

Journal of Statistical Planning and Inference 56 (1996) 49-55 journal of statistical planning and inference

Elation generalized quadrangles of order (p, t), p prime, are classical

I. Bloemen*, J.A. Thas, H. Van Maldeghem

Department of Pure Mathematics and Computer Algebra, University of Gent, Krijgslaan 281. B-9000 Gent, Belgium

Abstract

Elation generalized quadrangles of order (p, t), p prime, are classical.

1. Introduction and definitions

1.1. Generalized quadrangles

A finite generalized quadrangle (GQ) of order (s, t) is a finite incidence structure $\mathscr{S} = (\mathscr{P}, \mathscr{B}, I)$ in which \mathscr{P} and \mathscr{B} are disjoint (nonempty) sets of objects called points and lines respectively, and for which I is a symmetric point-line incidence relation satisfying the following properties:

- GQ1. Each point is incident with t + 1 lines ($t \ge 1$) and two distinct points are incident with at most one line.
- GQ2. Each line is incident with s + 1 points ($s \ge 1$) and two distinct lines are incident with at most one point.
- GQ3. If (x, L) is a nonincident point-line pair, then there is a unique point-line pair (y, M) for which xI MI yIL.

If s = t, then \mathscr{S} is said to have order s. For any point x of \mathscr{S} , the set of all points lying on the lines through x is denoted by x^{\perp} . Generalized quadrangles were introduced by Tits (1959). For terminology, notation, results, etc., concerning finite GQ, see the monograph by Payne and Thas (1984).

^{*} Corresponding author.

The classical GQ

- 1. Consider a nonsingular quadric Q of projective index 1 of the projective space PG(d, q), with d = 3, 4 or 5. Then the points of Q together with the lines of Q (which are the subspaces of maximal dimension on Q) form a GQ Q(d, q) of order (q, 1) when d = 3, order (q, q) when d = 4, and order (q, q^2) when d = 5.
- 2. Let *H* be a nonsingular hermitian variety of the projective space $PG(d, q^2), d = 3$ or 4. Then the points of *H* together with the lines on *H* form a GQ $H(d, q^2)$ of order (q^2, q) when d = 3 and order (q^2, q^3) when d = 4.
- 3. The points of PG(3, q), together with the totally isotropic lines with respect to a symplectic polarity, form a GQ W(q) of order q.

Isomorphisms. The GQ, Q(4, q) is isomorphic to the dual of W(q), and Q(4, q) (and hence W(q)) is self-dual if and only if q is even. The GQ $H(3, q^2)$ is isomorphic to the dual of Q(5, q).

1.2. Whorls, elations and translations

Let $\mathscr{S} = (\mathscr{P}, \mathscr{B}, I)$ be a GQ of order $(s, t), s \neq 1$ and $t \neq 1$. A collineation θ of \mathscr{S} is a whorl about the point x if θ fixes each line incident with x. A whorl θ about x is said to be an elation about x if θ is the identity or if θ fixes no point of $\mathscr{P} - x^{\perp}$. The set of elations about a point does not necessarily form a group (see Payne, 1985). If there is a group G of elations about x acting regularly on $\mathscr{P} - x^{\perp}$, we say \mathscr{S} is an elation generalized quadrangle (EGQ) with elation group G and base point x. Briefly we say $(\mathscr{S}^{(x)}, G)$ is an EGQ. If the group G is abelian, then $(\mathscr{S}^{(x)}, G)$ is a translation generalized quadrangle (TGQ) with translation group G and base point x; in such a case G is the set of all elations about x. (See Payne and Thas, 1984.)

Example. The classical GQ Q(4, q), W(q), $Q(5, q^2)$ are EGQ with base point x, for any point x.

It follows that any classical GQ of order (p, t), $t \neq 1$ and p prime, is an EGQ.

In this paper we will prove the converse.

Main result. Any elation generalized quadrangle of order (p, t), p prime and $t \neq 1$, is classical.

1.3. Elation generalized quadrangles as group coset geometries

Let $(\mathscr{S}^{(x)}, G)$ be an EGQ of order (s, t), $s \neq 1 \neq t$, and let y be a fixed point of $\mathscr{P} - x^{\perp}$. Let L_0, L_1, \ldots, L_t be the lines incident with x. For each $L_i, i \in \{0, 1, \ldots, t\}$,

there is a unique point-line pair (z_i, M_i) for which $yIM_iIz_iIL_i$. Define S_i, S_i^* and J as follows: $S_i = \{\theta \in G \mid M_i^{\theta} = M_i\}, S_i^* = \{\theta \in G \mid z_i^{\theta} = z_i\}$ and $J = \{S_i \mid 0 \le i \le t\}$. The groups G, S_i, S_i^* have respective orders s^2t, s and st. They also have the following two properties:

K1: $S_i S_j \cap S_k = \{1\}$ for distinct *i*, *j*, *k*, K2: $S_i^* \cap S_j = \{1\}$ for distinct *i*, *j*.

It was first shown by Kantor (1980) that the converse is also true, i.e., given a group G of order s^2t (s > 1, t > 1) with 1 + t subgroups S_i of order s and 1 + t subgroups $S_i^* \supset S_i$ of order st satisfying properties K1 and K2, then one constructs as follows an EGQ $\mathscr{S}(G, J)$, with $J = \{S_i || 0 \le i \le t\}$. There are three kinds of points:

- (i) the elements of G,
- (ii) the right cosets $S_i^* g$, $g \in G$, $i \in \{0, 1, \dots, t\}$,
- (iii) a symbol (∞).

There are two kinds of lines:

- (a) the right cosets $S_i g, g \in G, i \in \{0, 1, \dots, t\}$,
- (b) symbols $[S_i], i \in \{0, 1, ..., t\}.$

A point g of type (i) is incident with each line S_ig , $0 \le i \le t$. A point S_i^*g of type (ii) is incident with $[S_i]$ and with each line S_ih contained in S_i^*g . The point (∞) is incident with each line $[S_i]$ of type (b). There are no further incidences. Then $\mathscr{S}(G,J)$ is an EGQ of order (s, t) with base point (∞). Each EGQ ($S^{(x)}, G$) with J defined as above is isomorphic to $\mathscr{S}(G, J)$.

2. Elation generalized quadrangles of order $(p, t), t \neq 1$ and p prime, are classical

Let $\mathscr{S} = (\mathscr{S}^{(x)}, G) = (\mathscr{P}, \mathscr{B}, I)$ be an EGQ of order $(p, t), t \neq 1$ and p prime. We will use the notation of the previous sections.

Proposition 1. If $t = p^2$, then $\mathscr{S} \cong Q(5, p)$.

Proof. Consider a triple $\{x, x_1, x_2\}$ of pairwise noncollinear points. As $t = p^2$ the set $\{x, x_1, x_2\}^{\perp\perp} = \{x, x_1, \dots, x_r\}$ contains at most p + 1 points. Let δ_i be the elation of G mapping x_1 onto x_i , $i = 1, 2, \dots, r$. As δ_i fixes $\{x, x_1, x_2\}^{\perp}$, it also fixes $\{x, x_1, x_2\}^{\perp\perp}$. It is clear that $G_1 = \{\delta_1, \delta_2, \dots, \delta_r\}$ is the subgroup of G fixing $\{x, x_1, x_2\}^{\perp\perp}$. As $|G| = p^4$, either $|G_1| = 1$ or $p||G_1| = r$. As $p \ge r \ge 2$, we necessarily have r = p. So the triple $\{x, x_1, x_2\}$ is 3-regular, and consequently x is 3-regular (cf. 1.3 of Payne and Thas (1984). If p = 2, then \mathscr{S} is the unique GQ $\mathcal{Q}(5, 2)$ of order (2, 4); if p > 2, then by 5.3.3(i) of Payne and Thas (1984), the GQ \mathscr{S} is isomorphic to $\mathcal{Q}(5, p)$.

Proposition 2. We have $p \leq t$. For given lines L_i , L_j , with $i \neq j$, the pair $\{L_j, M'\}$ is regular for every line M' with x IM' and $L_i \sim M'$, if $|\{L_j, M, N\}^{\perp}| \geq 3$ for at least two

lines M, N of L_i^{\perp} with $x \not M, x \not N, M \not N$; if $\{L_j, M'\}$ is not regular (that is, if $|\{L_j, M, N\}^{\perp}| \leq 2$ for every two lines M, N of L_i^{\perp} , with $x \not M, x \not N, M \not N$) then $|\{L_j, M, N\}^{\perp}| = 2$ for every two lines M, N of L_i^{\perp} , with $x \not M, x \not N, M \not N$, if and only if p = t.

Proof. Let M, N be lines of L_i^{\perp} with x / M, x / N, $M \not\sim N$. Assume that $U \in \{L_j, N, M\}^{\perp}$, $U \neq L_i$. If $\{L_j, N, M\}^{\perp}$ contains a third line U', then put U'Iu'IM and UIuIM, and let δ be the element of G mapping u onto u'. The subgroup of G fixing M is the group $\langle \delta \rangle$ of order p. This group fixes the point $z = L_i M$ and acts on the set V of points of L_i different from x and z. As $|V| = p - 1 , the group <math>\langle \delta \rangle$ fixes every point of L_i . It easily follows that $N^{\delta} = N$. Hence the elements of $\langle \delta \rangle$ fix N and map U onto all lines of $\{M, L_j\}^{\perp} - \{L_i\}$. It follows that $N \in \{L_j, M\}^{\perp \perp}$. Analogously every line of $\{L_j, M\}^{\perp} - \{L_i\}$ belongs to $\{U, L_i\}^{\perp \perp}$. Consequently $\{L_i, U\}$ and $\{L_j, M\}$ are regular. Let $M' \in L_i^{\perp}, x/M', M \neq M'$. As there is an element of G mapping M onto M', also the pair $\{L_i, M'\}$ is regular.

If $\{L_j, M\}$, $M \in L_i^{\perp}$, $x \not M$, is regular, then $p \leq t$ by 1.3.6 (i) of Payne and Thas (1984). Now suppose that $\{L_j, M\}$ is not regular, and count in two ways the ordered triples $\{U', N', M'\}$ with zIL_iIu , $x \neq z \neq u \neq x$, zIM', uIN', $U' \in \{M', N', L_j\}^{\perp} - \{L_i\}$. We obtain $pt \leq t^2$, i.e., $p \leq t$, with equality if and only if $|\{L_j, M', N'\}^{\perp}| = 2$ for every choice of M' and N'. \Box

Proposition 3. If t = p, then $\mathscr{S} \cong Q(4, p)$ or $\mathscr{S} \cong W(p)$.

Proof. Let p = t. First assume that for no pair (L_i, L_j) , $i \neq j$, we have $|\{L_j, M, N\}^{\perp}| \leq 2$ for each pair (M, N) in Proposition 2. Then each line L_i is regular, i = 0, 1, ..., p. Now by 8.3.3 of Payne and Thas (1984) $(\mathscr{S}^{(x)}, G)$ is a TGQ of order p. Then by 8.7.3 of Payne and Thas (1984) we have $\mathscr{S} \cong Q(4, p)$.

Next assume that for at least one pair (L_i, L_j) , $i \neq j$, we have $|\{L_j, M, N\}^{\perp}| \leq 2$ for each pair (M, N) in Proposition 2. By Proposition 2 $|\{L_j, M, N\}^{\perp}| = 2$ for every two such lines M, N. If p = t = 2, then $\mathscr{S} \cong Q(4, 2)$, so each line is regular, a contradiction. Hence p is odd. Now we introduce the following incidence structure $\mathscr{A} = (\mathscr{P}', \mathscr{B}', I')$. The elements of \mathscr{P}' are the lines of L_i^{\perp} not incident with x. The elements of \mathscr{B}' are

(i) the points of L_i different from x, and

(ii) the lines of L_i^{\perp} not incident with x.

An element of \mathscr{P}' is incident (I') with an element of type (i) of \mathscr{B}' if it is incident with it in \mathscr{S} ; an element of \mathscr{P}' is incident (I') with an element of type (ii) of \mathscr{B}' if it is concurrent with it in \mathscr{S} . Then \mathscr{A} is a $2 - (p^2, p, 1)$ design, that is, an affine plane of order p.

Let *M* and *N* be as before, let $U \in \{L_j, M, N\}^{\perp} - \{L_i\}$, and let *UImIM* and *UInIN*. If δ is the element of *G* mapping *m* onto *n*, then δ fixes all points of L_j and induces a translation in the affine plane \mathscr{A} . It follows easily that \mathscr{A} is a translation plane. As *p* is prime, the translation plane \mathscr{A} is desarguesian. Let C be a line not concurrent with L_i or L_j . The elements of G fixing C form a group $\langle \sigma \rangle$ of order p. In \mathscr{A} the group $\langle \sigma \rangle$ induces an automorphism group Σ of order p fixing the parallel class consisting of lines of A of type (i). If the matrix A represents a generator of Σ , then we may take for A the matrix.

$$\begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & 1 \end{bmatrix},$$

with $A^p = \ell \mathscr{I}$. It follows that $a = d = \ell = 1$, and so

$$A^{r} = \begin{bmatrix} 1 & rb & rc + \frac{r(r-1)}{2}be \\ 0 & 1 & re \\ 0 & 0 & 1 \end{bmatrix}, \quad r = 0, 1, \dots, p-1$$

Since x is the only point of L_i or L_j which is fixed by σ , the group Σ fixes no line of \mathscr{A} and fixes exactly one point at infinity of \mathscr{A} . Hence $e \neq 0 \neq b$. The orbit under Σ of the point $(x_0, y_0, 1)$ of \mathscr{A} is the parabola

$$\frac{1}{2}(Y - y_0)[(Y - y_0) - e]b + (Y - y_0)(c + by_0) - e(X - x_0) = 0.$$

Its point at infinity is exactly the point at infinity of the lines of \mathscr{A} of type (i). The parabola having as elements the p lines $M \in \{L_i, C\}^{\perp}$, with $x \not I M$, will be denoted by \tilde{C} .

Now we consider distinct nonconcurrent lines C and C', which are not concurrent with L_i . First suppose that $C' \sim L_j \sim C$. As $\{L_i, C\}$ is not regular we necessarily have $|\{L_i, C, C'\}^{\perp}| \leq 2$. Next, let $C' \not\sim L_j \sim C$. As the line C of \mathscr{A} contains at most two points of the parabola \tilde{C}' , we have $|\{L_i, C, C'\}^{\perp}| \leq 2$. Finally, let $C' \not\sim L_j \not\sim C$. Then the parabolas \tilde{C} and \tilde{C}' either coincide or have at most two points in common. Hence, either for some k we have $C \sim L_k \sim C'$ with $\{C, L_i\}$ regular and $C' \in \{C, L_i\}^{\perp \perp}$ or $|\{L_i, C, C'\}^{\perp}| \leq 2$. Assume by way of contradiction that $\tilde{C} = \tilde{C}'$. If $w \mid L_j, w \neq x$, then the line W defined by $w \mid W \sim C$ is a tangent line of \tilde{C} . In this way we obtain the p tangent lines of \tilde{C} . As $\tilde{C} = \tilde{C}'$, W is also a tangent line of \tilde{C}' , hence $W \sim C'$. It follows that $L_j \in \{C, C'\}^{\perp \perp}$. Hence $L_i = L_j$, a contradiction. So again we have $|\{L_i, C, C'\}^{\perp}| \leq 2$. We conclude that the line L_i is antiregular.

The affine plane \mathscr{A} is the affine plane $\pi(L_i, L_j)$ defined by the antiregular line L_i and the line L_j ; cf. 1.3.2 of Payne and Thas (1984). As $\pi(L_i, L_j) = \mathscr{A}$ is desarguesian, then by 5.2.7 of Payne and Thas (1984), the GQ \mathscr{S} is isomorphic to Q(4, p). \Box

Proposition 4. We have $t \in \{p, p^2\}$.

Proof. We already know that $p \le t \le p^2$.

Let us show that p divides t. By way of contradiction assume that p does not divide t. Consider the subgroup S_0^* of G which fixes the common point z_0 of L_0 and M_0 . We

have $|S_0^*| = pt$, and as $p \not\prec t$ the group S_0^* has 1 + kp Sylow p-subgroups of order p, with t = r(1 + kp). Let V be the set of all lines through z_0 , but different from L_0 . If M, M' are lines of V and if S_M , $S_{M'}$ are the subgroups of S_0^* fixing M, M' respectively, then $S_M = \sigma S_{M'} \sigma^{-1}$ with σ any element of S_0^* which maps M onto M'. Also, any Sylow p-subgroup of S_0^* is of the form S_M with M some line of V. For given $M \in V$ the number α of lines $M' \in V$ for which $S_M = S_{M'}$ is the size of the normalizer $N(S_M)$ of S_M is S_0^* divided by the order of S_M . As $|N(S_M)|(1 + kp) = |S_0^*| = pt$, we have $|N(S_M)| = pr$, and so $\alpha = r$. Let uIL_0 with $x \neq u \neq z_0$. The group S_0 fixes u, and as $p \not\mid t$ it also fixes at least one line U through $u, U \neq L_0$. Let M_1, M_2, \ldots, M_r be the lines of V fixed by S_0 . Then $\{U, M_i\}^{\perp}$ is fixed by S_0 , and all lines of $\{U, M_i\}^{\perp}$ are concurrent with some line L_{i_j} , $i_j \neq 0$. Now it follows from Proposition 2 that $\{L_i, M_i\}$ is regular, j = 1, 2, ..., r. Notations are chosen in such a way that $i_1 = j, j = 1, 2, ..., r$. By Proposition 2 all pairs $\{L_i, M\}$ are regular, M any line with $x \not I M$ and $L_0 \sim M$. Now it is clear that every line of $\{L_j, M_i\}^{\perp \perp}, i, j = 1, 2, ..., r$, is fixed by S_0 . The r^2 sets $\{L_j, M_i\}^{\perp \perp}$, i, j = 1, 2, ..., r, contain in total exactly r(1 + p) lines (through each point of L_0 different from x, there are r lines ($\neq L_0$) fixed by S_0). It easily follows that each pair $\{M', N'\}$, $M' \sim L_0 \sim N'$, x I M', x I N', $M' \not\sim N'$, M' and N' fixed by S_0 , belongs to exactly one of the sets $\{L_j, M_i\}^{\perp\perp}$; also, each pair $\{L_j, M'\}$, $M' \sim L_0$, $L_j \not\sim M'$, $j \in \{1, 2, ..., r\}$ and M' fixed by S_0 , belongs to exactly one of the sets $\{L_j, M_i\}^{\perp \perp}$. Then by 2.3.1 of Payne and Thas (1984), the set \mathscr{P} consisting of the points on the lines of the sets $\{L_i, M_i\}^{\perp\perp}$, together with the lines of \mathscr{S} containing at least two (and then exactly p + 1) points of \mathscr{P} , form a subquadrangle \mathcal{G}' of order (p, r) of \mathcal{G} . As \mathcal{G}' also contains a subquadrangle of order (p, 1), by 2.2.2 of Payne and Thas (1984), we have r = t or r = 1 or $(r, t) = (p, p^2)$. But $p \nmid t$, and so $r \in \{1, t\}$. If r = 1, then t = 1 + kp. By 1.2.2 of Payne and Thas (1984), p(1 + k) + 1divides p(1 + kp)(p + 1)(2 + kp), so divides $p^2 - 1$, so divides kp(p - 1), so divides k(p-1). Hence $p(1+k) + 1 \le k(p-1)$, a contradiction. Consequently, we may assume that S_i^* has exactly one Sylow *p*-subgroup, and so S_i fixes all lines of L_i^{\perp} , $i = 0, 1, \dots, t$. It follows that \mathscr{S} is a translation GQ (cf. 8.2 of Payne and Thas, (1984)) and so $p \mid t$ by 8.5.2 of Payne and Thas (1984). We conclude that $t = np, 1 \le n \le p$.

Assume that n < p. The elation group G of order p^3n has 1 + bp Sylow p-subgroups of order p^3 , where 1 + bp divides n. Hence b = 0, and so G has a unique Sylow p-subgroup G' of order p^3 . If $y_1 \sim y_2$, $y_1 \not\sim x \not\sim y_2$, then the elation $\delta \in G$ mapping y_1 onto y_2 has order p. Hence $\langle \delta \rangle \leq G'$. Let u_1 ad u_2 be any two noncollinear points of $\mathscr{P} - x^{\perp}$. If $x \notin \{u_1, u_2\}^{\perp \perp}$, then choose u_3 with $u_1 \sim u_3 \sim u_2$, $u_3 \notin x^{\perp}$. If $u_1^{\delta_1} = u_3$, $u_3^{\delta_2} = u_2$, with δ_1 , $\delta_2 \in G$, then δ_1 , $\delta_2 \in G'$. Hence the elation of G mapping u_1 onto u_2 belongs to G'. If $x \in \{u_1, u_2\}^{\perp \perp}$, then, as $s \neq 1$, we can choose points u_3, u_4 in $\mathscr{P} - x^{\perp}$ such that $u_1 \sim u_3 \sim u_4 \sim u_2$. Again it is clear that the elation of G mapping u_1 onto u_2 belongs to G'. Consequently $G \leq G'$, that is, n = 1. So t = p.

We conclude that $t \in \{p, p^2\}$.

Notice that Frohardt (1988) already proved the previous statement using grouptheoretical arguments only. **Theorem 5.** Elation generalized quadrangles of order (p, t), $t \neq 1$ and p prime, are classical.

Proof. This follows immediately from Propositions 1, 3 and 4. \Box

References

Frohardt, D.E. (1988). Groups which produce generalized quadrangles. J. Combin. Theory Ser. A 48. 139–145.

Kantor, W.M. (1980). Generalized quadrangles associated with $G_2(q)$. J. Combin. Theory Ser. A **29**, 212–219. Payne, S.E. (1985). A garden of generalized quadrangles. Algebras, Groups and Geometries **3**, 323–354.

Payne, S.E. and J.A. Thas (1984). Finite Generalized Quadrangles. Pitman, London.

Tits, J. (1959). Sur la trialité et certains groupes qui s'en déduisent. Inst. Hautes Etudes Sci. Publ. Math. 2, 13-60.