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Abstract 

Elation generalized quadrangles of order (p, t), p prime, are classical 

1. Introduction and definitions 

I. 1. Generalized quadrangles 

A finite generalized quadrangle (GQ) of order (s, t) is a finite incidence structure 
.Y = (9, W, I) in which .Y and g are disjoint (nonempty) sets of objects called points 
and lines respectively, and for which I is a symmetric point-line incidence relation 
satisfying the following properties: 
GQl. Each point is incident with t + 1 lines (t 3 1) and two distinct points are 

incident with at most one line. 
GQ2. Each line is incident with s + 1 points (S > 1) and two distinct lines are incident 

with at most one point. 
GQ3. If (x, L) is a nonincident point-line pair, then there is a unique point- line pair 

(y, M) for which xl MI yIL. 
Ifs = t, then .Y’ is said to have order s. For any point x of ~7, the set of all points 

lying on the lines through x is denoted by xl. Generalized quadrangles were 
introduced by Tits (1959). For terminology, notation, results, etc., concerning finite 
GQ, see the monograph by Payne and Thas (1984). 
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The classical GQ 

1. Consider a nonsingular quadric Q of projective index 1 of the projective space 
PG(d, y), with d = 3,4 or 5. Then the points of Q together with the lines of Q (which 
are the subspaces of maximal dimension on Q) form a GQ Q(d, q) of order (4, 1) 
when d = 3, order (q, q) when d = 4, and order (q, q2) when d = 5. 

2. Let H be a nonsingular hermitian variety of the projective space PG(d, q2), d = 3 or 
4. Then the points of H together with the lines on H form a GQ H(d, q2) of order 
(q’, q) when d = 3 and order (q2, q3) when d = 4. 

3. The points of PG(3, q), together with the totally isotropic lines with respect to 
a symplectic polarity, form a GQ W(q) of order q. 

Isomorphisms. The GQ, Q(4, q) is isomorphic to the dual of W(q), and Q(4, q) (and 
hence W(q)) is self-dual if and only if q is even. The GQ H(3, q2) is isomorphic to the 
dual of Q(5, q). 

1.2. Whorls, elations and translations 

Let Y = (9, &?‘, I) be a GQ of order (s, t), s # 1 and t # 1. A collineation 8 of Y is 
a whorl about the point x if 8 fixes each line incident with x. A whorl 8 about x is said to 
be an elation about x if 8 is the identity or if 8 fixes no point of g - x’. The set of 
elations about a point does not necessarily form a group (see Payne, 1985). If there is 
a group G of elations about x acting regularly on 9 - xl, we say Y is an elation 
generalized quadrangle (EGQ) with elation group G and base point x. Briefly we say 
(Y’“‘, G) is an EGQ. If the group G is abelian, then (9 (X), G) is a translation generalized 
quadrangle (TGQ) with translation group G and base point x; in such a case G is the set 
of all elations about x. (See Payne and Thas, 1984.) 

Example. The classical GQ Q(4, q), W(q), Q(5, q2) are EGQ with base point x, for any 
point x. 

It follows that any classical GQ of order (p, t), t # 1 and p prime, is an EGQ. 

In this paper we will prove the converse. 

Main result. Any elation generalized quadrangle of order (p, t), p prime and t # 1, is 
classical. 

1.3. Elation generalized quadrangles as group coset geometries 

Let (Ycx’, G) be an EGQ of order (s, t), s # 1 # t, and let y be a fixed point of 
9-x’. Let Lo,Ll, . . . , Lt be the lines incident with x. For each Li, i E (0, 1, . . , t}, 
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there is a unique point-line pair (z, MJ for which yIMiZziZLi. Define Si, ST and J as 
follows: Si = (0 E G 11 My = MiS, ST = (0 E G 11 ZP = zi> and J = (Sill0 < i < t). The 
groups G, Si, SF have respective orders s’t, s and st. They also have the following two 
properties: 

Kl: SiSjnS, = (1) for distinct i,,j, k, 
K2: S*nSj = {l} for distinct i, j. 

It was first shown by Kantor (1980) that the converse is also true, i.e., given a group 
G of order s2t (s > 1, t > 1) with 1 + t subgroups Si of order s and 1 + t subgroups 
ST > Si of order st satisfying properties Kl and K2, then one constructs as follows an 
EGQ .CY(G, J), with J = {Si 110 < i < t}. There are three kinds of points: 

(i) the elements of G, 
(ii) the right cosets STg, g E G, i E (0, 1, . , t), 

(iii) a symbol ( cc ). 
There are two kinds of lines: 
(a) the right cosets Sig> g E G, i E (0, 1, , t}, 
(b) symbols [Si], i E (0, 1, . , t}. 
A point g of type (i) is incident with each line Si,g, 0 < i d t. A point Sr g of type (ii) is 
incident with [Si] and with each line Sib contained in SFg. The point ( x ) is incident 
with each line [Si] of type (b). There are no further incidences. Then .Y(G, J) is an 
EGQ of order (s, t) with base point ( cc ). Each EGQ (S’“‘, G) with J defined as above is 
isomorphic to ,‘Y(G, J). 

2. Elation generalized quadrangles of order (p, t), t # 1 and p prime, are classical 

Let .Y = (Y’@), G) = (9, B??, I) be an EGQ of order (p, t), t # 1 and p prime. We will 
use the notation of the previous sections. 

Proposition 1. Zft = p2, then Y 2 Q(5,p). 

Proof. Consider a triple {x,x1,x2J of pairwise noncollinear points. As t = pz the set 
{x,.x1,.x2)~~ = {x,x1, . . . ,x,} contains at most p + 1 points. Let 6i be the elation of 
G mapping ~1 onto Xi, i = 1,2,, . . . ,Y. AS 6i fixes {x,x~,x~)~, it also fixes {x,.x~,x~)~‘. 
It is clear that G1 = {6,,d2, . . . ,6,} is the subgroup of G fixing (x,xl,xZjL’. As 
IGI=p4,eitherIG,I=1orp(IG,I=r.Asp>,u32,wenecessarilyhaver=p.So 
the triple {x,x1, x2) is 3-regular, and consequently x is 3-regular (cf. 1.3 of Payne and 
Thas (1984). If p = 2, then Y is the unique GQ Q(5,2) of order (2,4); if p > 2, then by 
5.3.3(i) of Payne and Thas (1984), the GQ Y is isomorphic to Q(5,p). 0 

Proposition 2. We have p < t. For given lines Li, Lj, with i #j, the pair {Lb M’) is 
regularfor every line M’ with x ZM’ and Li - M’, [f I {Lj, M, N}‘I > 3,for at [rust two 
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lines M, N of L’ with x lM,xlN, M+N; if {Lj, M’) is not regular (that is, if 
I{Lj,M,N)‘l62f or every two lines M, N of Lf, with xJM, xlN, M+N) then 
I {Lj,M,N)‘l = 2.f or every two lines M, N of Lf, with xJM, x/N, M +N, if and only if 
p = t. 

Proof. Let M, N be lines of L’ with x{M, xlN, M +N. Assume that U E (Lj, N, M}‘, 
U # Li. If {Lj, N, M}’ contains a third line U’, then put U’Iu’IM and UIuIM, and let 
6 be the element of G mapping u onto u’. The subgroup of G fixing M is the group (6) 
of order p. This group fixes the point z = LiM and acts on the set V of points of 
Li different from x and z. As 1 T/I = p - 1 < p = ( (6) 1, the group (6) fixes every point 
of Li. It easily follows that N6 = N. Hence the elements of (6) fix N and map U onto 
all lines of {M, L,}’ - (Li}. It follows that N E {Lj, M}“. Analogously every line of 
{Lj, M}’ - {Li} belongs to {U, Li}“. Consequently (L;, U} and {Lj, M} are regular. 
Let M’ E L’, xJM’, M # M’. As there is an element of G mapping M onto M’, also the 
pair {Lj, M’} is regular. 

If {Lj, M}, M E Lf, xlM, is regular, then p d t by 1.3.6 (i) of Payne and Thas (1984). 
Now suppose that {Lj, M} is not regular, and count in two ways the ordered triples 
{U’, N’, M’} with ZlLiZu, x # z # u # X, zZM’, uZN’, U’ E {M’, N’, Lj}’ - {Li}. We 
obtain pt 6 t2, i.e., p < t, with equality if and only if 1 {Lj, M’, N’}‘I = 2 for every 
choice of M’ and N’. 0 

Proposition 3. Zf t = p, then Y E Q(4, p) or Y z W(p) 

Proof. Let p = t. First assume that for no pair (Li, Lj), i #j, we have 
1 {Lj, M, N)’ I < 2 for each pair (M, N) in Proposition 2. Then each line Li is regular, 
i=O,l, . . . ,p. Now by 8.3.3 of Payne and Thas (1984) (Y’“‘, G) is a TGQ of order p. 
Then by 8.7.3 of Payne and Thas (1984) we have Y z Q(4, p). 

Next assume that for at least one pair (L, Lj), i # j, we have 1 {Lj, M, N)’ I < 2 for 
each pair (M, N) in Proposition 2. By Proposition 2 I {Lj, M, N}‘( = 2 for every two 
such lines M, N. If p = t = 2, then Y E Q(4,2), so each line is regular, a contradic- 
tion. Hence p is odd. Now we introduce the following incidence structure 
d = (Y, &?‘, I’). The elements of 9” are the lines of Lf not incident with x. The 
elements of .!JY are 
(i) the points of Li different from x, and 

(ii) the lines of Lf not incident with x. 
An element of Y is incident (I’) with an element of type (i) of @’ if it is incident 
with it in Y; an element of Y’ is incident (I’) with an element of type (ii) of S?’ if it is 
concurrent with it in Y. Then ~2 is a 2 - (p’,p, 1) design, that is, an affine plane of 
order p. 

Let M and N be as before, let U E {Lj, M, N)’ - {Li}, and let UZmZM and UZn IN. 
If 6 is the element of G mapping m onto n, then 6 fixes all points of Lj and induces 
a translation in the affine plane d. It follows easily that & is a translation plane. As 
p is prime, the translation plane & is desarguesian. 
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Let C be a line not concurrent with J!+ or Lj. The elements of G fixing C form 
a group (a) of order p. In d the group (0) induces an automorphism group C of 
order p fixing the parallel class consisting of lines of A of type (i). If the matrix 
A represents a generator of X, then we may take for A the matrix. 

u h c I 1 0 d e ’ 

0 0 1 

with AP = k.f. It follows that a = n = / = 1, and so 

, r=O,l. .._ p-l 

Since x is the only point of Li or Lj which is fixed by g, the group C fixes no line of 
.d and fixes exactly one point at infinity of &. Hence e # 0 # b. The orbit under C of 
the point (.x0, yO, 1) of d is the parabola 

f( Y - yO) [( Y - yO) - e] b + (Y - .vo)(c + hyo) - e(X ~ x0) = 0. 

Its point at infinity is exactly the point at infinity of the lines of & of type (i). The 
parabola having as elements the p lines M E {Li, C}~L, with xlM, will be denoted by ?. 

Now we consider distinct nonconcurrent lines C and C’, which are not concurrent 
with Li. First suppose that C’ - Lj v C. As {Li, C} is not regular we necessarily have 
1 {Li, C. C’}‘I 6 2. Next, let C’7LLj _ C. As the line C of .& contains at most two 
points of the parabola c’, we have 1 jLi, C, C’}’ 1 < 2. Finally, let C’ 7LLj ;“C. Then the 
parabolas c” and c’ either coincide or have at most two points in common. Hence. 
either for some k we have C - Lk - C’ with {C, Li} regular and C’ E {C, Li) ’ ’ or 
I {Li, C, C’) - I < 2. Assume by way of contradiction that c = c’. If w ILj, w # x, then 
the line W defined by w IW - C is a tangent line of ?. In this way we obtain the 
p tangent lines of c. As c = c’, W is also a tangent line of c”‘, hence W - C’. It 
follows that Lj E {C, C’}“. Hence Li = L,i, a contradiction. So again we have 
I {L,,C,C )‘I d 2. We conclude that the line Li is antiregular. 

The affine plane d is the affine plane n(Li, Lj) defined by the antiregular line Li and 
the line L,; cf. 1.3.2 of Payne and Thas (1984). As ~r(Li, Lj) = .d is desarguesian. then 
by 5.2.7 of Payne and Thas (1984), the GQ Y is isomorphic to Q(4,p). 0 

Proposition 4. We have t E {p, p’}. 

Proof. We already know that p d t d p2. 
Let us show that p divides t. By way of contradiction assume that p does not divide 

t. Consider the subgroup Sg of G which fixes the common point z. of Lo and MO. We 
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have 1 Sg ( = pt, and as p& the group S,* has 1 + kp Sylow p-subgroups of order p, 

with t = r(1 + kp). Let I/ be the set of all lines through zo, but different from Lo. 
If M, M’ are lines of V and if SM, SM, are the subgroups of S$ fixing M, M’ respectively, 
then SW = oSMK’ with g any element of Sg which maps M onto M’. Also, any 
Sylow p-subgroup of Sx is of the form SM with M some line of I’. For given M E V 
the number E of lines M’ E V for which Su = SMZ is the size of the normalizer N(S,) 
of SM is Sg divided by the order of SM. As 1 N(S,) I(1 + kp) = 1 Sg 1 = pt, we have 
I N(S,) I = pr, and so o! = Y. Let uZ&, with x # u # zo. The group So fixes U, and as 
p#t it also fixes at least one line U through U, U # Lo. Let MI, M2, . . . , M, be the 
lines of I/ fixed by So. Then {U, Mj}~ is fixed by So, and all lines of {U, Mj}’ 
are concurrent with some line Li,, ij # 0. Now it follows from Proposition 2 
that {Li,, Mj} is regular, j = 1,2, . . . ,Y. Notations are chosen in such a way that 
ij = j, j = 1,2, . . . ,Y. By Proposition 2 all pairs {Lj, M} are regular, M any line 
with .x{ M and Lo - M. Now it is clear that every line of {Lj, Mi}“, i, j = 1,2, . . . ,Y, 
is fixed by So. The r2 sets {Lj, Mi}“, i,j = 1,2, . ,r, contain in total exactly 
r(1 + p) lines (through each point of Lo different from x, there are r lines ( # Lo) 
fixed by So). It easily follows that each pair (M’, N’), M’ - Lo - N’, xfM’, x[N’, 
M’ +N’, M’ and N’ fixed by So, belongs to exactly one of the sets {Lj, Mi}“; also, 
each pair {Lj, M’}, M’ - Lo, Lj +M’, j E {1,2, . , r} and M’ fixed by So, belongs to 
exactly one of the sets {Lj, ML}“. Then by 2.3.1 of Payne and Thas (1984), the set 
9’ consisting of the points on the lines of the sets {Lj, ML}“, together with the lines of 
Y containing at least two (and then exactly p + 1) points of Y’, form a subquadrangle 
Y’ of order (p, r) of Y. As Y’ also contains a subquadrangle of order (p, l), by 2.2.2 of 
Payne and Thas (1984), we have r = t or r = 1 or (r, t) = (p,p2). But p$ t, and 
so r E {l, t}. If r = 1, then t = 1 + kp. By 1.2.2 of Payne and Thas (1984), p(1 + k) + 1 
divides p(1 + kp)(p + 1)(2 + kp), so divides p2 - 1, so divides kp(p - l), so divides 
k(p - 1). Hence p(1 + k) + 1 d k(p - l), a contradiction. Consequently, we may 
assume that ST has exactly one Sylow p-subgroup, and so Si fixes all lines of Lf, 
i=Ol 2 ,..., t. It follows that 9 is a translation GQ (cf. 8.2 of Payne and Thas, (1984)) 
and so p I t by 8.5.2 of Payne and Thas (1984). We conclude that t = np, 1 d n d p. 

Assume that n < p. The elation group G of order p3n has 1 + bp Sylow p-subgroups 
of order p3, where 1 + bp divides n. Hence b = 0, and so G has a unique Sylow 
p-subgroup G’ of order p3. If y, - y,, y, +x +y2, then the elation 6 E G mapping y, 
onto y, has order p. Hence (6) d G’. Let ul ad u2 be any two noncollinear points of 
9 - xl. If x#{u~,u~)~~, then choose uj with ul - u3 - u2, u3#x’. If z.# = u3, 

u3 ‘* = u2, with dl, S2 E G, then al, d2 E G’. Hence the elation of G mapping ul onto 
u2 belongs to G’. If x E {ul, u~}~~, then, as s # 1, we can choose points ug, uq in 9 - x’ 
such that u1 - u3 - uq - u2. Again it is clear that the elation of G mapping u1 onto 
u2 belongs to G’. Consequently G d G’, that is, y1 = 1. So t = p. 

We conclude that t E {p, p”}. 0 

Notice that Frohardt (1988) already proved the previous statement using group- 
theoretical arguments only. 
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Theorem 5. Elation generalized quadrangles of order (p, t). t # 1 and p prime, uw 
classical. 

Proof. This follows immediately from Propositions 1,3 and 4. ??
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