is an element ✓ 2 T0 fixing all points of L1, fixing L2 and L4,
and fixing a third line, say L, containing p1. By Lemma 2.3.2, S ⇠= Q(4, s)
or S ⇠= Q(5, s), so s and t have the same parity, a contradiction.

Subcase t odd. Here we consider the subgroup H4 of G fixing Q and p,
which has order (t� 1)k. We consider a Sylow 2-subgroup S in H4. Suppose
2n respectively 2m divides t � 1 respectively k and 2n+1 respectively 2m+1

does not. Then |S| = 2n+m. Let � be an involution in the center of S. If �
does not fix every point on L1, then it fixes exactly

p
t�1 lines di↵erent from

L1 and L4 through p1. Let M be one of these lines. The group S acts on
these

p
t� 1 fixed lines and similarly as in the previous case, we obtain that

the size of the orbit of M is divisible by 2n. Hence 2n divides
p
t� 1, so 2n+1

divides (
p
t� 1)(

p
t+1) = t� 1, a contradiction. Hence � fixes all points on

L1. Assume there is no element of G fixing all points of L1, the lines L2, L4,
and at least three lines containing p1 or p2. Let T 0 be the group generated
by the congugates of � by the elements of the subgroup H5 of G fixing L4,
p1, L1, p2 and L2. Then the elements of T 0 fix all points of L1, fix L2 and L4.
Suppose first that � does not fix all points of L2. Then T 0 acts transitively
on the set A of points of L2 di↵erent from p2. By an argument similar to the
one in the case t even, we obtain a collineation of S fixing all points of L1,
the line L2 and at least three lines containing p1. Hence � fixes all points of
L2. Then the fixed elements of � are all elements of the (s+1)⇥ (s+1)-grid
containing the lines L2 and L4. Let N be a line through p2 di↵erent from L1

and L2. Then N� 6= N . Let H3 be the subgroup of G fixing p1, L1, p2, let
M be a line di↵erent from L1 containing p1, and let M 0, M

0
be distinct lines

di↵erent from L1 containing p2. Then there is a � 2 H3 such that L�

4 = M ,
N � = M

0
, N�� = M 0. So ��1�� fixes each point of L1, fixes each point of

M and maps M 0 onto M
0
. Let T 00 be the subgroup of G generated by the

conjugates of � by the elements of the group H3. Then the elements of T 00

fix all points of L1. Using an argument analogous to the one in the case t
even (replacing T by T 00), we find that necessarily S ⇠= Q(4, s). So we may
assume that S admits a collineation fixing all points of L1, the lines L2, L4,
and at least three lines containing p1 or p2. Then by Lemma 2.3.2, the GQ
S is isomorphic to either Q(4, s) or Q(5, s).
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2.4 The possible groups

Let S be one of the generalized quadrangles W (q), Q(4, q), Q(5, q) or H(3, q2)
and let G be a group of automorphisms acting transitively on the set of
ordered pentagons. By duality, we may restrict ourselves to Q(4, q) and
H(3, q2). First let S 6= Q(4,2). By a theorem of Seitz [6], G has to contain
the simple group O5(q) (q 6= 2), respectively U4(q). If q is even, then O5(q)
respectively U4(q) coincides with PGO5(q) respectively PGU(4, q) and each
of these groups contains all generalized homologies of the corresponding GQ;
hence these groups have the desired transitivity properties. If S = Q(4,2),
then O5(2) is the full automorphism group of S and |O5(2)| is the number of
ordered pentagons in S. As O5(2) acts semiregularly on the set of ordered
pentagons, and consequently also regularly, it follows that G must coincide
with O5(2) in this case. Suppose now that q is odd.

First let S ⇠= Q(4,q). The full group of automorphisms of Q(4, q) is
PGO5(q).h = P�O5(q), where q = ph with p a prime number. If h is odd,
then the group O5(q).h does not act transitively on the ordered pentagons
since its order is not divisible by the number of ordered pentagons. This
number of ordered pentagons equals 2|O5(q)|, so O5(q) must have even index
in G. Since the outer automorphism group of O5(q) has a unique involu-
tion (this is the diagonal automorphism, see [2]), every extension of O5(q)
in P�O5(q) in which O5(q) has even index must contain PGO5(q). Suppose
now that h is even. Consider a skeleton (Q;L, x) in S. The stabilizer in
O5(q) of Q acts transitively on the points not in Q and incident with the
line of Q containing x; but the stabilizer in O5(q) of Q and x acts on the
set V of lines not in Q but incident with the point of Q on L as the per-
mutation group on GF (q) \ {0} consisting of the elements �

a

: x 7! a2x,
a, x 2 GF (q) \ {0}. If G does not contain PGO5(q), then it contains an
element involving a field automorphism ✓, ✓ 6= 1. So G contains the group
PGO✓

5(q) generated by O5(q) and g
✓

g, where g 2 PGO5(q) and where g
✓

is
the element of P�L5(q) corresponding to the semilinear transformation with
identity matrix and field automorphism ✓. Clearly PGO✓

5(q) contains an ele-
ment that fixes Q and x, and acts on V as the permutation � : x 7! bx✓, with
b a non-square in GF (q), that is, we may assume that g 2 PGO5(q) \O5(q).
Also, ✓ has even order n (otherwise (g

✓

g)n 2 PGO5(q) \ O5(q) and then G
contains PGO5(q)). Conversely, each such PGO✓

5(q) acts transitively on the
set of skeletons of S. Let n = l.2e with l odd and put ✓0 = ✓l. Then ✓0 has
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order 2e, PGO✓

0
5 (q)  PGO✓

5(q), and PGO✓

0
5 (q) also acts transitively on the

set of skeletons, and hence on the set of ordered pentagons. This shows (i)
and (ii) of the main result.

Now suppose S ⇠= H3(q2), q odd. First suppose that q ⌘ 3 mod 4. Then
the Sylow 2-subgroup P of the outer automorphism group of U4(q) is a semi-
direct product of a cyclic group C4 (of diagonal automorphisms) with a group
of order 2 (the unique involutory field automorphism). Now the number of
ordered pentagons equals 4|U4(q)| and so G must contain U4(q) as a subgroup
of index divisible by 4. Hence G/U4(q) contains a group isomorphic to a
subgroup of P of order at least 4. But every such subgroup clearly contains
the unique involutory diagonal automorphism (the unique involution of C4).
So G contains the group H (with the notation of the introduction). This is
trivially true if q ⌘ 1 mod 4. But now, a similar reasoning as in the case
S ⇠= Q(4,q), q odd and h even, of the preceding paragraph shows that only
cases (iii) and (iv) of the main result are possible.

This completes the proof of our main result.
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