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Abstract

Elation generalized quadrangles of order (p, t), p prime, are classical.

1. Introduction and definitions
1.1. Generalized quadranglies

A finite generalized quadrangle (GQ) of order (s, t) is a finite incidence structure
S =(#,%,1) in which 2 and # are disjoint (nonempty) sets of objects called points
and lines respectively, and for which I is a symmetric point-line incidence relation
satisfying the following properties:

GQ1. Each point is incident with ¢ + 1 lines (¢ > 1) and two distinct points are
incident with at most one line.

GQ2. Each lineis incident with s + 1 points (s > 1) and two distinct lines are incident
with at most one point.

GQ3. If (x, L) 1s a nonincident point-line pair, then there is a unique point-line pair
(y, M) for which xI MI yIL.

If s = ¢, then % is said to have order s. For any point x of &, the set of all points
lying on the lines through x is denoted by x*. Generalized quadrangles were
introduced by Tits (1959). For terminology, notation, results, etc., concerning finite
GQ, see the monograph by Payne and Thas (1984).
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The classical GQ

1. Consider a nonsingular quadric Q of projective index 1 of the projective space
PG(d, q), withd = 3, 4 or 5. Then the points of Q together with the lines of Q (which
are the subspaces of maximal dimension on Q) form a GQ Q(d, g) of order (g, 1)
when d = 3, order (g, q) when d = 4, and order (g, g*) when d = 5.

2. Let H be a nonsingular hermitian variety of the projective space PG(d, ¢%),d = 3 or
4. Then the points of H together with the lines on H form a GQ H(d, q?) of order
(4% ¢q) when d = 3 and order (¢2, ¢®) when d = 4.

3. The points of PG(3, q), together with the totally isotropic lines with respect to
a symplectic polarity, form a GQ W(qg) of order 4.

Isomorphisms. The GQ, Q(4, g) is isomorphic to the dual of W(qg), and Q(4, g) (and
hence W (g)) is self-dual if and only if q is even. The GQ H(3, ¢*) is isomorphic to the
dual of Q(5, g).

1.2. Whorls, elations and translations

Let & = (P, #,1) be a GQ of order (s, 1), s # 1 and t # 1. A collineation 8 of & is
a whorl about the point x if 0 fixes each line incident with x. A whorl 0 about x is said to
be an elation about x if 0 is the identity or if # fixes no point of 2 — x*. The set of
elations about a point does not necessarily form a group (see Payne, 1985). If there is
a group G of elations about x acting regularly on 2 — x*, we say & is an elation
generalized quadrangle (EGQ) with elation group G and base point x. Briefly we say
(£, G)is an EGQ. If the group G is abelian, then (¥, G) is a translation generalized
quadrangle (TGQ) with translation group G and base point x; in such a case G is the set
of all elations about x. (See Payne and Thas, 1984.)

Example. The classical GQ Q(4, q), W(q), Q(5, ¢4%) are EGQ with base point x, for any
point Xx.
It follows that any classical GQ of order (p,1), t # 1 and p prime, is an EGQ.

In this paper we will prove the converse.

Main result. Any elation generalized quadrangle of order (p,t), p prime and t # 1, is
classical.

1.3. Elation generalized quadrangles as group coset geometries

Let (%, G) be an EGQ of order (s,t), s #1 # ¢, and let y be a fixed point of
2 — x*. Let Lo, L1, ..., L be the lines incident with x. For each L;, i€ {0, 1, ... ¢},
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there is a unique point-line pair (z;, M,) for which yIM;Iz,IL;. Define S;. S¥ and J as
follows: S;={0e G||IM{ =M}, S} ={0eG||z! =2z} and J = {S;]|0 <i<t}. The
groups G, S;, S¥ have respective orders s*t, s and st. They also have the following two
properties:

K1: §S;nS, = {1} for distinct i, j, k,
K2: S¥*nS; = {1} for distinct i, j.

It was first shown by Kantor (1980) that the converse is also true, i.e., given a group
G of order st (s > 1, t > 1) with 1 + ¢ subgroups S; of order s and 1 + t subgroups
S¥ DS, of order st satisfying properties K1 and K2, then one constructs as follows an
EGQ %(G, J), with J = {8;]|0 < i < t}. There are three kinds of points:

(1) the elements of G,

(i) the right cosets S¥g, g G, ic{0,1, ... ¢},
(ii)) a symbol (oo ).
There are two kinds of lines:
(a) the right cosets Sig, g€ G, i€ {0, 1, ... ,t},
(b) symbols [S],ie{0,1, ...t}
A point g of type (i) is incident with each line S;g, 0 < i < t. A point §F g of type (ii) is
incident with [S;] and with each line S;h contained in S¥g. The point ( o ) is incident
with each line [S;] of type (b). There are no further incidences. Then ¥ (G, J) is an
EGQ of order (s, t) with base point ( oc ). Each EGQ (§*, G) with J defined as above is
isomorphic to ¥ (G, J).

2. Elation generalized quadrangles of order (p, 1), t # 1 and p prime, are classical

Let & = (™,G) = (2,4,1) be an EGQ of order (p, 1), t # 1 and p prime. We will
use the notation of the previous sections.

Proposition 1. If t = p?, then & =~ Q(5, p).

Proof. Consider a triple {x, x;,x,} of pairwise noncollinear points. As ¢ = p* the set

1L

{x,x1,x,}"* = {x,xy, ..., x,} contains at most p + 1 points. Let §; be the elation of
G mapping x; onto x;, i = 1,2,, ... ,r. As J; fixes {x, x;, x5}, it also fixes {x, x;, x5}
It is clear that G, = {§,,6,, ...,d,} is the subgroup of G fixing {x,x;,x,}"". As
|G| = p*, either |G;|=1o0r p||G,| =r. As p = r = 2, we necessarily have r = p. So
the triple {x,x, x,} is 3-regular, and consequently x is 3-regular (cf. 1.3 of Payne and
Thas (1984). If p = 2, then & is the unique GQ Q(5,2) of order (2,4); if p > 2, then by
5.3.3(i) of Payne and Thas (1984), the GQ % is isomorphic to Q(5,p). O

Proposition 2. We have p <t. For given lines L, L;, with i # j, the pair {L; M'} is
regular for every line M’ with x IM' and L; ~ M', if |{L;, M, N}*| = 3 for at least two
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lines M, N of Li with x JM,xIN,M#N; if {L;, M’} is not regular (that is, if
| {Lj M,N}*| <2 for every two lines M, N of Li, with xJM, xJN, M+AN) then
|{L;, M,N}*| = 2 for every two lines M, N of Li", with xJM, xJN, M #N, if and only if
p=_L

Proof. Let M, N be lines of L with xJM, x] N, M AN. Assume that U € {L;, N, M},
U # L. If {L;, N,M}" contains a third line U’, then put U'Iu'IM and UlulM, and let
0 be the element of G mapping u onto . The subgroup of G fixing M is the group {é)
of order p. This group fixes the point z = L;M and acts on the set V' of points of
L;different from x and z. As | V| = p — 1 < p =<} |, the group {J) fixes every point
of L;. It easily follows that N° = N. Hence the elements of (&) fix N and map U onto
all lines of {M, L;}* — {L;}. It follows that N € {L;, M}"*". Analogously every line of
{L;j, M} — {L;} belongs to {U, L;}**. Consequently {L;, U} and {L;, M} are regular.
Let M' € L, xJ M', M # M'. As there is an element of G mapping M onto M’, also the
pair {L; M'} is regular.

If {L;, M}, M € L}, x] M, is regular, then p < ¢ by 1.3.6 (i) of Payne and Thas (1984).
Now suppose that {L;, M} is not regular, and count in two ways the ordered triples
{U', N', M’} with zIL;Ju, x #z #u # x, zZIM', uIN', U € {M', N', L;}* — {L;}. We
obtain pt < 1%, ie., p <t, with equality if and only if [{L; M’, N'}*| =2 for every
choice of M" and N'. [

Proposition 3. Ift = p, then & =~ Q(4,p) or & = W(p).

Proof. Let p =1t First assume that for no pair (L,Lj;), i#j, we have
[{L;, M, N}*| < 2 for each pair (M, N) in Proposition 2. Then each line L; is regular,
i=0,1, ...,p. Now by 8.3.3 of Payne and Thas (1984) (¥, G)is a TGQ of order p.
Then by 8.7.3 of Payne and Thas (1984) we have & =~ Q{4, p).

Next assume that for at least one pair (L;, L)), i # j, we have | {L; M,N}*| < 2 for

each pair (M, N) in Proposition 2. By Proposition 2 |{L;, M,N}*{ = 2 for every two
such lines M,N. If p =1t = 2, then ¥ = Q(4,2), so each line is regular, a contradic-
tion. Hence p is odd. Now we introduce the following incidence structure
o = (P, %, I'). The elements of &’ are the lines of L{ not incident with x. The
elements of %’ are
(i) the points of L; different from x, and
(ii) the lines of L} not incident with x.
An element of ¢ is incident (I’) with an element of type (i) of &’ if it is incident
with it in .%; an element of 2’ is incident ({’) with an element of type (ii) of £’ if it is
concurrent with it in &. Then &/ is a 2 — (p?, p, 1) design, that is, an affine plane of
order p.

Let M and N be as before, let U € {L;, M, N}* — {L;}, and let UImIM and UInIN.
If & is the element of G mapping m onto n, then & fixes all points of L; and induces
a translation in the affine plane 7. It follows easily that < is a translation plane. As
p is prime, the translation plane </ is desarguesian.
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Let C be a line not concurrent with L; or L; The elements of G fixing C form
a group {o) of order p. In o the group {¢) induces an automorphism group X of
order p fixing the parallel class consisting of lines of A of type (1). If the matrix
A represents a generator of X, then we may take for A4 the matrix.

with A? =/.¢. It follows that a =d =/ = 1, and so

—1
1 rb rc+r(r2 )be
A'=10 1 re , r=01,....p—1
0 0 1

Since x is the only point of L; or L; which is fixed by o, the group 2 fixes no line of
o/ and fixes exactly one point at infinity of .«/. Hence ¢ # 0 # b. The orbit under X of
the point (x,, yo, 1) of o7 is the parabola

Y — yo) [{Y — yo) — €]b + (Y — yo)(c + byo) — e(X — x0) = 0.

Its point at infinity is exactly the point at infinity of the lines of .« of type (i). The
parabola having as elements the p lines M € {L;, C}*, with xJ M, will be denoted by C.

Now we consider distinct nonconcurrent lines C and C’, which are not concurrent
with L;. First suppose that C' ~ L; ~ C. As {L;, C} is not regular we necessarily have
[{Li,C,C'}*| <2. Next, let C'#L; ~ C. As the line C of .o/ contains at most two
points of the parabola €, we have | {L;, C,C'}*| < 2. Finally, let C' #L; #C. Then the
parabolas € and C’ either coincide or have at most two points in common. Hence,
either for some k we have C ~ L, ~ C’" with {C, L;} regular and C'e {C,L;}"*"' or
[{L,C,C" " | < 2. Assume by way of contradiction that C=C.Ifw IL;, w # x, then
the line W defined by w IW ~ C is a tangent line of C. In this way we obtain the
p tangent lines of C. As € = €', W is also a tangent line of C’, hence W ~ (. It
follows that L;e {C,C'}**. Hence L;=L; a contradiction. So again we have
[{L;,C,C’}"| < 2. We conclude that the line L; is antiregular.

The affine plane ./ is the affine plane n(L;, L;) defined by the antiregular line L; and
the line L;; cf. 1.3.2 of Payne and Thas (1984). As n(L;, L;) = .o/ is desarguesian, then
by 5.2.7 of Payne and Thas (1984), the GQ ¥ is isomorphic to Q(4,p). [

Proposition 4. We have t € {p, p*}.
Proof. We already know that p <t < p*.

Let us show that p divides t. By way of contradiction assume that p does not divide
t. Consider the subgroup S§ of G which fixes the common point z, of L, and M,. We
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have |S&| = pt, and as ptt the group S§ has 1 + kp Sylow p-subgroups of order p,
with t =r(1 + kp). Let V be the set of all lines through z,, but different from L.
If M, M’ are lines of V and if Sy, Sy are the subgroups of S§ fixing M, M’ respectively,
then Sy = oSy-0~! with ¢ any element of S§ which maps M onto M'. Also, any
Sylow p-subgroup of S% is of the form S,, with M some line of V. For given M e V
the number « of lines M’ € V for which Sy, = Sy, is the size of the normalizer N(Syy)
of Sy is S§ divided by the order of Sy. As | N(Sy)|(1 + kp) = |SE| = pt, we have
|N(Sy)| = pr, and so o = r. Let ulL, with x # u # zo. The group S, fixes u, and as
pXt it also fixes at least one line U through u, U # Ly. Let My, M,, ..., M, be the
lines of V fixed by So. Then {U, M;}"* is fixed by S,, and all lines of {U, M;}*
are concurrent with some line L;, i;# 0. Now it follows from Proposition 2
that {L;, M} is regular, j = 1,2, ...,r. Notations are chosen in such a way that
ij=Jj, j=12,...,r. By Proposition 2 all pairs {L; M} are regular, M any line
with xJ M and L, ~ M. Now it is clear that every line of {L;, M;}**,i,j=1,2, ....r,
is fixed by So. The r? sets {L; M;}**, i,j=1,2, ...,r, contain in total exactly
r(1 + p) lines (through each point of L, different from x, there are r lines ( # L)
fixed by Sy). It easily follows that each pair {M', N'}, M’ ~ L, ~ N', x]M', x]N’,
M’ AN’, M’ and N’ fixed by S,, belongs to exactly one of the sets {L; M;}**; also,
each pair {L;, M'}, M' ~ Ly, L; #M',je {12, ... ,r} and M’ fixed by S,, belongs to
exactly one of the sets {L; M;}**. Then by 2.3.1 of Payne and Thas (1984), the set
2’ consisting of the points on the lines of the sets {L;, M;}**, together with the lines of
& containing at least two (and then exactly p + 1) points of 2, form a subquadrangle
&' of order (p,r) of &. As &’ also contains a subquadrangle of order (p, 1), by 2.2.2 of
Payne and Thas (1984), we have r=t or r=1 or (r,t) = (p,p?). But ptt, and
sore{l,t}.Ifr =1,then t = 1 + kp. By 1.2.2 of Payne and Thas (1984), p(1 + k) + 1
divides p(1 + kp)(p + 1)(2 + kp), so divides p? — 1, so divides kp(p — 1), so divides
k(p — 1). Hence p(1 + k) + 1 < k(p — 1), a contradiction. Consequently, we may
assume that S¥ has exactly one Sylow p-subgroup, and so S; fixes all lines of L,
i =01, ...,t It follows that ¥ is a translation GQ (cf. 8.2 of Payne and Thas, (1984))
and so p|t by 8.5.2 of Payne and Thas (1984). We conclude that t = np, 1 <n < p.

Assume that n < p. The elation group G of order p®>n has 1 + bp Sylow p-subgroups
of order p®, where 1 + bp divides n. Hence b =0, and so G has a unique Sylow
p-subgroup G’ of order p*. If y; ~ y,, y1 #x #4y,, then the elation 6 € G mapping y,
onto y, has order p. Hence () < G'. Let u; ad u, be any two noncollinear points of
P —xt I x¢{uy,u,}tt, then choose uz with uy ~uz ~ uy, us¢x’. If uf' = u,,
u%* = u,, with 8, 8, € G, then &, 6, € G'. Hence the elation of G mapping u; onto
u, belongs to G'. If x € {uy, u,}**, then, as s # 1, we can choose points us, u, in # — x*
such that u; ~ u3 ~ uy ~ u,. Again it is clear that the elation of G mapping u; onto
u, belongs to G'. Consequently G < G/, thatis,n=1.So t = p.

We conclude that t € {p, p*>}. O

Notice that Frohardt (1988) already proved the previous statement using group-
theoretical arguments only.
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Theorem 5. Elation generalized quadrangles of order (p,t), t # 1 and p prime, are
classical.

Proof. This follows immediately from Propositions 1,3 and 4. []
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