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ABSTRACT 

For q = 32h*',h 2 0, we investigate the intersections of Hermitian and Ree ovoids of the 
generalized hexagon H ( q ) .  0 1996 John Wiley & Sons, h e .  

1. INTRODUCTION 

A finite generalized hexagon of order (s, t ) ,  s, t 2 1 is a 1 - ( v ,  s + 1, t + 1) design 
S = (F', B,Z) whose incidence graph has girth 12 and diameter 6, also denoted by 
S(s, t ) .  If s = t ,  S is said to have order s. Generalized hexagons (and more generally, 
generalized polygons) were introduced by Tits [12]. The only known (up to duality) finite 
generalized hexagons of order s > 1 arise from the Chevalley groups G2(q) and have 
order q, q power of a prime. They are due to Tits [12]. We denote the Ca(q)-hexagon 

An ovoid of a generalized hexagon of order s is a set of s3 + 1 points mutually 
at distance 6. A spread of a generalized hexagon of order s is defined dually. For 
example, consider the split-Cayley Moufang generalized hexagon H ( q )  embedded in 
the nonsingular quadric Q(6, q )  (see Tits [ 121). Let PG(5, q)  be a hyperplane of PG(6, q) 
such that PG(5, q ) n Q  is an elliptic quadric Q-. Then the lines of H ( q )  on Q- constitute 
a spread of the generalized hexagon H ( q )  ([9]). Further 0 is an ovoid of H ( q )  if and 
only if 6 is an ovoid of the polar space Q(6, q )  ([lo]). So H ( q )  always has a spread. 

by H h ) .  
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It has an ovoid if and only if Q(6, q )  has an ovoid. In particular H ( q ) ,  with q even, has 
no ovoid and H ( q ) ,  with q = 3h ,  has an ovoid (see Thas 1111). 

If q = 32hi‘, h 2 0 there are two kinds of ovoids known ([ll]). Tits [13] showed 
that the generalized hexagon H ( q )  admits a polarity if and only if q is an odd power 
of three (see also [14]). The set of absolute points of such a polarity is an ovoid of 
H ( q ) ,  namely the Ree ovoid U,(q). The automorphism group in the group G2(q) of 
the Ree ovoid is the twisted Chevalley group 2G2(q) discovered by Ree ([7]) and also 
denoted by R(q) .  

Applying such a polarity to a spread of H ( q )  consisting of the lines of H ( q )  on a 
Q-(5 ,  q )  gives an ovoid of H ( q ) .  We will call these ovoids, the Hermitian ovoids. 

These ovoids of H ( q )  are also 2 - (q3 + 1,q + 1 , l )  designs (see Sec. 2.3), that is, 
unitals. In this article we will prove the following theorems: 

Let q = 32h+’,h 2 0. The intersection-numbers of a Hermitian ovoid and a Ree 
ovoid of H ( q )  are q + 1, q + f i  + 1 and q - 4% + 1. 
The intersection sets D, of order r of a Ree ovoid and a Hermitian ovoid of H ( q )  
form cyclic arcs in the corresponding Hermitian unital. For Y # q + 1, they are 
also cyclic arcs in the corresponding Ree unital. 

Remark. Analogous results for the symplectic generalized quadrangle W ( q ) ,  q = 22h+’ 
and h 2 0 are proved by Bagchi and Sastry [I]. Their proofs are based on group 
theory. Our proof uses rather elementary algebra. Bagchi and Sastry first determine 
the intersections of the groups and derive from this the intersections of the ovoids; we 
proceed in the opposite direction: we first determine the intersections of the ovoids and 
derive from this, with the help of a result of Kleidman [6],  the intersections of the copies 
of 2G2(q) and U3(q) : 2 inside G2(q) (see Theorem 2.3). Our methods can also be used 
to give an alternative proof of the results of Bagchi and Sastry (see the remark following 
Theorem 2.1). 

2. INTERSECTION OF HERMITIAN OVOIDS AND REE OVOIDS IN H ( q )  

From now on we suppose that q = 32h+’, h 2 0, and fix H ( q ) .  

A. Description of the Ovoids with Coordinates 

We will use the coordinatization of the finite Moufang hexagon H ( q )  defined by the 
quadric Q(6 ,q )  with equation X o X 4  + X 1 X 5  + X 2 X b  = X,’ as described in [14]. We 
refer to [14] for the general coordinatization theory and for more details in the case of 
this specific example. 

From [14] we recall the description of H ( q ) :  

a ,  1 ,  a’, l’, a”, k ,  b ,  k‘, b’, k” E GF(q)  

points : 

: 

(m), (a),  ( k ,  b) ,  ( a ,  1 ,  a’), ( k ,  b, k’ ,  b’), (a, 1,  a’, I’,a’’) 

[ a ] , [ k ] ,  [a ,  11, [ k ,  b ,  k’], [ a ,  I, a’, 1’1, [k ,  b,  k’, b’, k”]  lines 
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incidence : ( a ,  1, a’, l’, a”)Z[a, I ,  a’, I’]Z(a, I ,  a’)Z[a, I]Z(a)Z[m]I 

(a)Z[k]Z(k ,  b )Z[k ,  b ,  k’]Z(k, b ,  k’, b’)Z[k, b,  k’, b’, k”] 

a“ - - a k + b  

a’ = a2k  + b‘ + 2ab 

k“ = ka3 + 1 

k‘ = k2a3 + 1‘ - kl  

(a, I ,  a’, l’,  a”)Z[k, b,  k’, b’, k”] 

In that article the coordinates of a Ree ovoid are given: 

u,(q) = {(a)} u { (a ,  alls - a 3 + s ,  a’, a3+2s + .IS + a”) 

Ila, a’, a’’ E GF(q)l 

with q = 32h+’ and s = 3h+ ‘ .  
The corresponding polarity maps ( a ,  I ,  a’, l ’ ,  a”) to [a3”+’ ,  1 3 h ,  a’3h+’, P3”, a”3h ‘ ‘ I .  
A Hermitian ovoid of H ( q )  is found by intersecting with a hyperplane Y :  XI + x5 = 

0. The intersection of Y with the nonsingular quadric Q(6, q )  is an elliptic quadric 
Q-(5 ,q ) .  So the lines of Q-(5, q )  in H ( q )  form a spread of H ( q ) .  The image of 
this spread under the polarity fixing the Ree ovoid above is a Hermitian ovoid with 
the following coordinates: 

U,(q) = { (m) }  U {(a,  a’, -a3,  a”)lla, a’, a’’ E GF(q)}. 

B. The Intersection 

To investigate the intersection pattern of Ree ovoids and Hermitian ovoids, we fix a Ree 
ovoid, namely U,(q) and look at the intersection with all Hermitian ovoids of H ( q ) .  
The interesection of U,(q) with all Hermitian ovoids of H ( q )  will be done in two steps. 
First we suppose they have at least one point in common, say (m). In the second step, 
we will investigate if there exist Hermitian ovoids which are disjoint from U,(q). 

7 .  First Step. We denote by D the set of nonzero squares of the field GF(q)  (and we 
fix 9). Take the Hermitian ovoid U,(q) through (a). The action of the group G Z ( ~ ) ( ~ )  on 
UH(q) gives all the Hermitian ovoids of H ( q )  through (c-.). The group element taking 
( a ,  I ,  a’, I / ,  a”) to 

(a , y l  - ya3K + L,ya‘ + ya2K,y21’ + L’ + y2a3K2  + y21K,ya” + y a K )  

with K ,  L ,  L’ E GF(q)  and y E D does not fix U,(q). One can check this with the 
coordinates. All such elements form a subgroup G of order . q3 and the latter is 
precisely the number of Hermitian ovoids through a fixed point [see (2-B.2)]. Hence G 
acts regularly on the set of Hermitian ovoids containing the point (a). 

So a general Hermitian ovoid of H ( q )  through (m) can be written in a unique way 
as O y , K , L , L ~  and consists of the points {(a)}U 

{(a,y13 - y u 3 K  + L,ya‘ + y u 2 K ,  -y2a3 + L‘ + y2a3K2  + y213K,yl + y a K )  

(la, 1, a’ E GF(q)}.  
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Remark that @~,o,o,o = UH(q$.  The intersection of Oy,K ,L ,L t  and U R ( q )  contains the 
following points: (m) and 
( a , y 1 3  - ya3K + L,a2a3h+1 - Y2.3ha3hi1 

+ ~ / 3 ”  + y 2 . 3 h a 3 h ’ 1 ~ 2 . 3 h  + Y 2 . 3 h 1 3 h ‘ L ~ 3 h  - ay3h13h+l 3h 1 + 3 h + ’ ~ 3 h  - a ~ 3 “  + Y  a 
-y2a3 + L/  + y2a3K2  + y213K,y l  + y a K )  

for all ( a , l )  E GF(q)2 with 

So the order of the intersection of a Ree ovoid and a Hermitian ovoid of H ( q )  through 
(w) is determined by the number of solutions of the equation ( * ) .  

y l  + y a K .  (“1 a I +3h+’ + y3h13h+1 3h 3 h + ’ ~ 3 h  + ~3~ = - Y  a 

This equation can also be written as follows: 
3 h  3h+l  

y l - y  1 . 
’ 3h+1 3 h + l ~ 3 h + l  + ~ 3 “  = (a  - y 3 h K 3 h )  . (a  - y 3 h K 3  ) - y 

So we are looking for the number of solutions (x,l) of 

with x = a - 
Suppose we know x. 

with c’ = xx3”+’ + C E G F ( q )  and y E D .  
Put 1 = y3h * z.  Then eq. (1) is equal to 

Since y3z”+’ = y in GF(32h+l),  (2) is equivalent with 

with c//  = c/ . y - l - 3 ”  . The number of solutions in 1 of eq. (1) is equal to the number 
of solutions in z of eq. (3). 

is an endomorphism of the additive group of the field. The 
kernel consist of those elements Z which satisfy Z - Z3”+’ = 0. The latter is equivalent 
with Z(l - Z3h+’-1) = 0. Since one easily computes that (32h+’ - 1,3h+1 - 1) = 2,  
we see that the kernel consists of the elements O,l , -  1. Hence the eq. (3 )  has either 3 or 
0 solutions. It also follows that there are exactly 32h different values for c” for which ( 3 )  
has 3 solutions. On the other hand, there are exactly 32h elements a in GF(32h+’) with 
Tr(a) = 0, where Tr(a) = C:hoa3’. But noting that Tr(z - z3”+’ )  = 0, we see that, if 
(3) has 3 solutions, then Tr(z”) = 0. It follows that ( 3 )  has at least one-and hence 
exactly three-solution if and only if Tr(z’/) = 0. 
How many x’s? 
We know that x must be such that Tr(c”) = 0. Hence the condition on x is: 

3 h + 1  3 h  3 h + l  
xx + C = y l - y  1 

C E GF(q) ,  and y E D.  

(1) 
h 3 h + l  

We look for the number of 1 E G F ( q )  such that y l  - y 3  1 = c’, 

(2) 

( 3 )  

3 h  3 2 h l  I 3h+l  Y . Y 3 h . Z - Y . Y  ‘ z  = c / .  

3 h + l  z - z = c’/, 

3 h + l  . 
The map Z P  z - z 

Tr(y-I-3h . (xx3”+’ + C ) )  = 0 

Tr ( y  - 1-3” . x ~ 3 ” ~ ’ )  + Tr(y-I-sh . C )  = 0. 
or 

where Tr(z) = C:2,g3’ and C as defined before. Remark that Tr(z) is fixed by the 
automorphisms of GF(q) ,  so must lie in the prime field GF(3) .  So the number of x’s 
satisfying the condition is the number of x’s such that 

either Tr(y/xx3”+’) equals 0 

or T r ( y ’ ~ x ~ ~ + l )  equals 1 (**> 
- 1 ~ 3 ~  or T r ( y ’ x ~ ~ ~ + ’ )  equals - 1, y’ = y , 
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depending on T ~ ( Y - ’ - ~ ~  . C). 
We obtain three possible intersection numbers. To solve (**), we remark that, for 

all x E GF(q) ,  Tr(y’xx3’’+’) = 0, 1 or -1. Let X = T r ( y ’ x ~ ~ ~ + ’ ) ,  then X.(X - 1). 
(X + 1) = 0 (or equivalently X3 - X = 0) has exactly q solutions in x. 

Now, 
X 3  - x = (x 32”+ I 1 - 1 ) . ~ / . ~ 3 ~ + l  ( x 2  + y/1-3ht1)3h 

The greatest power of x in X, X + 1 and X - 1 is 32h + 3h. So X = 0, X - 1 = 0, 
and X + 1 = 0 have at most 32h + 3” solutions in x. 

We will show that X = 0 has exactly 32h solutions. 
The zero-solution appears 3h + I times in X3 - X, and it can only appear in the 

factor X = 0. So X = 0 has at most 32h + 3h - 3h = 32h different solutions in x. 
Define 8 : G F ( q )  - GF(3)  

Then 
x - Tr(x). 

4 
3 

IkerOl = -. 

One of the elements of ker 8 is zero and the other elements come in pairs { z ,  -z} .  Since 
- 1 is not a square, one element of such a pair is a square and the other is not. Now we 
count the number of x’s such that Tr(xx3”+I.y’) = 0. This is in other words the number 
of x’s such that y’.x.x”’+l = z with Tr(z) = 0. 

If z = 0, then x = 0. 
3-1  

If z # 0, there are 5 pairs { z ,  - z } ,  each containing exactly one square. Since x . x ~ ~ “  
is a square, exactly one u E { z ,  - z }  satisfies x . x ~ ~ + ‘  = and u is a square if and only 
if y’  is. But with u, there correspond two opposite values for x. 

So X = 0 has exactly I + 3 - 1 = 32h solutions in x, which was the maximum 
possible. Since 

gcd(X - l , X  + 1) = 2 or 1, 

gcd(X,X - 1) = 1, 

gcd(X,X + 1) = 1 

and since the factor (x2 + y’l-3h+’) is irreducible, the complete power of this factor, 
(x2 + y ’1 -3h” )3h ,  must appear in one of the factors X, X + 1 or X - 1. The factor 
X = 0 can be excluded by the previous observation. 

Thus, X = 0 has 32h solutions in x and one of X - 1 = 0 or X + 1 = 0 has at most 
32h + 3h - 2.3h solutions in x and the other has at most 32h + 3h solutions in x. But 
the total number of solutions must be q = 32hf’  so the at most becomes exactly. 

We proved that the intersection numbers of a Hermitian ovoid and a Ree ovoid, 
which have at least one point in common, are 

32h.3 + 1 = q + 1 
(32h - 39 .3  + 1 = q - 4% + 1 
(32h + 39.3 + I = q + f i  + 1 

Remark. Note that the number of Hermitian ovoids through (m) meeting UR(q) in 
q + 1 points equals the number of such ovoids meeting U,(q) in q - f i  + 1 resp. 
in q + f i  + 1 points [since Tr(x) = 0, 1 or - 1  has equally many solutions]. 
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2. Second Step. 
common with a Ree ovoid. 
The total number of Hermitian ovoids in H ( a )  is 

We will show that all Hermitian ovoids have at least one point in 

The total number of Hermitian ovoids in H ( q )  through a fixed point is 
q6 . (4  - 1)(q2 - 1) q - 1  

2.q”qZ - 1 )  = q 3 . 7  
From the last remark we know that there are $ . Hermitian ovoids through a fixed 
point of U,(q) intersecting the Ree ovoid U,(q) in q + 1 points, the same number of 
Hermitian ovoids through a fixed point of U,(q) intersecting in q + JG + 1 points 
and q - f i  + 1 points. 

In order to count the number of Hermitian ovoids, K,, which intersect U,(q) in i = 

q + 1 ,  q + JG + 1 or q - fi + 1 points, we count in two ways, the couples @,K) 
with p E U,(q), K a Hermitian ovoid of H ( q )  which intersect &(q) in, respectively, 
q + 1, q + JG + 1, and q - f i  + 1 points and pIK. We obtain: 

The number of Hermitian ovoids of H ( q )  which intersect U,(q) in q + 1 points is 
1 .  ( q 3  + 1) . $ . y-‘ 2 = Kq+l.(q + 1) 

- . ~ .  q3 q - l  ( q Z - q + I )  

- . - .  q3 q - l  ( q + l ) . ( q - & + l )  

3 2 
(q-1)  - 2. (q3 + 1) . 5 . -j- - K q + f i + , . ( q  + ,& + 1) 

3. ( q 3  + 1 ) .  9 . 0 2 = Kq-Sj;;+I . (4  = I/% + 1) 

The number of Hermitian ovoids of H ( q )  which intersect UK(q) in q + ,& + 1 is 

3 2 

The number of Hermitian ovoids of H ( q )  which intersect UR(q)  in q - ,& + 1 is 
_ . ~ .  q3 q - l  ( q + l ) . ( q + f i + 1 )  
3 2 

So we have f . * [q2 - q + 1 + 2(q + 1) . (q  + l)] = T q1 . (q3 - 1) Hermitian 
ovoids which have at least one point in common with U,(q). But this number is exactly 
the total number of Hermitian ovoids of H(q) .  

So all Hermitian ovoids intersect U,(q) in q + 1, q + f i  + 1 or q - I/% + 1 
points. This proves the first theorem: 

Theorem 2.1. Let q = 32h+1, h 2 0. The intersection-numbers of a Hermitian ovoid and 
a Ree ovoid of H(q) are q + 1, q + f i  + 1, and q - f i  + 1. 

Remark. We can apply the same method to obtain the intersection numbers of an 
elliptic ovoid and a Suzuki ovoid of the generalized quadrangle w(q) with q = 22h+’, 
h 2 0. 

We mention here some major steps of the proof, using the coordinatization introduced 
in [4] 

First step 

1. The Suzuki ovoid: ( (00) )  U { ( a , a . ~ ~ ~  + ~ ’ ~ ~ , a ’ ) ( l a , a ’  E GF(q)}  
Elliptic ovoids through (w): 

{(m)} U { (a ,ya  + ya’ + a K  + L,y2a’  + aK2)lla,a’ E GF(q))  
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with 

y E GF(q)*,L E GF(q)  
and K E D C G F ( q )  with D a set of cardinality 4 satisfying: if x E D then 
x + l @ D .  
The intersection contains besides (m), those points of the Hermitian ovoid for 
which 

..2h + Y2h” . a/2” + . KZht‘ = ya  + ya‘ + a K  + L ,  

or, 
+ ya” = ya’ + (y2a’)2h + C with a” = a + K2‘+’. 

2.  Via a system of linear equations over GF(2), we find two solutions for a’ 
. (C + a / / 2 ” + l  + ya’’)) = 0. In this 2”+ I ~, 

for every fixed d’ for which Tr(y- 
way we find two intersection numbers for a Suzuki ovoid and an elliptic ovoid 
through a fixed point of the Suzuki ovoid, namely 

and q + f i  -t 1 q - f i  + 1 with q = 22h+’. 

Second step 
By an analogous counting argument, we find that a Suzuki ovoid always meets 
an elliptic ovoid nontrivially. So the two mentioned intersection numbers are the 
only ones. 

C. Study of the Intersection Sets 

With the Ree and Hermitian ovoids of H ( q ) ,  there correspond 2 - (q3 + 1,q + 1, 1) 
designs, that is, unitals. For this, we have to define the blocks of the design. 

A block through two points x and y of a Hermitian ovoid is the point regulus R ( x ,  y )  
([S]). This is the set of q + 1 points at distance 3 from the lines which are at distance 
3 from x and y .  The points of a Hermitian ovoid H ( q )  and the corresponding point 
reguli form a 2 - (q3  + 1, q + 1, l )  design, isomorphic to the Hermitian unital. 
A block through two points x and y of a Ree ovoid H ( q )  is defined as follows: Let Ly 
(resp. L,) denote the unique line through y (resp. x) at distance 3 from the absolute 
line through x (resp. y) .  Then every line of the regulus R(L,, L y )  contains a unique 
point of the Ree ovoid. This can be checked immediately: Take the Ree ovoid 
U R ( q )  as defined in the previous section. Since R ( q )  is 2-transitive, we only have 
to construct the block through p = (a) and q = (0, 0, 0, 0,O). The line [O] through 
(a) is at distance 3 from (0, 0, 0, 0,O) and the line [0, 0, 0, 01 through (0, O,O, 0,O) 
is at distance 3 from [a]. The regulus through [O] and [O,O,O,O] contains the lines 
[O,b ,O ,O] .  These lines contain a unique point of u R ( q )  namely (0 ,b ,0 ,0 ,b3*) .  
Remark that such a set of q + I points is independent of the choice of any two 
points in it. 

With these blocks and the points of a Ree ovoid of H ( q )  we have again a 2 - (q3 + 
1, q + 1, l )  design. Indeed, the points (0, b, 0, 0, b3h) and (a) are fixed pointwise by the 
following involution (T preserving U R  (4): 

u : ( a ,  I, a’, V ,  u ” ) p  ( -a ,  1, -a’, -l’,u’’). 
Hence, by definition, the unital we defined geometrically is exactly the usual Ree 
unital ([13]). 
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Lemma 2.2. Two Hermitian unitals of H ( q )  intersect in either one point or in a block. 

Prooj Take two dual Hermitian unitals (so two Q-(S, 4)'s) in Q(6,q). If they intersect 
in at least two lines, then the regulus through those two lines lies in the intersection. 
Suppose they intersect in more than a block. Then we have 3 lines of a Q-(5 ,  q )  not on 
one regulus. Since they span a 5-dimensional space, they span the whole Q - ( S , q )  and 
the two unitals coincide. So two Hermitian unitals intersect in zero, one or q + 1 points. 

We will now show that every two Hermitian unitals intersect. Every two different 
5-dimensional spaces of PG(6, q) intersect in a 4-dimensional subspace. If we can prove 
that every 4-dimensional subspace of a 5-dimensional subspace which intersect Q(6, q )  
in a Q-(S, q )  contains at least one line of a spread of Q-(5, q )  then we are done. 

Fix such a 5-dimensional subspace n5 and call the spread S. If the 4-space is a 
tangent hyperplane of n, then it contains exactly one line of S. A nontangent 4- 
subspace n4 contains lQ(4,q)l = (q2 + 1) . ( q  + 1) points of Q(6,q) .  Let x be the 
number of lines of S which lie in 114 and y the number of other lines of S, so these 
intersect n4 in a point. We have x + y = q3 + 1. On the other hand, by counting 
in two ways the number of pairs ( p , R )  with p E Q(4,4), R E S and pIR,  we get 

0 (q2 + 1 )  . ( q  + I )  = x . (q  + 1 )  + y .  This implies that x = q + 1. 

Theorem 2.3. r f  r # q + 1, then the intersections of order r of a Hermitiun and 
Ree unital are orbits under a cyclic subgroup of order r of the intersection Ll qf the 
corresponding automorphism groups R(q )  and U3(q) ; 2. The group D itself is isomorphic 
to r : 6 (Atlas notation). r f  r = q + 1, then the intersections of order r of a Hermitian 
and Ree unital are orbits under the fourgroup normalizer (22 X D e )  ; 3. 

Prooj Take a copy of R ( q )  and denote the corresponding Ree unital by u R ( q ) .  Denote 
by D, the intersection of order r of u R ( q )  with a suitable Hermitian ovoid u H ( q ) .  In 
the previous section we proved that r is either q + 1, q + fi + I or q - fi + 1. 

In this paragraph we suppose that (q,  r )  # (3,4). 
From the coordinates of the points in D, we conclude that D, is not a subset of a 

block of ' U H ( ~ ) .  Hence every element of Gz(q) stabilizing D, also preserves U,(q). 
Therefore the group D stabilizing D, coincides with the subgroup of R ( q )  stabilizing D,. 
Denote by K,  all copies of u,(q) intersecting u R ( q )  in r points. What is the order of 
the automorphism group of D, (denoted by IAut(D,)I) in R(q)? 

The order of R ( q )  is (q3 + l).q3.(q - I). Suppose the set K, is divided in k orbits un- 

der the action of R(q) .  If all these orbits have the same size, then lKrl = k.  laul(n,(jl '. 
From the previous section we know the values of lK,l. We find that IAut(D,)I = k.6.r. 
If not all those orbits have the same size then there exists at least one D, with 
IAut(D,)I 3 k.6.r. We consider such a D,. 

On the other hand, we can calculate the stabilizer of a point of the automorphism 
group of D,: 
Let (q,  r )  # (3,l) and suppose the intersection D, contains besides (w) also the 
points ( a ,  (1 - c ) ~ ,  -as - a2+' - a.1, -a3, 1) with s = 3hf '  and a,  I E GF(q)  such 
that as+' = 1 - Is + Cs (according to T r ( 0  we have a q + 1, q + fi + 1 or 
q - 4% + 1 intersection). The stabilizer of (w) in the automorphism group of 
VR(q) transforms the other points in (xu + A,x3+$(1 - C)3 + A''$ - AJx3a3 - 

(y3+1j.q3. q - l  

A3+S - x 2 + S ( a S  + a 2 + F  + a l )  + A/ - A//xa + AzXza2 - AA", - ~ 3 + 2 S a 3  + A'" + 
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A 2 s ~ 3 u 3  + A $ X ’ + ~ ( ~  - C)3 + A 2 y + 3 , ~ 1 + s l  + A” + A S x a )  and 
A,A’,A’’ E GF(q) .  

Expressing that these points must belong to D, gives the conditions A = A/  = 0, 
A/ /  E GF(3) ,  and x = 1 or -1. So we have a group Dpl  of order 6. 

Let 1 be the length of the orbit of (m) under Aut(D,).  Then 1 = 2 k . r .  From 
1 5 r it follows that k = 1, IAut(D,)I = 6.r and the automorphism group of UR(q)  
is transitive on D,. Hence all orbits in K ,  considered above have equal length and the 
argument above shows that IAut(D,)I = 6.r in every case. 

Remark that the automorphism group of D, does not fix any point of U R ( q )  since 
D p )  only fixes the point (m). 

Now D,  must be a subgroup of at least one maximal subgroup M of the automorphism 
group of U R ( q ) .  For q # 3, there are only 6 possibilities ([6]): 

with x E GF(q)* 

IAut(D,)I 

1. M fixes a point. 
Excluded by the remark above. 

2. M fixes a block of the unital. 

Suppose the fixed block lies in UR(q)D, .  Take an element p of order 3 of 
Aut(D,) fixing a point of D,. Then q + 1 must be divided in orbits of length 
1 or 3. So p has at least two fixpoints which is impossible. 
Suppose the fixed block lies partly in D,. Taking again such an element of order 
3, we know that it must fix an element of D,. Since Aut(D,) is transitive, we 
can choose this fixpoint outside the block and an analogous reasoning leads 
to a contradiction. 
Suppose the fixed block lies entirely in D,. In the Theorem 2.5 we will show 
that this is never the case (note that in the proof of Theorem 2.5 we use the 
argument that D is transitive on D,, which we have already proved). 

3. M = R(#j) with rz a prime. 
In this case, the Aut(D,) must be a subgroup of at least one maximal subgroup 
of I?(#). It cannot be the whole group because the highest power of 3 in 6.r is 
1 but 27 divides the order of R ( q ) ,  for all q = 32h+‘,  h 2 0. So again we can 
examine the 6 cases. By induction we can exclude the first three cases and cases 
4, 5, and 6 are excluded because their orders are too small. 
We are left with the last three possibilities: 

4. M = (2’ X D G )  : 3. 

So for r # q + 1, we have Aut(D,) = r : 6. 
For r = q + 1, Aut(D,) = (22 X D e )  : 3. 
Now let q = 3. Cases 2 and 4 coincide, case 3 can not occur and case 6 is not 

maximal. If r = 4, then since D, is a block of the unital U,(q), D 23 : 3 (cases 2,4). 
If r = 7, we have case 5 so D = 7 : 6. Finally if r = 1, a direct computation shows 

0 

Z 

that the corresponding point stabilizers share a cyclic group of order 6. 
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Corollary 2.4. The intersections D, with r = q + fi + 1 and q - f i  + 1 are 
arcs in the corresponding Hermitian unital and can be extended to maximal (q2 - q + 
1)-arcs of the unital. 

Prooj The groups of these intersections are also subgroups of a maximal subgroup 
of U3(q) : 2. Since q + f i  + 1 and q - fi + 1 are divisors of q2 - 4 + 1, the 
corresponding intersection groups are subgroups of the maximal subgroups of U3(q) : 2 
of order 6(q2 - q + 1). Indeed, consider a prime p dividing r = q + fi + 1 and let 
P be the (unique) Sylow p-subgroup in Aut(D,). Clearly P is also a Sylow p-subgroup 
of U3(q) : 2: and hence also of a certain “Singer cycle” of order q2 - q + 1, by which 
it is centralized. But also Aut(D,) centralizes P ,  hence the result. In [5] ,  131, and [ 2 ]  it is 

0 proved that these maximal subgroups are related to maximal arcs. 

Theorem 2.5. The intersection sets D,  of order r of a Ree ovoid and a Hermitian 
ovoid of H (q)  form an arc in the corresponding Hermitian unital. They are arcs in the 
corresponding Ree unital if and only if r f q + 1. 

Proof: Since there exists a transitive group on every intersection set D,, it is an arc if 
the blocks through one point of D, contain at most one other point of D,. If we take the 
Ree ovoid &(q)  from the previous section and the corresponding suitable Hermitian 
ovoid, we have the following intersection set D,: 
(m) and ( a ,  ( I  - C)3, -a’ - a2+’ - a.1, - a 3 ,  I) with s = 3htl and a ,  1 E G F ( q )  such 
that as+’  = 1 - I‘ + C‘ (according to Tr(c) we have a q + 1, q + fi + 1 or 
q - fi + 1 intersection). 

The blocks through ( w )  in the unital of the Hermitian ovoid are the sets: 
{ (w)}  U {(A,A”’ - A‘+3,  u ’ , A ~ + ~ ’  + a” + A’A’/”A’’)Ila’ E GF(q)} .  

It is obvious that there is at most one other point of D, on such a block. 
The blocks through (w) in the unital of the Ree ovoid are the sets: 

If A # 0 then there is at most one other point of D, on such a block. 
From the condition of A of the intersection sets, it follows that points with A = 0 

belong to D, only when Tr(C) = 0, so only when r = q + 1. In this case, the 3 points 
of D,+1 with A = 0 lie on the same block through (w). Applying the transitive group 

0 

{ (w)}  U {(A,u’” - AS+3,A’,A3+2S + A” + A s a ” s , ~ ” ) l l ~ ”  E GF(q)} .  

on Dy+ 1 ,  the q + 1 points are divided in 4-subsets of 9 blocks of the unital. 

Remark. These intersection-arcs are not complete in the unital (see the previous 
corollary for the Hermitian unitals; for the Ree unitals, this was checked by computer 
using CAYLEY for small values of q). 
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