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Abstract

We show that every sub-weak embedding of any singular (degenerate or not)
orthogonal or unitary polar space of non-singular rank at least three in a projective
space PG(d, K), K a commutative field, is the projection of a full embedding in
some subspace PG(d, F) of PG(d, K), where PG(d, K) contains PG(d, K) and F is a
subfield of K. The same result is proved in the symplectic case under the assumption
that the field over which the polarity is defined is perfect if the characteristic is two
and if each secant line of the embedded polar space Γ contains exactly two points
of Γ. This completes the classification of all sub-weak embeddings of orthogonal,
symplectic and unitary polar spaces (singular or not; degenerate or not) of non-
singular rank at least three and defined over a commutative field F′, where in the
characteristic 2 case F′ is perfect if the polar space is symplectic and the degree of
the embedding is two; see Thas & Van Maldeghem [5] for the non-singular case.

1 Introduction and Statement of the Results

In this paper we always assume that K and F are commutative fields.

A weak embedding of a point-line geometry Γ with point set S in a projective space
PG(d, K) is a monomorphism θ of Γ into the geometry of points and lines of PG(d, K)
such that
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(WE1) the set Sθ generates PG(d, K),

(WE2) for any point x of Γ, the subspace generated by the set X = {yθ ‖ y ∈ S is collinear
with x} meets Sθ precisely in X,

(WE3) if for two lines L1 and L2 of Γ the images Lθ
1 and Lθ

2 meet in some point x, then x
belongs to Sθ.

In such a case we say that the image Γθ of Γ is weakly embedded in PG(d, K).

A full embedding in PG(d, K) is a weak embedding with the additional property that for
every line L, all points of PG(d, K) on the line Lθ have an inverse image under θ. In
that case (WE3) is trivially satisfied and also (WE2) can be proved, see Buekenhout
& Lefevre [1].

Weak embeddings were introduced by Lefevre-Percsy [2, 3]. When Γ is a polar space,
then we can view Γ as a point-line geometry and so we can consider weak embeddings of
polar spaces. In that case, Lefèvre-Percsy [2] shows that the number δ of points of Γθ

on a line of PG(d, K) containing at least two points of Γθ which are not collinear in Γθ, is
a constant. We call δ the degree of the embedding. If Γ is non-degenerate (i.e., no point
of Γ is collinear in Γ with all other points of Γ), then Thas & Van Maldeghem [5]
prove that the condition (WE3) is superfluous and they classify all — finite and infinite —
weakly embedded non-singular polar spaces of rank at least 3 of orthogonal, symplectic or
unitary type defined over a commutative field F, i.e., which have a standard full embedding
in some projective space PG(d, F), where in the characteristic 2 case F is perfect if the
polar space is symplectic and the degree of the embedding is two. The classification of
all generalized quadrangles weakly embedded in a finite projective space can be found in
Thas & Van Maldeghem [6].

We call a monomorphism θ from the point-line geometry of a polar space Γ with point
set S to the point-line geometry of a projective space PG(d, K) a sub-weak embedding
if it satisfies conditions (WE1) and (WE2). Usually, we simply say that Γ is weakly or
sub-weakly embedded in PG(d, K) without referring to θ, that is, we identify the points
and lines of Γ with their images in PG(d, K). In such a case the set of all points of Γ on
a line L of Γ will be denoted by L∗.

If the polar space Γ arises from a quadric it is called orthogonal, if it arises from a hermitian
variety it is called unitary, and if it arises from a symplectic polarity it is called symplectic.
In these cases Γ is called non-singular either if the hermitian variety is non-singular, or if
the symplectic polarity is non-singular, or if the quadric is non-singular (in the sense that
the quadric Q, as algebraic hypersurface, contains no singular point over the algebraic
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closure of the ground field over which Q is defined); in the symplectic and hermitian
case this is equivalent to assuming that the corresponding matrix is non-singular. In the
orthogonal case with characteristic not 2, in the symplectic case and in the hermitian
case, Γ is non-singular if and only if it is non-degenerate; in the orthogonal case with
characteristic 2, non-singular implies non-degenerate, but when not every element of K is
a square, a non-degenerate quadric may be singular.

Suppose that Γ is an orthogonal, symplectic or unitary polar space naturally embedded
in the projective space PG(d, F). Denote by Γ the extension of Γ to PG(d, F), where
F is the algebraic closure of F, i.e., for Γ orthogonal or unitary the equation of Γ with
coefficients in F is considered as an equation over F and for Γ symplectic the matrix over
F defining Γ is taken as the matrix over F defining Γ. The rank Rank(Γ) of Γ is one
more than the (projective) dimension of any maximal singular subspace of Γ; the absolute
rank RankA(Γ) of Γ is the rank of Γ; the non-singular corank Ranks(Γ) of Γ is one more
than the dimension of the unique projective subspace S(Γ) of Γ consisting of all points x
of Γ which are collinear in Γ with all other points of Γ; the non-singular rank Rankn(Γ)
of Γ is equal to Rank(Γ) − Ranks(Γ); the absolute non-singular corank Ranks

A(Γ) is the
non-singular corank of Γ and the absolute non-singular rank Rankn

A(Γ) is the non-singular
rank of Γ.

The elements of S(Γ) are called the singular points of Γ; all other points of Γ are non-
singular points.

Our Main Result reads as follows.

Main Result. Let the orthogonal, symplectic or unitary polar space Γ of non-singular
rank at least 3 be sub-weakly embedded in the projective space PG(d, K), where for Γ
symplectic and having degree 2 we assume that the field over which the polarity is defined
is perfect in the characteristic 2 case. Then there is a projective space PG(d, K) containing
PG(d, K) such that Γ is the projection from a PG(d−d−1, K) ⊆ PG(d, K) into PG(d, K)
of a polar space Γ̃ which is fully embedded in some subspace PG(d, F) of PG(d, K), for
some subfield F of K (in particular, if d = d, then Γ is fully embedded in some subspace
PG(d, F) of PG(d, K)).

A finite polar space is automatically of one of the three types mentioned in the Main
Result. So, in view of Thas & Van Maldeghem [5], we have the following corollary.

Corollary. Let Γ be a polar space of non-singular rank at least 3 sub-weakly embedded
in the finite projective space PG(d, q). Then there is a projective space PG(d, q), d ≥ d,
containing PG(d, q) such that Γ is the projection into PG(d, q) of a polar space Γ̃ which
is fully embedded in some subspace PG(d, q′) of PG(d, q), for some subfield GF(q′) of
GF(q).
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We remark that for symplectic polar spaces sub-weakly embedded of degree two, the
condition that the field over which the polarity is defined is perfect in the characteristic 2
case cannot be dispensed with in view of a counterexample in Thas & Van Maldeghem
[5] for the non-degenerate case.

2 Proof of the Main Result

In the sequel, for any point x of a polar space, we adopt the notation x⊥ for the set of
all points collinear with the point x in the polar space. We remark that polar spaces are
Shult spaces, i.e., for every point x and every line L, x⊥ either contains all points of L or
exactly one point of L (we will call that property the Buekenhout-Shult axiom).

From now on, we suppose that Γ is an orthogonal, symplectic or unitary singular polar
space sub-weakly embedded in PG(d, K). We will prove the Main Result by means of an
induction on r(Γ) =: Ranks

A(Γ)− Ranks(Γ). First we show two lemmas.

Lemma 1 If L is a line of the sub-weakly embedded polar space Γ, then the only points
of Γ on L are the points of L∗.

Proof. See Thas & Van Maldeghem [5], Lemma 1. !

Lemma 2 If L1 and L2 are two lines of Γ which intersect in a point of Γ, then L∗
1 and

L∗
2 are lines of a unique projective subplane PG(2, F), with F a subfield of K. The subfield

F does not depend on the choice of L1, L2.

Proof. This follows immediately from Lemma 1 and a connectedness argument; cf. Thas
& Van Maldeghem [5], part (a) of the proof of Lemma 5. !

Lemma 3 Let the point-line geometry Ω of a projective space PG(k′, F) be sub-weakly
embedded in a projective space PG(k, K). Then for any b ≥ −1 there exists a projective
space PG(k′ + b + 1, K) containing PG(k, K), a subspace PG(k′ − k + b, K) of PG(k′ +
b + 1, K) and a subspace PG(k′, F′) of PG(k′ + b + 1, K) over a subfield F′ of K, with F′

isomorphic to F, such that Ω is the projection of PG(k′, F′) from PG(k′ − k + b, K) into
PG(k, K).
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Proof. If b = −1, then this is due to Limbos [4], who proved it in the finite case. But
her proof can also be used in the infinite case without any notable change. If b ≥ 0, then
we first apply the result for b = −1 to obtain a projective space PG(k′, K) containing
PG(k, K), a subspace PG(k′ − k − 1, K) of PG(k′, K) and a subspace PG(k′, F′) of
PG(k′, K) over a subfield F′ of K, with F′ isomorphic to F, such that Ω is the projection
of PG(k′, F′) from PG(k′ − k − 1, K) into PG(k, K). We now extend PG(k′, K) to
a PG(k′ + b + 1, K) and we extend PG(k′ − k − 1, K) inside PG(k′ + b + 1, K) to a
PG(k′ − k + b, K) such that PG(k′ − k + b, K) ∩ PG(k′, K) = PG(k′ − k − 1, K). The
result now follows easily. !
We now prove the Main Result for Ranks(Γ) = Ranks

A(Γ). So suppose r(Γ) = 0.

First we note that, as Γ contains planes, for every line L of Γ the set L∗ is a subline of
PG(d, K) over some subfield F of K and F does not depend on the particular line by
Lemma 2.

Let Γ′ be a polar space isomorphic to Γ, embedded in a standard way in some projective
space PG(d′, F′), F′ a commutative field isomorphic to F. Put k′ = Ranks(Γ) and let
S ′ be the space of singular points of Γ′. With S ′ there corresponds a projective space
S of PG(d, K) sub-weakly embedded in some subspace PG(k, K) of PG(d, K), k ≤ k′.
In PG(d′, F′) we consider a projective space T ′ ∼= PG(d′ − k′ − 1, F′) skew to S ′. Let
T ′ ∩ Γ′ = Γ′

1; then Γ′
1 is non-singular. With Γ′

1 there corresponds Γ1 in Γ and, by Thas
& Van Maldeghem [5], Γ1 is fully embedded in a PG(d1, F). Let PG(d1, K) be the
extension over K of PG(d1, F). Clearly the spaces PG(k, K) and PG(d1, K) generate
PG(d, K). Putting PG(d1, K) ∩PG(k, K) = PG(b, K) implies that b = d1 − d + k.

We show that b ∈ {−1, 0}. Let x be any point of Γ1. Since Γ1 is fully embedded
in PG(d1, F), the set x⊥ ∩ PG(d1, K) lies in a unique hyperplane PG(d1 − 1, K) of
PG(d1, K). Since x is collinear in Γ with every point of S, the subspace of PG(d, K)
spanned by x⊥ contains PG(k, K). Let b∗ be the dimension of PG(d1−1, K)∩PG(b, K) =
PG(d1 − 1, K) ∩PG(k, K). Since by (WE2) PG(d1 − 1, K) and PG(k, K) span at most
a (d − 1)-dimensional space, we have b∗ ≥ (d1 − 1) + k − (d − 1) = d1 − d + k. Hence
b = b∗ and every tangent hyperplane of Γ1 contains PG(b, K). Since Γ1 is non-singular,
this implies that b = −1 or b = 0; if b = 0, then the characteristic of F is equal to 2, d1 is
even and the unique element of PG(b, K) lies in PG(d1, F), but does not belong to Γ1.

We extend PG(d, K) to PG(d, K), with d = b + d + k′ − k + 1. Let U be a (k′ +
b + 1)-dimensional projective subspace of PG(d, K) containing PG(k, K) and meeting
PG(d1, K) precisely in PG(b, K). It follows from Lemma 3 that S is the projection into
PG(k, K) of a certain k′-dimensional subspace S̃ ⊆ U over F from a (k′−k+b)-dimensional
subspace C ⊆ U . The space S̃ can be chosen not to contain PG(b, K).
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If b = 0 and the unique element of PG(b, K) belongs to Γ, then let c denote that unique
element; otherwise let c be any element of S. Let U1 be the projective space over K
generated by the points of Γ1 and c. Denote by c̃ the unique point of S̃ which is projected
from C onto c. Let {v} = C ∩ cc̃. Let z be an arbitrary but fixed point in Γ1. The line
(cz)∗ is a subline of cz over F, hence the points x on c̃z such that vx∩ cz belongs to Γ (or
equivalently to (cz)∗) also form a subline L ∼= PG(1, F) of c̃z over F containing the points
c̃ and z. The points of S̃, L and Γ1 now define a unique projective subspace PG(d, F)
of PG(d, K). Let Γ̃ be the unique polar space isomorphic to Γ embedded in PG(d, F),
containing Γ1 and having as set of singular points the set S̃. The points of c̃z belonging
to Γ̃ and the points of (cz)∗ determine a unique plane π over F which contains v.

Let y be any point of Γ1 collinear in Γ1 with z. Then π and (yz)∗ determine a unique
3-dimensional subspace over F which contains all elements of (cy)∗ and all points of Γ̃
lying on c̃y. Hence v lies in the plane over F determined by (cy)∗ and the points of Γ̃ on
c̃y. But this implies that the projection from v of all points of Γ̃ on c̃y is precisely the
set (cy)∗. If u is any point of Γ1, then u is collinear with at least one point w collinear
with z. Substituting u for y and w for z, we easily see with the previous argument that
(cu)∗ is the projection from v of the set of points of Γ̃ on c̃u. We conclude that Γ ∩ U1

is the projection from v into U1 of the polar subspace of Γ̃ containing Γ1 and having c̃ as
unique singular point.

Now let ã be an arbitrary element of S̃ \ {c} and let a be its projection from C into S.
Let (au)∗ be the set of points of Γ on the line au with u ∈ Γ1 arbitrary; let (ãu)∗∗ be
the set of points of Γ̃ on ãu. The set (au)∗ belongs to the plane π1 over F determined
by the elements of (cu)∗ and (ac)∗. Similarly, the set (ãu)∗∗ belongs to the plane π2 over
F determined by the points of Γ̃ on c̃u and on ãc̃. By assumption the points of Γ̃ on ãc̃
are projected, from C into S, onto the points of (ac)∗; by the previous paragraph the
points of Γ̃ on c̃u are projected, from C into U1, onto the points of (cu)∗. Hence π1 is the
projection from C of π2 into the projective space generated by PG(d1, K) and S. This
implies that (ãu)∗∗ is projected from C onto (au)∗, showing that Γ is the projection from
C into PG(d, K) of Γ̃.

This completes the proof of the case r(Γ) = 0.

Now suppose the Main Result holds for orthogonal, symplectic and unitary polar spaces
Γ∗ with commutative underlying field F′ and with r(Γ∗) < r, r > 0. Suppose r = r(Γ);
since r > 0, Γ is necessarily orthogonal, but not symplectic.

Let Γ′ ∼= Γ be embedded in the standard way in some PG(d′, F′), so that the point set of
Γ′ is a quadric, and let Γ′ be the extension of Γ′ over the algebraic closure F′ of F′. Let
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PG(d′, F′) be the corresponding extension of PG(d′, F′). Let S ′ be a maximal projective
subspace over F′ entirely contained in Γ′. We now show that S ′ can be chosen in such
a way that there exists a hyperplane H ′ of PG(d′, F′) containing S ′ and such that the
extension of H ′ over F′ does not contain all singular points of Γ′. Let us denote the
extension of a subspace X of PG(d′, F′) to PG(d′, F′) by X. Factoring out the space
of all singular points of Γ′, we obtain a non-degenerate polar space Φ′. With S ′ there
corresponds a maximal projective space R′ over F′ on Φ′. It suffices to show that R′ can
be chosen such that R′ does not contain all singular points of Φ′. If, on the contrary,
for some R′ the space R′ does contain all singular points of Φ′, then we can choose a
hyperplane T ′ in R′ with the property that T ′ does not contain all singular points of Φ′.
Let R′

1 be a second maximal projective space over F′ on Φ′, and let R′∩R′
1 = T ′

1. Further
let T ′′ be a subspace of T ′ which has the same dimension as T ′

1. By the transitivity of
the automorphism group of Φ′ on the set of chambers of Φ′ (viewed as a building of rank
≥ 3, see Tits [7]), there exists an automorphism of Φ′ fixing R′ and mapping T ′

1 onto T ′′.
If R′′ is the image of R′

1, then R′ ∩ R′′ = T ′′ ⊆ T ′. It follows that R′′ does not contain
all singular points of Φ′. With R′′ there corresponds a maximal projective space S ′′ over
F′ on Γ′. Now there exists a hyperplane H ′ of PG(d′, F′) containing S ′′ and such that
H ′ does not contain all singular points of Γ′. Then H ′ ∩ Γ′ = Γ′

1 is a polar space with
r(Γ′

1) = r − 1 and with Rankn(Γ′
1) = Rankn(Γ′) (Ranks(Γ′

1) = Ranks(Γ′) because H ′ is
not a tangent hyperplane).

With Γ′
1 there corresponds a sub-polar space Γ1 of Γ sub-weakly embedded in a subspace

PG(d1, K) of PG(d, K), d1 ≤ d. Since Γ′ is linearly generated by Γ′
1 and one single point

of Γ′ \ Γ′
1, we see that d1 = d or d1 = d − 1. By the induction hypothesis there exists a

projective space PG(d− 1, K) containing PG(d1, K) such that Γ1 is the projection from
a (d− d1 − 2)-dimensional subspace C1 of PG(d− 1, K) into PG(d1, K) of a polar space
Γ̃1 fully embedded in a subspace PG(d − 1, F) of PG(d − 1, K), where F is a subfield
of K isomorphic to F′. Now the idea of the proof is the following. If d1 = d − 1, then
PG(d − 1, K) is extended to the space PG(d, K) which contains PG(d, K). If d1 = d,
then we extend C1 to a (d−d−1)-dimensional space C not contained in PG(d−1, K) and
we extend PG(d−1, K) to the space PG(d, K) containing C. The first case is easier than
the second one (but both are based on the same ideas) and so we will give the detailed
proof in the second case, leaving the first case to the reader.

Clearly we may assume that Γ̃1 contains a non-singular point z̃ which does not belong to
Γ1. Let z be the corresponding point in Γ1. Let L1 be any line of Γ\Γ1 through z and let
Γ̃ be a polar space containing Γ̃1, which is isomorphic to Γ and which is fully embedded
in a PG(d, F) which contains PG(d − 1, F) as a hyperplane. Consider an isomorphism
γ from Γ̃ to Γ such that the restriction of γ to Γ̃1 is the projection of Γ̃1 from C1 into
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PG(d, K). Let L̃1 be the line of Γ̃ for which L̃∗
1

γ
= L∗

1. Now consider a plane β̃ of Γ̃
containing L̃∗

1. The restriction of γ to β̃ is a semi-linear map; the restriction of γ to β̃∩ Γ̃1

is a linear map (it is a projection), hence the restriction of γ to L̃∗
1 is a linear isomorphism.

Hence the lines joining corresponding points of L̃∗
1 and L∗

1 belong to a regulus. The line
zz̃ is a line of that regulus, hence we can consider the line M1 containing zz̃ ∩ C1 of the
complementary regulus. Let C be the space containing M1 and C1. Then the points of
L̃∗

1 are projected from C onto the elements of L∗
1. Let x̃ be any point of Γ̃ \ Γ̃1 collinear

in Γ̃ with all points of Γ̃ on L̃1. The plane π̃ of Γ̃ containing x̃ and the points of L̃∗
1 meets

Γ̃1 in a point set Ñ∗
1 , with Ñ1 a line of PG(d − 1, K). Let N∗

1 be the projection of Ñ∗
1

from C into PG(d, K); by assumption this is the point set of a line N1 of Γ. Clearly the
projection π of π̃ from C into PG(d, K) is a plane of Γ (since it contains all points of Γ
on two coplanar lines of Γ); hence x̃ is projected from C onto a point x of Γ. Clearly
every point x of Γ \ Γ1 collinear with all points of L∗

1 is covered this way. Now let ỹ be
any point of Γ̃\ Γ̃1. Then ỹ is collinear with all points of Γ̃ on a line R̃1, ỹ /∈ R̃1, of π̃. Let
R1 be the line of PG(d, K) containing the projections from C into PG(d, K) of all points
of π̃ on R̃1. If R1 does not belong to Γ1, then we substitute in the previous argument R1

for L1, R̃1 for L̃1 and ỹ for x̃. So we see that the projection from C of ỹ into PG(d, K)
is a point y of Γ. Suppose now that R1 is contained in Γ1 or, equivalently, that R̃1 is
contained in Γ̃1. Since z̃ is not a singular point, there exists some point ỹ0 ∈ Γ̃ \ Γ̃1 not
collinear in Γ̃ with z̃. Let ỹ1 be the unique point of R̃∗

1 collinear in Γ̃ with ỹ0. All elements
of (ỹ0ỹ1)∗ are projected from C into PG(d, K) onto points of Γ (by substituting in the
previous argument y0 for y). Clearly the set of points of Γ̃ collinear in Γ̃ with ỹ0 and lying
in the plane of Γ̃ determined by ỹ and R̃1 forms a point set R̃∗

0 which is not contained
in Γ̃1. Now we see that ỹ is collinear with all points of R̃∗

0 and the result follows from a
previous argument (by interchanging the roles of π̃ and the plane of Γ̃ defined by ỹ0 and
R̃∗

0). It is also clear that every point y of Γ \ Γ1 arises in this way.

The Main Result is proved.

Remark. Also in the case of a full embedding, proper projections arise. For instance
consider a non-singular quadric Q in PG(d, K) which defines a polar space of rank at
least 3. Suppose that Q has a kernel c. Now extend PG(d, K) to a projective space
PG(d + 1, K) and let Q1 be the cone projecting Q from some arbitrary point c1 in
PG(d+1, K)\PG(d, K). Let c′ be any point on the line cc1, c *= c′ *= c1. Now project Q1

from c′ into PG(d, K). Then we obtain a full embedding Q′
1 of the polar space defined by

Q1 in PG(d, K). Note that K is perfect if and only if all points of PG(d, K) are points
of Q′

1.
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