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COORDINATIZATION OF GENERALIZED QUADRANGLES
HANSSENS G. - VAN MALDEGHEM H.

A coordinatization method for any thick generalized quadrangle is
worked out, using a new algebraic structure, i.e. a quadratic

quaternary ring.

1. INTRODUCTION

A (thick) generalized quadrangle (GQ) is an incidence structure S = (P,L,I)

with point set P and line set L, satisfying the following axioms

(i) each point is incident with 1 + t lines (t > 2) and two distinct
points are incident with at most one line ;

(ii) each line is incident with 1 + s points (s =2 2) and two distinct
lines are incident with at most one point ;

(iii) if P is a point and L is a line not incident with P, then there

is a unique pair (Q,M) € PxL for which P IM I Q I L.

We say that S has order (s,t), where s,t € NU {eo| . In view of the point-line
duality for GQ, we assume that the dual of a given definition or theorem has
also been given implicitly. It is a nice exercise to show that axioms (i) and

(ii) can be replaced by

(i)' each point is incident with at least three lines ;
(ii)' each line is incident with at least three points ;

(iv)' there is a non-incident point-line pair.

Given two points P and Q of S, we write P 1L Q and say that P and Q are collinear

provided that there is some line L incident with both. If this is not the case,

we write P £ Q.

For P € P, put pLik {QeP | Q LP}and note that P € PR Y P, we write
1 4

Al': A P L PE A}. For distinct points P and Q, IP,Q} is called the trace of P

and Q and [P,QILi‘the span.

Generalized quadrangles were introduced by J. Tits and appeared first in Ea)s
They: aroseas natural objects '"succeeding" the projective planes, which could be

viewed as generalized triangles.

One of the most powerful concepts in the modern theory of projective planes is
that of coordinatization. This is certainly the casein constructing non-classi-
cal planes and to determine whether two given projective planes are isomorphic.

For details we refer to [2] and [8].

It is surprising that an analogous general coordinatization theory for GQ is
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not yet available. The known non-classical GQ are constructed using geometrical
methods or matrices. Especially in the last case, one gets the impression that

there might be an underlying coordinatization without being explicit.

S. Payne [9] worked out a preliminary version of such a theory for a special
class of GQ of order (s,s), s > 1, namely those having an axis of symmetry.
He essentialy uses the coordinatization by a planar ternary ring of an under-

lying projective pilane.

To be useful such a general coordinatization theory for GQ should satisfy some

"beauty" conditions.

Firstly it must provide an easy, algebraically more concrete description of the

existing GQ, and if possible, also of their automorphism groups [3].

Secondly, the fact of having certain automorphism groups for the GQ should be

reflected by "nice" properties of the corresponding algebraic structure [4].

Finally, important geometrical conditions should have a simple algebraic refor-

mulation (see § 3 and [5]).

We mention here also that the proposed method of coordinatization works in the
case of generalized n-gons [6] as well. The theory of quadratic quaternary

rings should also be the crucial tool in describing an affine building of type

~

C2 in terms of its (infinite) generalized quadrangle at infinity (see also [T7]

for further references and comments).
2. COORDINATIZATION BY QUADRATIC QUATERNARY RINGS

2.1. Introduction of coordinates

Let S be a GQ of order (s,t), s,t > 1. Choose an arbitrary point () and an
arbitrary line [o3] incident with it. Let R1 be a set of cardinality s not con-

taining the symbol co, and assign bijectively a coordinate (a), with a € R1, to

every point on [¢2] different from (co).

Dually, let R, be a set of cardinality t not containing the symbol o, and give

2

every line on () different from [eo] a coordinate [k] with k € R2, such that

there is a bijection between the lines on (o) and RZ'
two distinguished elements denoted by 0 and 1.

We pick out of R, resp. R

1

Now we choose a point A not on [ec] and collinear with (0), and call B the point

2

of [0] collinear with A. Like before we choose a bijection between R1 and the
points of the line (0)A with the only restriction that A corresponds to 0. The

point of (0)A corresponding to a' € R1 will have coordinate (0,0,a') € R1xR2xR1.

Nually, we give coordinates [0,0,k'] € R2xR1xR2 to the lines on B different
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from [0], with the restriction that BA has coordinate [0,0,0].

We define next the points with two coordinates : a point P collinear with (e0),
but not lying on [e2] has coordinate (k,a) e RZXR1 if and only if P lies on [k]
and is collinear with (0,0,a). Dually, lines meeting [==] not passing () are

given coordinates [a,k] € R1xR2.

Finally, consider a point P not collinear with (e). By axiom (iii) there is
exactly one line on P meeting [e]. This line must have two coordinates, say
[a,1]. On the other hand, P is collinear with exactly one point (0,a') on [0].
Now P is given the coordinate (a,l,a'). Conversely, let (a,l,a') be any element

of R1xR2xR1, then we construct a point P having this element as coordinate.

Indeed, given the line [a,l] and the point (0,a') not incident with it, then
there is exactly one point collinear with (0,a') and lying on [a,1] by axiom
(iii).

The coordinate of a line [k,b,k'] is defined dually. It is easy to check that
there arises no ambiguity for the coordinates (0,0,a') and [0,0,k']. To avoid

complications, we identify each element with its coordinate.

In this way we have coordinatized every point and line of S (see fig.1). Now
we must build into our coordinatization system a criterium for determining

whether two given elements are incident.

0,a’ [0
(0,0) (©5) . (o)
[«]
[0,0,1]
(0]
(kb))
L (a)
[00,0] \ (a,1,a)
[k,b,k’]
0]
(0)

(0,00) (0.0.6) [0,0]
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2.2. Quadratic quaternary rings

If a GQ S has been coordinatized by the elements of the sets R, and R2 as des-

1
cribed in section 2.1, then we use incidences of S8 to define two quaternary

operations Q, and Q, as follows : if a,a',b € R, and k,k,1 € R

1 2’
b if and only if (k,b) L (a,l,a'), (1)

Q1(k,a,l,a')

Qz(a,k,b,k') 1 if and only if [a,1] 1 [k,b,k"] (2)

The operations are uniquely determined, for given the point (a,l,a') and the
line [k], there is exactly one point (k,b) on [k] which is collinear with
(a,l1,a'). Dually, given the line [k,b,k'] and the point (a), there is exactly
one line [a,l1] on (a) meeting [k,b,k'].

It is clear that (a,l1,a') I [k,b,k'] only if (1) and (2) are satisfied.
Conversely, suppose that (1) and (2) hold, then (a,l,a') is collinear with
(k,b) € [k,b,k'] and [k,b,k'] meets [a,l] containing (a,l,a'). Because this
meeting point of [a,1] and [k,b,k'] cannot be (k,b), it follows that (a,l,a')
is incident with [k,b,k']. We will call the guadruple (R1,R2,Q1,Q2) a

coordinatization of the GQ S.

We remark that Q1 and Q2 are dual operations.

2.2.1. Theorem
Let S be a GQ coordinatized by (R1,R2,Q1,Q2), then the following properties
hold
(0) Q1(k,0,0,a) = a
Q1(0,a,k,a') =-ar'.
(0) Q,(a,0,0,k) =k
Q2(O,k,a,k') =kt
(A) If a,b € R, and k,1 €R

1
Q1(k,a,l,x) = b.

then there is a unique x € R, such that

2’ 1

(A) If a,b €R, and k,1 € R

Q2(a,k,b,p) = 1.

5 then there is a unique p € R2 such that

(B) If a,b € R1 and k,1,k? € R, with k # 1, then there is a unique
: 2
pair (x,y) € R1 such that

Q1(k,x,Q2(x,k,a,k'),y) = a

2

Q,(1,x,Q,(x,k,a,k'),y) = b.



(B) If a,b,a' € R, and k,1 € R, with a # b, then there is a unique

12 2
pair (p,q) € R2 such that
Qz(a,p,Q1(p,a,k,a'),q) =k

= 1.

Q2(b,p,Q1(p,a,k,a'),q)

(C) If a,a',b€ R, and k,k',1 € R, then the system of equations in the

1
unknowns x,p,x',p'

2

Q1(k,x,Q2(x,k,b,k'),x') b

QT(p’X’QZ(X’kYb’k!)7X') QT(p)a’l,a')

Qz(a,p,Q1(p,a,l,a'),p') 1

Q2(X’p7Q1(p’a’l,a')7p') QZ(X’k’b7k‘)7

has a unique solution (x,p,x',p') € R1xR2xR1xR2 if Q1(k,a,l,a')£b

and Qz(a,k,b,k') # 1 and none if one of both equalities holds.
Proof

We have only to show one of each pair of dual properties marked with a same

letter. As to property (0), it follows from the coordinatization that (0,0,a)
is incident with [k,a,0] and (a,k,a') with [0,a,l1] for some 1 € R2'
In order to derive the others, it suffices to express the axiom (iii) of the

generalized quadrangle S with respect to the following point-line pairs
(A) : (k,b) and [a,l]
(B) : (1,b) and [k,a,k']
(c) : (a,l,a') and [k,b,k'].

We remark that (C) is self-dual.

2.2.2. Definition

Let R1, (resp.RZ) be a set containing distinguished elements 0 and 1 but not co

and Q1(resp.Q2) quaternary operations from RZXR1XR2XR1 to R1 (resp.R1xR2xR1xR2
to RZ)' We call the quadruple (R1,R2,Q1,Q2) satisfying the properties (0), (0),
(A), (B), (B), (B), and (C) of theorem 2.2.1 a quadratic quaternary ring, which

we shall abbreviate to QQR.

*
We denote the unique solution of Q1(k,a,l,x) = b by Q1(a,k,b,l) = x, and dually
*
p = Q2(k,a,l,b) if p satisfies Q2(a,k,b,p) = X



2.2.3. Theorem

If (R1,R2,Q1,Q2) is a QQR then the structure S defined as follows is a genera-

lized quadrangle. The points of S are elements of R1xR2xR1,R2xR1 or R1, deno-

ted by parenthesis, together with (o) where is a symbol not contained in R1

or RZ' Lines are represented in square brackets by elements of R2xR1xR2,R1xR

or R2 together with [e]. Incidence is defined in the following manner

2

ta,1;a') is on [k,b,k'] < Q1(k,a,l,a')

b

QZ(a,k,b,k')

1,
(a,1,a') is on [a,l],

(k,a) is on [k] and [k,a,k'] for all k'€ R,

(a) is on [e2] and [a,k] for all k € R,»

() is on [eo] and [k] for all k € R,

and there are no further incidences.

Proof

It suffices to show that for any point P and any line L not incident with P,

there is a unique line on P meeting L and a unique point on L collinear with P.

To begin with, suppose P = (), then L has to be [k,b] or [k,b,k']. It is easy
to check that for the first case only (e)I[ec]I(a)I[a,l] is possible whereas for
the second (e)I[k]I(k,b)I[k,b,k"].

Next, take P = (a), then the cases where L is [k] or [b,k] with b # a are
straightforward. So assume L = [k,b,k']. A line on (a) has to be of the form

[a,p] with p € R_, or [=], ruled out by [e]4L, and a point on that line of the

2’
form (a,p,x). But if this point has to be incident with [k,b,k'] then p =

Qz(a,k,b,k') is known and x is uniquely determined by the equation
Q1(k9a;pyx) =b
in view of (A).

Now we suppose P = (1,a). The cases where L is [eo] or [k] with k # 1 are al-
ready proved dually. Let L be [b,k]. Then any point on L has the form (b,k,x)
or (b') and any line on p the form [1,a,p] or [1]. These elements are incident
iff a = Q1(l,b,k,x) and k = Qz(b,l,a,p), which uniquely determines x and p by
(A) and (A). Let L be of the form [k,b,k'] with b # a or k # 1.

Consider a chain of elements
(1,a)1l1,a,q]I(x,p,y)Ilk,b,k']

then we have



Coordination of Generalized Quadrangles

Q1<l,x,p,y) = a (1)
QZ(X,l,a,q) =P (2)
Q1(k,x,p,y) = b (3)
Q2(x,k,b,k') = p ()

Suppose first that k = 1, then (k,a)I[k]I(k,b)I[k,b,k']J. On the other hand,

201

(1) and (3) imply that a = b, contradicting our assumption. Hence, [k] is the

only line on P meeting L and (k,b) is the only point on L collinear with P.

Suppose now k # 1, then it follows from (B) that the equations

a

Q1(l,x,Q2(x,k,b,k'),y)

Q1(k,x,Q2(x,k,b,k'),y) b

with k # 1 uniquely determine x and y. From these p follows by (4) and g by

(2) in view of (A). Hence, in both cases the chain exists and is unique.

Finally, let P = (a,l,a'). Considering the dual, we can assume that
L = [k,b,k'] with Q1(k,a,l,a') # b or Qz(a,k,b,k') #1. 1If Q1(k,a,l,a') = b
then

(a,1,a")I[k,b,plI(k,b)I[k,b,k']

where p follows from Qz(a,k,b,p) = 1. Dually, if Qz(a,k,b,k') = 1, then
(a,1,a')I[a,1]I(a,l,x)I[k,b,k']
where x follows from Q1(k,a,l,x) = b.
Consider now a chain
(a,1,a")Ilp,y,p']JI(x,q,x")Ilk,b,k"]
then this is equivalent to
Q1(p,a,l,a') =y
Q,(a,p,y,p') =1
Q1(p,x,q,x') =y
Q,(x,p,y,p") =4
Q1(k,x,q,x') = b
Q,(x,k,b,k") = q
and also to
Q1(k,x,Q2(x,k,b,k'),x') =B
Q,(a,pQ(p,a,1,a"),p') =1

Q1(p,x,02(a,k,b,k'),x') = Q (pyaylra')
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QZ(X,p,Q1(p,a,l,a'),p') = Qz(x)kabyk')-

If Q1(k,a,l,a') = b or Qz(a,k,b,k') = 1, then this set of equations has no solu-
tion, whereas in the opposite case it has exactly one by (C).

This proves the theorem.

2.2.4. Remark

Note that if we coordinatize S again in the obvious way, we get a QQR identical

to the one we started with.

2.2.5. Definition

R

1
( 1
higa
L o

11

If (R1,R2,Q ,Q ) are two quadratic quaternary rings we say

) and
1
that they are

1 1
2 1’Q2
there is a bijection ¢ from R, onto R

1

isomorp er { and a bijec-
tion  from R2 onto Ré such that

(Q1(a,k,b,l))a

Q;(aa,kﬁ,ba,lﬂ)

and

1]

(Qy(k,a,1,00)F = Q1P a% 2P %)

for all a,b € R, and k,1 € R

1 2°

2.3. Normalization of a QQR

Let S be a GQ coordinatized by a QQR (R1,R2,Q1,Q2). As we have seen in 2.1
there does not have to be a connection between the bijections from R, onto

1
[ec]-{(e)}] and onto (0)A- {(0)}.

We now demand that the bijections are chosen such that (a,0,0) is collinear

with (1,a).
For the QQR we get

Q1(1,a,0,0) = a (N)
We can do the same dually and obtain

Q,(1,k,0,0) = k (N)

If (R1,R2,Q1,Q2) is aQQR not satisfying (N) and (N), then define permutations
a of R1 and g of R2 by

a
a

1P

Q1(1,a,0,0)

Q2(1,k,0,0)

Defining moreover
~ - -1
Q1(k,a,1,a') = [Q1(k,a,1ﬂ,ava)]a

and



-1
q,(a,k,b,k") = [Q,(a,k,b%KkF)IP

it is easy to check that (Rl’RZ’QA’aZ) is a QQR satisfying (N) and (N).

We call such a QQR normalized, and the procedure just described, normalization.
2.4. Algebraic properties of quadratic quaternary rings

2.4.1. Definition

Let (R,,R,,Q,,Q,) be a (normalized) QQR.

We introduce a binary operation of addition into R,I and RZ’ and a "twisted"

and k,1 € R we define

multiplication as follows : for any a,b € R 59

1

a + b = Q1(1,a,0,b) e R1

k +1=0,(1,%0,1) €R,

k .a = Q1(k,a,0,0) € R1

a . k = Q2(a,k,0,0) € R2

We denote Ri—{O} by R¥, 1 = 1,2.

2.4.2. Theorem

If (R1,R2,Q1,Q2) is a normalized QQR, then the following properties hold

(i) a+0=0+a =a for all a € R1
(ii) k+0 =0+ %k =k for all k € R2
(iii) a + x = b has a unique solution for any a,b € R1
(iv) k¥ + p = 1 has a unique solution for any k,l1 € R2
(v) 1 .a =a for all a € R,
(vi) 1 .k =k for all k € R2
(vii) k X = a has a unique solution for any a € R1 and k € R;
(viii) a . p = k has a unique solution for any a € R: and k € R2

Proof

We have a + 0 = Q1(1,a,0,0) = a by (N), and 0 + a = Q1(1,O,0,a) = a by (0).

This proves (i), and dually (ii).

If we apply (A) for k = 1 and 1 = 0, we obtain (iii) and dually (iv). By (N)

and (N), we get (v) and (vi) respectively.

Now we apply (B) for k = k' = 0 and a = 0, and obtain a unique pair (x,y) € R?

such that

1
@

Q1(0,X,Q2(X,0,0,0),Y)

|
o

Q1(1,X’Q2(X,O,OYO) 7y)



But QZ(X,O,O,O) = 0 by (0) and Q1(0,x,0,y) = 0 forces y = 0 by (0). Hence,
l .:%x=-b

has a unique solution x € R1 for 1 # 0. Of course, (viii) can be proved dually.

2.5. Case of a finite QQR
Theorem

Let (R1,R2,Q1,Q2) be a quadruple where R1 and R2 are distinguished finite sets

containing the symbol 0, and Q1 resp. Q2 a quaternary operation from 'R1xR2xR1xR2

resp. R2xR XxR_ xR, to R, resp. R Suppose that a weaker version of the proper-

172701 1 2°
ties (0)-(C) of 2.2.1, namely where "a unique" is replaced by "at most one",

holds. Then (R1,R2,Q],Q2) is QQR.

Proof

| = =
Put .R1I s and IR2| t,

theorem 2.2.3. It is straightforward to check that the following hold

and construct an incidence structure as was done in

(i) each point is incident with 1 + t lines and two distinct points
are incident with at most one line ;
(ii) each line is incident with 1 + S points and two distinct lines
are incident with at most one point ;
(iii) if P is a point and L is a line not incident with P, then there
is at most one pair (Q,M) € PxL for which P I M I Q I L.
(iv) [Pl (s+1) (st+1)
(v) 1LI (t+1) (st+1)

v

b

Now the number of points collinear with at least one point of a line L, but not
lying on L, equals (s+1)ts. But this is exactly the number of points not lying
on L, proving that in property (iii) we can replace "at most one" by "a unique".

It follows that (R1,R2,Q1,Q2) is a QQR.

3. REGULARITY

3.1. Definition

A pair of points (p,q),p#q, is called regular if p L q, or if p £ q and for
any pair of distinct points a,b € [p,q]l} we have that each point of [p,q]‘L

is collinear with each point of [a,b}l. If the GQ S is finite with parameters
(s,t), then (p,q) is regular iff l{p,q}l”L]: t + 1 provided p £ q. The point
p is regular if (p,q) is regular for all points q # p.



3.2. Theorem

Let S be a GQ coordinatized by a QQR (R1,R2,Q1,Q2). Then the point () is regu-

lar if and only if Q1 is independent of the third argument, i.e.
Q1(k,a,l,a') = Q1(k,a,0,a')

for all a,a' € R

Q

and k,1 € R Dually the line [ec] is regular if and only if

1 2°

> is independent of the third argument.

Proof

. 1
Suppose () is a regular point. We have (a)(0,a) € [@n),(a,m,a')] , and
1
{(a),(0,a")}" = [(a,1,a") |1 € R2| U |[(e)]. Now we express that (k,b) L (a,1,a")

for some p € R [k,b,plI(a,l,a'), so

27
b = Q1(k,a,l,a')

By the regularity of (o) this must hold for all 1 € R SO

2’
Q1(k,a,l,a') = b = Q1(k,a,0,a')

for all a,a' € R, and k,1 €R Conversely, if Q1(k,a,0,a') = Q1(k,a,1,a')then

1 2°
(a,l,a') 1 (k,Q1(k,a,O,a'))

hence, () is regular if Q1 does not depend on the third argument.

3.3. Theorem

Let S be a finite GQ of order s having (@ as regular point. The incidence
structure n«b) with pointset (OOYL, with lineset consisting of spans {p,qul,

where p,q e;(aﬂl) p # q, and with the natural incidence, is a projective plane
of order s coordinatized by the PTR T(k,a,a') = Q1(k,a,0,a') (Coordinatization

Method of Hall) if R1 and R2 are identified by k = Q1(k,1,0,0) and the QQR is

normalized.

Proof

If s = t it is possible to identify R1 and RZ' We can do that in the following

way provided (o) is regular : given k € R_, we denote the point on [k], colli-

near with (1,0,0) by (k,k?).

2’

This means that k9 = Q1(k,1,0,0), and in particular 09 = 0 and 19 = 1.

We show that the map o from R2 tot R1 is injective. In order to derive a con-
tradiction, let for k # 1, (k,a) and (1,a) be collinear with (1,0,0). Then (),
(1,0,0), (0,0,a) € {(k,é),(l,a)lL, and by regularity of (=), (0,0,a) L (1),

clearly a contradiction.

The fact that the incidence structure ”(a» is a projective plane is known [9].



11
The lineset is thus given by the set of spans {(a), (O,a')} together with the
lines [k], k € R2 and [c2]. 1In view of the proof of theorem 3.2, we have

((a),(0,a0)) 1= [, (a,0,am)] T
= [(k,Q1(k,a,0,a')) |k eR2| u {(a)}

Define a ternary operation on R T(ko,a,a') = Q1(k,a,0,a'), and give the span

—l b
11
{(a),(0,a")} the coordinate [[a,a']], and the point (k,b) the coordirate
-1
((x%0b)). Clearly ((x,y)) is on [[m,k]] if and only if (x¥,y) is on the span
R I =
{(m),(0,k)}” “and this holds if and only if y = (;)1(xor 1,m,0,k), i.e. y=T(x,m,k).

Moreover there hold

A B le05b) = Q1(x0_1,0,0,b) =-b

T(0,x,b) = Q,(0,x,0,b) = b

for all x,b € RT'

Q1(xo—1,1,0,0) = x

T(1,%,0) = Q,(1,x,0,0) = x

(B) T(x,1,0)

for all x € R1.

This proves the theorem.
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