
Hyperbolic lines in generalized polygons

J. van Bon⇤, H. Cuypers and H. Van Maldeghem†

August 29, 2013

Abstract

In this paper we develop the theory of hyperbolic lines in gener-
alized polygons. In particular, we investigate the extremal situation
where hyperbolic lines are long. We give restrictions on the exis-
tence of long hyperbolic lines and characterize the symplectic gener-
alized quadrangles W (k) and generalized hexagons H(k) related to
the groups G2(k) by the existence of certain classes of long hyperbolic
lines.

1. Introduction

A generalized n-gon � is an incidence structure (P ,L) consisting of a set P of

points and a set L of lines with symmetric incidence relation whose incidence

graph satisfies

1. any two vertices are connected by a path of length at most n;

2. any smallest circuit has length 2n;

3. for any vertex x there is a vertex y at distance n from x.
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contract number: ERBCHBGCT920004

†The third author is a Senior Research Associate of the National Fund for Scientific
Research (Belgium)
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� is called thick if any element is incident with at least 3 others.

Generalized polygons were introduced by Tits in his paper [15]. However,

even before this definition one can find characterizations of the symplectic

generalized quadrangles (i.e. generalized 4-gon) by the existence of large

hyperbolic lines (where for finite generalized quadrangles of order (s, t) large

means that they contain at least s + 1 points), see [6] and [11]. In this

paper we extend the study of hyperbolic lines in quadrangles to the study of

hyperbolic lines in arbitrary generalized polygons.

Let � = (P ,L) be a generalized n-gon, n � 4, with point set P and set

of lines L and distance function � on the incidence graph of � whose vertex

set is P [ L. Two elements are called opposite if their distance equals n.

For each element (point or line) x of � we denote by x? the set of elements

not opposite x, i.e. x? = {y 2 P [ L | �(x, y) < n}. If X is a subset of

P [ L, then we denote by X? the intersection of the sets x? for all x 2 X.

Suppose x and y are two noncollinear points of �, i.e., their distance is at

least 4. The set H(x, y) = {x, y}?? is called the hyperbolic line on x and y.

If the distance between x and y equals 2j, then H(x, y) is called a distance-j

hyperbolic line of �. In the next section it will be shown that a distance-j

hyperbolic line only contains points that are at mutual distance 2j.

If H is a hyperbolic line and X 2 P [L an element of � at distance n�1

from at least two of the points on H, then it is at distance at most n � 1

from all the points of H. In particular, if X is at distance n� 1 from all the

points of H, then the projection h 2 H 7! x, where x is the unique element

of � which is adjacent to X and in h?, is either constant or injective. We will

call the hyperbolic line H long if and only if any such injective projection is

also surjective (see Corollary 2.3 below).
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Our first result puts some restrictions on the existence of long hyperbolic

lines.

Theorem 1.1 If every distance-j hyperbolic line of a thick generalized n-gon

is long, 2  j < n/2, n � 6, then j  (n + 2)/4. If moreover the same is

true in �D, the dual of �, or j is even, then j divides n and j  n/4.

The first case to consider according to the above theorem is the case

where � is a generalized hexagon (that is, a 6-gon) containing long distance-

2 hyperbolic lines.

The generalized hexagon H(k) associated to the group G2(k), where k is

some field, is constructed by Tits [15] as the set of lines fixed by some triality

automorphism of a polar space of type D4. The points of H(k) are the

points of a geometric hyperplane of this polar space isomorphic to the polar

space on the isotropic points of a 6-dimensional orthogonal space. Moreover,

two points are at distance at most 4, if and only if they are collinear in the

polar space. This clearly implies that the distance-2 hyperbolic lines of H(k)

coincide with some of the lines of the polar space. We immediately find

that these hyperbolic lines are long. The following result characterizes the

hexagon H(k) by this property:

Theorem 1.2 If � is a thick generalized hexagon all of whose distance-2

hyperbolic lines are long, then it is isomorphic to the generalized hexagon

H(k) for some field k.

The above theorem is a consequence of Ronan’s characterization [12] of

the Moufang hexagons by the existence of ideal lines, see also Yanuska [19]

for the finite case. An ideal line l is a distance-2 hyperbolic line with the

property that if x is a point at distance 2 from two points of l, then each line
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on x meets l nontrivially. Ronan’s work depends on some deep results of Tits

on rank 3 polar spaces and Moufang hexagons. In Section 4 of this paper

however, we give two elementary proofs of the above theorem not relying on

Ronan’s work.

The second interesting case is where � is a thick generalized octagon.

If all distance-j hyperbolic lines are long then we cannot have j = 3. The

following result shows that we cannot have j = 2 either.

Theorem 1.3 There does not exist a thick generalized octagon, all of whose

distance-2 hyperbolic lines are long.

In our first theorem we did not consider the case of long distance-n/2

hyperbolic lines, where n is even. This case will be handled completely by

the following result.

Theorem 1.4 Suppose � is a thick generalized n-gon, with n > 2 and even.

If all distance-n/2 hyperbolic lines are long, then either n = 4 and � is

isomorphic to the symplectic quadrangle W (k), for some field k, or n = 6

and � is isomorphic to the generalized hexagon H(k0), where k0 is some field

of even characteristic.

Indeed, the symplectic quadrangle has long hyperbolic lines, and so does

the generalized hexagon H(k) for fields k of even characteristic. For, the iso-

morphism of the polar space of isotropic points in a 6-dimensional orthogonal

space with a symplectic polar space in 5 dimensions in even characteristic

yields an embedding of the hexagon H(k) into a symplectic space. The

distance-3 hyperbolic lines of the hexagon then coincide with the hyperbolic

lines of the symplectic space and are obviously long.

We conclude with a corollary of the above result for finite or compact

connected topological polygons with order (s, t).
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Corollary 1.5 Let � be a thick finite or compact topological generalized n-

gon, n � 4, of order (s, t), t � s. If all points of � are distance-2 regular,

then � is isomorphic to the finite generalized quadrangle W (s) or hexagon

H(s), or the topological quadrangle W (k) or hexagon H(k), where k =IR or

C.

In the next section we will give some preliminary results on hyperbolic

lines in generalized n-gons. Moreover, various restrictions on the existence

of thick, ideal or long hyperbolic lines will be given. Section 3, 4 and 5

are devoted to the proofs of Theorem 1.2 and Theorem 1.3, Theorem 1.4,

respectively Corollary 1.5.

2. Hyperbolic lines

Let � = (P ,L) be a generalized n-gon, n > 2, and � the distance function

on �.

Let v be any element of � and let v0 be an element opposite v. For any

i 2 {1, 2, . . . , n � 1}, the set vv
0

[i] = {w|�(v, w) = i = n � �(v0, w)} is called a

distance-i trace in v?.

If x and y are two elements at distance j, with j  n � 1, then the

projection of y on x is the unique element z at distance 1 from x and j � 1

from y.

An apartment of � is a non-trivial closed circuit of length 2n of distinct

consecutively incident elements of �.

Lemma 2.1 Let x and y be two points in � at distance 2j  n. Let v be an

element of � at distance j from both x and y. Then H(x, y) is contained in

every distance-j trace in v? containing x and y.

Proof. Suppose z 2 H(x, y) and let i = �(v, z). Clearly, z is not opposite

v (because v 2 {x, y}? and z 2 H(x, y)). Up to permutation of x and y we
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can assume that the projection of z onto v is distinct from the projection of

y onto v.

Let ⌃ be any apartment containing x, y and v. Let w be in ⌃ opposite v.

If z0 is the element on the path from v through y to w at distance n � i

from v, then z0 2 y?, but z0 is opposite z. Hence, as z 2 H(x, y) the element

z0 is opposite x, and n� i+ j = n. Thus i = j.

Now assume that the projection of z onto v is also distinct from the

projection of x onto v. Let � be a path from w to v containing the projection

of z onto v. Let �0 be the path from z to v and let k be the length of �0 \ �,

1  k  j. If 2k � j, then let z00 be the unique element of ⌃ at distance

n � 2k from y and n � 2k + j from v. Then z00 is opposite z and hence it

must be opposite x. But �(z00, x) = n � 2j + 2k. This implies k = j and z

belongs to vw[j]. If 2k < j, then let z00 be the point on � which is at distance

j� 2k from w. The point z00 is opposite z, but at distance n� j+ j� 2k < n

from both x and y. This contradicts z to be in H(x, y). Hence z 2 vw[j], and

since w was arbitrary, the result follows.

So we may assume that the unique path �0 defined above (connecting z

and v) meets the unique path from x to v in a path of length k � 1. Now we

consider the point u in ⌃ at distance n� 2j+2k from x and distance n� 2k

from y. By the definition of k, u is opposite z, but it is not opposite y (since

k > 0), hence it should be opposite x, implying k = j and z = x.

This completes the proof of the lemma. ⇤

Lemma 2.2 Let x and y be two points at distance 2j > 2. If x0 and y0 are

distinct points in H(x, y), then H(x0, y0) = H(x, y).

Proof. Suppose x and y are at distance 2j, and v is an element at distance

j from both x and y. Let z be a point in H(x, y) but distinct from x and
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y. Then by the above lemma z is also at distance j from v. By definition of

H(x, y) we have that x? \ y? ⇢ z?. We will show that x? \ y? = y? \ z?.

By way of contradiction, assume that there is an element in y? \ z?

but opposite x. Let a be such an element with �(y, a) = k minimal. Let

� = (y0 = a, y1, . . . , yk = y) be a minimal path from a to y. If a is the only

point on � opposite x, then the minimal path from z to a contains v and

�(x, a) = �(x, v) + �(v, a) = �(z, v) + �(v, a) < n. This is a contradiction.

Thus there is an element on � distinct from a but opposite x. Let l > 0

be minimal with y2l opposite x. Then y
l

is at distance n � l from x. Let

(x0 = y
l

, x1, . . . , xn�l

= x) be the minimal path from y
l

to x. Then x1 6= y
l+1.

All points y
m

with 1  m  2l � 1 and x
m

0 with 0  m0  l are in x? \ y?

and hence also in z?. This implies, together with a = y0 2 y? \ z?, that the

point y
l

is at distance  n� 1� l from z. However, then y2l is at distance at

most n� 1 from z, and hence in y? \ z?, which contradicts the choice of a.

Hence x? \ y? = y? \ z?. But then for all distinct x0, y0 2 H(x, y) we have

x0? \ y0? = x? \ y?, and thus H(x0, y0) = H(x, y). ⇤

The above lemmas justify the name distance-j hyperbolic line.

Corollary 2.3 Let H be a distance-j hyperbolic line, and v an element of

� at distance n � 1 from two elements in H. Then either v is at distance

 n�2 from a unique point on H or all points of H have distance n�1 to v.

In the last situation the projection of H on v is either injective or constant.

Proof. Suppose v is at distance n � 1 from distinct x and y in H. By

definition of H and the above lemma, v 2 a? for all a 2 H. If a point u

is adjacent to v and opposite to x, then by 2.2 it is opposite to at least all

but one of the points of H. So, there is at most one point in H at distance
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 n�2 from v. For a point z at distance at most n�1 from v we will denote

the projection of z on v with v
z

.

Suppose v is at distance n � 1 from all the points in H. If v
x

= v
y

for

some distinct x and y in H, then by the above lemma and the definition of

H, all v
x

2 z? for all points z 2 H. In particular, v
x

= v
z

, and the projection

of H on v is constant. ⇤

It is straightforward to see that that in a thick generalized n-gon each of

the above mentioned situations do occur.

Let 2  j  n/2, and x and y be two points at distance 2j. The distance-

j hyperbolic line H = H(x, y) will be called thick if it contains more than 2

points, and ideal if it consists of all the points of any j-trace vw[j], where v is

at distance j from both x and y and w is opposite v. The hyperbolic line H

is called long if the projection of H onto any element of � at distance n� 1

of at least two and thus, by 2.3, all elements of H, is bijective whenever it is

injective.

Lemma 2.4 Let 2  j  n/2. Every long distance-j hyperbolic line is ideal.

Proof. Let x and y be two arbitrary distinct points of a long distance-j

hyperbolic line H = H(x, y). Let v be an element at distance j from both

x and y. Let w be opposite v such that x, y 2 vw[j]. By lemma 2.1, H is

contained in vw[j]. Suppose there is a point z 2 vw[j] not belonging to H. Let

v0 be the projection of x onto v and let w0 be the projection of z onto w.

Clearly v0 and w0 are opposite, so by the thickness assumption, there exists

a path � = (v0 = v0, v1, . . . , vn�1, vn = w0) in � with v1 and v
n�1 not on

the apartment containing v, x, w and z. Consider the element v
n�j

. We

have �(v
n�j

, w0) = j, �(z, w0) = n � j � 1 and �(x0, w0) = n � j + 1, for all

x0 2 H. Hence �(x0, v
n�j+1) = n and x0 is opposite v

n�j+1, for all x0 2 H.
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Moreover, �(x0, v
n�j

) = n � 1 for all x0 2 H. Similarly, one shows easily

that �(x, v
n�j�1) = n � 2 and, with the help of 2.1, �(x0, v

n�j�1) = n, for

all x0 2 H di↵erent from x. Hence the projection of H onto v
n�j

is not a

constant mapping, so it is injective, but sinceH is long, it should be bijective.

This contradicts the fact that v
n�j+1 is opposite every element of H. Hence

the result. ⇤

An element v of � is called distance-j regular, if any two of its distance-j

traces of the form vw[j], where w is a point opposite v, are either equal or meet

in at most one element. The above implies.

Corollary 2.5 Let v be an element of a generalized n-gon �, n > 2. If

every distance-j hyperbolic line defined by two points at distance j from v,

2  j  n/2, j even if v is a point, j odd if v is a line, is long, then v is

distance-j regular. ⇤

Combining this with the main result of [18] we obtain strong restrictions

on the existence of ideal or long hyperbolic lines:

Theorem 2.6 If every distance-j hyperbolic line of a generalized n-gon is

ideal or long, 2  j < n/2, n � 6, then j  (n+ 2)/4. If moreover the same

is true in �D, the dual of �, or j is even, then j divides n and j  n/4.

Theorem 1.1 follows from this result and Theorem 1.3 now follows from

Theorem 2.3 of the above mentioned paper.

However, using almost the same proofs as in [18] we can obtain results

similar to the above just on thick hyperbolic lines:

Theorem 2.7 Suppose 2  j < n/2, and n even. If all distance-j hyperbolic

lines are thick, then either j = n/2� 1 or j  n/4 + 1.
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Proof. Suppose j 6= n/2� 1, then there exists an maximal even number k,

with j  k < n/2. Let v and w be two points, if j is even, or two lines,

for odd j, at distance k, and fix an apartment ⌃ on v and w. Denote by

v0, respectively, w0 the element opposite v, respectively, w in ⌃. Let v1 and

v2 be the two points at distance j from v, and w1 and w2 the two points at

distance j from w inside ⌃. Let v3, respectively, w3 be a third point on the

hyperbolic line H(v1, v2), respectively, H(w1, w2). There are paths �v and �
w

from v to v0, respectively, w to w0 of length n that contain v3, respectively,

w3. Let v00 be the unique element on �
v

at distance k from v0, and w00 the

element on �
w

at distance k from w0. Then v00 is opposite w and at distance

n � j from both w1 and w2. Hence, by Lemma 2.1 v00 is also at distance

n� j from w3. Similarly we find w00 to be at distance n� j from v3. ¿From

2j+2k  4k < 2n it follows that �(v3, w3) > k. Now we have found a circuit

through v3, v00, w3, w00 of length at most (n�j�k)+(n�j)+(n�j�k)+(n�j).

Hence 4n � 4j � 2k � 2n, which implies j  (n � k)/2. This proves the

theorem. ⇤

A point x of a generalized polygon is called projective if it is distance-2

regular and any two distance-2 traces of the form xw

[2] with w opposite to x

meet nontrivially. If x is a projective point, then these distance-2 traces and

the lines through x define a projective plane on the set of all the points at

distance at most 2 from x (called the derivation at x).

Proposition 2.8 Let n > 3 and suppose that H is a distance-2 hyperbolic

line in the generalized n-gon �. Let x be a point at distance 2 from all points

of H and let v be opposite x. If H is long, then H \ xv

[2] is non-empty. In

particular, all hyperbolic lines whose points all lie at distance 2 from x are

long, if and only if x is projective.
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Proof. Let x, H and v be as stated. Let y 2 H and let w be the projection

of the line xy onto v and let u be the projection of xy onto w.

We may assume that the projection y0 of v onto xy is di↵erent from y.

Hence it is clear that �(x, u) = n � 2, �(x, w) = n � 1 and �(y, u) = n � 2.

Let z 2 H\{y}. Then �(xz, w) = n, so �(z, w) = n � 1 and �(z, u) = n.

Consequently w is at distance n� 1 from all points of H and the projection

of H onto w is bijective. Hence there is a point a 2 H at distance n � 2

from v, implying a 2 H \ xv

[2]. This implies the first part of the proposition.

Moreover, it also shows that the point x is projective if all the hyperbolic

lines whose points are at distance 2 from x are long.

Finally suppose that x is projective and let y and z be two points at

distance 2 from x but with �(y, z) = 4. Denote by H the hyperbolic line

H(z, y). Let v be opposite to x but in z? \ y?. Then H ⇢ xv

[2]. Suppose w

is in z? \ y?. If w is opposite x then xv

[2] = xw

[2]. If �(w, x) < n� 2 or equal

to n � 1, then clearly xv

[2] ⇢ w?. Since both y and z are in w? �(x, w) can

not be n� 2. For then both the projection of y and of z on x are at distance

n� 3 from w, which is impossible. Thus xv

[2] = H and any element incident

to x is incident to some point of H.

Now assume u is at distance n�1 from all points of H, and suppose that

the projection of H on u is injective, but not surjective. Hence there is an

element r, at distance 1 from u, but at distance n from all the points of H.

Since x is projective, r is not opposite x. Thus r is at distance n � 2 from

x. The projection of r on x is at distance n� 3 from r and adjacent to some

point in H. This is a contradiction. Hence the projection of H onto v is

surjective and H is long. ⇤

Theorem 2.6 does not cover the case of long distance-n/2 hyperbolic lines.

We take care of that in the next theorem. Note that n is automatically even.
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Theorem 2.9 If all distance-n/2 hyperbolic lines of a generalized n-gon �

are long, n > 2 and even, then all points are distance-n�2
2 regular. In partic-

ular, n = 4 or n = 6. If � is finite of order (s, t), then the existence in � of

one long distance-n/2 hyperbolic line implies s = t.

Proof. For n = 4, there is nothing to prove, so assume n � 6.

Let y and z be two opposite points and letH = H(y, z) be a long distance-

n/2 hyperbolic line. Let x be collinear with y but opposite z. Let v be the ele-

ment of � at distance n/2 from z and n/2�1 from the line xy. By Lemma 2.4,

�(v, a) = n/2 for all a 2 H. Now let � = (x = v0, v1, . . . , vn�1, vn = z) be any

path of length n joining x with z but not containing xy. All the elements

v1, v2, v3, . . . , vn�3 are neither opposite z nor opposite y, hence they are not

opposite a, for any a 2 H. So let a 2 H, z 6= a 6= y. Since x is opposite z,

but not opposite y, we find that a is opposite x and �(v2, a) = n � 2. Sup-

pose the path �0 joining v2 and a contains v
j

but not v
j+1, for some integer

j with 2  j  (n � 4)/2. Then clearly, �(a, v2j) = �(a, v
j

) + �(v
j

, v2j) = n,

a contradiction. Hence �0 contains v
n/2�1. Since �(x, v

n/2�1) = n/2 � 1 and

�(x, v) = n/2, we conclude xz

[n/2�1] = xa

[n/2�1], for all a 2 H, a 6= y.

Since v
n�2 is opposite y it is also opposite all a 2 H distinct from

z. In particular, this implies that v
n/2 is not on �0. Moreover, we have

�(a, v
n/2�2) = �(a, v

n/2) = n/2 + 2 and �(a, v
n/2�1) = n/2 + 1 for all a 2 H

distinct from y and z. Suppose that a1 and a2 be two points in H, both

di↵erent from y and z. If the projection w of a1 onto v
n/2�1 would coincide

with the projection of a2 onto v
n/2�1, then we can let a2 play the role of z

and consequently w can play the role of v
n/2. As above we find that a1 is at

distance n/2 + 2 from w. However, we have �(a1, w) = n/2, a contradiction.

This implies that we have the projection of H onto v
n/2�1 is injective.

Suppose by way of contradiction that the above projection is not bijective
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and let u be an element not in the image. So u is incident with v
n/2�1

and at distance n/2 + 2 from all points of H. Let v0 be the projection of

z onto v. Then v0 and v
n/2�1 are opposite and there is a unique element

L in � at distance n/2 from v0 and distance n/2 � 1 from u. We have

�(L, z) = �(L, v0) + �(v0, z) = n � 1. Let x0 be the projection of u onto L,

then �(a, u) + �(u, x0) = n/2 + 2 + n/2 � 2 = n, hence x0 is opposite every

element a of H. This implies that �(a, L) = n� 1 for all points a of H, and

since the projection of H on L is clearly not bijective (the image misses x0), it

must be constant. So �(y, x1) = n�2, where x1 is the projection of z onto L.

But x1 is also the projection of v0 onto L; indeed, �(z, x1) = �(z, v0)+n/2�1.

Since �(y, v0) = n/2+1, we find y is opposite x1, a contradiction. This shows

our claim.

This proves for finite � that s = t. Indeed, by the Feit -Higman Theorem,

see [1], we only have to consider the cases n = 6 and n = 8. If n = 6, then H

contains s+1 points and must be in bijective correspondence with the set of

all the t + 1 lines through a point. If n = 8, then H must have t + 1 points

and be in bijective correspondence with all the s+ 1 points on a line.

It is in fact from now on that we assume that all distance-n/2 hyperbolic

lines are long (until now we dealt with only one long distance-n/2 hyperbolic

line). Suppose now z0 is any other point opposite x di↵erent from z, with

{v00, v
n/2�1} 2 xz

[n/2�1] \ xz

0

[n/2�1], where v00 is the projection of x onto v.

Suppose first that �(v0, z0) = n/2� 1. There is a unique element u0 incident

with v
n/2�1 at distance n/2 from z0. By the above, there exists a unique

a 2 H such that �(a, u0) = n/2. Hence �(z0, v) = �(a, v) = �(z0, u0) =

�(a, u0) = n/2 which implies that z0 2 H(a, x). Hence clearly xa

[i] = xz

0

[i], for

all i 2 {2, . . . , n/2}. Therefore xz

[n/2�1] = xz

0

[n/2�1] by the conclusion of the

first paragraph above.

13



Hyperbolic lines in generalized polygons

So we have shown that, if two distance-(n/2�1) traces xz

[n/2�1] and xz

0

[n/2�1]

meet in at least two elements, and if z and z0 either lie in the same hyperbolic

line with x, or there exists an element v0 at distance n/2 + 1 from x and

distance n/2� 1 from both z and z0, then these two traces coincide.

So now let z00 be some point such that xz

00

[n/2�1] meets xz

[n/2�1] in at least

two elements, say b1 and b2. Let u1, u2, u00
1 and u00

2 be the projections of z

and z00 onto b1 and b2 (where indices and primes are self-explanatory). Let

w1 be the unique element of � at distance 2 from b1 and n/2 � 1 from z.

Then w1 is opposite b2. Let z⇤ be the unique point at distance n/2 from u00
2

and n/2 � 1 from w1. By the previous paragraph, xz

[n/2�1] = xz

⇤

[n/2�1]. But

now there exists a unique point z⇤⇤ 2 H(x, z⇤) such that the projection of

z⇤⇤ onto u00
2 coincides with the projection of z00 onto u00

2. From the previous

paragraph follows again xz

⇤

[n/2�1] = xz

⇤⇤

[n/2�1] = xz

00

[n/2�1]. This shows that all

points are n/2� 1 regular. By [18] we obtain the theorem. ⇤

The last result of this section is concerned with finite thick polygons.

In particular, by the Feit-Higman Theorem, see [1], we are only concerned

with n-gons of order (s, t), where n = 4, 6 or 8. We already have seen that

the presence of one long distance-n/2 hyperbolic line forces s = t. A long

distance-2 hyperbolic line on points is ideal and hence contains t+ 1 points.

On the other hand, the projection of such a long distance-2 hyperbolic line on

a line at diistance n� 1 from at least two of its points is a bijection. Hence,

such a long distance-2 hyperbolic line contains s+1 points and s = t. We will

now show the same for distance-3 hyperbolic lines in thick finite generalized

octagons.

Proposition 2.10 If a finite thick generalized n-gon (n = 4, 6, 8) of order

(s, t) contains a long distance-i hyperbolic line, where 2  i  n/2, then

14
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s = t.

In particular, a finite thick generalized octagon does not contain a long

distance-j hyperbolic line for any j > 1.

Proof. As remarked above, it su�ces to consider n = 8 and i = 3. So let L

be a line of a thick generalized octagon � of order (s, t), with s 6= t, and let

x, y be two points at distance 3 from L with �(x, y) = 6. Suppose H(x, y)

is long. Then by Lemma 2.4, H(x, y) coincides with every distance-3 trace

LM

[3], where M is opposite L and at distance 5 from at least two elements

of H(x, y). Let M be such a line. Let z be a point on the line M 0 defined

by: M 0 meets M and �(x,M 0) = 3. We can assume that z does not lie on

M and at distance 4 from x. Let M
z

be any line through z di↵erent from

M 0 and let z0 be the projection of y onto M
z

. So z0 is not opposite x nor

y. Hence z0 is not opposite a, for all a 2 H(x, y). Notice that �(a,M) = 5

for all a 2 H(x, y) and �(M, z0) = 5, hence �(z0, a) = 6. Let a1, a2 2 H(x, y)

be di↵erent and such that the projection N of a1 onto z0 coincides with the

projection of a2 onto z0. Then N is opposite to L and at distance 5 from

both a1 and a2 and so it should be at distance 5 from all points of H(x, y).

But clearly, it is at distance 7 from either x or y, a contradiction. So the

projection of H(x, y) onto z0 is injective. This already implies t > s. Hence

this projection is not bijective, and so there exists a line L0 though z0 at

distance 7 from every point of H(x, y). Note that �(L,L0) = 8. Indeed,

assume that �(L,L0) = 6, then let x0 be the projection of L0 onto L. There is

a unique point x00 2 H(x, y) collinear with x0. Unless �(x00, L0) = 5, we have

�(x00, z0) = 8, a contradiction, so L0 is the projection of x00 onto z0. Hence L

is opposite L0. Note that every point of L0 except for z0, is opposite every

point of H(x, y). Let y0 be the projection of y onto L and let y00 be the

projection of y0 onto L0. Let L00 be the projection of y0 onto y00 and y0 the

15
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projection of y0 onto L00. Then �(y, y0) = 6 and all points of L00 except for

y0 are opposite y. Also, all points of H(x, y), except for y, are opposite y0.

Hence �(L00, a) = 7 for all a 2 H(x, y) and the projection of H(x, y) onto L00

is injective. It follows that it must also be bijective, but this contradicts the

fact that y00 is opposite all points of H(x, y) as y00 is on L0 and di↵erent from

z0. This completes the proof of the first part of the proposition.

The second part is a consequence of the first part and the fact that in a

finite thick generalized octagon of order (s, t) the parameters s and t have to

be di↵erent, see [1].⇤

3. Long hyperbolic lines in generalized quadrangles

In this short section we present the classification of generalized quadrangles

with long hyperbolic lines. The following result is probably folklore, see [13].

Theorem 3.1 Suppose � = (P ,L) is a thick generalized quadrangle and

all hyperbolic lines of � are long. Then � is isomorphic to the symplectic

quadrangle W (k) for some field k.

Proof. Let H be the set of hyperbolic lines of �, and consider the linear

space ⇧ = (P ,L [H). Suppose p, q, r are three points of this space not on

a line. By Proposition 2.8 there is a point x on the line pq that is in r?.

Consider the line xr of �. On this line we find a point y perpendicular to all

points of pq and thus perpendicular to p, q and r. But since this point y is

projective, cf. Proposition 2.8, p, q and r generate a projective plane in ⇧.

Thus ⇧ is a projective space and ? clearly induces a symplectic polarity on

⇧. But then � is isomorphic to the generalized quadrangle defined by this

polarity, thus to W (k) where k is the underlying field of ⇧. ⇤
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4. Long distance-2 hyperbolic lines in generalized hexagons

Generalized hexagons whose distance-2 hyperbolic lines are all long do have

ideal lines as follows by Lemma 2.4. Thus by Ronan’s results [12], they are

Moufang and known by Tits’ classification of Moufang hexagons, see [17].

However, we do not need the full power of these results and could refer

to some of the intermediate results of Ronan, especially Theorem 8.19 of

[12]. The proofs of these results are quite long and complicated and rely on

the classification of the rank 3 polar spaces. Here we present two new and

elementary proofs of the following result.

Theorem 4.1 Let � be a thick generalized hexagon whose distance-2 hyper-

bolic lines are all long. Then � is isomorphic to the G2(k) hexagon H(k) for

some field k.

In both proofs we use only elementary facts on polar spaces. The deepest

result we use is the classification of polar spaces of type D3, respectively, D4.

See [17].

In the first proof we will show uniqueness of the hexagon � by identifying

all its points and lines with some subconfigurations of a D3 polar space

defined over some field k. The idea of using this D3 geometry also appears

in [12], as well as [3], but the first to describe the G2 hexagons using this D3

geometry seems to be S. Payne, [10].

In the second proof we construct a D4 geometry in which we can recognize

the lines of � as those lines that are being fixed by some triality automorphism

of the D4 geometry. This is the original way in which J. Tits has introduced

the generalized hexagon H(k) for the groups G2(k), see [15].

At various points in the proof we will identify subspaces of incidence

structures or geometries under consideration with the set of points they con-

tain.

17
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Suppose � = (P ,L) is a hexagon as in the hypothesis. Set H to be the

set of hyperbolic lines in �, and denote by S the space (P ,L[H). The initial

step of both proofs is the following observation:

Proposition 4.2 S is a nondegenerate rank 3 polar space.

Proof. By Proposition 2.8, we find that the space S satisfies the Buekenhout-

Shult axiom for a polar space, [2]. Since every point has an opposite, the

space S is nondegenerate.

If x is a point, then the set of points at distance at most 2 from x forms

the point set of a projective plane, see 2.8, which is a maximal singular

subspace of S. Thus S has polar rank 3. ⇤

Let x be a point of � and consider all the points collinear with x. As

already noticed in the above proof this set of points forms a projective plane

in S, which we will call the focal plane on x. The point x is called the focal

point or focus of the plane. In fact, every plane of S containing a line of �

consists of a point x and all the lines of � through x, and thus has a focus.

Now we start with the first proof.

Fix an apartment in �, and in the apartment two triples of points {x1, y1, z1}
and {x2, y2, z2} at mutual distance 4, such that a1 is opposite to a2, a = x, y

or z. The points x1, y1 and z1, respectively, x2, y2 and z2 are contained in a

singular subspace ⇡1, respectively, ⇡2 of S which are projective planes, see

[2]. These planes consist entirely of hyperbolic lines.

Let H be a line in ⇡1, and suppose f is the focus, or focal point of that line

(i.e. the unique point collinear in � with all the points of h). Since H meets

the three lines a?2 \ ⇡1 for a = x, y and z, we find that f is in x?
2 \ y?2 \ z?2

and thus in ⇡2. Vice versa we find that any focal point of a hyperbolic line
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of ⇡2 is a point of ⇡1. Let � be the union of all the points of lines meeting

both ⇡1 and ⇡2.

Lemma 4.3 � is a geometric hyperplane of S.

Proof. Let L 2 L be a line meeting � in at least 2 points, say a and b.

Let a1 and b1 be two points of ⇡1 collinear with a, respectively, b. Since

�(a1, b1) = 4, we find that L is either at distance 1 from a1 or from b1 and

thus contained in �.

Now suppose H 2 H meets � in 2 points a and b say. Let c be the focal

point of H. Let a1 and b1 be the points in ⇡1 collinear with a, respectively,

b. If a1 = b1, then H is contained in �, as it constists of points on lines

through a1. Thus assume a1 6= b1. Let d be the focal point of the hyperbolic

line on a1 and b1. If a = a1 or b = b1 then H ⇢ ⇡1, since its points are

on the lines through the focal point d = c 2 ⇡2. Thus we may assume that

the points a, b, a1, b1, c and d are all distinct. The points a, b, c, d, a1 and b1

are then the 6 points on an apartment. As before, we can consider the two

planes ⇡0
1 and ⇡0

2 of S generated by a, b and d, respectively, a1, b1 and c. The

points of ⇡0
1 are the focal points of any line in ⇡0

2. In particular, each point

of H is collinear with some point of a1b1 and thus H ✓ �.

The above shows that � is a subspace of S. It remains to show that every

line in L [H meets �.

Suppose L 2 L is not in �. Then in the polar space L?\⇡1 is a point x1

say. But then x1 is collinear to some point on L which is then a point in �.

Let H 2 H is a hyperbolic line not in �. Let f be the focal point of

H. If f 2 �, then there is at least one line on f inside � and H meets �

nontrivially. Thus assume f 62 �. Then all lines on f contain a unique point

in �, and the projective plane on the points at distance at most 2 from f
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contains a line in � as well as H. In particular, the intersection point of

these two lines is a point of H in �. ⇤

Fix a point x outside �, then every line of S on x meets � in a unique

point. The union of all these points form a nondegenerate hyperplane �
x

=

x? \� of �. This implies the following.

Lemma 4.4 � is isomorphic to the polar space D3(k) for some field k.

Proof. By the above we find that each line of �\� is in exactly two planes

of �, being the two focal planes with focus in ⇡1 or ⇡2. Thus by Proposition

7.13 of [16] we find that � is isomorphic to D3(k) for some skewfield k. The

subspace �
x

is a nondegenerate hyperplane of �, and Proposition 5.1 of [4]

implies that the underlying skewfield of the D3 geometry � is commutative.

⇤

We will proceed by identifying the points and lines of � with subconfig-

urations in �.

The focal plane on x meets � in a hyperbolic line denoted by L
x

. Each

point of L
x

is on a unique line from � contained in �. These lines of � inside

� and meeting L
x

generate a grid in � denoted by G
x

. If y is another point

outside � distinct from x, then clearly L
y

is also distinct from L
x

. Moreover,

for each hyperbolic line H inside � not meeting the two planes ⇡1 and ⇡2,

there is a point z, the focus of that line, with L
z

= H. If x and y are two

points outside � such that the two lines L
x

and L
y

meet at some point z

of �, then x and y are at distance 2 or 4. Moreover, if L
x

and L
y

meet in

the point z, then the line L
y

is contained in �
x

if and only if x and y are

collinear. In that case �
y

contains G
y

and z? \�
x

, and hence is generated

by G
y

and z? \ �
x

. In particular, �
y

is uniquely determined by L
y

and

(L
x

,�
x

).
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Lemma 4.5 � \� is connected.

Proof. Suppose x and y are two points of � \� at distance 6 in �.

If xy

[2] 6= L
x

and yx[2] 6= L
y

, then we can find collinear points x0 2 xy

[2] \ Lx

and y0 2 yx[2] \ Ly

, and there exists a path from x to y outside �.

If xy

[2] = L
x

or yx[2] = L
y

, then there is a line of � meeting both L
x

and

L
y

in points outside ⇡1 and ⇡2. In particular, lines of � contain at least 4

points. So, if xy

[2] = L
x

, but yx[2] 6= L
y

then we can replace y by some point

y0 collinear with y and at distance 6 from x but not in �. Clearly we have

xy

0

[2] 6= L
x

and y0x[2] 6= L
y

0 , and by the above there is a path from x to y0 and

hence also y outside �. Similarly we can handle the case where xy

[2] 6= L
x

,

but yx[2] = L
y

.

Finally, if xy

[2] = L
x

and yx[2] = L
y

, then by replacing x by some point x0

collinear with x and not in � we are in one of the above situations. Thus in

all cases we can find a path outside � connecting x and y.

Now suppose x and y are at distance 4. Then y is collinear with some

point y0 62 � that is at distance 6 from x. By the above there is a path

outside � connecting x to y0, which clearly implies that there is a path from

x to y outside �. This proves the lemma. ⇤

We can identify each point x outside � with the hyperbolic line L
x

meet-

ing neither ⇡1 nor ⇡2. Moreover, by the preceding and the connectedness of

� \�, we find that, after having fixed the subspace �
x

on L
x

for some point

x outside �, all other subspaces �
y

with y not in � are uniquely determined

by L
y

. Two points in � are collinear in � if and only if they are on a line of

� meeting both ⇡1 and ⇡2. A point x of � is collinear in � with a line L
y

of

� not meeting ⇡1 nor ⇡2 if and only if x 2 L
y

. And finally two lines L
x

and

L
y

of � disjoint from ⇡1 and ⇡2 are collinear if and only if they intersect in

21



Hyperbolic lines in generalized polygons

a point z which is in the radical of the subspace �
x

\�
y

. Thus the isomor-

phism type of � only depends on the isomorphism type of �, the choice of

the planes ⇡1 and ⇡2 and finally the pair (L
x

,�
x

) for some fixed point x.

But the automorphism group of� contains the orthogonal group PO+
6 (k).

This group is transitive on the nondegenerate hyperplanes �
x

of �. The

stabilizer of such a hyperplane �
x

contains the group 2 ⇥ PO5(k) and is

transitive on the planes of �, and then also on the pairs of nonintersecting

planes. If we fix such a pair of planes, then their intersection with �
x

consists

of two disjoint singular lines L1 and L2 generating a grid. The stabilizer in

PO5(k) of such a grid contains the group PSL2(k) ⇥ PSL2(k), and we see

that the stablizer of {L1, L2} is still transitive on the lines of the grid not

meeting L1 and L2. Thus up to isomorphism, there is only one choice for the

planes ⇡1, ⇡2 and the pair (L
x

,�
x

). In particular, the isomorphism type of

� only depends on k.

Since the classical G2(k) hexagon H(k) satisfies the hypothesis of the

Theorem, the above implies that � is isomorphic to this G2(k) hexagon,

which finishes the proof of the Theorem.

Remark. The above not only shows uniqueness of the hexagon �, it also

shows a way to construct the classical generalized G2(k) hexagon from a

D3(k) polar space. For finite hexagons this construction has been discussed

in the appendix of [3], and by Payne in [10].

Now to the second proof. Consider the dual polar space ⇥ of S. We can

embed � into this dual polar space by identifying each point p of � with the

unique focal plane p⇤ of which p is the focus. Each line of � is mapped to

itself. Let P⇤ be the image of P under this embedding, and denote by �⇤ the

image of �.
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Lemma 4.6 �⇤ is a geometric hyperplane of ⇥ isomorphic to �. Moreover,

the distances in �⇤ coincide with those in ⇥.

Proof. Let L be a line of ⇥. Then L is also a line of S. Thus it is either

singular or hyperbolic. All planes on a singular line are focal planes and hence

in P⇤, and a hyperbolic line is contained in a unique focal plane. Thus P⇤ is

indeed a hyperplane of ⇥. Moreover, all lines of the hyperplane are singular

lines and thus in L. The last statement of the Lemma readily follows. ⇤

Now consider the point-line space of ⇥. Distance-2 hyperbolic lines can be

defined on ⇥ in the same way as they are defined for a generalized hexagon.

If we fix two points x and y at distance 4 in ⇥, then they are contained in a

unique quad, Q say. Since ⇥ is classical, every point z is either in the quad

Q or is collinear with a unique point z0 of the quad. Moreover, in the last

case we have that �(z, u) = �(z0, u) + 2 for all points u 2 Q. (Here � denotes

the distance in the incidence graph of ⇥.) We find that the hyperbolic line

on x and y is just the hyperbolic line on x and y inside the quad Q. By

H⇤ we denote the set of distance-2 hyperbolic lines of this near hexagon only

containing points of P⇤ and by H⇤⇤ the remaining distance-2 hyperbolic lines.

Let ⌃⇤ be the space whose points are the points of ⇥ and whose lines are

those of ⇥, i.e. in L [H together with the lines from H⇤ [H⇤⇤.

Proposition 4.7 All quads of ⇥ are isomorphic to W (k) for some k. All

distance-2 hyperbolic lines of ⇥ are long, and ⌃⇤ is a polar space of type D4.

Proof. Fix a quad Q of ⇥. This quad meets �⇤ in a point q (called the

center of Q) and all the lines in Q (and in �⇤) through that point. If p 2 Q

is at distance 4 from q, then there is a point r 2 P ⇤ collinear with p but at

distance 6 from q inside �⇤. The unique quad R of ⇥ with center r is disjoint
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from Q. Furthermore, all common neighbors of p and q inside Q are just the

points in the trace q
r

of �⇤. As q is projective in �⇤, it is also projective in

Q. Similarly r is projective in R. But then p is also projective in Q, since

the projection of R onto Q, where each point x 2 R is mapped to its unique

neighbor in Q, is an isomorphism between R and Q mapping r to p. Thus

by varying p we find all points of Q not collinear to q to be projective, and

similarly all points in R not collinear to r are projective. The projection of

R to Q reveals that all points in Q not collinear to p and q are projective,

and as we can vary p, that all points of Q are projective.

By Theorem 3.1 and Proposition 2.8 Q is isomorphic to W (k) for some

field k.

Now consider ⌃⇤. Since ⇥ is a classical near hexagon, we find that the

distance-2 hyperbolic lines of ⇥ coincide with the distance-2 hyperbolic lines

inside the quads of ⇥. Let p be a point and L be a line of ⌃⇤. If L is

not in H⇤ [ H⇤⇤, then clearly p is collinear with one or all points of L. If

L 2 H⇤ [H⇤⇤, then there is a quad Q of ⇥ containing L. If p 2 Q, then p

is collinear to all points of L. Thus assume that p is not in Q. Then inside

⇥ there is a unique point q of Q collinear to p, and p? \ Q consists of all

the points of Q collinear to q, and hence contains one or all points of L.

This shows that ⌃⇤ is a polar space, and that all distance-2 hyperbolic lines

are long. The singular subspace induced on a quad is clearly maximal and

is isomorphic to PG(3, k). Moreover, it is easy to check that the maximal

singular subspaces of ⌃⇤ containing a line from ⇥, i.e. from L [H, are the

quads of ⇥, and the set of points of ⇥ collinear (inside ⇥) with some fixed

point p. In particular, if we fix a point p and two lines of ⇥ on p, then there

are just two maximal singular subspaces containing p and these two lines.

This implies that all singular planes of ⌃⇤ are in just two maximal singular
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subspaces. Hence ⌃⇤ is of type D4. ⇤

Lemma 4.8 The points of P⇤ form a geometric hyperplane of ⌃⇤.

Proof. Each line L of ⌃⇤ is contained in a quad of ⇥. This quad becomes a

PG(3, k) inside ⌃⇤ and meets �⇤ at a plane, that intersects L in a point or

contains it. ⇤

The map p 7! p⇤, p 2 P induces an isomorphism between � and the

hyperplane �⇤ of ⇥. It extends uniquely to an isomorphism between S and

the hyperplane S⇤ = (P⇤,L [H⇤) of ⌃⇤. Here a line H in H is mapped to

the line H⇤ = {p⇤ |p 2 H} in H⇤.

The above not only shows that ⌃⇤ is a D4 polar space, it also describes

the various subspace of this space.

The points of ⌃⇤ are the points of ⇥, i.e. the points in P⇤ together with

the set of all nonfocal planes of S, say R⇤. The lines of ⌃⇤ are the lines in L,
H, H⇤ and H⇤⇤. The maximal singular subspaces of ⌃⇤ come in three types:

subspaces induced on quads of ⇥, the set of points collinear with some given

point of ⇥, as well as subspaces containing only points at distance 2 in ⇥.

Each quad of ⇥ is a point of S and hence is in P . Furthermore, each

other maximal singular subspace of ⌃⇤ containing some line of L consists of

all the points at distance  2 in ⇥ from some fixed point of P⇤, respectively,

R⇤. We denote this set of subspaces by P⇤⇤, respectively, R⇤⇤. Finally, the

remaining maximal singular subspaces of ⌃⇤ form a class that we denote by

R. These subspaces intersect the quads in a line or are disjoint from them.

The polar space with point set P [R will be denoted by ⌃, and that with

point set P⇤⇤ [R⇤⇤ by ⌃⇤⇤.

Each point p⇤ 2 P⇤ is collinear inside ⇥ to the points of a singular plane

inside the polar subspace of ⌃⇤ induced on P⇤. This plane is contained in
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unique elements p 2 P and p⇤⇤ 2 P⇤⇤. Clearly p⇤⇤ is the maximal singular

subspace consisting of all points collinear inside ⇥ to p⇤, and p is the unique

quad of ⇥ containing p⇤, i.e. p is the focus of the focal plane p⇤. If r⇤ 2 R⇤,

then the lines of ⌃⇤ on r⇤ intersects P⇤ in a D3 polar subspace which we call

�. The lines of ⇥ on r⇤ meet � in some plane containing only hyperbolic

lines. By r we denote the maximal singular subspace of ⌃⇤ containing this

plane but no line from ⇥. The quads of ⇥ on r⇤ meet � in a plane containing

the center of the quad and all the lines through this center. These centers

are all at distance 4 in ⇥ and hence form a plane with only hyperbolic lines.

This plane is contained in two maximal singular subspaces of ⌃⇤. Let r⇤⇤ be

the maximal singular subspace on this plane containing some line of ⇥.

Now we can define a triality map ⌧ on ⌃ in the following way:

⌧ : p 7! p⇤ 7! p⇤⇤ 7! p

for all points p 2 P [R.

The map p⇤ 7! p as well as the map p⇤ 7! p⇤⇤, p 2 P⇤, induce iso-

morphisms between �⇤ and �, respectively, �⇤⇤ = (P⇤⇤,L). In particular, ⌧

induces isomorphisms between the three hexagons �, �⇤ and �⇤⇤. Just as

we saw before that ⌧(H) 2 H⇤ for all H 2 H, one can easily check that

⌧(H⇤) 2 H⇤⇤ and ⌧(H⇤⇤) 2 H for all H⇤ 2 H⇤ and H⇤⇤ 2 H⇤⇤. This implies

that the above isomorphisms extend to isomorphisms between S, S⇤ and

S⇤⇤ = (P⇤⇤,L [H⇤⇤), and also between ⌃, ⌃⇤ and ⌃⇤⇤. Hence ⌧ is a triality

automorphism of the D4 geometry induced on ⌃. The lines fixed by ⌧ are

precisely the lines in L, while P is the set of self conjugate points (i.e. points

p with p 2 ⌧(p)). Thus � is isomorphic to the generalized hexagon whose

lines are the lines fixed by a triality automorphism of ⌃. If p is a point of

P , then all lines on p inside the plane p⇤ \ p⇤⇤ of the polar space ⌃ are in
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L. Thus by [15] the triality map ⌧ is of type I
Id

and � is isomorphic to the

G2 hexagon H(k) as constructed by Tits. This finishes our second proof of

Theorem 4.1.

5. Distance-3 hyperbolic lines in generalized hexagons

By Theorem 2.9 we know that a generalized n-gon whose distance-n/2

hyperbolic lines are long is either a generalized quadrangle or a generalized

hexagon. In Section 3 we have given the classification of all generalized

quadrangles with only long distance-n/2 hyperbolic lines, in this section we

classify such hexagons.

Note that from Theorem 2.9 follows that, if all distance-3 hperbolic lines

of a generalized hexagon � are long, then all points are distance-2 regular.

From Ronan’s characterization of the Moufang hexagons, it follows that �

has the Moufang property, see [12]. By inspection, � is isomorphic to H(k)

for some field k of even characteristic. We will now avoid the yet unpublished

classification of the Moufang hexagons to prove that statement.

Theorem 5.1 Suppose � = (P ,L) is a thick generalized hexagon and all

distance-3 hyperbolic lines of � are long. Then � is isomorphic to the gener-

alized hexagon H(k) for some field k of even characteristic.

Proof. We prove this theorem in a number of steps. Let H denote the set

of distance-3 hyperbolic lines of �, and consider the space C = (P ,H).

Step 1. The space C is a connected copolar space; its diameter is 2.

Proof. Let H 2 H be a hyperbolic line on the two points x and y. Let

L 2 L be at distance 3 from both x and y. All the points of H are at

distance 3 from L. Moreover, each point on L is at distance 2 from a point of

H. Now suppose z is a point in P . If z? meets H in at least 2 points, then
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by defintion, H is contained in z?. It remains to show that z? \ H is not

empty. Suppose the contrary. Then the distance between z and L is 5. Let

(z, L1, z1, L2, z2, L) be a path from z to L. Then L1 is as distance 5 from all

points of H. On H there is a unique point at distance 2 from z2. Without

loss of generality we may assume that x is that point. But then the distance

between z1 and x is 4 and between z1 and y is 6. Hence, as H is long, every

point of L1, and thus in particular z, is at distance 4 from a point on H. A

contradiction.

For any two points x and y at distance 2j, j 6= 3 let v be an element of

� at distance j from both x and y. Then, as � is thick, we can find a point

at distance 6� j from v, that is at distance 6 from both x and y. Thus C is

connected of diameter 2.⇤

Step 2. Let x and y be two points collinear in C. Then x?\y? is a connected

subspace of C.
Proof. The set x? \ y? is clearly a subspace of C. Denote this space by S.

Let L and M be two opposite lines of � at distance 3 from x and y. All

points of L and M are in x? \ y?. Moreover, each point of L is at distance 6

to all but one of the points of M and vice versa. In particular, inside S there

is a path from any point of L to any point of M . Now suppose that z is an

arbitrary point of x? \ y?. Without loss of generality we can assume z to

be at distance 4 from x. This implies that z is at distance 6 from the point

of L or of M that is at distance 2 from x. In particular, z is in the same

connected component of S as the points of L and M . Hence S is connected.

⇤

Step 3. C satisfies Pasch’s axiom.

Proof. Let H1 and H2 be two hyperbolic lines in H meeting at a point a.
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Let b1 are b2 be points on H1 and let c1 and c2 be points on H2, all di↵erent

from a. Suppose that b
i

and c
i

are collinear in C, i 2 {1, 2}. We will prove

that the lines H(b1, c1) and H(b2, c2) of H intersect. Clearly we may assume

that b1 6= b2 and c1 6= c2.

Let x be a point in S = b?1 \ c?1 , but not in a?. (Such a point exists,

since H(b1, c1) 6= H1.) Then x and a? \ b?1 \ c?1 are in S. Moreover, x

and S
a

= a? \ S generate S. For, if y 2 S is collinear in C to x, then the

distance-3 hyperbolic line H(x, y) meets a? and thus is in the subspace of S

generated by x and S
a

. If H is a distance-3 hyperbolic line of S on y then x

is collinear with at least 2 points of that line. Thus H is also in hx, S
a

i. By
connectedness of S we find that hx, S

a

i = S.

Let d be the unique point onH(b2, c2) that is also in x?. Then d 2 x?\S?
a

,

hence d 2 S? = {b1, c1}?? = H(b1, c1). ⇤

A consequence of the above is that any two intersecting lines from C gen-

erate a dual a�ne plane. Each point of such a plane is contained in a unique

maximal coclique of the collinearity graph of the plane called transversal co-

clique. For a point p outside a dual a�ne plane ⇡ the intersection of ⇡ with

p? is either a line, a transversal coclique or the whole plane ⇡. This clearly

implies that for any two points x and y in a transversal coclique T we have

T ✓ {x, y}??.

Step 4. Distance-2 hyperbolic lines in � are long.

Proof. Let x and y be two points at distance 4 in �, and H the hyperbolic

line on x and y.

Suppose L is a line of � on the point x and at distance 5 from y. Let z

and z0 be two points on L di↵erent from x and let ⇡ be the dual a�ne plane

in C generated by y, z and z0. By the remark preceding this step, we find
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that the transversal coclique of ⇡ on z and z0 is contained in L. Denote by

T the transversal coclique of ⇡ containing y. If u is a point in x? \ y?, then

either L 2 u?, and ⇡ ⇢ u? or u? \ L = {x} and u? \ ⇡ = T . In any case

T ✓ u? and hence T ✓ H.

If w is some arbitrary point of � opposite x, then w? meets L in a point

di↵erent from x. Without loss of generality we could have chosen z to be that

point. Since w is opposite x, we find w? \ ⇡ to be a line in H. In particular,

w? meets T and hence H. Hence for all points v of � we have v? meeting

H nontrivially. This clearly implies H to be long. ⇤

Step 5. � is isomorphic to G2(k) hexagon for some field k of even character-

istic.

Proof. By Theorem 4.1 � is isomorphic to the G2(k) hexagon H(k) for

some field k. This hexagon has long hyperbolic lines only if the hyperbolic

lines of the orthogonal polar space on the singular and distance-2 hyperbolic

lines has long hyperbolic lines. But that is only the case for fields of even

characteristic. ⇤

Remark. Instead of referring to Theorem 4.1 in the proof of the above

theorem, we could also have used the results of [5] and [7] on copolar spaces

to find that C is the geometry of hyperbolic lines in a 5 dimensional symplectic

space. A direct proof of the fact that the singular and hyperbolic lines of

� form a projective space on which ? induces a nondegenerate symplectic

polarity can also be obtained easily.
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6. On generalized polygons with parameters and reg-
ular points

In this final section we prove Corollary 1.5. Thus assume that � is a thick

finite or compact connected topological generalized n-gon of order (s, t), with

all points distance-2 regular.

By the Feit-Higman Theorem for finite n-gons and a similar result by

Knarr [8] and Kramer [9] on topological n-gons we can assume n to be 4, 6

or 8, respectively, 4 or 6.

Lemma 6.1 If � contains a distance-2 regular point p, then s � t. More-

over, if s = t, then the point p is projective.

Proof. For topological n-gons, this is proved in [14]. There it is also remarked

that the same result also holds for finite n-gons. A check is left to the reader.

⇤

By the assumption of Corollary 1.5, Proposition 2.10 and the above

lemma we find that � is either a generalized quadrangle or a generalized

hexagon with all points projective. Lemma 2.8 and Theorem 1.2 and 1.3,

imply that � is isomorphic to either W (k) or H(k), where k is a finite field or

topological. As in [13] we can conclude that k is either finite or isomorphic

to IR or C. This proves 1.5.
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