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Abstract

We investigate the intersection pattern of Ree-Tits unitals in the
split Cayley HexagonH(q) associated to Dickson’s groupG2(q). Using
these patterns, we are able to define an incidence geometry � which
turns out to be a twisted field plane of order 32h+1, non-desarguesian if
h 6= 0. We also show that a general point of the underlying generalized
hexagon defines an oval in �.

AMS-classification: 51E12.

1 Introduction

Reiner Salzmann’s name will be attached for ever to the theory of topological
planes. However also results in the general theory of projective planes are
due to him, mainly in the late 50’s and 60’s. About that time, or a little bit
earlier, another eminent mathematician, A. A. Albert [1, 2, 3] constructed
what is now known under the name Albert twisted fields, giving rise to a
huge class of non-desarguesian finite projective planes. Remarkable about
that construction is the fact that it is one of the (relatively) few classes
containing ternary fields of non-square order. To the best of our knowledge,

⇤The second author is Senior Research Associate of the National Fund for Scientific
Research (Belgium)
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the corresponding projective planes have never been constructed in a purely
geometric way. We will show that a subclass of Albert twisted field planes
of order q = 32h+1, h 2 N, can be constructed geometrically with Ree-Tits
unitals in the generalized hexagon H(q) associated to the finite simple group
G2(q). It turns out however, that the twisted field we obtain is not one of the
twisted fields which have been shown to be non-associative in general, see
P. Dembowski [5]. So we will have to convince ourselves that they are indeed
non-associative, provided h > 1. As an application we construct in three
di↵erent ways an oval inside every twisted field plane that we have found.

Our paper runs as follows. In section 2 we introduce the notation and the
coordinates we need to describe the Ree-Tits unitals in H(q). In section 3 we
investigate the intersection pattern of Ree-Tits unitals in H(q). In section 4
we define the twisted field planes �. In section 5 we show that they are
non-desarguesian whenever their order is at least 27. In section 6 we close
with the construction of an oval in �.

ACKNOWLEDGEMENT. We would like to thank Norman Johnson, who
identified the projective planes we have found as twisted field planes.

2 A description of the Ree-Tits unitals in H(q)

V. De Smet and H. Van Maldeghem [7] give the following description of the
generalized hexagon H(q) (due to J. Tits [9]) arising from Dickson’s sim-
ple group G2(q) (we only give the description in the case q is a power of
3, since that is the case in which we will be interested in the present pa-
per). The points are 0-, 1-, 2-, 3-, 4- and 5-tuples over GF (q) denoted with
round parentheses; the lines are similarly but denoted with square brack-
ets (a 0-tuple is here denoted by (1) for a point and by [1] for a line);
incidence (denoted by I; in fact, I will serve as an abbreviation of “is in-
cident with” in whichever geometry we consider, of course we will explicitly
mention which one when confusion is possible) is defined as follows. For all
a, a0, a00, b, b0, k, k0, k00, l, l0 2 GF (q), we have

(a, l, a0, l0, a00) I [a, l, a0, l0] I (a, l, a0) I [a, l] I (a) I [1] I

(1) I [k] I (k, b) I [k, b, k0] I (k, b, k0, b0) I [k, b, k0, b0, k00],
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no other incidences occur except that

(a, l, a0, l0, a00) I [k, b, k0, b0, k00]

m
8
>><

>>:

a00 = ak + b,
a0 = a2k + b0 + 2ab,
k00 = ka3 + l,
k0 = k2a3 + l0 � kl.

It was shown by J. Tits [10] that H(q) admits a polarity if and only if q
is an odd power of 3. In this case, a flag (a flag is an incident point-line
pair) mapped onto itself by the polarity is called an absolute flag. The points
and the lines of the absolute flags are called the absolute points and absolute
lines respectively. It is also known that the set of absolute points forms an
ovoid in the corresponding generalized hexagon, i.e. a set of q3 +1 such that
every other point is collinear with exactly one of them. Now, all polarities
of H(q) are equivalent (see J. Tits [10], also proved by V. De Smet and
H. Van Maldeghem [7]) and the corresponding ovoid is called the Ree-Tits
unital. The automorphism group of the Ree-Tits unital inside H(q) is the
simple Ree group 2G2(q). Every involution in 2G2(q) fixes exactly q + 1
points in the Ree-Tits unital and these are defined to constitute the blocks
of the unital. In this paper, we will regard these unitals as sets of absolute
flags, absolute points and absolute lines. This will unable us to talk about
the points, lines and flags of the unitals and also about the points, lines or
flags of blocks of the unitals. In V. De Smet and H. Van Maldeghem [7], it
is shown that the following set of points is the set of points of some fixed
Ree-Tits unital U

RT

(q) (putting s = 3h+1 and 32h+1 = q)

{(a, a00s � a3+s, a0, a3+2.s + a0s + asa00s, a00)ka, a0, a00 2 GF (32h+1)} [ {(1)}.

The corresponding polarity interchanges the point (a, ls, a0, l0s, a00) with the
line [as, l, a0s, l0, a00s] (the action on the other points and lines is obtained
by restricting these coordinates) and one can write down the set of lines of
U
RT

(q) easily. In particular, [1] is an absolute line and all other absolute
lines have five coordinates, namely

[as, a00 � a1+s, a0s, a2+s + a0 + aa00, a00s].
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If we denote by P (a, a0, a00) the point (a, a00s�a3+s, a0, a3+2.s+a0s+asa00s, a00) of
U
RT

(q), then it is shown by V. De Smet and H. Van Maldeghem [8] that the
points of an arbitrary block B(a, a0), a, a0 2 GF (q), through (1) of U

RT

(q)
are

{P (a, a0, A00)kA00 2 GF (q)} [ {(1)}.

It is easily checked that the following map  
y

(K,K 0, K 00) defines a collinea-
tion of H(q):

 
y

(K,K 0, K 00) : H(q) ! H(q)
: (a, l, a0, l0, a00) 7! (a, yl �Ka3 +K 00, ya0 +Ka2,

y2l0 +K2a3 + yKl +K 0, ya00 +Ka)
: [k, b, k0, b0, k00] 7! [yk +K, yb, y2k0 �K 00yk +K 0 �KK 00, yb0, yk00 +K 00],

where y,K,K 0, K 00 2 GF (q), y 6= 0 and the action on the other elements of
H(q) is obtained by restricting the above action to the appropriate coordi-
nates. Also, all these collineations form a group  of order q3(q� 1). It now
takes an elementary computation to see that  

y

(K,K 0, K 00) stabilizes U
RT

(q)
if and only if K = K 0 = K 00 = 0 and y = 1. Hence the orbit of U

RT

(q) under
 has length q3(q � 1).

The stabilizer in G2(q) of the Ree-Tits unital URT

(q) is, as already mentioned,
the group 2G2(q), which has order q3(q3+1)(q�1). Noting that the order of
G2(q) is q6(q6 � 1)(q2 � 1) (see for instance the ATLAS [4]), we derive from
this the total number of Ree-Tits unitals in H(q), namely

|G2(q)|
|R(q)| =

q6 · (q6 � 1) · (q2 � 1)

(q3 + 1) · q3 · (q � 1)
= q3 · (q3 � 1) · (q + 1).

The number n of Ree-Tits unitals in H(q) which have a fixed incident point-
line pair as a flag, is obtained by counting all triples (x, L,U) with x 2 H(q),
L a line of H(q), U any Ree-Tits unital of H(q), with x on L and (x, L) a
flag of U . We get

(q3 � 1)q3(q + 1) · (q3 + 1) = (1 + q)(1 + q2 + q4) · (q + 1) · n ,

hence n = q3(q�1). This implies that an arbitrary Ree-Tits unital containing
the flag ((1), [1]) is of the form U

RT

(q) y(K,K

0
,K

00).
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3 Flag-intersection of Ree-Tits unitals in H(q)

We now investigate the intersection pattern on the flags of two distinct Ree-
Tits unitals of H(q).

Theorem 3.1
If q = 3, then two distinct Ree-Tits unitals of H(q) have 0, 1 or q + 1 flags
in common.
If q = 32h+1 , h � 1, then two distinct Ree-Tits unitals of H(q) have 0, 1, 2
or q + 1 flags in common.

PROOF. We fix one Ree-Tits unital, namely U
RT

(q). We investigate the
flag-intersection of U

RT

(q) with all other Ree-Tits unitals of H(q). This will
be done in two steps. First we suppose they have at least one flag in common,
say ((1), [1]). In the second step, we will investigate if there exist Ree-Tits
unitals that have no flag in common with U

RT

(q).

First step

By the arguments in section 2, a general Ree-Tits unital U
RT

(q) y(K,K

0
,K

00)

of H(q) which has ((1), [1]) as a flag, has besides this fixed flag the set of
the following flags:

{(
⇣
a, ya00s � ya3+s +K 00 �Ka3, ya0 +Ka2,

y2a3+2s + y2a0s + y2asa00s +K 0 +K2a3 +Kya00s �Kyas+3, ya00 +Ka
⌘
,

h
yas+K, ya00�yaas, y2a0s+K 0�K 00yas�KK 00, yasa2+ya0+yaa00, ya00s+K 00

i
)

|| a, a0, a00 2 GF (q)}

with K,K 0, K 00 2 GF (q) and y 2 GF (q) \ {0}.

Recall that the set of flags of U
RT

(q) is given by

{((1), [1]} [ {(
⇣
b, b00s � b3+s, b0, b3+2s + b0s + bsb00s, b00

⌘
,
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h
bs, b00 � bsb, b0s, bsb2 + b0 + bb00, b00s

i
) || b, b0, b00 2 GF (q)} .

So the flags lying in both U
RT

(q) and U
RT

(q) y(K,K

0
,K

00) are found by solving
the following system of equations (of course, the flag ((1), [1]) is automat-
ically in the intersection):

(A)

8
>>>>>><

>>>>>>:

b = a (1)
b0 = ya0 +Ka2 (2)
b00 = ya00 +Ka (3)
bs = yas +K (1)0

b0s = y2a0s +K 0 �K 00yas �KK 00 (2)0

b00s = ya00s +K 00 (3)0

and

(B)

8
>>>><

>>>>:

b00s � b3+s = ya00s � ya3+s +K 00 �Ka3

b3+2s + b0s + bsb00s = y2a3+2s + y2a0s + y2asa00s +K 0+
K2a3 +Kya00s �Kya3+s

b00 � bsb = ya00 � yaas

bsb2 + b0 + bb00 = yasa2 + ya0 + yaa00 .

We solve this system of equations as follows (assuming there is a solution).

• Substituting (1) in (1)0, we get two possibilities :

case I :

⇢
y = 1
K = 0

case II :

⇢
y 6= 1
as = � K

y�1 .

• Substituting (2) in (2)0, we get the following conditions :

– case I :
a0s +K 0 �K 00as = a0s

If K 00 = 0, then K 0 = 0 and we have the unital U
RT

(q) 1(0,0,0) =
U
RT

(q).
If K 00 6= 0, we have that as = K

0

K

00 .

– case II :

y2a0s +K 0 +K 00K
y

y � 1
�KK 00 = ysa0s +Ksa2s
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or

a0s = (
K2Ks

(y � 1)2
� KK 00

y � 1
�K 0) · (y2 � ys)�1 .

• If we substitute (3) in (3)0, we get :

ya00s +K 00 = ysa00s +Ksas .

– case I :
We haveK = 0, y = 1 and thereforeK 00 = 0. Hence U

RT

(q) y(K,K

0
,K

00) =
U
RT

(q). So case I is trivial.

– case II :
case II(i). If y 6= ys, then

a00s = (K 00 +
KKs

y � 1
) · (ys � y)�1 .

case II(ii). If y = �1, then
⇢

K 00 = �KKs

a00 2 GF (q) .

• The set of equations (B) is now satisfied in both cases II(i) and II(ii).

Conclusion

• case II(ii) :
The q2 Ree-Tits unitals U

RT

(q) y(K,K

0
,K

00) with
8
<

:

y = �1
K 00 = �KK3h+1

K,K 0 2 GF (q)

have q + 1 flags in common with U
RT

(q) namely

the flag ((1), [1]) and the set of flags

{(
⇣
�K3h ,�a003

h+1
+KK3h+1

,�K 03h ,�K 0 +Ka003
h+1

,�a00 �KK3h
⌘
,

h
�K,�a00+KK3h ,�K 0,�K 03h+a00K3h ,�a003

h+1�KK3h+1
i
) || a00 2 GF (q)} .
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• case II(i) :
The q3 · (q � 3) Ree-Tits unitals U

RT

(q) y(K,K

0
,K

00) with
⇢

y /2 GF (3)
K,K 00, K 0 2 GF (q)

have 2 flags in common with U
RT

(q) namely

((1), [1]) and

(

✓
� K3h

(y � 1)3h
,
y3

h+1
K 00

y3h+1 � y
+

y3
h+1

KK3h+1

(y � 1)3h+1 · (y3h+1 � y)
,� yK3hK 003h

(y2·3h � y) · (y � 1)3h

� yK 03h

y2·3h � y
+

y2·3
h
KK2·3h

(y2·3h � y)(y � 1)2·3h
,

y3
h+1

(y3
h+1

+ y)K2K3h+1

(y � 1)3h+1 · (y2 � y3h+1) · (y3h+1 � y)

� y1+sKK 00

(y3h+1 � y) · (y2 � y3h+1)
� y3

h+1
K 0

y2 � y3h+1 ,
yK 003h

y � y3h
+

y3
h
KK3h

(y � 1)3h · (y � y3h)

◆
,


� K

y � 1
,
yK 003h

y � y3h
+

yKK3h

(y � 1) · (y � y3h)
,� y3

h+1
KK 00

(y2 � y3h+1) · (y � 1)
� y3

h+1
K 0

y2 � y3h+1

+
y2K3h+1

K2

(y2 � y3h+1)(y � 1)2
,

y(y + y3
h
)K2·3hK

(y � 1) · (y2·3h � y) · (y � y3h)
� y3

h+1K3hK 003h

(y � y3h) · (y2·3h � y)

� yK 03h

y2·3h � y
,
y3

h+1
K 00

y3h+1 � y
+

yKK3h+1

(y � 1) · (y3h+1 � y)

�
) .

• The q3 � 1 Ree-Tits unitals U
RT

(q) y(K,K

0
,K

00) with
⇢

y = 1
(K,K 00, K 0) 2 GF (q)3 \ (0, 0, 0)

have only the flag ((1), [1]) in common with U
RT

(q).

• The q2 · (q � 1) Ree-Tits unitals U
RT

(q) y(K,K

0
,K

00) with

8
<

:

y = �1
K,K 0 2 GF (q)
K 00 6= �K ·K3h+1

have only the flag ((1), [1]) in common with U
RT

(q).
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Second step

Now we will investigate the existence of Ree-Tits unitals which have no flags
in common with U

RT

(q).
Recall that the total number of Ree-Tits unitals in H(q) is q3 ·(q3�1)·(q+1).

In order to count the number r
i

of Ree-Tits unitals which have i = 1, 2 or q+1
flags in common with U

RT

(q), we count in two di↵erent ways the couples
(f,U) with f a flag of U

RT

(q) , U a Ree-Tits unital of H(q) which has 1,
respectively 2 or q + 1, flags in common with U

RT

(q) and f a flag of U . We
obtain :

(1) (q3 + 1) · [q3 � 1 + q2 · (q � 1)] = r1 .

Hence the number of Ree-Tits unitals of H(q) which have 1 flag in
common with U

RT

(q) is

2q6 � q5 + q3 � q2 � 1.

(2) (q3 + 1) · [q3 · (q � 3)] = r2 · 2 .

Hence the number of Ree-Tits unitals of H(q) which have 2 flags in
common with U

RT

(q) is

1

2
· (q7 � 3q6 + q4 � 3q3).

Remark that if q = 3, there are no Ree-Tits unitals which have 2 flags
in common with U

RT

(q).

(3) (q3 + 1) · q2 = r
q+1 · (q + 1) .

Hence the number of Ree-Tits unitals of H(q) which have q + 1 flags
in common with U

RT

(q) is

q4 � q3 + q2.

So we have 1
2 · (q7 + q6 � 2q5 + 3q4 � 3q3 � 2) Ree-Tits unitals which have

at least one flag in common with U
RT

(q). But this number is less than
the total number of Ree-Tits unitals in H(q). In fact, there are exactly
1
2(q

7 + q6 + 2q5 � 5q4 + q3) unitals missing.
This proves the theorem. ⇤
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Remark. From the shape of the intersection, it is clear that whenever
two Ree-Tits unitals meet in q + 1 flags, the points of these flags constitute
a block in both unitals. Also, since there are exactly q2 blocks through
one point in any Ree-Tits unital, there are exactly two Ree-Tits unitals U1

and U2 containing the flags corresponding to any block B of any Ree-Tits
unital U1. Group-theoretically, this means that every maximal subgroup
2 ⇥ L(q) inside a copy 2G2(q) in G2(q) is in exactly two copies of 2G2(q) in
G2(q) and these copies are interchanged by an involution �. It is easy to see
that the group generated by � and 2 ⇥ L(q) is isomorphic to 2 ⇥ PGL2(q).
Since the stabilizer of B either fixes U1 and U2 or interchanges them, the
normalizer of the intersection of the corresponding Ree groups is isomorphic
to 2⇥ PGL2(q).

4 Geometric construction of a twisted field

projective plane

In this section, by a Ree-Tits unital we always mean a Ree-Tits unital of
H(q), q = 32h+1, which contains the flag ((1), [1]). We will show that, using
a certain class of such Ree-Tits unitals, we can construct a non-desarguesian
plane of order q, if q > 3.

We first note that an elementary calculation proves

(U
RT

(q) y1 (K1,K
0
1,K

00
1 )) y2 (K2,K

0
2,K

00
2 ) = U

RT

(q) y1y2 (y2K1+K2,y
2
2K

0
1+y2K

00
1 K2+K

0
2,y2K

00
1 +K

00
2 ).

Lemma 4.1 Consider all Ree-Tits unitals U
RT

(q) y(K,K

00
,K

0) in H(q) (through
the flag ((1), [1])). On this set of unitals, the relation R defined as follows
:

U
RT

(q) y1 (K1,K
0
1,K

00
1 ) R U

RT

(q) y2 (K2,K
0
2,K

00
2 )

m
these unitals intersect in either 1 or q + 1 flags,

is an equivalence relation with q�1
2 equivalence classes of size 2q3.

PROOF. For q = 3, two such distinct Ree-Tits unitals have either 1 or q+1
flags in common (see Theorem 3.1), so there is only one equivalence class.
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Let q > 3. We have to prove

U1 R U2 and U2 R U3 ) U1 R U3.

By transitivity ofG2(q) on the Ree-Tits unitals ofH(q) which contain ((1), [1]),
we can take for U1 the unital URT

(q). In the previous section we showed that
the unitals which have a flag-intersection of size 1 or q+1 with U1, are the uni-
tals U

RT

(q) y(K,K

0
,K

00), with y 2 GF (3) \ {0}, K,K 0, K 00 2 GF (q). So U2 =
U
RT

(q) y2 (K2,K
0
2,K

00
2 ) must be such a unital. The unitals U

RT

(q) y(K,K

0
,K

00)

which have a flag-intersection of size 1 or q+1 with U2, are the images under
 

y2(K2, K 0
2, K

00
2 ) of the unitals which have 1 or q + 1 flags in common with

U1. We find

U3 = U y3 (K3,K
0
3,K

00
3 )

1 2 {U y2·y(K,K

0
,K

00)
1 || y = ±1, K,K 00, K 0 2 GF (q)}, with y2 = ±1.

It follows that y3 = ±1, so U3 has 1 or q+1 flags in common with U1. Hence
U1 R U3.

By the above, we have

8K,K 0, K 00,M,M 0,M 00 2 GF (q) : U
RT

(q) 1(K,K

0
,K

00) R U
RT

(q) z(M,M

0
,M

00) , z = ±1 .

Hence if we apply the collineation  
y

(0, 0, 0), we get

8K
,

K 0, K 00,M,M 0,M 00 2 GF (q) : U
RT

(q) y(K,K

0
,K

00) R U
RT

(q) z(M,M

0
,M

00) , y = ±z.

So there are q�1
2 equivalence classes. ⇤

Lemma 4.2 Let U be any Ree-Tits unital and let R be the set of the q2

Ree-Tits unitals which have q + 1 flags in common with U . Then there are
exactly q � 1 other Ree-Tits unitals which all have a flag-intersection of size
q + 1 with every member of R.

PROOF. We can assume again that U = U
RT

(q). We know from the proof
of theorem 3.1 that

R = {U 2(K,K

0
,�K

1+s)kK,K 0 2 GF (q)}.

Let U z(M,M

0
,M

00) be any Ree-Tits unital. Applying  
z

(M,M 0,M 00), we find
that the unital U z(M,M

0
,M

00) has a flag-intersection of size q + 1 with the
unitals

U �z(zN+M,z

2
N

0�zN

1+s
M+M

0
,�zN

1+s+M

00), 8N,N 0 2 GF (q) . (1)
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Hence U z(M,M

0
,M

00) has a flag-intersection of size q + 1 with every member
of R if and only if every unital (1) coincides with a member of R. This is
equivalent with the conditions

⇢
�z = �1
�zN1+s +M 00 = �(zN +M)1+s, 8N 2 GF (q) .

Hence z = 1 and M = M 00 = 0. It follows that the q Ree-Tits unitals
U 1(0,M 0

,0), with M 0 2 GF (q), have a flag-intersection of size q + 1 with the
q2 Ree-Tits unitals of R and these are the only ones. ⇤

We call a set of q Ree-Tits unitals (still through the flag ((1), [1])) having
a flag-intersection of size q+1 with q2 other Ree-Tits unitals a sleeper. Given
a Ree-Tits unital U , there exists, by the preceding lemma, a unique sleeper
containing U . Also, this sleeper is a subset of the equivalence class under the
relation R containing U . Hence every equivalence class modulo R contains
exactly 2 · q2 sleepers. We now show that all these can be seen as the points
and lines of a helicopter plane (i.e. a net of order q and degree q + 1, or in
other terms, an a�ne plane with one parallel class eliminated). Note that a
helicopter plane can be extended uniquely to a projective plane. The order
of that projective plane is by definition the order of the original helicopter
plane.

First we need a lemma.

Lemma 4.3 The equation

a · x+ as/3 · xs = b

has exactly 1 solution in x for every a, b 2 GF (q), a 6= 0 (and q = 32h+1,
s = 3h+1).

PROOF. By substituting x = as/3 · y and b = a1+s/3c we obtain the equiv-
alent equation

y + ys = c.

Since y 7! y + ys is an additive map, it su�ces to show that y + ys = 0
implies y = 0. But if ys = �y, then y3 = ys

2
= �ys (since s is odd), hence

y = y3, implying either y = 0, or y = ±1. The latter contradicts ys = �y.
⇤
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Theorem 4.4 The graph �(q) with as set of vertices the set of sleepers in
one fixed equivalence class modulo R and with edges the pairs of sleepers
the members of which have q + 1 flags in common with every member of
the other sleeper, is the incidence graph of a helicopter plane of order q and
its isomorphism class is independent of the choice of the equivalence class
modulo R.

PROOF. By the transitivity, we may assume that the equivalence class
modulo R consists of all Ree-Tits unitals of the form U

RT

(q) ±1(K,K

0
,K

00).

By the proof of lemma 4.2 the set {U
RT

(q) 1(0,K0
,0)kK 0 2 GF (q)} is a sleeper.

Applying  ±1(K, 0, K 00) we see that a general sleeper looks like

S±
K,L

= {U ±1(K,x,L)kx 2 GF (q)}.

Now we construct a projective plane as follows. Define the geometry �(q) =
(P ,L, I) where

P : (1) the sleepers S+
K,L

,
(2) elements P

x

, with x 2 GF (q)
(3) a point P1,

L : (1) the sleepers S�
K,L

,
(2) elements L

y

, with y 2 GF (q),
(3) a line L1,

I : P
x

I S�
x,L

, 8L 2 GF (q), P
x

I L1,
P1 I L

k

, 8k 2 GF (q), P1 I L1,
S+
K,L

I L
K

, 8L 2 GF (q),
S+
K,L

I S�
K

0
,L

0 if and only if they form an edge in �(q).

It is clear that the theorem will be proved if we show that �(q) is a projective
plane.

There are q2+q+1 points and q2+q+1 lines and the group { ±1(K, 0, K 00)kK,K 00 2
GF (q)} acts transitively on the set of points and lines of type (1). Hence it
su�ces to show that there is a unique line incident with every two points.

Take two di↵erent points of type (1), say S+
K1,L1

and S+
K2,L2

. The lines incident
with S+

K1,L1
are L

K1 and all lines S�
K+K1,�K·Ks+L1

, for K 2 GF (q).

13



If K2 = K1, then the line L
K1 is also incident with S+

K1,L2
. Since in this case

L2 6= L1, there is no other line incident with these two points.
Suppose K2 6= K1. Then L

K1 is not incident with S+
K2,L2

.
Consider the lines S�

K+K1,�K·Ks+L1
, with K 2 GF (q). Such a line is incident

with all points S+
�K

0+K+K1,K
0·K0s�K·Ks+L1

, K 0 2 GF (q). So S�
K+K1,�K·Ks+L1

is incident with the point S+
K2,L2

if and only there exists K 0 for which :
⇢

K2 = �K 0 +K +K1

L2 = K 0 ·K 0s �K ·Ks + L1 .

Sustituting K = K2 +K 0 �K1 in the second equation, we get the condition

L2 � L1 = K 0 ·K 0s �K2 ·Ks

2 �K2 ·K 0s +K2 ·Ks

1 �K 0 ·Ks

2�
K 0 ·K 0s +K 0 ·Ks

1 +K1 ·Ks

2 +K1 ·K 0s �K1 ·Ks

1

= (K2 �K1) · (K1 �K 0)s + (K2 �K1)s · (K1 �K 0)+
K1 ·Ks

1 �K2 ·Ks

2 .

This equation can be written as

a · x+ a3
h · x3h+1

= b

with a = (K2�K1)s 6= 0 and x = K1�K 0. We know by the previous lemma
that this equation has exactly one solution in x. So we have exactly one
solution for K 0 and therefore one solution for K. So there is exactly one line
of type (1) incident with S+

K1,L1
and S+

K2,L2
.

The unique line incident with a point S+
K,L

of type (1) and a point P
x

of type
(2), is the line S�

x,�(x�K1)·(x�K1)s+L1
.

The line L
K

is the unique line incident with S+
K,L

and P1.

There is only one line incident with a point of type (2) and the point P1,
namely L1.

So we have indeed a projective plane of order q. ⇤
In the next section, we show that �(q) is non-desarguesian whenever q > 3.

5 �(q) is non-desarguesian for q > 3

In order to show that the plane �(q) is non-desarguesian for q > 3, we use the
concept of coordinatization as described by D. R. Hughes and F. C. Piper
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[6]. So we coordinatize �(q) by a ternary field (R, T ). We use the same
notation as in [6]. In particular, we use R for the ring (this cannot cause
confusion with the relation R of the previous sections since we do not need
that relation anymore) and we use the symbol I for a certain point (and we
write “is incident with” always in words).

The set R of q symbols will be GF (q). We set X = P0, Y = P1 and O = S+
0,0.

The point S+
1,2 is not incident with any side of the chosen triangle and so we

can put I = S+
1,2. One can calculate easily that the point A = XI \ OY is

the sleeper S+
0,1. Similarly, B = Y I\OX is S+

1,1 and J = AB\XY is P2. We
assign to the point S+

0,c the coordinates (0, c). It is now a long but elementary
job to calculate the coordinates of all elements of �(q). One obtains

elements of �(q) coordinates

P1 (1)
P
m

(m+ms)
S+
x,y

(�x� xs,�x1+s + y)

L1 [1]
L
x

[�x� xs]
S�
m,k

[m+ms,m1+s + k]

We define a function � as follows :

8x 2 GF (q) : �(x) = y , y + ys = x.

From lemma 4.3 we know that � is a bijection. This will enable us to calculate
the ternary operation T , which is, following [6], defined as follows.

T (a, b, c) = k if and only if (b, c) is incident with [a, k], a, b, c, k 2 GF (q).

Thus (0, k) is the intersection of OY with the line joining (a) to (b, c) so that,
given a, b, c, the value of k is uniquely determined.

After some more computations, one finds

T (a, b, c) = k = ��(a) · �(b)s � �(b) · �(a)s + c.
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This defines a twisted field in the sense of A. A. Albert [1], see also P. Dem-
bowski [5].

It is convenient to define a (new) addition and multiplication in R = GF (q)
as follows.

8a, b 2 GF (q) :

⇢
a� b = T (1, a, b)
a⌦ b = T (a, b, 0).

With the definition of the ternary operation we obtain

a� b = �(a)s + �(a) + b = a+ b

a⌦ b = ��(a) · �(b)s � �(b) · �(a)s.

CASE q = 3

Here
8x 2 GF (3) : �(x) = �x.

It follows that a⌦ b = ��(a) · �(b)� �(b) · �(a) = a · b.

So we have the ordinary addition and multiplication. Hence �(3) is desar-
guesian.

CASE q > 3

It is again an elementary exercise to show that R,� is an abelian group (this
is trivial), R,⌦ is a commutative loop with identity and both the left and
right distributive laws are satisfied.

We now show that the multiplicative associative law is never satisfied.

First we will prove that

�(x) = �x� x3 � · · ·� x3h + x3h+1
+ · · ·+ x32h

Recall that the definition of � is the following: �(x) = y , y + ys = x. Put

y = �x� x3 � · · ·� x3h + x3h+1
+ · · ·+ x32h ;

then
ys = �x+ x3 + · · ·+ x3h � x3h+1 � · · ·� x32h .

It follows that y + ys = x.

Next, we show that

16



a⌦ b = ��(a) · �(b)� b · �(a)� a · �(b)

Indeed, a⌦ b

= ��(a) · �(b)s � �(b) · �(a)s

=
h
a+ a3 + · · ·+ a3

h � a3
h+1 � · · ·� a3

2h
i
·
h
�b� b3 � · · ·� b3

h
+ b3

h+1
+ · · ·+ b3

2h
i3h+1

+
h
b+ b3 + · · ·+ b3

h � b3
h+1 � · · ·� b3

2h
i
·
h
�a� a3 � · · ·� a3

h
+ a3

h+1
+ · · ·+ a3

2h
i3h+1

=
h
a+ a3 + · · ·+ a3

h � a3
h+1 � · · ·� a3

2h
i
·
h
�b+ b3 + · · ·+ b3

h � b3
h+1

+ · · ·� b3
2h
i

+
h
b+ b3 + · · ·+ b3

h � b3
h+1 � · · ·� b3

2h
i
·
h
�a+ a3 + · · ·+ a3

h � a3
h+1 � · · ·� a3

2h
i

= �(a) · �(b) + �(a) · �(b)� b · �(a)� a · �(b)

= ��(a) · �(b)� b · �(a)� a · �(a) .

Finally, we prove that

�(a3
h
) = ��(a) + a3

h

This is true since

�(a) = �a� a3 � · · ·� a3
h
+ a3

h+1
+ · · ·+ a3

2h

�(a3
h
) = �a3

h � a3
h+1 � · · ·� a3

2h
+ a+ a3 + · · ·+ a3

h�1
.

To prove the non-associativity, take b = a and c = a3
h
.

(a⌦ a)⌦ a3
h

= �� [��(a)2 + a · �(a)] ·
⇣
��(a) + a3

h
⌘

�a3
h · � [��(a)2 + a · �(a)]

� [��(a)2 + a · �(a)] ·
⇣
��(a) + a3

h
⌘

= ��(a) · � (�(a)2) + a3
h
� (�(a)2) + � (a · �(a)) · �(a)

�� (a · �(a)) · a3h + a3
h · � (�(a)2)� a3

h · � (a · �(a))
��(a)3 + �(a)2 · a3h + a · �(a)2 � a · �(a) · a3h
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and

a⌦ (a⌦ a3
h
) = ��(a) · �

h
�(a)2 � a3

h · �(a)� �(a) · a3h + a · �(a)� a · a3h
i

�
h
�(a)2 � a3

h · �(a)� �(a) · a3h + a · �(a)� a · a3h
i
· �(a)

�a · �
h
�(a)2 � a3

h · �(a)� �(a) · a3h + a · �(a)� a · a3h
i
.

If ⌦ is associative then the following must hold for all a in GF (q):

��
�
�(a)2

�
· [a� a3

h
] + �

⇣
�(a) · a3h

⌘
· [�a� �(a)]

+� (a · �(a)) · [�a+ �(a)� a3
h
] + �(a · a3h) · [a+ �(a)]

+�(a) · a3h · [�(a)� a] + a · �(a)2 = 0.

Now, let �(a) = x, so x+ x3h+1
= a. We obtain

��(x2)·[x3h+1�x3h ]+�(x2+x3h+1)·[x�x3h+1
]+�(x2+x3h+1+1)·[�x�x3h+1�x3h ]

+�(x3h+1+x2+x3h+3h+1
+x3h+1+1)·[�x+x3h+1

]+(x2+x3h+1)·(�x3h+1
)+(x+x3h+1

)·x2

or

(�x+ x3h+1
) · �(x2 + x3h+3h+1

) + (x� x3h) · �(x1+3h+1
) + x3 � x1+3h+3h+1

= 0.

If this must hold for all x in GF (q), then replacing x32h+1
by x, we must have

a zero-identity.

Remark that if h = 0 and hence q = 3, then we get indeed a zero-identity.

If h = 1 and hence q = 27, then this equation is

(�x+ x9) · �(x2 + x3+9) + (x� x3) · (x1+9) + x3 � x1+3+9 = 0 ,

or

(�x+ x9) · (�x2 � x3+9 � x2·3 � x9+1 + x2·9 + x1+3)+ (x� x3) · (�x1+9 �
x3+1 + x9+3) + x3 � x1+3+9 = 0 .

It follows that this equation is not identical zero.

If h > 1, then we obtain a polynomial in x of degree 2 · 32h + 3h+1 of which
the coe�cient of x2·32h+3h+1

is equal to 1.

We conclude that the ⌦ is not associative if q > 3. Hence �(q) is desarguesian
if and only if q = 3.
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6 Polarities and ovals in �(q)

In this section, we write down a special property of �(q) concerning ovals
and polarities without detailed proof.

First notice that the maps 1(0, 0, K 00) induce translations in �(q) with center
P1 and axis L1. The other translations are not induced by collineations of
H(q) (this can be checked by looking at the Sylow 3-subgroup ofG2(q)((1),[1])).

Theorem 6.1 The set of points A = {S+
K,0 || K 2 GF (q)} [ {P1} is an

oval in the projective plane �(q). It can be obtained in three di↵erent ways.

(i) The elements of A are precisely the absolute points of the polarity
S+
K,L

7! S�
K,�L

, S�
K,L

7! S+
K,�L

, L
K

7! P
K

, P
K

7! L
K

, P1 7! L1
and L1 7! P1.

(ii) The elements of A distinct from P1 form the orbit of S+
0,0 under the

action of the group { 1(x, 0, 0)kx 2 GF (q)}.

(iii) The elements of A distinct from P1 are precisely those sleepers which
contain a member containing a flag through the point (0, 0, 0, 0, 0) of
H(q).

PROOF. First we show that A is an oval. We have to prove that every line
through a point of A meets the set A in at most one other point. Indeed, the
line L1 only contains the point P1 of A and the lines L

k

meet A in one other
point, namely S+

k,0. Clearly, the line L
Ki is a bisecant. One can now easily

check that the other lines through S+
Ki,0

are the lines S�
K+Ki,�K·Ks . Similarly,

the points on such a line are the points S+
�K

0+K+Ki,K
0·K0s�K·Ks . This is a

point of A if and only if K 0 = ±K. So S�
Ki,0

is a tangent line of A and the
other lines are bisecants.

The properties (i), (ii) and (iii) now follow by a simple calculation (using
the fact that S+

K,L

is incident with S�
M,N

if and only if S+
0,0 is incident with

S�
M�K,N�L

(use  1(�K,�L))). ⇤
Remark that the mapping  2(0, 0, 0) also induces a polarity in �(q). The set
of absolute points is

{S+
K,�K

1+skK 2 GF (q)} [ {P1}.
This again constitutes an oval in �(q) which is probably not equivalent with
A above. But we were not able to prove that.
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