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1 Introduction

The world of Tits-buildings, created by J. Tits, is for many mathematicians a very fasci-
nating world, with a lot of interesting applications. One of the most remarkable buildings
is undoubdly the generalized octagon related to the Ree groups of characteristic 2, as
defined over a perfect field by Ree [11] and generalized by Tits [23]. This building does
not fit in the family of so-called classical buildings, but neither does it belong to the family
of exceptional buildings, although it shares with the classical and exceptional polygons
(or more generally, buildings) the Moufang condition. Geometrically though, it is very
different from the other Moufang polygons, see Joswig & Van Maldeghem [8] and
Van Maldeghem [27]. Responsible for that strange “mixed” behaviour is the automor-
phism group, which is not an algebraic group, but “very close” to one. The literature on
generalized octagons, in particular on the Moufang octagons, is almost non-existent. To
the papers already mentioned, one can add Sarli [13] and that is about it. The most im-
portant paper though remains Tits [23], where J. Tits classifies all Moufang generalized
octagons. In this paper, which we dedicate to J. Tits, we want to make a contribution to
the geometric counterpart of Tits’ work.

ACKNOWLEDGEMENT. On this occasion, I express my profound thanks to J. Tits,
not only as a mathematician but also as a person, for his beautiful lectures in Paris, his
interest in my work and the valuable time he sacrifices from time to time for my sake.

A generalized octagon is an element of the larger class of generalized polygons, or gen-
eralized n-gons, corresponding to the case n = 8. A generalized polygon is essentially
a building of rank 2, although sometimes it is required to have certain parameters or a
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certain order. These different points of view do not matter much for the present paper,
but in order to try to establish a general convention, we will follow the definitions of a
book that is now being prepared by the author.

Let Γ = (P ,L, I) be a connected rank 2 incidence geometry with point set P , line set L
and incidence relation I. A path of length d is a sequence v0, . . . , vd ∈ P ∪L with viIvi+1,
0 ≤ i < d. Define a function δ : (P ∪ L)× (P ∪ L) → N by δ(v, v′) = d if and only if d is
the minimum of all d′ ∈ N such that there exists a path of length d′ joining v and v′ (d
always exists by connectedness).

Then Γ is a generalized n-gon, n ∈ N \ {0, 1, 2}, or a generalized polygon if it satisfies the
following conditions:

[GP1] There is a bijection between the sets of points incident with two arbitrary lines.
There is also a bijection between the sets of lines incident with two arbitrary points.

[GP2] The image of (P ∪ L)× (P ∪ L) under δ equals {0, . . . , n}. For v, v′ ∈ P ∪ L with
δ(v, v′) = d < n the path of length d joining v and v′ is unique.

[GP3] Each v ∈ P ∪ L is incident with at least 2 elements.

We will occasionally omit the word “generalized” in the term “generalized polygon”,
especially when another adjective is used. From the definition, it follows that there are
constants s and t such that there are s + 1 points incident with every line and t + 1 lines
incident with every point. The pair (s, t) is called the order of Γ. If s, t ≥ 2, then the
polygon is called thick. A geometry satisfying [GP2] and [GP3], but not having an order
is called a weak polygonal geometry.

Throughout the paper, we will use the following terminology.

Let x be a point of the generalized n-gon Γ and i ∈ {1, 2, 3, . . . , n}. We denote by Γi(x)
the set of elements of Γ at distance i from x. Elements at distance n are called opposite.
It follows from Axiom [GP2] that in a generalized polygon, whenever two elements G and
H are not opposite, then there exists a unique element K incident with G and at distance
δ(G, H)− 1 from H. We call K the projection of H onto G. An apartment is a circuit of
length 2n. Let x and y be opposite points and 2 ≤ i ≤ n/2. The set

xy
[i] = Γi(x) ∩ Γn−i(y)

is called a distance-i-trace with center x and direction y. For i = 2, we sometimes omit
the prefix “distance-2”and the subscript “[2]”. For lines a similar definition holds if one
adds the adjective “dual” to it. For instance, a dual distance-2-trace is simply a dual
trace which is a certain set of lines meeting a fixed line.
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Generalized polygons were introduced by Tits [16]. They appeared later as the funda-
mental building bricks of the Tits-buildings and they are the natural geometries of the
Chevalley groups of relative rank 2. In fact, these natural geometries were the first exam-
ples of generalized polygons and they are all due to Tits, except for the case n = 3, the
generalized triangles, which are the projective planes. There are a lot of classes of gener-
alized quadrangles known — also many so-called non-classical ones, i.e. quadrangles not
arising from Chevalley groups. Relatively few generalized hexagons are known, and only
in the infinite case are there any non-classical examples known besides the free construc-
tions. There is at present only one class of generalized octagons known (besides the free
constructions) and it arises from the Ree groups of type 2F4 over any field of characteristic
2 in which the Frobenius map has a square root, i.e. in which there exists an endomor-
phism whose square is the Frobenius map, see Tits [23]. For n *= 3, 4, 6, 8, no Moufang
n-gon exists (by a result of Weiss [30] or Tits [19, 21]) and only free constructions are
known (see Tits [20]).

The classical polygons as mentioned above are characterized by a condition on the group
of automorphisms, the so-called Moufang condition, introduced by Tits [18]. This char-
acterization follows in the finite case by Fong & Seitz from their Theorem D of [7],
but a proof of the general result is now being written up by Tits & Weiss in a book in
preparation, see also Tits [24]. The case n = 8 however was treated separately more than
10 years ago by Tits [23]. It looks as if this is the easiest case to handle. Surprisingly and
contrary to that observation, Kantor [9] remarks that, though there are geometric and
combinatorial characterizations of the classical quadrangles and hexagons — and more
characterizations were discovered since [9] appeared — there was (in 1986) no geometric
characterization of the classical octagons. In the meantime, I proved in [25] a configu-
rational characterization of all classical generalized polygons. But a separate geometric
characterization which clearly shows how the geometry of the Ree-Tits octagons differs
from the geometry of the other polygons is still unknown. I want to fill that gap in the
present paper. Nevertheless I shall only be concerned with perfect octagons, i.e. the case
where the field is perfect. I consider the geometry in the other case twice as hard and
only half as important.

The characterization that I will present here is much more complicated than the beau-
tiful characterization of all classical hexagons by Ronan [12]. It is worth recalling that
characterization in the terminology of my paper [27]. A generalized n-gon is called point-
distance-i-regular, 2 ≤ i ≤ n/2, if every distance-i-trace with a point as center is de-
termined by any two of its elements. A generalized hexagon H is classical if and only
if H or its dual is point-distance-2-regular. As a step in the proof, one shows that any
point-distance-2-regular hexagon is also point-distance-3-regular (which is equivalent to
line-distance-3-regular). In [27], it is pointed out that a similar characterization of the
classical octagons is impossible since neither point-distance-2-regular octagons nor point-
distance-3-regular ones exist. We will show however that our conditions imply point-
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distance-4-regularity.

As we already remarked, there does not exist an extensive bibliography on generalized
octagons, and so it will already be worthwhile to prove that the perfect Ree-Tits octagons
satisfy the axioms below. This will mainly follow from my recent paper [26]. Also, every
property derived from the axioms is a property valid in the perfect Ree-Tits octagons
(and proved in a geometric fashion). Thus we obtain an unexpected number of geometric
properties of the perfect Ree-Tits octagons, which one can compare with the properties
of the classical quadrangles obtained in Payne & Thas [10] for example. It certainly
makes the perfect Ree-Tits octagons look less mysterious!

One of the future tasks will be the reduction of the axioms in the general perfect case
(and first we think of deleting the axiom [RT4], see below), and also in the finite case.
This appears to be a non-trivial problem. In any case, the present paper will be a solid
base for such work. In fact, the point of the present paper is not only the characterization
itself, but also the fact that there exists a geometric characterization. And once one gets
used to the geometry involved in the Ree-Tits octagons, the axioms given below are no
longer surprising nor complicated.

Roughly speaking, I shall introduce a set of axioms which will allow us to reconstruct
the building of type F4 and the polarity defining the perfect Ree-Tits octagon. This is
the content of Sections 3 up to 6. In Section 7, I will show that every perfect Ree-Tits
octagon satisfies the given axioms. In Section 8, I treat the finite case.

2 Main Results

The main tools of our characterization are the traces, as already announced in [26]. Ba-
sically, we will take as axioms the properties of the perfect Ree-Tits octagons that are
used to define a derived geometry (for definitions, see below or Van Maldeghem [26]) in
each point and to show that this derived geometry is a generalized quadrangle. Then we
impose additional axioms which give relations between properties of traces with distinct
centers.

For the rest of this paper, we let Γ = (P ,L, I) be a thick generalized octagon — not
necessarily finite! By a perfect Ree-Tits octagon, we understand the generalized octagon
naturally associated to a Ree group of type 2F4 over a perfect field of characteristic
2 (in which the Frobenius automorphism has a square root) in such a way that the
point stabilizer acts on the lines incident with that point as the Suzuki group on the
corresponding Suzuki-Tits ovoid (see Tits [23]). The latter condition is only there to
fix the names ‘points’ and ‘lines’ for the two kinds of vertices of the associated rank 2
building. If Γ is a finite Ree-Tits octagon, then it follows that Γ has order (22e+1, 24e+2).
Our main result is:
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Main Result. A generalized octagon Γ is isomorphic to a perfect Ree-Tits octagon if
and only if Γ satisfies the axioms [RT1], [RT1′], [RT2], [RT3] and [RT4] stated below.

In the finite case, one can reduce the number of axioms, and also simplify some of the
remaining.

Main Result — Finite Case. A finite generalized octagon Γ of order (s, t), s, t > 1,
is isomorphic to a Ree-Tits octagon if and only if Γ satisfies the Axioms [RT1f], [RT1′],
[RT3] and one of the equivalent conditions t = s2 or Axiom [RT2f] (the Axioms [RT1f]
and [RT2f] are stated below).

In order to state our axioms, we introduce some more terminology.

A Suzuki-Tits inversive plane Ω, or briefly an STi-plane, is a rank 2 geometry — in which
the blocks are called circles and incidence is denoted by “∈”— together with a map ∂
from the set of circles to the set of points of Ω satisfying Axioms [MP1], [MP2], [CH1],
[CH2], [P], [ST1] and [ST2] below. Roughly speaking, the axioms express that

(1) we are dealing with “characteristic 2”,

(2) for any circle C, the point ∂C belongs to C and plays the role of a double condition
for the uniqueness conclusion in (1).

In the following, touching circles are circles having exactly one point in common. We
label the axioms as in Van Maldeghem [28].

[MP1] Every circle contains at least three points and every triple of (distinct) points deter-
mines a unique circle.

[MP2] For every triple (C, x, y) consisting of a circle C, a point x ∈ C and a point y /∈ C,
there exists a unique circle D touching C in x and containing y.

[CH1] For every triple (C, x, y) consisting of a circle C and two distinct points x, y /∈ C,
either there exists a unique circle D touching C and containing both x and y or all
circles through both x and y touch C.

[CH2] There do not exist three circles touching each other two by two in different points.

[P] For every two triples {Ci, Di, Ei}, i = 1, 2, of pairwise disjoint circles, it follows
that E1 touches E2 whenever both Ci and Di touch the three circles Cj, Dj, Ej, for
all {i, j} = {1, 2}.

[ST1] For every circle C, one has that ∂C ∈ C and C is uniquely determined by ∂C and
any further point of C, in other words, for every pair of points (x, y), there exists a
unique circle C such that ∂C = x and y ∈ C.
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[ST2] For every pair (C, x) consisting of a circle C and a point x /∈ C, there exists a
unique circle D containing x and ∂C and such that ∂D ∈ C.

We note that in the finite case Axioms [CH1], [CH2] and [P] can be substituted by the
condition that the order of Ω is even, see Van Maldeghem [28].

Now we write down some important consequences of these axioms. Their proofs are
contained in [28], but they can easily be reconstructed.

First of all, the axioms imply that Ω is a Möbius circle plane in the classical sense. That
means for instance that

[MC1] for each point x, the set of points of Ω distinct from x together with the circles
through x and the induced incidence relation, forms an affine plane, denoted by
Res(x).

We can now reformulate [ST1] and [ST2] as follows:

[MC2] The map ∂ is surjective and for all points x the inverse image ∂−1x is a class of
parallel lines in Res(x)).

[MC3] For any circle C, the set of circles D such that ∂D ∈ C, ∂C ∈ D and ∂C *= ∂D
forms a parallel class of lines in Res(∂C)).

Secondly, we remark that we will not use Axiom [P]. By abuse of language, we will from
now on call an STi-plane every rank 2 incidence geometry satisfying [MP1], [MP2], [CH1],
[CH2], [ST1] and [ST2]. The above corollaries remain valid. The next corollaries follow
from [28], where it is proved that, under condition [P], an STi-plane Ω is isomorphic (as
a Möbius plane) to the circle plane obtained from a Suzuki-Tits ovoid (as defined by
Tits [17]) by plane sections, over a perfect field of characteristic 2 in which the Frobenius
automorphism has a square root. But we will not use that result in the present paper.
The following properties can be easily proved as an exercise without referring to [28].

[MC4] For every triple (C, C ′, x) consisting of two distinct non-disjoint circles C and C ′,
and a point x /∈ C ∪ C ′, there exists a unique circle D through x touching both C
and C ′.

[MC5] For every pair (C, x) consisting of a circle C and a point x /∈ C, there exists a
unique circle D touching C such that ∂D = x.
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The point ∂C for any circle C is called the corner of C. Suppose now that, still under
the assumption that Ω is an STi-plane, C and C ′ are two circles of Ω intersecting each
other in the two distinct points ∂C and ∂C ′. The set of circles touching both C and
C ′ is called a transversal partition with extremities ∂C and ∂C ′ (note that ∂C and ∂C ′

indeed determine C and C ′ uniquely), see [26]. We now claim that the set of corners of
the elements of the transversal partition with extremities x = ∂C and x′ = ∂C ′ coincides
with the set of corners of the circles through x and x′ different from C and C ′.

First remark that if two circles touch in a point z, then z is either the corner of both circles,
or of neither of them. Indeed, let E and E ′ touch in z, and suppose ∂E = z *= ∂E ′. Let
z′ be any point of E ′ \ E. Consider a circle E ′′ with corner z and containing z′, existing,
unique and different from E by [ST1]. Both circles E ′ and E ′′ go through z′ /∈ E and
touch E in z, contradicting [MP2].

Now let y be a point of a circle D touching both C and C ′. By [CH1], all circles through
both ∂C and ∂C ′ touch D. Hence the unique circle E through y, ∂C and ∂C ′ has y as
its corner if and only if y = ∂D, by the previous remark. This proves our claim.

We return to the generalized octagon Γ. Our first set of axioms basically says that the
set of lines through any point x admits the structure of an STi-plane, and this structure
is completely determined by the mutual position of traces with center x.

Let x be any point of Γ. Let S be a set of points in Γ2(x). Then the set of lines through
x containing a point of S is called the back up of S on x. A back up on x is called trivial
either if it consists of one element, or if it consists of all the lines through x (so note
that the empty back up set is not treated as trivial!). The block geometry xΓ in x is the
geometry with point set the set of lines through x and block set the non-trivial back ups
on x of trace intersections with center x.

DIGRESSION. For the classical generalized polygons, the block geometries are very dif-
ferent. Some of them are completely trivial (there are no blocks except possibly the empty
one; this is the case when the center is a regular point), others are the classical Möbius
plane, or the linear space determined by a hermitian unital, or the geometry of sublines
over a subfield of a line over an extension field, or the geometry of 2- and 3-subsets of a
set. In fact, Ronan’s characterization of all Moufang hexagons can be phrased as follows:

A generalized hexagon H satisfies the Moufang condition if and only if the
block geometry in every point of H or of the dual of H has only the empty
block or does not have any block at all.

So Ronan’s characterization prescribes the precise structure of all block geometries. This
is exactly what we are going to do in the octagon case, except that the block geometries
are much more complex and harder to describe. They involve the Suzuki-Tits ovoid as
can be seen group-theoretically from the stabilizer of a point.
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Our first axiom tells us how a block geometry looks, if we do not look further away from
x than distance 2.

[RT1] If we call blocks circles, then the block geometry in every point of Γ satisfies the
conditions [MP1], [MP2], [CH1] and [CH2].

In particular, there are no empty blocks; that means that every two traces meet in at least
one point. Note that already this observation is false for non-perfect Ree-Tits octagons
(see Section 7).

Now we have to introduce axioms to handle the corners so that we obtain an STi-plane.
For this purpose, we have to look at distance 3 from a point. Let x again be any point of
Γ. Let S be a subset of Γ2(x) contained in some trace with center x. For z ∈ S, we define
the gate set of S through z as the set of all lines incident with z which lie on a shortest
path from x to a point y with S ⊆ xy. A gate set through some point z is called trivial if
it contains all lines through z. Note that a gate set of some set S ⊆ Γ2(x) through some
point z contains at least two lines one of which is xz. We will only consider this case
when dealing with gate sets.

[RT1′] Let x be any point of Γ and let C be any block in xΓ. Let S be any intersection of
traces with center x with back up C. Then there exists a unique point z of S such
that the gate set of S through z is non-trivial. Moreover, the line xz is independent
of S and we denote it by ∂C. The geometry xΓ with mapping ∂ just defined satisfies
the axioms [ST1] and [ST2] (again calling blocks circles).

The next axiom will allow an explicit construction of the transversal partitions. It will
also imply that, if three traces with common center meet pairwise in unique points, then
the three unique points thus obtained coincide (see next section).

[RT2] Let x be any point of Γ and let z1, z2 be two points collinear with x, with xz1 *= xz2.
Let X be any trace centered at x containing z1 and z2. Let Z1 and Z2 be two traces
such that X ∩ Zi = {zi}, i = 1, 2. Then the back up of Z1 ∩ Z2 is a member of the
transversal partition of xΓ with extremities xz1 and xz2.

The next important issue is the gate sets. We already know that the gate set of an
intersection of two traces with center x the back up of which is a circle C in xΓ, through
the point lying on ∂C, is non-trivial. The next axiom precisely tells us what this set is.
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[RT3] Let x be any point of Γ and let Z be the non-trivial intersection of two distinct
traces xu and xv, where u and v are points opposite x. Let z be the unique point of
Z through which the gate set of Z is non-trivial and let y be any other point of Z.
Then the lines at distance 5 from u and v respectively, incident with z (respectively
y) are contained (respectively not contained) in a circle C of zΓ (respectively yΓ)
with ∂C = xz (respectively ∂C = xy).

Another axiom concerns the gate sets of a full trace. We will prove that through every
point of a trace the gate set is non-trivial and in fact corresponds to a circle in the block
geometry of that point. But we will need the following more technical axiom too, which
in the finite case is a consequence of the others.

[RT4] Let x and y be two opposite points of Γ and L ∈ Γ5(x) ∩ Γ3(y). Let {z} = Γ2(x) ∩
Γ3(L). Let z′, z′′ ∈ xy be such that the lines xz, xz′, xz′′ do not lie in a circle of
xΓ with corner xz. Let L′ and L′′ be any lines of the gate set of xy through z′ and
z′′ respectively. Then there exists a point y′ opposite x at distance 3 from L and
at distance 5 from L′ and L′′. Also, for every y′′ opposite x, such that xy′′ = xy,
δ(y, y′′) = 6 and δ(y′′, L) = 3, we have |xy

[3] ∩ xy′′

[3]| > 1.

This completes the set of axioms in the general case. In the finite case, we have the
following weaker versions of [ST1] and [ST2], respectively.

[RT1f] If we call blocks circles, then the block geometry in every point of Γ satisfies the
conditions [MP1] and [MP2].

[RT2f] If three traces with common center meet pairwise trivially, then they all share a
common point.

In the next section we prepare the construction of a building of type F4 in which we will
embed Γ. We will denote that building by M(Γ) and refer to it as a metasymplectic space;
in fact we will not only define its points and lines, but also its planes and hyperlines.

3 Auxiliary Results

The first two lemmas tell us something about the existence and uniqueness of traces with
certain properties.

Consider any point x of Γ. Consider four points zi, i = 1, 2, 3, 4, collinear with x and with
distinct back ups on x. Suppose that the lines xzi, i = 1, 2, 3, 4, are not contained in one
block of xΓ. In that case we say that z1, z2, z3 and z4 are in general position with respect
to x. It follows trivially from [RT1] that there is at most one trace passing through all
four of these points. The first lemma assures that there is exactly one.
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Lemma 1 There is at least one trace containing 4 points in general position with respect
to any point.

PROOF. Let z1, z2, z3, z4 be four points in general position with respect to a point x of Γ.
Let C be any circle of xΓ containing xz1 and xz2, but not containing xz3 (it is easily seen
that C exists). Considering a point y opposite x and at distance 6 from both z1 and z2,
we obtain a trace X = xy containing z1, z2. Suppose X does not contain z3. We construct
a trace X ′ containing z1, z2 and z3. Consider in xΓ two circles through xz3 touching C in
distinct points. By Axiom [CH2], these circles meet in a second line L, L incident with
x. Hence C is an element of the transversal partition with extremities L and xz3. Let z
be the unique point of Γ incident with L and contained in X. Let Ly be the projection of
z onto y and let y′ be the projection of z3 onto Ly. We have xy′ ∩X = {z}. Similarly we
construct a trace X ′ containing z1 and such that X ′ ∩ xy′ = {z3}. By Axiom [RT2] the
back up C ′ onto x of X ∩X ′ is a member of the transversal partition with extremities xz3

and xz = L. But xz1 ∈ C ∩ C ′, hence C = C ′ and X ′ contains also z2. By substituting
X ′ for X and z4 for z3 in the previous argument, we now see that there exists a trace X ′′

with center x containing z1, z2, z3, z4. The lemma is proved.

If X is some point of Γ and L is a line at distance 7 from x, then the points on L opposite
x define a set of traces which meet pairwise in the unique point of Γ2(x)∩Γ5(L). So for a
given trace xy, y opposite x, a given point z of xy and a given point u collinear with x but
not on the line xz, nor on the trace xy, there exists at least one trace containing u and
meeting xy in exactly z. The next lemma says that this trace is unique. For convenience,
we say that two traces with common center meet trivially if their intersection is a point.

Lemma 2 For every point x of Γ, every point y opposite x and every pair of non-collinear
points (z, u) ∈ xy × (Γ2(x) \ xy), there is a unique trace with center x containing both z
and u and meeting xy trivially.

PROOF. By the preceding remarks we already know that there is at least one trace X ′

containing z, u and meeting xy trivially. Suppose the trace X ′′ also contains z, u and meets
xy trivially. Suppose by way of contradiction that X ′ *= X ′′. Since {z, u} ⊆ X ′ ∩ X ′′,
Axiom [RT1] implies that the back up of X ′∩X ′′ is a circle C in xΓ. Let L be any line of Γ
through x, L /∈ C. Let v be the unique point incident with L and belonging to xy. Again
we can construct a trace Y meeting xy trivially in v and containing u. By Axiom [RT2]
the back ups D′ and D′′ of respectively Y ∩X ′ and Y ∩X ′′ are elements of the transversal
partition of xΓ with extremities xz and L. Since xu ∈ D′ ∩D′′, we must have D′ = D′′.
Hence X ′ ∩X ′′ contains Y ∩X ′. This implies that D′ ⊆ C, so D′ = C, a contradiction
since xz ∈ C and xz /∈ D′. This completes the proof of the lemma.

So for each trace X with center x and each point z ∈ X, there is a unique set T of traces
containing z, meeting two by two trivially in z and such that every point of Γ2(x) \Γ2(z)
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is contained in a member of T . We call such a set a pencil of traces based at z, or with
base point z.

It follows that we can rephrase Axiom [RT2] as follows.

Lemma 3 For every point x of Γ, every point y opposite x and every pair of distinct
points z1 and z2 in xy, the set of back ups of the intersections of elements different from
xy of the pencil based at z1 and containing xy with elements different from xy of the pencil
based at z2 and containing xy constitutes the transversal partition with extremities the
lines xz1 and xz2 in xΓ.

Remark. These lemmas already allow us to define a derived geometry Γx at every point
and to prove that it is a generalized quadrangle (see [26]). Though we will not use this
result, let us for the sake of completeness mention how that quadrangle is defined. The
points of Γx are the traces with center x together with the elements of Γ2(x) ∪ {x}. The
lines of Γx are the pencils of traces (with center x) together with the lines through x.
Incidence is defined as follows: a pencil of traces is incident with its own elements and
with its base point; a line through x is incident with all points incident with it in Γ.

The next lemma tells us exactly when two traces coincide.

Lemma 4 Let x be a point of Γ, and let y1 and y2 be two points opposite x. Then
xy1 = xy2 if and only if xy1 and xy2 have at least two points in common, say x1 and
x2, and for each j ∈ {1, 2}, the lines Lij at distance 5 from yi and incident with xj are
contained in a circle of xjΓ with corner the line xyj, i = 1, 2.

As a consequence we have:

Lemma 5 The gate set of a trace with center x through any of its points z is a circle in
zΓ with corner xz.

PROOF. Let y and z be points opposite x such that there are two points x1, x2 ∈ xy∩xz

with the property that the projections of y and z onto xi are contained in a circle of xiΓ
with corner xxi, for i = 1, 2. By Axiom [RT3], xy and xz cannot be distinct, hence the
circle in x1Γ containing the projection of y onto x1 and having xy as corner, is contained
in the gate set of xy through x1.

Conversely, suppose xy = xz and let u ∈ xy. Axiom [RT1′] and Lemma 1 imply the
existence of a trace X meeting xy in a set Y the back up of which is a circle in xΓ with
corner xu. Let v ∈ P be such that X = xv. Let L, M, N be the projections onto u of
y, z, v respectively. By Axiom [RT3] applied twice, L, M and N belong to the same circle
in uΓ with corner xu. The lemma is proved.

The next result essentially tells us that the knowledge of one xΓ suffices to determine all
yΓ, y any point of Γ.
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Lemma 6 Let x and y be two opposite points of Γ. Then the projection of any circle C
of xΓ onto y is a circle D in yΓ and the projection of ∂C is exactly ∂D.

PROOF. Let Li, i = 1, 2, 3, be three distinct lines through x and let Mi be the projection
of Li onto y. Clearly it suffices to show that, if L1 is the corner of a circle in xΓ containing
L2 and L3, then M1 is the corner of a circle in yΓ containing M2 and M3. So let L1 be the
corner of the circle in xΓ containing L1, L2 and L3. Let z be the projection of L1 onto M1

and let u be the projection of M2 onto L2. Let L′ be any line through u not belonging to
the circle, say C, of uΓ with corner L2 and containing the projection L of M2 onto u. Let
M ′ be the projection of L′ onto z and let v′ be the projection of L′ onto M ′. The traces
xy and xv′ both contain u and the projection x′ of z onto L1. Since the projections of y
and v′ onto x′ coincide, we conclude by Axiom [RT3] and Lemma 4 that xy and xv′ meet
on the lines of the circle in xΓ with corner L1 and containing L2, hence have a point v on
L3 in common, by our assumption. We can do the same reasoning if L′ does belong to
the circle C of uΓ. Hence M ′ runs through all lines incident with z, except the projection
of x onto z. This means that zu = zv and by Lemma 4, we conclude that M2 and M3 lie
in a circle of yΓ with corner M1. The lemma is proved.

The last case concerning gate sets and mutual positions of traces is the case where two
traces meet trivially. Strictly speaking, we cannot talk about gate sets here; nevertheless
the following result is similar to the previous lemma and to Axiom [RT3].

Lemma 7 Let x be any point of Γ and let z1 and z2 be two points opposite x. Suppose
that xz1 and xz2 meet trivially in the point y. Let Li be the line at distance 5 from zi and
incident with y, i = 1, 2. Then L1 and L2 belong to a circle in yΓ with corner xy.

PROOF. Let M1 be the unique line incident with z1 and at distance 5 from y. Let y2

be any point of xz2 distinct from y. Let z′2 be the projection of y2 onto M1. Clearly xz′2

meets xz1 trivially in y (otherwise there is circuit of length 14 in the incidence graph)
and it contains y2, hence by Lemma 2 it coincides with xz2 . The lemma now follows from
Lemma 5 applied to xz2 = xz′2 in the point y.

The next lemmas aim at a property of the dual traces.

Lemma 8 Let x be any point of Γ, let z1 and z2 (respectively y1 and y2) be distinct col-
linear points collinear with but distinct from x and suppose xz1 *= xy1. Let Yi (respectively
Xi), i = 1, 2, be a trace with center x containing z1 (respectively z2) and yi and suppose
that Y1 and Y2 meet trivially. If X1 and Y1 respectively X2 and Y2 meet trivially, then so
do X1 and X2.

12



PROOF. By Axiom [RT2] the traces Y1 and X2 meet in a set Z the back up of which is
a member of the transversal partition with extremities xz1 and xy2. By Lemma 2 there
is a unique trace X ′

2 meeting X1 trivially in z2 and containing some given point of Z. By
Axiom [RT2] again, Y1 and X ′

2 meet in a set Z ′ the back up of which is again a member
of the transversal partition with extremities xz2 = xz1 and xy1 = xy2, so the back up of
Z ′ coincides with that of Z, hence Z = Z ′ and X ′

2 ∩X2 contains Z and an extra point z2.
This implies by Lemma 1 that X2 = X ′

2. The lemma is proved.

Lemma 9 Let x and z be any two distinct but collinear points of Γ. Let X1 and X2

(respectively Y1 and Y2) be two traces with center x meeting trivially in z. If the back ups
onto x of X1 ∩ Y1 and X2 ∩ Y2 have at least two elements in common, then they coincide.

PROOF. Clearly the circles C1 and C2 in xΓ defined by the back ups of X1 ∩ Y1 and
X2 ∩ Y1 respectively touch in xz. Similarly, the circles D1 and D2 in xΓ defined by the
back ups of X1 ∩ Y2 and X2 ∩ Y2 respectively touch in xz. Suppose now that C1 and D2

meet in at least two elements xz and, say, L. We have to show that C1 = D2. Suppose by
way of contradiction that C1 *= D2. Then, by Axiom [MP2], D2 does not touch C2 and
hence it meets C2 in a second element, say M . That implies that X2 ∩ Y1 and X2 ∩ Y2

have a point of M in common, hence Y1 ∩ Y2 contains a point of M . We conclude that
M = xz, a contradiction. The lemma is proved.

We now state a very important proposition. It will enable us to define a certain type of
point in the metasymplectic space. It also explains the behaviour of the dual traces. We
use the same notation for dual traces as for traces.

Proposition 10 Let L be any line of Γ and let M1 and M2 be two lines opposite to L. For
any point x incident with L, consider the following property P (L; M1, M2): the projections
of M1 and M2 onto x lie in a common circle of xΓ with corner L. If at least two points
incident with L have the property P (L; M1, M2), then all points do.

PROOF. The proof goes in several steps, converging to the general mutual position of
M1 and M2.

STEP 1.
Suppose that M1 and M2 meet, say in the point y. Clearly the projection x of y onto L
has property P (L; M1, M2). Without loss of generality we may assume that x1 *= x and
we may assume x2 = x. Let M be the projection of L onto y. Then by Lemma 6, M1 and
M2 are contained in a circle of yΓ with corner M . If u is any point of L distinct from x1

and x2, then the result follows by applying once again Lemma 6.

STEP 2.
Suppose that there is a line M at distance 6 from L meeting both M1 and M2. As above,
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we can assume that the projection of M onto L is x1. Let yi be the intersection of M
and Mi, i = 1, 2. Let N be the projection of M1 onto x2 and let y be the projection of
M1 onto N . Let y′ be the projection of y2 onto N and let M ′

2 be the projection of y′ onto
y2. Let x, x1 *= x *= x2, be any point on L and let L1, L2, L′2 be the projections onto
x of respectively M1, M2 and M ′

2. By Step 1, the projections of M2 and M ′
2 onto x are

contained in a circle of xΓ with corner L. So it remains to show that the projection of M1

onto x is also contained in that circle; it suffices to show that the projections of M1 and
M ′

2 onto x are contained in a circle of xΓ with corner L. Let z1 and z′2 be the projections of
x onto M1 and M ′

2 respectively. Now, the traces xy1
2 and xy2

2 meet trivially in x1 (because

y1 and y2 are collinear); the traces xy2
2 and x

z′2
2 meet trivially in y′ (similar reason); the

traces xy1
2 and xz1

2 meet trivially in y (similar reason) and x ∈ xz1
2 ∩ x

z′2
2 . According to

Lemma 8, the traces xz1
2 and x

z′2
2 meet trivially in x. The result follows from Lemma 7.

STEP 3.
Suppose that there is a point y at distance 3 from M1 and M2 and at distance 5 from L.
Again we can assume that the projection of y onto L is x1. Denote by Ni the projection
of Mi onto y, i = 1, 2. Let {u} = Γ2(x2) ∩ Γ5(M1) and let M ′

2 be the projection of u
onto N2. Let y1 respectively y2 be the intersection of M1 and N1 respectively M ′

2 and
N2. Let x, x1 *= x *= x2, be arbitrary on L and let L1, L2, L′2 be the projections onto x of
M1, M2, M ′

2 respectively. By Step 2 the lines L2 and L′2 are contained in a circle of x2Γ
with corner L. As in the previous step, it suffices to show that L1 and L′2 are contained in
such a circle. Therefore, let z1 respectively z′2 be the projection of x onto M1 respectively

M ′
2. The traces xy1

2 and xz1
2 respectively x

y′2
2 and x

z′2
2 meet trivially in u. If xy1

2 = x
y′2
2 ,

then by Lemma 2 also xz1
2 = x

z′2
2 and the result follows from Lemma 4. Assume now that

xy1
2 *= x

y′2
2 . But then xy1

2 and x
y′2
2 meet in a set Y the back up of which on x2 is a circle

in x2Γ with corner L (indeed, this follows from the fact that these traces meet in at least
two points (x1 and u); from the fact that the projections of y1 and y′2 onto x1 coincide

and from Axiom [RT3]). By Lemma 9, xz1
2 and x

z′2
2 meet in a set Z the back up of which

equals the back up of Y , hence by Axiom [RT3] the result follows.

STEP 4.
Suppose that there is a line M at distance 4 from L, M1 and M2. We may assume that
the projection of M onto L is x1; let y1 be the projection of M onto M1 and let y be the
projection of M2 onto M . Suppose {N} = Γ3(x2) ∩ Γ4(M1). Let {M ′

2} = Γ3(y) ∩ Γ4(N)
and let y′2 be the projection of y onto M ′

2. Let x, x1 *= x *= x2, be any point of L and let
L1, L2, L′2 be the projections onto x of respectively M1, M2, M ′

2. As before, it suffices
by Step 3 to show that L1 and L′2 are contained in a common circle of x2Γ with corner
L. Let z1 and z′2 be the projection of x onto M1 and M ′

2 respectively. By Lemma 4 the

traces xy1
2 and x

y′2
2 coincide; since y1 and z1 respectively y′2 and z′2 are collinear the traces

xz1
2 and x

z′2
2 both meet xy1

2 trivially in u, where u is the projection of x2 onto N . But xz1
2
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and x
z′2
2 also meet in x, hence they coincide and the result follows from Lemma 4.

STEP 5.
Now consider the general case. Let {y} = Γ4(x1) ∩ Γ3(M2), let {N} = Γ4(M1) ∩ Γ3(x2)
and let {M ′

2} = Γ4(N) ∩ Γ3(y). Then the result follows from Step 3 applied to M2 and
M ′

2 and from Step 4 applied to M1 and M ′
2.

This completes the proof of the proposition.

Let L and M be opposite lines of Γ. For each point x of L, there is a unique line Lx

incident with x and at distance 6 from M . The line Lx defines in xΓ a unique circle Cx

with ∂Cx = L. We call the set of all circles Cx, for x ranging over all points incident with
L, the Suzuki trace with focus line L and direction M , and we denote it by LM

© .

We have defined a Suzuki trace as a set of circles. These circles are the elements of the
Suzuki trace. The elements of these circles (which are lines of Γ) will be called the fringes
of the Suzuki trace.

The preceding proposition can now be reformulated as follows:

Corollary 11 (i) A Suzuki trace is determined by any two of its elements.
(ii) A Suzuki trace is determined by any two of its fringes lying in different elements.

Later on, the Suzuki traces will be one type of point in the metasymplectic space M(Γ)
that we will define.

Lemma 12 Γ is point-distance-4-regular.

PROOF. Let x1, x2 and x3 be three distinct points opposite each other and suppose that
y1, y2 ∈ (x1)

x2
[4] ∩ (x1)

x3
[4], y1 *= y2. Let y3 be any point at distance 4 from both x1 and x2,

y1 *= y3 *= y2. We have to show that δ(x3, y3) = 4. Let Li be the projection of yi onto
x1; let Mi be the projection of yi onto x2, i = 1, 2, 3. Let L0 be the corner of the circle of
x1Γ containing L1, L2 and L3. Let M0 be the projection of L0 onto x2 and let y0 be the
point at distance 3 from both L0 and M0. We want to show that δ(y0, x3) = 4. Therefore,
suppose first that L1 *= L0 *= L2.

Let L′i be the projection of xi onto y1, i = 1, 2, 3. First suppose that L′1 is the corner of
the circle C ′ of y1Γ containing L′1, L

′
2 and L′3. Let ui be the projection of x2 onto Li and

let vi be the projection of x1 onto Mi. By Lemma 4 we have δ(x3, u0) = δ(x3, v0) = 6;
let N01 respectively N02 be the projection of u0 respectively v0 onto x3. If N01 = N02,
then there is a circuit of length ≤ 14 passing through x3 and y0 unless δ(y0, x3) = 4; so
suppose N01 *= N02. For the same reason the projection of x3 onto u0 is distinct from u0y0

and the projection of x3 onto v0 is distinct from v0y0. Let w1, w2, w01 and w02 be the
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projection of x1 onto respectively N1, N2, N01 and N02. By Lemma 4, these are exactly
the projections of x2 on the respective lines. Hence the projections of x1 and x2 onto w01

are contained in a circle of w01Γ with corner N01. This implies by Lemma 4 that xy0
3 = xx2

3

(consider w01 and w02). Hence δ(w1, y0) = 6. Let N ′
1 be the projection of N1 onto y0.

Now note that by Lemma 6 applied to x1 and x3, the line N01 is the corner of a circle
C of x3Γ containing N1 and N2; applied to x2 and x3, we obtain from the same lemma
that also the line N02 is the corner of a circle of x3Γ containing N1 and N2. Hence, by
Axiom [ST1], N02 is not contained in C. By Lemma 6 applied to x3 and y0 we now know
that the circle D of y0Γ containing v0y0 and having u0y0 as corner does not contain N ′

1.
Noting that δ(L′3, N

′
1) = 6, and projecting D onto y1, Lemma 6 implies that L′3 does not

belong to the circle of y1Γ with corner L′1 and containing L′2, which is C ′, contradicting
our assumption. Hence as remarked above, we must have δ(x3, y0) = 4. By symmetry, the
result also follows if we switch the roles of L′1 and L′2 in our assumption. Now assume that
L′3 is the corner of C ′. Then the result follows similarly from the fact that N1 cannot be
the corner of a circle of x3Γ containing N01 and N02 (that would contradict Axiom [ST2]).

Hence we may assume that the corner of C ′ is some line L′0 distinct from L′i for i = 1, 2, 3.
Let x0 be the point at distance 3 from L′0 and at distance 4 from y2. Let v0 be as above,
then by Lemma 4 δ(x′0, v0) = 6. Let y′0 be the point collinear with v0 and at distance 4
from x′0. By the preceding paragraph both x3 and x1 are at distance 4 from y′0. If y0 *= y′0,
then there is a circuit of length ≤ 12 passing through x1, v0, y0 and y′0, a contradiction.
Hence we have shown that x3 is at distance 4 from y0.

Now let x′3 be at distance 4 from y3 and 3 from L′3 (which is the projection of x3 onto y1).
Switching the roles of y2 and y3, we see that x′3 is at distance 4 from y0. But now there is
a circuit of length ≤ 14 passing through x′3, x3 and y0, unless x3 = x′3. The result follows.

If L0 = L3, then the result follows simply by putting L3 equal to L0 in the paragraph
preceding the last one. This completes the proof of the lemma.

Remark. The perfect Ree-Tits octagons are also line-distance-4-regular. It seems to be
hard to prove this directly from our axioms. We will not need this however to prove our
main result. So in a way, line-distance-4-regularity is not an essential property of the
Ree-Tits octagons; it is rather there “incidentally”.

Lemma 13 Let x be a point of Γ and let y and z be two points opposite x such that there
exists a line L at distance 3 from both y and z and at distance 5 from x, and such that
there exists a line M at distance 5 from both y and z and at distance 3 from x. Then
the set of lines N through x such that the projections of y and z onto the unique point of
xy = xz on N coincide is a circle of xΓ with the projection of L onto x as corner.

PROOF. Note that the lemma makes sense since by Lemma 4 the traces xy and xz

indeed coincide. Now let Lx and Mx be the projections onto x of L, M respectively. Let
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N be a line incident with x. Suppose first that N is contained in the circle of xΓ with
corner Lx and containing Mx, and let u be the unique point of xy = xz on N . We show
that the projections Nz and Ny onto u of respectively z and y coincide. Suppose by way
of contradiction that they do not coincide. Let y1 and z1 be the points at distance 4 from
u and collinear with y and z respectively. Then y1 and z1 are opposite. We show that
this leads to a contradiction. Let z0 be the point collinear with z and at distance 3 from
M . By Lemma 4 the traces yx and yz0 coincide, hence δ(z0, y1) = 6. Denote the circle of
xΓ with corner Lx and containing Mx by C. Projecting C onto y and then projecting the
resulting circle onto z0, we see by Lemma 6 that in z0Γ there is a circle with corner zz0

containing the projections onto z0 of y1 and x. Using Lemma 4 again, we now see that
zx = zy1 , hence δ(y1, z1) = 6 (since z1 ∈ zx), a contradiction if Ny *= Nz. We conclude
that Ny = Nz.

Now suppose that N does not belong to the circle of xΓ with corner Lx and containing Mx.
If Ny coincides with Nz, then, with the notation of the previous paragraph, δ(y1, z1) = 6
and again zx = zy1 . But this is impossible by Axiom [RT3] since now there is no circle of
z0Γ having corner zz0 and containing the projections onto z0 of y1 and x.

This completes the proof of the lemma.

A kind of dual statement can also be proved, and in fact it is a consequence of the previous
lemma.

Lemma 14 Let L be a line of Γ and let M and N be two lines opposite L such that there
exists a point x at distance 3 from both M and N and at distance 5 from L, and such that
there exists a point y at distance 5 from both M and N and at distance 3 from L. Then
LM

[3] = LN
[3] if and only if the circle of xΓ containing the projections of M, N and L has the

projection of the latter as corner if and only if the circle of yΓ containing the projections
of M, N and L has the latter projection as corner. If one of these equivalent conditions
is not satisfied, then |LM

[3] ∩ LN
[3]| = 2.

PROOF. Let z′ be any point of L distinct from the projections x′ and y′ of x and y
respectively on L. Consider the point z collinear with z′ and at distance 5 from M .
Applying Lemma 13 to x, y, z, L and M (with corresponding symbols in the statement of
the lemma), we see that the point z is at distance 5 from N if and only if the circle of xΓ
containing the projections onto x of respectively M, N and L has the latter projection as
corner. The other equivalence follows directly from Lemma 6. The lemma is now clear.

Our next goal is to prepare for the definition of the third kind of point of our future
metasymplectic space M(Γ). It would be nice if traces of Γ would represent points in
M(Γ), but in fact they will represent a kind of hyperbolic or imaginary lines. More
precisely, in the parabolic quadric model (in 6-dimensional projective space) of the C3-
subgeometry of M(Γ), they represent conics which are non-singular lines in the symplectic
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model (in 5-dimensional projective space) of this C3-residue. So we must find a way to
distinguish the points on such a line.

Lemma 15 Let x and z be two distinct collinear points of Γ. Let C be a circle of xΓ with
corner xz. On the set of traces through z with center x, we define the following relation
denoted by ∼: X ∼ Y if and only if either X = Y , or X meets Y trivially in z, or the
back up of X ∩ Y is a circle of xΓ the corner of which belongs to C \ {xz}. Then “∼” is
an equivalence relation.

PROOF. Clearly only the transitivity property of the relation “∼” needs to be checked.
So suppose X, Y and Z are three traces with center x and containing z. Suppose X ∼
Y ∼ Z. We may assume that they are all distinct. Hence there are essentially three cases
to consider.

Case 1 X meets Y trivially and Y meets Z trivially.
By Lemma 2, X, Y and Z are contained in a pencil of traces, hence X ∼ Z.

Case 2 X meets Y trivially and the back up of Y ∩ Z on x is a circle D of xΓ.
It is convenient to look in the affine plane Res(xz) of xΓ. By Lemma 2 we know
that X and Z do not meet trivially, hence they meet in a set the back up of which
is a circle D′ of xΓ. Since X and Y meet trivially, D and D′ touch in xz, hence they
represent parallel lines in Res(xz). The result now follows immediately from [MC3].

Case 3 The back ups of both X ∩ Y and Y ∩ Z are circles of xΓ.
Denote these back ups respectively by D and D′. Since the corners of both these
circles lie in C and are distinct from xz, it follows from [MC3] that D and D′

represent parallel lines in Res(xz). But that implies that either X ∩ Z is trivial or
its back up on x is a circle touching both D and D′. The result follows from [MC3]
again.

This completes the proof of the lemma.

To be more precise, the equivalence relation “∼” of the previous lemma is called (x, z, C)-
equivalence.

Consider now two opposite points x and y in Γ. Every point u of yx defines in every point
z of xy (except in the unique point of xy at distance 4 from u) a trace zu which contains
x. If Cz is the circle of zΓ containing the projection of y onto z and with corner xz, then
it is easily seen that, for fixed z ∈ xy, all these traces are (z, x, Cz)-equivalent. We call the
set of all such traces the crown of the pair (x, y), and the elements of the crown with fixed
center z will be called the crown-traces with center z. Consider now a point y′ opposite x
such that xy = xy′ . Let z ∈ xy. In the following lemmas we give a description of mutual
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positions of y and y′ that allows one to decide whether the crown-traces with center z of
the pair (x, y) are (z, x, Cz)-equivalent (with Cz as above) with those of the pair (x, y′) or
not. At the same time we aim at proving the property that they are equivalent for one
center z ∈ xy if and only if they are equivalent for all centers z ∈ xy.

Lemma 16 Let x be any point of Γ. Let y and y′ be two distinct points opposite x such
that xy = xy′. Let z1 and z2 be two distinct elements of xy. Let y I Li I ui I Mi I vi I Ni I zi

and y′ I L′i I u′i I M ′
i I v′i I N ′

i I zi, i = 1, 2. If y is not opposite y′, and if

|{u1, u2, M1, M2, v1, v2, N1, N2} ∩ {u′1, u′2, M ′
1, M

′
2, v

′
1, v

′
2, N

′
1, N

′
2}| = 4,

then for every z ∈ xy, the crown-traces with center z belonging to the crown of (x, y)
are (z, x, Cz)-equivalent with those belonging to the crown of (x, y′) (with Cz as above or
below).

PROOF. Up to permutation of the indices 1 and 2, there are two cases to distinguish.
Set

S = {u1, u2, M1, M2, v1, v2, N1, N2} ∩ {u′1, u′2, M ′
1, M

′
2, v

′
1, v

′
2, N

′
1, N

′
2}.

Note that it is enough to prove that for arbitrary z ∈ xy, one crown-trace with center z
belonging to the crown of (x, y) is equivalent with one belonging to the crown of (x, y′).
As above, we denote by Cz the circle of zΓ with corner xz containing the projections of y
and y′ onto z.

S = {u1, M1, v1, N1}.
If z *= z1, then zu1 belongs to the crown of both (x, y) and (x, y′). If z = z1, then clearly
zu2 = zu′2 (by Lemma 4).

S = {M1, v1, N1, N2}.
If z = z1, then zu2 = zu′2 by Lemma 4. If z *= z1, then zu1 and zu′1 meet trivially in x since
u1 and u′1 are collinear.

This completes the proof of the lemma.

We now investigate the case that we left out in Lemma 16, namely when y and y′ are
opposite.

Lemma 17 Let x, y and y′ be three pairwise opposite points at distance 4 from two given
distinct points v1 and v2. Let Mi, M ′

i and Ni be the projections onto vi of respectively
y, y′ and x. Let Cz again be the unique circle of zΓ with corner xz and containing the
projections of y and y′ onto z, z ∈ xy. Then for any z ∈ xy, the crown-traces with center z
belonging to the crown of (x, y) are (z, x, Cz)-equivalent with those belonging to the crown
of (x, y′) if and only if there exists a circle of v1Γ with corner N1 containing M1 and M ′

1,
which is equivalent to the existence of a circle of v2Γ with corner N2 containing M2 and
M ′

2.
In particular, this condition is independent of z.
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PROOF. By Lemma 12, we may assume z = z2. But considering zu1
2 and z

u′1
2 (where u1

and u′1 are collinear with y and v1, respectively y′ and v′1), the result follows directly from
Axiom [RT3], Lemma 4 and Lemma 6. The lemma is proved.

Lemma 18 Let x be any point of Γ and let y and y′ be such that xy = xy′. For z ∈ xy,
we use again the notation Cz defined above. Then either the crown-traces with center z
belonging to the crown of (x, y) are (z, x, Cz)-equivalent with those belonging to the crown
of (x, y′), for all z ∈ xy, or this happens for no z ∈ xy.

PROOF. Let z1 and z2 be two arbitrary distinct elements of xy. As before, let y I Li I ui I
Mi I vi I Ni I zi and y′ I L′i I u′i I M ′

i I v′i I N ′
i I zi, i = 1, 2. By considering the unique path

of length 7 connecting u1 with N ′
2, we may assume by Lemma 16 that N2 = N ′

2. By
considering the unique path of length 7 connecting M1 with v′2, we may assume by the
same lemma that v2 = v′2. Similarly, but now by Lemma 17, we may assume that
M2 = M ′

2. Again similarly, and using Lemma 16 again, we may assume that u2 = u′2.
But now the result follows from Lemma 16. The lemma follows.

For any x ∈ P we can now define an equivalence relation on the set of points opposite x as
follows. Two points y and y′ are equivalent if xy = xy′ and the crown-traces with center
z ∈ xy belonging to the respective crowns of (x, y) and (x, y′) are (z, x, Cz)-equivalent,
for some z, or equivalently, for all z ∈ xy. An equivalence class C of this relation together
with the trace xy is called a trace mark τ (of xy). The trace xy is said to belong to τ .
The point y is called a post of τ and C is the post set of τ , while it is a post set of xy. We
will sometimes denote τ by x[y] (that is, x[y] denotes the trace mark to which the trace xy

belongs and for which y is a post). A trace has several trace marks as Lemma 18 shows.

From Lemma 17 and the proof of Lemma 18 the following criterion to decide whether two
points are in the same post set of some trace can be derived.

Lemma 19 Let x, y and y′ be three points of Γ such that both y and y′ are opposite x and
xy = xy′. Let z1 and z2 be two distinct points of xy. Let v be the unique point collinear
with z1 and at distance 4 from y; let M be the unique line at distance 3 from both y′ and
z2. Let M1 and M2 be the projections onto v of y and M respectively. Then y and y′

belong to the same post set of xy if and only if the corner of the circle of vΓ containing
M1, M2 and vz1 is vz1.

The next lemma shows us exactly how many trace marks a trace has.

Lemma 20 Let x and y be opposite points of Γ and let V be the set of points of Γ at
distance 4 from all points which lie at distance 4 from both x and y. If y′ is a point
opposite x and xy = xy′, then there exists an element of V in the same post set of xy as
y′.
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PROOF. Let z be any element of xy. Let v be at distance 4 from y and collinear with
z. Upon replacing y′ by another point in the same post set of xy as y′ (for example using
Lemma 16), we may assume that δ(v, y′) = 4. Let M ′ be the projection of y′ onto v.
There exists a unique element y′′ of V the projection onto v of which is also M ′. The
traces zy′ and zy′′ therefore either coincide or meet non-trivially and in the latter case the
back up on z of the intersection is a circle of zΓ with corner M ′ (by Axiom [RT3]). The
lemma is proved.

Now we must prepare the definition of lines of our future metasymplectic space M(Γ).
This is the motivation for the next few lemmas.

Lemma 21 Let x be any point of Γ and let C be a post set of some trace X with center
x. Let z ∈ X, let y ∈ C and let L be the projection of y onto z. Then the set of lines
at distance 2 from L and at distance 3 from an element of C which itself lies at distance
5 from L, together with the lines of the unique circle of zΓ with corner L and containing
xz, is precisely the set of all fringes of a Suzuki trace with focus line L.

PROOF. Let w be any point of L, w *= x. By Lemma 19, the projection onto w of all
points of C at distance 4 of w is a circle of wΓ with corner L. We have to show that for
variable w, all these circles constitute a Suzuki trace. Therefore let z′ be any point of X,
z *= z′, and let M be the line at distance 3 from both y and z′. Every point u at distance
3 from M and 5 from L is in C by Lemma 16. Since the line at distance 3 from u and 2
from L belongs to LM , and since also xz is contained in LM , the lemma follows.

We use the notation of the previous lemma. Let C be the circle of zΓ with corner xz and
containing L. Then every point y′ of C is at distance 5 from a unique element L′ of C.
Applying Lemma 21 to y′, one obtains a set of Suzuki traces with focus lines the elements
of C distinct from xz, and the unique circle of zΓ belonging to such a given Suzuki trace
contains the line xz. We call such a set a Suzuki cycle with origin x, center z and rotation
C (defined by y). We now prove that a Suzuki cycle with origin x, center z and rotation
D is completely determined by one of its elements (which are Suzuki traces), hence is
independent of the given trace X.

Lemma 22 Let γ be a Suzuki cycle with origin x, center z and rotation D constructed
with a trace X with center x. Then γ is completely determined by one of its elements and
is independent of X.

PROOF. Let y be such that xy = X, let L be the focus line of an arbitrary element
of γ and assume (as we may without loss of generality) that δ(y, L) = 5. Let u be the
projection of y onto L. Let L′ be any element of D distinct from xz. Let y′ be opposite
x and such that δ(y′, u) = 4. We can always choose y′ in that way for a given trace xy′ .
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Suppose that y′ defines the same Suzuki trace with focus line L as y does. Let M be any
line through x distinct from xz. Let v and v′ be at distance 5 from M and collinear with
y and y′ respectively. Let w and w′ be at distance 5 from L′ and collinear with v and v′

respectively. Then w respectively w′ belongs to the same trace mark of xy respectively
xy′ as y respectively y′. By Lemma 4 we have zv = zv′ . The lemma now follows from
Lemma 5.

Lemma 23 Let x be any point of Γ. Let X be a trace with center x and z a point collinear
with x, but not in X. Let T be a pencil of traces based at z. There exists a unique trace
Z ∈ T meeting X trivially.

PROOF. By Lemma 3, there is at most one trace Z with the desired properties. We now
prove that there is at least one. In fact, a proof is already implicitly in [26]. Let Y be any
element of Λ. If Y meets X trivially, then we are done. So assume the back up of X ∩ Y
on x is a circle C of xΓ. In xΓ, there is a unique circle DM containing xz and touching
C in a given line M ∈ C. For M *= M ′ we have that DM and DM ′ do not touch (this
is a consequence of Axiom [CH3] and [MC4]; indeed, in any STi-plane, the unique circle
D1 through some point p touching two touching circles D2 and D3 (x /∈ D2 ∪ D3) must
contain D2∩D3 for otherwise D1, D2, D3 are three circles touching two by two in different
points). Hence DM and DM ′ meet in a second line L. But then by Axiom [CH1] all circles
DM for M ∈ C contain L and we obtain a transversal partition with extremities xz and
L and containing C. Let w be the unique point of X incident with L. Let C ′ be the pencil
of traces with base point w containing X. Let Z be the unique element of C ′ containing z
and let C ′′ be the pencil of traces with base point z containing Z. It follows now readily
from Lemma 3 that C ′′ contains Y (by the uniqueness of the transversal partition with
given extremities), hence Z is the desired trace. The lemma is proved.

Note that, if Γ is finite, then a simple counting argument proves the preceding result.

We say that a line L defines a pencil of traces with center x based at a point z if for each
point y of L opposite x the trace xy belongs to that pencil.

Lemma 24 Let T be a pencil of traces with center x and based at z. Let L and M be
two lines defining T . If there are two points xL and xM on respectively L and M in the
same post set of some element of C, then for each point on L, there exists a unique point
on M in the same post set of some element of T .

PROOF. We break the proof up into small steps.

STEP 1.
Suppose that xL and xM are collinear with a point u at distance 6 from x. Let N be
the projection of u onto x. Now let yL and yM be two points on respectively L and M
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defining the same element of T and let z0 be the projection of both yL and yM onto N .
We show that yL and yM are in the same post set of xyL . Clearly xyL = xyM , since also
xxL = xxM . For the same reason we can apply Lemma 14 to obtain that there is a point
w collinear with z0 and at distance 5 from both L and M . Let Lw be the projection of
L onto w; let v be the unique point collinear with z and at distance 3 from L; let finally
Lv be the projection of Lw onto v. Projecting the circle of uΓ containing the respective
projections of L, M and x (and having the projection of the latter as corner) onto the
point w, and then projecting this circle of wΓ onto v, we obtain by Lemma 19 the result.

STEP 2.
Suppose that the respective projections of L and M onto z coincide and that there is
a line N at distance 3 from both xL and xM and at distance 5 from x. Let LN be the
projection of N onto x. Let yL on L and yM on M define the same element of T and let
N ′ be the line at distance 4 from LN and 3 from yM . Let Lz be the line at distance 2
from M and 3 from z; let u be the point collinear with z and at distance 3 from L and
let Lu be the projection of N ′ onto u. Clearly N and N ′ define the same Suzuki trace
with focus line uz, because the lines xz and Lz both meet uz and are at distance 6 from
both N and N ′. From Lemma 11 follows that, if L′u is the projection of L onto u, then
the circle of uΓ containing uz, Lu and L′u has uz as corner. The result follows now from
Lemma 19.

STEP 3.
If there is a point u collinear with z and at distance 3 from both L and M , then the result
follows directly from Lemma 19.

STEP 4.
Let L and M now be arbitrary. Let z′ be any point of xxL , z′ *= z. Let z I Lz I u′ with
δ(u′, M) = 3; let v I Lv with δ(v, xL) = 2 and δ(lv, z′) = 3. Let L′ be the line at distance
3 from v and at distance 4 from Lz and let M ′ be the line at distance 3 from u′ and at
distance 4 from Lv. Then we can apply Step 1 on L and L′; Step 2 on L′ and M ′ and
Step 3 on M ′ and M and the lemma follows.

If T is a pencil of traces with center x and based at z, then any line L at distance 5
from z all points y of which define a trace xy belonging to T is called a tail of T . By the
previous lemma, the set of equivalence classes of the equivalence relation “L is equivalent
with M if every point of L opposite x is in the same post set of some element of Π as
some point incident with M” is in bijective correspondence with the set of trace marks of
a given trace. The set of trace marks to which the traces of T belong and for which the
points on some fixed tail are posts will be called a pencil mark (with center x and base
point z). So a pencil mark is a set of trace marks; we will however sometimes say that a
certain trace X belongs to a pencil mark, or that a certain point y is a post of the pencil
mark. By that we will understand that X belongs to a trace mark of the pencil mark and
that y is a post of one of the trace marks belonging to that pencil mark.
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Next, we look at trace bundles. A trace bundle (with center x and base circle C) is the
set of all traces with center x which intersect a given trace X with center x precisely on
the lines belonging to the circle C of xΓ. Note that for every point y, y *= x, on any line
incident with x and not belonging to C there exists a trace of the bundle containing y.
This follows from Lemma 1.

We prove a statement similar to Lemma 24 for bundles.

Lemma 25 Let B be a trace bundle with center x and base circle C. Let L be the corner
of C and let z be the unique point on L belonging to all traces of the bundle. Let y be
opposite x such that xy belongs to B. Let u be collinear with y and at distance 4 from
z. Let M be any line through u at distance 5 from z. Then there is a unique point v on
M such that xv belongs to B. If y′ is opposite x and such that xy = xy′, then we can
construct similarly a point v′. If xv = xv′, then y and y′ are in the same post set of xy if
and only if v and v′ are in the same post set of xv.

PROOF. The proof is again given in a small series of steps. Note that in view of
Axiom [RT3] and Lemma 4, we only need to prove the last statement.

STEP 1.
If y′ is collinear with u, then the result follows directly from Lemma 16.

STEP 2.
Let u′ be collinear with both y′ and v′. Assume that u′ is incident with the projection of
z onto u. Let z0 be a point in the intersection of all elements of B, z *= z0, and let M
and N be the respective projections of y and v onto z0. By Lemma 16, we may assume
without loss of generality that δ(y′, M) = δ(v′, N) = 5. The result follows directly from
Lemma 16 again, noting that v, v′, u, u′ and N are all in one circuit of length 8.

STEP 3.
Let z0, M and N be as above. We now assume that u and u′ have the same projection w
onto M . Since they also have the same projection x onto xz0, we deduce with Lemma 4
that their projection r onto N is also the same, and that moreover the corner of the circle
of rΓ containing N and the respective projections of v and v′ onto r is exactly N . The
result is now a direct consequence of Lemma 19.

STEP 4.
As in the proof of Lemma 24, one deduces the general statement from Steps 1 to 3 above.

This completes the proof of the lemma.

Let B be a trace bundle with center x and base circle C. Let z be the unique point on
the corner of C belonging to every element of B. Let u be any point at distance 4 from
z such that the projection of u onto z belongs to the gate set of the intersection of all
elements of B. Then on any line through u at distance 5 from z, there is a unique point
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y such that xy belongs to B. Moreover, there is an equivalence relation in the set of all
such u defined as follows. Two points u and u′ are equivalent if for each element X of B,
any two points y and y′ collinear with respectively u and u′ and such that xy = xy′ = X
lie in the same post set of X. By Lemma 25 the set of equivalence classes is in bijective
correspondence with the set of trace marks of a given trace. Hence any equivalence class
defines in the obvious way a set of trace marks to which the elements of B belong. This
set of trace marks will be called a bundle mark µ (with center x, base circle C and origin
z). By abuse of language we will say that an element of B belongs to µ.

Lemma 26 Let x and y be two opposite points of Γ. Let z ∈ xy and suppose z I L I u I M
I v I N I y. Let ς be the Suzuki trace with focus line M and fringes L and N . Let N ′

be any fringe of ς not incident with u. Then there is a unique point y′ on N ′ such that
xy = xy′. Let w respectively w′ be any point collinear with y respectively y′, at distance 6
from x and opposite z, then the back up of zw ∩ zw′

on z contains the circle C of zΓ with
corner L containing xz. Moreover, for every point x0 ∈ zw, x0 *= u and such that x0 is
incident with an element of C, we have xy

0 = xy′

0 and y and y′ are contained in the same
post set of both xy and xy

0.

PROOF. If N ′ is incident with v, and if w and w′ are at distance 4 of the same point
of xy, then all statements follow directly from Lemma 12, and Lemma 16. Now assume
that N ′ is incident with v, but the points z1 and z′1 of xy at distance 4 from w and w′

respectively are distinct. Then the result follows from Axiom [RT3] and Lemma 4.

So suppose that N ′ meets M in some point v′ *= v. Let R be at distance 3 from both w
and x, then we may assume that δ(N ′, R) = 6 by the first part of the proof and by the
fact that MR precisely defines ς. So w′ lies at distance 3 from both R and N ′ and by
Lemma 5 we have zw = zw′

. Let x0 ∈ zw be as in the statement of the lemma. Let R′

be at distance 3 from both w and x0. If wR respectively wR′ is the projection of w onto
R respectively R′, then by Lemma 6 the circle of wΓ containing wR, wR′ and wy has wy
as corner (projected from z). By Lemma 13, δ(y′, R′) = 5 and the result follows from
Lemma 5 and Lemma 16. The lemma is proved.

The set of trace marks of xy
0 for which y is a post — with the notation of the previous

lemma — will be called a track with focus z and Suzuki direction ς. The points y and y′

are the tails of the track, the points x and x0 the centers, and the trace mark of zw and
zw′

with posts w and w′ respectively are the supporting trace marks. We have just shown
that a track is completely determind by one of its trace marks and its Suzuki direction.

Let L and M be two opposite lines of Γ. Let z ∈ LM
[3] and y I M with δ(y, z) *= 4. Then

y and z are at distance 6. Let u be at distance 2 from y and 5 from L, then u and z are
opposite. By Lemma 5 the trace zu is independent of u and by Lemma 16 also the trace
mark z[u] is independent of u (for fixed z and variable y). Varying z, we obtain a set of
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trace marks which we call a curtain. The line L is called the rail of the curtain; the line
M a hem. We also say that the trace zu belongs to the curtain.

Lemma 27 A curtain is determined by any two distinct traces belonging to it.

PROOF. Let η be a curtain with rail L and hem M . Let zi ∈ LM
[3], z1 *= z2, i = 1, 2

and let ui be the point at distance 3 from M and collinear with zi. Then z
uj

i belongs
to η, {i, j} = {1, 2}. Let M ′ be a line opposite L at distance 3 from points u′1 and u′2
contained in zu2

1 and zu1
2 respectively. If Li is the projection of L onto zi, i = 1, 2, then by

Axiom [RT3] and Lemma 6, zu1
2 = z

u′1
2 if and only if the circle of z1Γ containing u1z1, u′1z1

and L1 has the latter as corner. It then follows by Lemma 19 that z[u1]
2 = z

[u′1]
2 . So we

conclude that M ′ is a hem of some curtain η′ to which zu2
1 and zu1

2 belong if and only if the
circle of z1Γ containing u1z1, u′1z1 and L1 has L1 as corner and the circle of z2Γ containing
u2z2, u′2z2 and L2 has L2 as corner. Suppose these equivalent conditions are satisfied and
let z ∈ LM

[3] be distinct from both z1 and z2. We have to prove that z[u1] = z[u′1]. Let

M ′′ be at distance 3 from both u′1 and u2 (M ′′ exists since u2 ∈ z
u′1
2 ). Applying twice

Lemma 14, we obtain δ(z, M ′′) = δ(z, M ′) = 5. If N , N ′ and N ′′ are the projections onto
z of M , M ′ and M ′′ respectively, then by projecting u2Γ and u′1Γ onto zΓ, we deduce from
Lemma 6 that the circle of zΓ with corner the projection of L onto z and containing N
also contains N ′ and N ′′. Lemma 5 now readily implies that zu2 = zu′1 = zu′2 . It also
follows from Lemma 16 that u′1 and u′2 are in the same post set of zu1 as u1 and u2. Hence
z[u2] = z[u′1] = z[u′2]. We conclude that η = η′. The proof of the lemma is complete.

4 Definition of the space M(Γ)

In this section, we define the elements of a geometry M(Γ). We will show in the next
section that M(Γ) is a metasymplectic space (a building of type F4) in which the points
and lines of Γ are the absolute points and lines of a certain polarity.

4.1 The points of M(Γ)

There are three kinds of points.

Type (O) These are the points of the generalized octagon Γ itself.

Type (B) These are the Suzuki traces.

Type (I) These are the trace marks.
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4.2 The lines of M(Γ)

There are seven kinds of lines.

Type (OO) These are the lines of the generalized octagon Γ itself. Such a line L is incident with
the points of type (O) which are incident with L in Γ and no other points of M(Γ)
are incident with L.

Type (OB1) These are the sets of Suzuki traces with common focus line L and sharing a fixed
circle C of xΓ for some x I L. We call such sets Suzuki bundles with focus flag (x, L)
and foundation C. A Suzuki bundle is incident with all Suzuki traces — points of
type (B) — that it contains and with the point x — as point of type (O).

Type (OB2) These are the Suzuki cycles. Given a Suzuki cycle, all its elements — which are
Suzuki traces, hence points of type (B) — as well as its unique origin — point of
type (O) — are incident with it.

Type (OI) These are the pencil marks. Given a pencil mark, all its trace marks are — as points
of type (I) — incident with it, as is its base point — as point of type (O).

Type (IB1) These are the bundle marks. Given a bundle mark, all traces marks belonging to it
are incident with it — as points of type (I) —, and the unique Suzuki trace with
as focus line the corner of the base circle of the trace bundle, containing the base
circle of the bundle mark and the gate set of the intersection of all elements of the
corresponding trace bundle is — as a point of type (B) — also incident with it.

Type (IB2) These are the tracks. Given a track, all its trace marks — as points of type (I) —
and its Suzuki direction — as points of type (B) — are incident with it.

Type (II) These are the curtains. Incident with a curtain are all trace marks that belong to
it — as points of type (I).

Remark. Note that a line λ of M(Γ) of type (OO) or (II) contains only points of type (O)
or (I) (respectively). A line λ of type (XY?), where X *=Y and ? is 1,2 or empty, contains
a unique point p of type (X) or (Y) and all other points on λ are of type (Y) or (X)
respectively. If p has type (U), U∈ {X,Y}, then (U) appears before (V), {U,V} = {X,Y},
in the sequence ((O),(B),(I)). This has as a direct consequence that the subgeometry
induced on the set of points of type (O) respectively (O) and (B) is a subgeometry of
M(Γ). The former will be Γ, the latter is the geometry defined by Sarli [13].

Note also that an alternative way of proving that M(Γ) is a metasymplectic space would
be to use Cohen’s local characterization of such geometries, see [4]. However, this char-
acterization uses a pentagon of points and lines. In view of the many different types of
such objects in M(Γ), this leads to a very long list of possibilities. And then one still has
to produce a polarity; so planes and hyperlines are needed anyway.
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4.3 The planes of M(Γ)

There are seven kinds of planes. Essentially, the types of the planes are the same as
these of the lines, but to distinguish them properly we denote them with square brackets.
Moreover, as an object of Γ, the planes are identical to the lines, but of course the incidence
relation will be different. In the following definitions, we only mention the points incident
with a given plane. A line is incident with a plane if and only if all its points are incident
with that plane. So in principal, a plane could be incident with no line, but of course in
the next section, we will prove that all planes are projective planes.

Type [OO] Let L be a line of Γ, i.e. a line of type (OO) of M(Γ). Then L is a plane of type
[OO]. All points of L, viewed as points of type (O), are incident with L, as well as
all Suzuki traces with focus line L — as points of type (B).

Type [OB1] Let ζ be a Suzuki bundle with focus flag (x, L) and foundation C. Then ζ is a plane
of M(Γ) of type [OB1]. All points of L — as points of type (O) — are incident
with ζ, as well as any Suzuki trace with focus line M ∈ C \ {L} and fringe L.

Type [OB2] Let γ be a Suzuki cycle with origin x, center z and rotation C. Then γ is a plane
of type [OB2]. The point z of type (O) is incident with it; all Suzuki traces with
focus line xz and containing C are — as points of type (B) — incident with it and
finally all trace marks

* to which belong traces which have center x, which contain z and the gate set
through z of which is exactly C, and

* whose post set contains points at distance 3 from the fringes of the Suzuki
traces belonging to γ,

are also incident with it — as points of type (I).

Type [OI] Let ρ be a pencil mark with center x and base point z. Each trace mark of ρ defines
a Suzuki cycle γ with origin x, center z and rotation the circle C of zΓ defined by
the “gate set” of the trace pencil (see Lemma 7). It is also easily seen that for
distinct trace marks the corresponding Suzuki cycles coincide. Also, the set U of
crown-traces with center z is independent of the trace mark of ρ. By definition, ρ is
a plane of type [OI] and all points of M(Γ) incident (in M(Γ)) with γ are incident
with ρ (as points of type (O) and (B)), as well as all trace marks to which traces
of U belong and for which the posts are determined by the gate sets through the
points distinct from z of the traces of ρ (points of type (I)). We will show in the
next section that everything is well-defined here.
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Type [IB1] Let µ be a bundle mark with center x and base circle C. This is a plane of type
[IB1]. Now we define which points of M(Γ) are incident with µ. Let L be the corner
of C and z the unique point on L contained in every trace of the bundle mark. Let
D be the circle of zΓ equal to the gate set through z of the intersection of all traces
belonging to µ. Each trace mark of µ defines the same unique Suzuki cycle γ with
origin x, center z and rotation D, by Lemma 22 and Lemma 25. All points —
of type (B) and type (O) — of M(Γ) incident in M(Γ) with γ (as a line of type
(OB2)) are by definition also incident with the plane µ. Now let X and X ′ be two
traces of µ and let y and y′ be corresponding respective posts. We can choose y
and y′ collinear with a point w at distance 4 from z. But that means that w defines
a crown-trace with center any point u of X ∩ X ′, except z, for both the traces X
and X ′. It is now clear, since the gate sets of X and X ′ through u are disjoint up
to the line xu, that the intersection of the set of crown-traces with center u for X
and for X ′ is a trace pencil defining a unique pencil mark (w is a post of one of the
trace marks). By definition every trace mark belonging to such a pencil mark is —
as point of type (I) — incident with the plane µ in M(Γ).

Type [IB2] Let ϑ be a track with focus z and Suzuki direction ς, having focus line M . Then ϑ
is a plane of type [IB2] incident in M(Γ) with the unique Suzuki trace ς ′ with focus
line the projection L of M onto z, such that ς ′ contains M and the lines joining z
with the centers of ϑ as fringes (this is a point of type (B)), also incident with all
supporting trace marks of ϑ — as points of type (I) — and finally incident with all
trace marks y[x], where y is an arbitrary tail of ϑ and x an arbitrary center of ϑ
(and these are also points of M(Γ) of type (I)).

Type [II] Let η be a curtain with rail L. Then η is a plane of type [II]. Let M be any hem
of η. Then the Suzuki trace LM

© is incident in M(Γ) with η — as point of type
(B). Note that LM

© is independent of M by Corollary 11. The other points incident
with η in M(Γ) are the elements — points of type (I) — incident in M(Γ) with the
curtains with rail M and hem L.

Remark. Sarli’s focal planes in [13] are our planes of type [OO].

4.4 The hyperlines of M(Γ)

We first make a very useful observation, the proof of which is left to the reader, since it is
merely an inspection of cases. In fact, the poof will follow almost directly from the proofs
in section 5.1.

Proposition 28 Let λ and λ′ be two lines of M(Γ). From the definition of lines and
planes it follows that we can view λ and λ′ also as planes. The following two conditions
are equivalent:
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1. λ is as a line contained in λ′ as a plane.

2. λ′ is as a line contained in λ as a plane.

This motivates us to define a hyperline as a an object h which is already a point in M(Γ),
and which is by definition incident with the plane β if and only if the point h is incident
with the line β. A point p of M(Γ) is incident with the hyperline h if it is incident with
some plane β which is incident with h. Similarly for lines of M(Γ).

So we have defined all elements of M(Γ) and the incidence relation. In the next section,
we will show that M(Γ) is a metasymplectic space, i.e. a building of type F4.

5 M(Γ) is a metasymplectic space

5.1 All planes are projective planes

5.1.1 Planes of type [OO]

Lemma 29 Let x be a point of Γ and let z1 and z2 be two non-collinear points in Γ2(x).
Let Ti be a pencil of traces based at zi, i = 1, 2 and suppose T1 ∩ T2 = ∅. Then every line
L through x either is the corner of the back up of the intersection of some element of T1

with some element of T2, or contains a point which is the (trivial) intersection of some
element of T1 with some element of T2, or it is the corner of a circle of xΓ containing xz1

and xz2.

PROOF. Let Xi ∈ Ti contain zj, {i, j} = {1, 2}. By assumption X1 *= X2. We first
claim that the back up C onto x of X1 ∩ X2 minus the lines xz1 and xz2 is exactly the
set of lines through x incident with a point u, u not on xz1 nor on xz2, with the following
property: the unique elements of T1 and T2 through u meet trivially in u. Indeed, suppose
first that M is such a line and let Yi ∈ Ti, i = 1, 2, be the corresponding trivially meeting
traces. Then xz1 and M are the extremities of the transversal partition defined by the
back ups onto x of the intersection of Y2 with all respective elements of T1 (by Lemma 3).
One of the circles touching all elements of that transversal partition is C. Hence M ∈ C.
Conversely, suppose now M ∈ C. Consider two distinct circles C1 and C2 in xΓ containing
xz1 and M , distinct from C (these exist since the order of the affine plane Res(M) is at
least 2). Then xz2 *∈ C1∪C2 and hence by [MC4] there exists a unique circle D containing
xz2 and touching both C1 and C2, so also touching C by Axiom [CH1], necessarily in xz2.
Hence D is the back up of the intersection of X1 with some element Z2 of T2 (follows from
Axiom [MP2]). By the uniqueness of the transversal partition with a given extremity
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and containing a given circle, we conclude that the unique element Z1 of T1 meeting Z2

trivially meets the latter on M . Whence our claim.

Now let L be any line through x, L /∈ C. Consider the unique circle CL of xΓ with corner
L and containing xz1. If CL touches C (in xz1), then by considering the unique point y
on L contained in Z2, we see that the back up of the intersection of X2 with the unique
element of T1 containing y is exactly CL (by Axiom [MP2]). So suppose that CL does
not touch C. But then it meets C in a second element, say, N . If N = xz2, then there
is nothing to prove, so suppose N *= xz2. Since L is now the corner of an element of
the transversal partition with extremities xz1 and N , the result follows from the previous
paragraph.

The lemma is completely proved.

Proposition 30 The planes of type [OO] are projective planes.

PROOF. The only non-obvious thing to check is that two points of type (B) can always
be joined by a line (of type (OB1)). So let L be a line of Γ and let M and M ′ be two lines
opposite L. Let x be any point on L and let Mx and M ′

x be the projections onto x of M
and M ′ respectively. We have to show that for some choice of x, the lines Mx and M ′

x

belong to a circle of xΓ with corner L. Let z I L be fixed. We may suppose that L is not
the corner of the circle of zΓ through L, Mz and M ′

z (otherwise we can put x = z). The
lines M and M ′ define trace pencils T and T ′ respectively, based at the projections u and
u′ of M and M ′ respectively onto Mz and M ′

z respectively. If T ∩ T ′ *= ∅, then let w I M
and w′ I M ′ be such that zw = zw′

. By Lemma 4, we can take x equal to the projection
of both w and w′ onto L. So suppose T ∩ T ′ = ∅. We apply Lemma 29. Suppose L is
the corner of a circle obtained by the intersection of some trace xw ∈ T with some trace
zw′ ∈ T ′, where w I M and w′ I M ′. Then by Axiom [RT3] we can take x equal to the
projection of both w and w′ onto L. Suppose now L contains a point x′ which is the
trivial intersection of two traces, one belonging to T and one belonging to T ′. Putting
x = x′, the result follows from Lemma 7. Finally, L is not the corner of a circle of zΓ
containing Mz and M ′

z by assumption.

The lemma is proved.

5.1.2 Planes of type (OB1)

Lemma 31 Let x, x′ and z be three distinct collinear points of Γ. Let C be a circle of zΓ
with corner xz. Let γ and γ′ be any two Suzuki cycles with origin x and x′ respectively,
center z and rotation C. Then γ and γ′ share exactly one Suzuki trace (with focus line in
C \ {xz}).
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PROOF. Fix any line L of C \ {xz} and a point v on L, v *= z. We can choose a point
y at distance 4 from v such that γ is defined by y. Let M be any line incident with y but
not at distance 3 from v. Let M I w I R I u′ with δ(u′, x′) = 4. If y′ defines γ′, then it is
easily seen using Lemma 22 that we can choose y′ at distance 4 from both v and u′.

If γ and γ′ share a Suzuki trace with focus line L, then we even might choose y′ equal
to y. So let us assume this, and let L′ be any element of C \ {xz, L}. To find a point y1

that also defines γ, but which lies at distance 5 from L′ we proceed as follows. Consider
the projection u of x onto M ; now let y1 be the unique point collinear with u at distance
5 from L′, then y1 defines γ by Lemma 16. Similarly one defines y′1 collinear with w at
distance 5 from L′; y′1 defines γ′. Suppose y1 and y′1 define the same Suzuki trace with
focus line L′. Since the projections of y1 and y′1 onto L′ do not coincide, that implies
that the Suzuki trace with focus line L′ belonging to γ (and γ′) is defined by M . But
that would mean that there is a circle D of zΓ with corner L′ containing L and xz. But
xz, L, L′ define exactly one circle and that is C, whose corner is xz, a contradiction. Hence
γ and γ′ share at most one Suzuki trace.

Suppose now that the Suzuki traces with focus line L of respectively γ and γ′ are not
equal. Let u be as in the previous paragraph; let w′ be collinear with both u′ and y′; let
N be the projection of x onto u. The line N defines a pencil of traces with center z based
at x. The trace zw′

does not contain x, hence by Lemma 23 there is a unique point r on
N such that zr and zw′

meet trivially in, say, the point s. If s lies on some element L′

of C, then the respective points collinear with r and w′ and at distance 5 from L′ define
respectively γ and γ′ (by Lemma 16) and they define the same Suzuki trace with focus
line L′ by Lemma 8. So we may assume that s does not lie on an element of C. Now note
that the back up on z of zw ∩ zw′

is the circle C of zΓ (by Axiom [RT3]). By Axiom [ST2]
there exists a unique circle D containing both xz and sz and having its corner, say, L′

inside C. Hence there is a unique circle D′ with corner L′ belonging to the transversal
partition with extremities xz and sz. By Lemmas 2 and 3, there is a point r′ on N such
that the back up of zr′ ∩ zw′

is D′. As in the previous paragraph, the points at distance
5 from L′ and collinear with respectively r′ and w′ define respectively γ and γ′ and they
define the same Suzuki trace with focus line L′.

This completes the proof of the lemma.

Proposition 32 The planes of type [OB1] are projective planes.

PROOF. First we show that every two points are joined by a line. Let ζ be a Suzuki
bundle with focus flag (x, L) and foundation C. The statement is obvious if one of the
points has type (O). Let ς and ς ′ be two Suzuki traces with focus line M, M ′ ∈ C \ {L}
respectively and containing the circle of xΓ with corner L. If M = M ′, then there is a
line of type (OB1) joining ς and ς ′. All points of M(Γ) of that line belong to ζ (viewed

32



as a plane). If M *= M ′, then let N and N ′ be arbitrary fringes of ς and ς ′ respectively
(not incident with z). Let y be any point at distance 3 from N and 5 from M . Let v be
the unique point collinear with y and at distance 5 from N ′. Let x be the projection of
v onto L. Then it is clear that ς and ς ′ belong to the same Suzuki cycle with origin x,
center z and rotation C.

The fact that every two lines meet in a unique point follows immediately from Lemma 31.
The lemma is proved.

From the last part of the first paragraph of the proof of Proposition 32 follows immediately
a remarkable configurational property.

Corollary 33 Let x and z be two collinear points and let M and M ′ be two lines distinct
from xz, incident with x and belonging to the same circle of xΓ with corner xz. Let
y be any point at distance 6 from z and opposite x. Let {N} = Γ2(M) ∩ Γ5(y) and
{N ′} = Γ2(M ′)∩Γ5(y). Let y′ be opposite x and at distance 5 from lines L and L′, where
L respectively L′ is any line of the Suzuki trace with focus line M respectively M ′, but not
incident with x. Then δ(y′, z) = 6.

5.1.3 Planes of type [OB2]

Lemma 34 Let x be a point of Γ and let z be collinear with x. Let B and B′ be two trace
bundles, both containing z. Let C and C ′ be base circles of B and B′, respectively. Suppose
that xz is the corner of both C and C ′. Suppose also that the gate sets through z of all
elements of both B and B′ coincide. If C *= C ′, then there is a unique trace belonging to
both B and B′.

PROOF. Let the intersection of the elements of B and B′ be respectively X and X ′. Let
w′ ∈ X ′ and consider the unique element Y of B containing w′ (one can construct this by
considering w′ and three different points of X). Similarly, there is a unique element Y ′ of
B′ containing a point w of X. Since by Axiom [RT3] the gate set of Y ∩ Y ′ is non-trivial,
either the back up on x of Y ∩ Y ′ is a circle with corner xz, but that is impossible since
it should then touch C or coincide with it — and clearly neither is true — or Y and Y ′

meet trivially — also impossible since z, w, w′ ∈ Y ∩ Y ′ — or Y = Y ′. Only the latter
survives, which completes the proof of the lemma.

Proposition 35 The planes of type [OB2] are projective planes.

PROOF. This follows almost immediately from the definition of a Suzuki cycle and the
previous lemma. The lines incident with planes of type [OB2] are of type (OB1), (OI)
and (IB1). The proof can easily be reconstructed by the reader.
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5.1.4 Planes of type [OI]

First we show that the points on such planes are well-defined. This will be an immediate
consequence of the following lemma.

Lemma 36 Let ρ be a pencil mark with center x and base point z. Then the crown-traces
with center z of any trace mark of ρ are independent of that trace mark. Let x[y] and x[y′]

be two trace marks belonging to ρ, y, y′ ∈ P. Let v and v′ be collinear with y and y′

respectively and at distance 6 from x. Suppose that zv = zv′. Then v and v′ are in the
same post set of zv, or, in other words, z[v] = z[v′].

PROOF. For the first statement we only need to show that two posts of two different
trace marks define the same trace with center z. Let y and y′ be as stated in the lemma.
We can always take — by definition — y and y′ collinear. Let v and v′ be as stated in
the lemma, then we may choose v and v′ at distance 5 from a line N through x. It is now
clear that zv = zv′ . This proves the first part.

Now we let y, y′, v and v′ again be arbitrary, but meeting the conditions of the statement
of the lemma. Let u′ be at distance 4 from v′ and collinear with x. Then u′ ∈ xy′ . Let
M be the projection of z onto y and let N ′ be the projection of M onto u′. Let N be
the projection of v′ onto u′ and let y′′ be the projection of N ′ onto M . By Lemma 2,
xy′ = xy′′ and hence by Lemma 5 there is a circle of u′Γ containing N and N ′ with corner
xu′. The lemma now follows from Lemma 17.

Proposition 37 The planes of type [OI] are projective planes.

PROOF. Let ρ be a pencil mark whose traces have center x and all contain the point z.
The Suzuki cycle γ defined by each post of any element of ρ is a line incident with the
plane τ in M(Γ). It is also clear that each Suzuki trace of γ and every trace mark whose
trace is a crown-trace centered at z of some trace belonging to ρ determine a unique line of
type (IB1) all other points in M(Γ) of which are trace marks whose corresponding traces
are — by definition — crown-traces as above. Two crown traces either meet trivially
in x — and are contained in a unique trace pencil; adding the appropriate posts sets as
given in the definition, we obtain a line of type (OI) all points of M(Γ) of which again
are incident with the plane ρ in M(Γ), — or they define a unique trace bundle — and
again we obtain a line, this time of type (IB1), all points in M(Γ) of which are incident
in M(Γ) with the plane ρ.

The intersection of each pair of lines above is non empty. This is almost trivial if at most
one of the lines is of type (IB1), and if we remark that every trace bundle and every trace
pencil we consider share exactly one trace. If both lines are of type (IB1), then the result
follows directly from Lemma 34. The proposition is proved.
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5.1.5 Planes of type [IB1]

Proposition 38 Planes of type [IB1] are projective planes.

PROOF. To show that two points are joined by a line, there is only one non-obvious
case: the points are trace marks whose traces have distinct centers. So let µ be a bundle
mark with center x and base circle C. Let L be the corner of C, and let z be the unique
point of L which is contained in all traces belonging to µ. Let D be the circle of zΓ
containing the gate set through z of the intersection U of all traces belonging to µ. Let
u and u′ be two distinct points of U \ {z}. Let Y and Y ′ be two traces with respective
centers u and u′ belonging to trace marks τ and τ ′ respectively, which are — as points of
type (I) — incident with µ in M(Γ). Take any line N of D \ {L}. Then by Lemma 26
there exists a unique track containing τ with Suzuki direction a Suzuki trace with focus
line N . We deduce the existence of a point y at distance 5 from N , opposite x such that
x[y] is an element of µ and such that for the unique point w ∈ Γ2(y)∩Γ3(N), the trace uw

coincides with Y . Let Ly and L′y be the projections of y onto u and u′ respectively. Let
v′ be the unique point of L′y belonging to Y ′. Let {My} = Γ2(Ly) ∩ Γ3(y). Finally let y′

be the unique point at distance 4 from v′ and 3 from My. Then by Lemma 5, δ(y′, z) = 6
and the projection N ′ of y′ onto z lies in the circle of zΓ containing N with L as corner.
Let ς ′ be the Suzuki trace with focus line N ′ and with fringes L and the unique element
of Γ3(y′)∩Γ2(N ′), then clearly the track containing τ with Suzuki direction ς contains τ ′.

Now we prove that the track defined by two trace marks as above, is unique. Suppose
by way of contradiction it is not. Then we have the following configuration. There are
points y and y′ opposite x at distance 6 from z (which is collinear with x) and at distance
2 from a point w which lies itself at distance 6 from x. We have x I M I u I Ly and
δ(Ly, u) = 3. We have M *= M ′ *= xz and x I M ′ I u′ I Ly′ I w′ and δ(w′, y′) = 4. We have
by assumption that the projections N and N ′ of y and y′ respectively, onto z are distinct.
If {v} = Γ2(y)∩Γ3(N) and {v′} = Γ2(y′)∩Γ3(N ′), then (u′)v′ = (u′)v. We also have that
the circle of xΓ respectively zΓ containing M respectively N with corner xz also contains
M ′ respectively N ′. Let R and R′ be the projections onto w′ of respectively v and v′, then
by Lemma 5 the circle of w′

Γ containing R, R′ and Ly′ has the latter as corner. Projecting
this circle onto y and the result onto x, we see that using Lemma 6, M ′ should be the
corner of the circle in xΓ containing M , M ′ and xz, a contradiction since we assumed it
is xz.

Now we prove that every two lines meet. Remark that we have lines of type (OB2), (OI)
and (IB2). If at least one of the two lines has not type (IB2), then the assertion is obvious.
If both lines have type (IB2), then one can check easily that the proof is in fact given in
the first paragraph by interchanging the roles of x and z (it is a dual statement reflected
here by the swapping of x and z).

This completes the proof of the proposition.
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5.1.6 Planes of type [IB2]

The next lemma is a slight generalization of Lemma 13.

Lemma 39 Let x be a point of Γ and y and y′ two points opposite x such that there exists
a line M at distance 3 from both of them and 5 from x, such that xy = xy′, and such that
δ(y, y′) = 6. Then the back up on x of the set of points u of xy such that the projections
onto u of y and y′ coincide is a circle of xΓ with corner the projection of L onto x.

PROOF. By Lemma 13, we only need to show that there exists at least one point u with
the required property. But that follows directly from Axiom [RT4]. The lemma is proved.

Note that this is the first time that we use Axiom [RT4]. The reason why we did not state
the preceding lemma when we stated Lemma 13 is to make it clear that Axiom [RT4] is
only needed now. This probably means that [RT4] can be deduced from the other axioms.
Although Euclid thought something similar about his famous axiom. . .

Proposition 40 The planes of type [IB2] are projective planes.

PROOF. Let ϑ be a track, viewed as a plane of type [IB2]. Let z be the focus of ϑ and
let ς be its Suzuki direction, with M as focus line. Let L be the projection of M onto z.
Let x be a center of τ and y any tail. Clearly the Suzuki trace ς ′ with focus line L and
containing M and xz, together with all supporting trace marks forms a line of type (IB1)
completely contained in ϑ. Also, the trace marks (y′)[x], with δ(y, y′) = 4 or y = y′, and
y′ a tail of ϑ, together with ς ′ form a line of type (IB2) completely contained in ϑ. Now
suppose y′ is a tail of ϑ at distance 6 from y. We prove that the trace marks (y′)[x] and
y[x] are contained in a unique curtain η (viewed as line of type (II)) all points in M(Γ)
of which lie in ϑ. Indeed, by Axiom [RT4] there is a line M ′ at distance 3 from x and 5
from both y and y′. If w and w′ denote the points at distance 3 from M ′ and collinear
with y and y′ respectively, then by Lemma 13, yx = yw′

and (y′)x = (y′)w′
. So M ′ is a

hem of a curtain η as desired. The uniqueness of η follows from Lemma 26.

To prove that two lines of the plane ϑ always intersect, we only treat the non-obvious case
of two lines of type (II). So let η and η′ be two curtains with rail M all elements of which
are incident, as points of type (I), with the plane ϑ of M(Γ). Let u be any point (of Γ)
incident with M , but not with L. Let y and y′ be the centers of the traces containing
u and belonging to η and η′ respectively. By the preceding paragraph we can choose a
hem H respectively H ′ of η, respectively η′ at distance 3 from x. Let N and N ′ be the
projections onto x of H and H ′ respectively. If the circle of xΓ containing N , N ′ and
xz has xz as corner, then by Lemma 5 we have z[w] = z[w′], where {w} = Γ3(H) ∩ Γ2(y)
and {w′} = Γ3(H ′) ∩ Γ2(y′). Hence η and η′ share a trace mark with center z. Suppose
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now that the circle of zΓ containing N , N ′ and xz does not have xz as corner. Then by
Axiom [RT4] there exists a point y′′ at distance 3 from M and 5 from both H and H ′. It
follows that both η and η′ contain the trace mark (y′′)[x].

This completes the proof of the proposition.

5.1.7 Planes of type [II]

Lemma 41 Let L be a line of Γ and let M and M ′ be opposite L such that M and M ′

are hems of the same curtain with rail L. Then there exists a unique point u at distance
5 from L and 3 from both M and M ′.

PROOF. By assumption, there exist points z1 and z2 at distance 3 from L and 5 from
both M and M ′. Let ui and u′i be collinear with zi and at distance 3 from M and M ′

respectively, i = 1, 2. Let Li be the projection of L onto zi, i = 1, 2. From the proof of
Lemma 27 it follows that the circle of z1Γ containing L1, u1z1 and u′1z1 has L1 as corner.

Noting that zu2
1 = z

u′2
1 and defining N1 and N ′

1 as the projection of u2 onto u1 and of u′2
onto u′1 respectively, Axiom [RT4] guarantees the existence of a point u at distance 3 from
M and 5 from both L and N ′

1. If {z} = Γ3(L)∩Γ2(u), then by the proof of Lemma 27 we
know that δ(z, M ′) = 5. But δ(M ′, N ′

1) = 2; δ(N ′
1, u) = 5 and δ(u, z) = 2, constituting a

cycle of length 5 + 2 + 5 + 2 = 14 < 16. Hence this cycle must collapse somehow. The
only way this is possible is that δ(u, M ′) = 3.

Clearly u is unique since any other point u′ satisfying the same conditions would imply a
cycle of length 12 containing u, u′, M and M ′. This completes the proof of the lemma.

Proposition 42 The planes of type [II] are projective planes.

PROOF. Let η be a curtain with rail L, viewed as a plane of type [II]. By definition
there are lots of lines of type (II) in η, namely for every hem M of η, the curtain with
rail M and hem L. From the proof of Lemma 27 one deduces easily that every two points
of type (I) incident in M(Γ) with two such respective lines lies on one such line. It also
follows readily from the definition of lines of type (IB2) that we can join the Suzuki trace
LM
© to any other point of η in M(Γ) and stay inside η. It is obvious that a line of type

(IB2) meets every line of type (II) in η. And two lines of type (II) meet in exactly one
point by Lemma 41. The proof of the proposition is complete.

5.2 The diagram of M(Γ) and the polarity σ

The space M(Γ) is a geometry of rank 4 as we have defined it. If we call points, lines,
planes and hyperlines elements of type 1,2,3 and 4 respectively, then, with the terminology
of Buekenhout [2], we can reconstruct the diagram of M(Γ) almost completely.
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Before doing that, we introduce the following notation. We have seen that each element
of M(Γ) can be viewed as either an element of type j, j ∈ {1, 2, 3, 4}, or as an element
of type 5 − j. If λ is an element of type j, then we denote by λσ the element λ viewed
as element of type 5− j. Note that (λσ)σ = λ. We will show that σ is in fact a polarity
(an incidence preserving permutation of order 2 of the elements of M(Γ) interchanging
the elements of type j and type 5− j).

Proposition 43 The map σ is a polarity in M(Γ). Also, the residue in M(Γ) of any
flag of type {1, 2} or {3, 4} is a projective plane and the residue in M(Γ) of any flag of
type {1, 3}, {2, 3} or {2, 4} is a generalized digon.

PROOF. Let λ and κ be two elements of M(Γ) incident with each other. We have
to show that λσ is incident with κσ. This follows from the definition if λ is a plane
and κ is a hyperline (or equivalently if λ is line and κ is a point), and this follows from
proposition 28 if λ is a line and κ is a plane. Now assume that λ is a line and κ is a
hyperline. By definition λ is incident with κ if and only if there exists a plane β incident
with both. But this is equivalent with βσ incident with both λσ and κσ, which in turn
clearly is equivalent with λσ incident with κσ since planes are projective planes. Now
assume that λ is a hyperline incident with a point κ. Then there exists a plane β incident
with both. By the foregoing, βσ is incident with both λσ and κσ. By definition, there
exists a plane α incident with both βσ and κσ. Since λσ is incident with βσ, it is also
incident with α (by definition of planes), hence it is incident with κσ by definition. This
proves that σ is a polarity.

We have already shown above that the planes are projective planes. By the definition of
hyperlines and incidence of hyperlines and planes, we readily deduce that the residue of an
incident plane-hyperline pair is nothing else than the geometry of points and lines incident
with the plane only. Hence, as shown before, this is a projective plane. Applying σ we see
that the residues of the flags of type {1, 2} are also projective planes. Now consider an
incident line-hyperline pair (λ, h). Clearly every point incident with λ is also incident with
every plane through λ. Hence the residues of flags of type {2, 4} are generalized digons.
Applying σ, we obtain the result for flags of type {1, 3}. Finally, it follows immediately
from the definition of incidence between a point and a hyperline that the residue of a flag
of type {2, 3} is a generalized digon.

This proves the proposition.

So all that is missing is the residue of any flag of type {1, 4}. We have to show that this is
always a generalized quadrangle. We will do this in the next three propositions. A main
tool in doing so will be the following axiom, which is a little stronger than the classical
Buekenhout-Shult axiom for polar spaces.
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(BSM) Let h be a hyperline of M(Γ), p a point of M(Γ) in h and λ a line of M(Γ) in h,
then either exactly one point of λ is collinear with p, or all points of λ are and p
and λ are contained in some plane of M(Γ).

The original Buekenhout-Shult axiom, adapted to our case, reads as follows.

(BS) Let h be a hyperline of M(Γ), p a point of M(Γ) in h and λ a line of M(Γ) in h,
then either exactly one point of λ is collinear with p, or all points of λ are.

We will not need to verify (BSM) for all points p and all lines λ of any hyperline h. It
will become clear in the proof of Propositions 51, 52 and 53 how we will use (BSM) to
prove that the residue of flags of type {1, 4} are generalized quadrangles.

The verification of (BSM) is in many cases very straigtforward. But a few cases are
very tricky and need new lemmas. Below we will give a description of the three kinds
of hyperlines in terms of the points they contain and we will skip the proofs of the easy
cases of (BSM). We will however consider the other cases in detail.

We first collect the lemmas we will need.

Lemma 44 Let T be a pencil of traces in Γ with base point z and center x. Let L
be a line at distance 5 from z such that xy belongs to T for every point y on L. Let
{u} = Γ2(z) ∩ Γ3(L). Let M ′ be any line through u contained in the circle of uΓ with
corner ux and containing M . Let L′ be a line concurrent with M ′, but not incident with
u. Then for at least one (and hence for every) point y′ on L′ the trace xy′ belongs to T
if and only if the Suzuki traces with focus line M and M ′ containing the line ux and the
line L respectively L′ (as fringes) are incident in M(Γ) with a fixed line of type (OB2)
which is also incident with the point z viewed as point of type (O) in M(Γ).

PROOF. Clearly it suffices to establish through each point v′ of M ′ except u a line L′

which satisfies the two conditions. To this end, it suffices to find a point y′ collinear with
v′ such that xv′ ∈ T and such that the line L′ = v′y′ satisfies the second condition above.

Let z0 be any point of Γ collinear with x but not on xz. Let X be the trace of T containing
z0. Let y be incident with L such that X = xy and let L0 be the projection of y onto
z0. If v′ lies on M , i.e. if M = M ′, then we put {y′} = Γ2(v′) ∩ Γ5(L0). By Lemma 4 we
have X = xy′ and clearly the line v′y′ is a fringe of the Suzuki trace ML0

© . Suppose now
M *= M ′. Again put {y′} = Γ2(v′)∩Γ5(L0). Let u0 be the projection of y′ onto L0 and let
{L′′} = Γ2(M) ∩ Γ5(u′). By Lemma 4, we have X = xy′ and since δ(u′, z) = 6, it follows
from the construction of the line of M(Γ) of type (OB2) containing the Suzuki trace ML0

©
and the point z that it also contains the Suzuki trace M ′L0

© , which in turn contains the
line v′y′ (as a fringe).

The proof of the lemma is complete.
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Lemma 45 Let L be a line of Γ and let x, y1, y2 be three distinct points on L. Let M be
opposite L and let {Ni} = Γ2(M)∩ Γ5(yi), i = 1, 2. Let N , N *= L, be any line through x
contained in the circle of xΓ with corner L and containing the projection Mx of M onto
x. Let z, z *= x, be any point on N and let N ′

1 and N ′
2 be the projections onto z of N1

and N2 respectively. If N ′
1 and N ′

2 lie in a circle of zΓ with corner N , then N = Mx.

PROOF. Let ui be the intersection point of M and Ni, i = 1, 2. Let vi be the projection
of z onto Ni, i = 1, 2. Let v′1 be the projection onto N1 of the projection of v2 onto
Mx. The traces xu1 and xu2 meet trivially on Mx; the traces xu1 and xv′1 , respectively
xu2 and xv2 , meet trivially on L, hence by Lemma 8, the traces xv′1 and xv2 meet trivially
on Mx. Hence xv1 meets xv2 in a circle C belonging to the transversal partition with
extremities L and Mx (by Axiom [RT2]). By the assumption on N ′

1 and N ′
2, we deduce

from Axiom [RT3] that N is the corner of C. But the corner of any element of the
transversal partition is also the corner of a circle through the extremities. If N *= Mx,
this contradicts the fact that L is the corner of the circle of xΓ through L, Mx and N .
Hence N = Mx. This proves the lemma.

Lemma 46 Let L be a line of Γ, let ς be a Suzuki trace with focus line L and let w1 and
w2 be two points at mutual distance 6 incident in Γ with respective fringes of ς. Let τ1 be
any trace mark with center w1 and a post y collinear with w2. Let x be any point collinear
with w1 but not at distance 3 from L. Put τ2 = w[x]

2 . Then τ1 and τ2 are contained in the
same curtain with rail L if and only if x belongs to τ1.

PROOF. First let x belong to τ1. Then x is at distance 6 from y. So if H is the line at
distance 3 fron both x and y, then τ1 and τ2 belong to the curtain with rail L and hem
H. Suppose now x does not belong to τ1. Then x is opposite every point of τ2 except the
unique point of τ2 on L. Hence τ1 and τ2 cannot be contained in the same curtain. The
lemma is proved.

Now we prove some results in an arbitrary STi-plane.

Lemma 47 Given two distinct non-touching circles C and D in an STi-plane, and given
a point x in C but not in D, there exists a unique circle C ′ touching C in x and touching
D.

PROOF. Let y be any point of D and consider the unique circle C ′′ containing y and
touching C in x (existing by Axiom [MP2]). If C ′′ touches D, then the result follows
(since C ′′ must be unique by Axiom [CH2]). So we may assume that C ′′ and D meet
in a second point y′. Let D′ be any circle distinct from D and C ′′ containing y and y′.
By [MC4], there is a circle C ′ touching both D′ and D and containing x. Hence C ′ also
touches C ′′ by Axiom [CH1], necessarily in x, hence C ′ also touches C in x. The lemma
follows.
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Lemma 48 Given two touching circles C and D with different corners in an STi-plane,
the unique circle containing ∂C, ∂D and the intersection of C and D has the latter as
corner.

PROOF. Put {x} = C ∩D. By Axiom [ST2] there exists a unique circle E containing
the corners of C and D (which are distinct from x) and having its corner, say e, in C. By
[MC3] the circle E ′ with the same corner as D and containing e touches C in e. But also
D touches C and so [MC5] implies that E ′ = D and e = x. The lemma is proved.

Lemma 49 Let Ω be an STi-plane. Let x, y, z be three points of Ω and let C, D,E be
three circles of Ω satisfying the following conditions.

(i) ∂C = x and y, z ∈ C;

(ii) ∂D = y and x ∈ D;

(iii) ∂E = z and y /∈ E.

Then there exists a unique pair of points (d, e) ∈ D × E such that e is the corner of the
circle E ′ through d, e, z, and d is the corner of the circle D′ through d, e, y.

PROOF. If d and e exist, then by [MC3] (or equivalently Axiom [ST2]) the circles D
and E ′ touch in d (since their corners lie in D′ and they both contain the corner of D′).
Let E ′′ be any circle containing z and such that z *= ∂E ′′ ∈ E. Either E ′′ touches D or
there exists by Lemma 47 a circle E ′ touching E ′′ in z and touching D. In the former
case we put E ′ = E ′′; in the latter case, since E ′ touches E ′′, we have by [MC3] that the
corner of E ′ lies in E. So if d and e exist, then d must be the intersection of E ′ and D,
and consequently, e must be the corner of E ′. By Lemma 48, d is the corner of the circle
D′ through d, e, y. The proof of the lemma is complete.

Now we write down a lemma which requires a long and tiresome, but straightforward
proof. We will skip this proof because we rather spend some more space on the proofs of
the propositions to come. As a hint for the proof of the next lemma, one could remark
that every plane contains at least two types of lines and so one must consider these two
types to reduce the number of possibilities for the point p.

Lemma 50 If a point p of M(Γ) is collinear with all points of a certain plane β of M(Γ),
then p is incident (in M(Γ)) with β.
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With the notation of the previous lemma, we remark that in fact, most of the times
collinearity to a triangle in β already forces p to be a point of β. We leave the details to
the interested reader (but we do not need this remark in the sequel).

We note that we will not need the full strength of the previous lemma, but only for planes
of certain types.

A hyperline of type [X] is a hyperline h for which hσ is a point of type (X).

Proposition 51 The residue in M(Γ) of an incident point-hyperline pair, where the
hyperline has type [O], is a generalized quadrangle.

PROOF. Let x be a point of Γ. Then h = xσ is a hyperline containing the following
points of M(Γ). The points of type (O) incident with xσ are the elements of {x}∪Γ2(x).
The points of type (B) incident with xσ are the Suzuki traces with an element of Γ1(x)
as focus line. The points of type (I) incident with xσ are the trace marks with center x.

Let us show that (BSM) holds in certain well-defined cases. So let p be a point of M(Γ)
in h and let λ be a line of M(Γ) in h. First we remark that (BSM) is straight forward if
p has type (O) and λ is arbitrary. Also, if x, as a point of M(Γ), is incident with λ and
p is arbitrary, then (BSM) is easy to check. Suppose now that p has type (B). So p is a
Suzuki trace ς with focus line L (incident with x). Let C be the circle in xΓ belonging to
ς. Suppose that λ has type (OB1). Then there is a unique point y of Γ incident with λ
as a point of M(Γ). By the preceding remarks we may assume that y *= x. If L = xy,
then the assertion is clear. So suppose L *= xy. First suppose moreover that xy is not
an element of C. By Axiom [ST2], there exists a unique line M through x (in M(Γ))
which is in xΓ the corner of a circle containing L and xy and which belongs to C. If ς ′ is
the Suzuki trace incident with λ which contains the line M , then by definition ς and ς ′

belong to the same line of M(Γ) (of type (OB2), namely a Suzuki cycle). Suppose that
xy belongs to C, then clearly ς is not collinear with any point of λ of type (B), but it is
collinear with y — as a point of type (O).

Next, suppose that λ has type (OB2), hence λ is a Suzuki cycle with center x. Let z
be its origin and C its rotation. If L = xz, then is it easily seen that p is collinear with
only z — as a point of type (B). If L belongs to C, L *= xz, then either xz belongs to
ς, in which case p and λ are obviously contained in a plane of M(Γ) of type (OB1), or
xz does not belong to ς and then p is only collinear with the Suzuki trace ς ′ of λ with
focus line L (indeed, for a given Suzuki trace ς ′′, ς ′ *= ς ′′, incident with λ as point of type
(B), the line xz of Γ is the unique element of xΓ contained in the circle belonging to ς ′′

containing xz which is the corner of a circle containing both L and the focus line of ς ′′,
see Axiom [ST2]). So we may assume that L does not belong to C. If xz belongs to ς,
then again p is collinear with z (in M(Γ)). Suppose by way of contradiction that ς is
collinear with some Suzuki trace ς ′ incident with λ. Clearly ς and ς ′ then lie on a line
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λ′ of type (OB2) of M(Γ). Let N be the line of Γ containing the center and the origin
of λ′. Let L′ be the focus line of ς ′. Then N is the corner of a circle c of xΓ containing
L and L′. Note that C does not contain xz since otherwise L would be the corner of
C. By Axiom [ST2] there is a unique circle of xΓ containing xz and N whose corner
lies in C. But by assumption both the circles with corner L and L′ containing xz also
contain N , a contradiction. Hence we may assume that xz does not belong to ς. Let D
be the circle of xΓ belonging to ς. From the last argument we know that if ς is collinear
in M(Γ) with some Suzuki trace ς ′ of λ, then the circle D′ of xΓ belonging to ς ′ touches
D. By Lemma 47 there is a unique such circle D′ (touching the circle of xΓ belonging to
an arbitrary Suzuki trace of λ in xz and touching D) with corresponding Suzuki trace ς ′.
Suppose D and D′ touch in K. By Lemma 48 K is the corner of the circle E through K
and the corners of D and D′, which implies that E is the rotation of some Suzuki cycle
containing ς and ς ′.

Now let λ be of type (OI). So λ is a pencil mark. Let y be the unique point collinear
with x contained in every trace belonging to λ. If L = xy, then either the gate set in y of
every such trace belongs to ς — and then λ and p lie in some plane of type [OB2] — or
else p is only collinear with y, as points of M(Γ). If L *= xy, but xy belongs to ς, then
already y is collinear with p in M(Γ). Let M be a line of Γ at distance 5 from y and
such that x[z] belongs to λ, for every point z on M opposite x (in Γ). Since LM

© contains
xy (as a fringe), either it coincides with ς — and then p and λ lie in a plane of type [OI]
— or it only meets ς in a circle of xΓ — and in this case p is collinear with y, but with
no other point on λ (in M(Γ)). Finally suppose xy does not belong to ς. This time p is
certainly not collinear with y in M(Γ). Let M be as above. Then it follows directly from
our assumptions that LM

© meets ς in a unique circle of some uΓ with u incident with L,
u *= x, see Proposition 30. So the unique trace mark of λ with trace through u is collinear
with p and the others are not. Hence the result.

Finally let λ have type (IB1). So λ is a bundle mark with center x, with, say, base circle D
and origin z. Let ς ′ be the Suzuki trace incident with λ in M(Γ). As above, (BSM) follows
easily if L = xz. Suppose now that C touches D in, say, M (necessarily M *= xz). Then
ς and ς ′ are collinear in M(Γ). If the unique point w of the line of type (OB2) joining
them lies on all traces of λ, then considering a point u at distance 5 from any line of ς
not containing x, and at distance 5 from a line of ς ′ through z, we know by Corollary 33
that δ(u, w) = 6 and it follows easily that p and all points of λ lie in a plane of type
[OI]. If w does not have the above mentioned property, then p cannot be collinear with
any point of type (I) on λ, because there is only one Suzuki trace with given focus line
collinear with a given trace mark of λ and it must be the one with w as first considered
(see (BSM) for points of type (I) and lines of type (OB1) in the next paragraph). If D
and C do not touch, then there is a unique circle D′ with ∂D = ∂D′ touching C. And D′

belongs to a unique Suzuki trace ς ′′ collinear with all points of λ (as we just argued). It
follows from Proposition 30 that ς and ς ′′ share exactly one circle in, say, vΓ (and v *= x
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by assumption). Hence p is collinear with the unique trace mark of λ passing through v
and with no other point of λ. This proves (BSM) for points of type (B).

Now let p be of type (I). If λ is a line of type (OB1) — and note that by the remarks
in the beginning of the proof we may assume that λ is not incident with x in M(Γ) —
then (BSM) is easily checked. Now let λ have type (OB2). So λ is a Suzuki cycle with
center x, some origin z and rotation C. Let z′ be the unique point of Γ incident with xz
(in Γ) and belonging to the trace corresponding with p. The case z = z′ is easily checked;
the case z *= z′ follows immediately from the fact that any post of p (as a trace mark)
defines a unique line of M(Γ) in the plane of type [OB1] spanned by λ and z′ (and then
use Proposition 32).

Now we show that, if p is a point of type (I), and if β is a plane of type [OB2] (in h)
such that p is collinear with a unique point of type (B) of β, then there exists exactly one
point q of type (I) in M(Γ) incident with β and collinear with p such that pq is a line of
M(Γ) of type (OI). We refer to this claim by (*).

Indeed, let λ be the unique line of type (OB1) in β; let z be the unique point of type (O)
on λ; let X be the trace belonging to p. Since p is collinear with exactly one point of type
(B) of β, the unique point y of X on the line xz (in Γ) is distinct from z. Let u be a post
of p. Let C be the circle of zΓ which is the gate set in z of the trace belonging to any trace
mark incident with β. By definition of the plane β, every point of Γ at distance 3 from
some line M (not incident in Γ with z) belonging to some Suzuki trace of a Suzuki cycle γ
with origin x, center z and rotation C is the post of some point of type (I) incident with
β, and conversely all posts of every point of type (I) incident with β are obtained in that
way. Hence the points q we are after are defined by the points of Γ collinear with u and
at distance 3 from some line M as above. The only candidates are the points w collinear
with u and at distance 5 from the lines of C \ {xz}. But the lines at distance 3 from such
points w and meeting the elements of C determine a Suzuki cycle γ′ with origin y, center
z and rotation C. By Proposition 32 the Suzuki cycles γ and γ′ share exactly one Suzuki
trace and hence we obtain the result.

Now we show that, if p is a point of type (I), and if β is a plane of type [OB2] (in h)
such that p is collinear with the unique point of type (O) of β, then the set of points of β
collinear with p (in M(Γ)) has size at least 2 and is a subset of the set of points incident
with a line in β, or coincides with the set of all points incident with β. The latter case
happens if and only if p is incident with β. We refer to this claim by (**).

Let β be defined by a Suzuki cycle γ with origin x, center z and rotation C (i.e. β = γσ).
Then p is a trace mark with corresponding trace X containing z. If the gate set of X
through z is exactly C, then either p is incident with β and the result follows, or p is not
incident with β (and p has the “wrong” posts) and then p is collinear only to z and all
points of type (B) of β. Now suppose that the gate set of X through z is a circle C ′ of
zΓ touching C in xz (necessarily). Let y be any post set of p (viewed as trace mark).
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Clearly, if a point of type (I) of β is collinear with p, then the line joining p with that
point is not of type (OI), because such a line must necessarily contain the point z, which
is impossible since the gate sets through z are different. Hence we are looking for posts u
of trace marks incident with β at distance 2 from y such that the unique point v collinear
with both y and u lies at distance 4 from an element of X. The candidates for v are the
elements of yx. The candidates for u are the points collinear with v and at distance 5 from
an element of C \ {xz}. If u is such a point, then it qualifies if the line M at distance 3
from u and concurrent with an element of C belongs to a Suzuki trace incident in M(Γ)
with γ. Since δ(v, z) = 6, this “qualification” is independent of the element of C. Now
note that the circle D of zΓ with corner the projection of y onto z and containing xz does
not touch C in xz, so D meets C is a second line, say N . Hence on the line N there is a
unique point x′ such that yx = yx′ . The points v ∈ xy we are after are obtained by taking
the points collinear with y and at distance 5 from a line through x′ (in Γ) belonging to
the Suzuki trace with focus line N which is incident with γ in M(Γ). Consider two such
points v and v′ and the corresponding points u and u′ (self-explaining notation in view of
the u defined above). Since δ(y, z) = 6, we deduce from Lemma 44 that xu and xu′ are
equal or meet trivially. Hence the claim (**).

Now we remark that the residue of the point x in h is a generalized quadrangle. Indeed,
this follows from standard arguments and the observation that we proved (BSM) for any
pair {p, l} such that p is collinear in h with x and λ is a line inside some plane in h
containing also x.

Now consider a point p of type (I) in h. It is never collinear to x, viewed as a point
of type (O) of M(Γ). By (BSM) — for the cases we have shown above — there is a
bijection Θ from the set of lines in h through x to the set of lines in h through p such that
corresponding lines meet in a unique point. Let λ and λ′ be two lines of h through x and
suppose that λ and λ′ lie in a plane of h. Let q and q′ be the intersections of λ and λΘ,
and λ′ and λ′Θ (respectively). The lines λΘ and λ′Θ both meet the line qq′, which is of
type (OB1) or (OB2), hence by (BSM), also λΘ and λ′Θ lie in a plane. Also the converse
is true (by a similar argument). Hence Θ is an isomorphism from the residue of x in h
to the residue of p in h. We conclude that the residue of {p, h} in M(Γ) is a generalized
quadrangle.

Now let p be a point of type (B) in h. Consider a point p′ of type (I) in h and suppose
that p′ is not collinear with p in h (this can always be done). We establish again an
isomorphism between the residues of these points. Since (BSM) holds for p, we have a
morphism which we call Θ again from the set of lines in h through p′ to the set of lines
in h through p. We now show that Θ is bijective. Let λ be a line through p in h. If λ has
type (OB1) or (OB2), then by (BSM), there is a unique line λ′ in h through p′ meeting
λ. Hence we may suppose that λ has type (IB1). It is easily seen that there is a (unique)
plane β of type (OB2) containing λ (the point y of type (O) it contains is the unique point
of Γ which lies on all traces of the bundle defined by λ and which also lies on the corner
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of the base circle of the bundle; the Suzuki cycle defining β has the center of the bundle
as origin, the point y as center and the gate set through y of the intersection of all traces
in the bundle as rotation — it is furthermore defined by the lines at distance 3 from a
post of a trace mark of the bundle and at distance 2 from an element of the rotation). By
(*) and (**), there is at least one point q of type (I) incident with β and collinear with
p′. Since the residue in h of q is a generalized quadrangle, there is a plane β′ containing
p, q′ and a line λ′′ of β. The line λ′′ meets λ in a unique point (λ *= λ′′ because p is not
collinear with p′) q′ and hence the line λ′ = p′q′ meets λ. So Θ is surjective. To prove
injectivity, we keep the same notation. Now we distinguish between cases (*) and (**).
In case (**), we know that all points of β collinear with p′ are collinear, hence lie on λ′′.
So q′ is unique in this case. Suppose the assumptions of (*) hold. Let q′′ be a point on λ
collinear with p′. The type of q′′ is necessarily (I). Looking at the residue in h of q′′, we
see that there is a line λ′′′ in β containing q′′ all of whose points are collinear with p′. By
(*), this line must contain q because in the plane p′λ′′′ there is a unique line of type (OI)
through p′ and this must meet β in q. But λ′′′, λ′′ and the unique line of type (OB1) of
β must be concurrent since (BSM) holds for the latter and p′. Hence λ′′ = λ′′′.

So we have shown that Θ is a bijection which preserves incidence. Hence Θ acts on the
set of planes in h through p′ and is an injection into the set of planes in h through p. To
prove that Θ−1 preserves incidence, we now show that Θ is also surjective on the set of
planes in h through p′. Indeed, let β be a plane through p. If β has type [OO] or [OB1],
then it follows from (BSM) that there exists a plane β′ through p′ meeting β in a line
using standard arguments. If β has type [OB2] or [OI], then since Θ is bijective (on the
appropriate sets of lines), there exists at least one point q of type (I) in β collinear with
p′. Considering the residue of q in h, we obtain the result.

Hence Θ−1 also preserves incidence (because incidence is just containment) and so we
conclude that the residue in h of p is a generalized quadrangle.

If p is a point of type (O) distinct from x, then using (BSM), one can show easily that
there is an isomorphism from the residue of p in h to the residue of any point p′ of type
(B) in h, where p′ is not collinear with p in h.

This completes the proof of the proposition.

Proposition 52 The residue in M(Γ) of an incident point-hyperline pair, where the
hyperline has type [B], is a generalized quadrangle.

PROOF. Let ς be a Suzuki trace of Γ with focus line L. Then h = ςσ is a hyperline
which contains the following points of M(Γ). As points of type (O), it contains the points
of Γ incident with L; as points of type (B), it contains the Suzuki traces with an element
of ς as focus line and containing the line L; as points of type (I), it contains the trace
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marks containing a point x of L, whose center lies on an element of ς, the gate set at x of
which contains L and whose posts are determined by ς (in the sense of Proposition 21).

Now we show that (BSM) holds in certain cases.

The verification of (BSM) is very straightforward if the point p has type (O). If the point
p has type (I) and the line λ contains a point of type (O), then there is only one non-
immediate case, which is the following. Let τ be a trace mark (as point of ςσ) containing
the point x of Γ on L and let c be the center of τ . Let γ be a Suzuki cycle with origin
y on L and center some point z of L. Then γ is a line of type (OB2) contained in the
hyperline ςσ. We show that (BSM) holds for the point τ and the line γ. By definition
of ςσ, we can choose a post w of τ at distance 3 from the focus line M of some arbitrary
Suzuki trace of γ. Let v be any point at distance 4 from both w and c with v *= z. Set
{u} = Γ2(w) ∩ Γ2(v). Let M ′ be the focus line of any (other) Suzuki trace of γ and set
{w′} = Γ3(M ′) ∩ Γ4(v) and {u′} = Γ2(w′) ∩ Γ2(v). It is clear that cw = cw′

and hence
that w′ is a post of τ . Also, xu = xu′ and so from the definition of Suzuki cycles it follows
that there is a unique Suzuki cycle γ′ with origin x and center z such that the focus
lines of the elements of γ′ are the same as for γ and such that for every focus line M ′

the point w′ defined above is incident with an element of the corresponding Suzuki trace.
By Lemma 31, γ and γ′ have exactly one Suzuki trace in common. This Suzuki trace is
collinear in M(Γ) with τ because they are both contained in a unique track — which is
a line of type (IB2). This completes the proof of this case.

Now assume that p has type (I) and λ contains no point of type (O). We take the same
notation as in the previous paragraph for p. If λ has type (IB1) then the proof is easy
but non-trivial. Indeed, let µ be a bundle mark with center y and base circle C. We
leave the case that x and y are collinear to the reader. So let x and y be not collinear.
Suppose first that p is collinear — in M(Γ) — with at least two points of h incident with
µ. Hence τ has two points u1 and u2 of two different elements of µ as a post, this implies
by Lemma 5 that u1 and u2 lie on lines through y contained in the same circle of yΓ whose
corner coincides with the corner of C. So we can assume that u1 and u2 are collinear,
hence they have to be equal and so every element of µ is collinear with τ and lies in a
fixed plane of type [IB2] containing p. It also follows that the unique point of type (B)
on λ lies in that plane. Similarly, one shows that, if the unique point of type (B) on λ is
collinear with p, then either each other or no other point of λ is collinear with p and in
the former case, there is again a plane containing p and all points of λ. Now we show that
there is at least one point of λ collinear with p. By definition of our hyperline of type [B],
there exists a post u of τ collinear with y. If u lies on an element of C, then p is collinear
with the unique element of type (B) on λ. If u does not lie on any element of C, then
it is contained in a unique element τ ′ of µ. By definition, there is a curtain containing τ
and τ ′, hence the result.

Now suppose that λ has type (IB2). So let λ be a track with focus z and Suzuki direction
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ς ′. The case x = z is easy to handle and so we consider the general case x *= z. Suppose
first that p is collinear with the point ς ′ of M(Γ) and with some other point τ ′ of λ (where
we again adopt the notation τ for p; τ has center c and meets L in x). Let N be the focus
line of ς ′ and put {y} = Γ1(N)∩Γ1(L). The case y = x is again easy, and so we leave that
to the reader. We consider the general case y *= x. Let M be a hem of the curtain defined
by τ and τ ′. Let My be the projection of M onto y. The collinearities mentioned imply
by Lemma 45 that N=My. Moreover if {ux} = Γ5(M)∩Γ2(x), {uz} = Γ5(M)∩Γ2(z) and
{w} = Γ3(M) ∩ Γ3(N), then, by Lemma 4, wux = wuz and there is a line λ′ of M(Γ) of
type (IB2) through the trace mark w[ux] = w[uz ] and the Suzuki trace ς (viewed as points
of M(Γ)). The points ς ′, τ and τ ′ all lie in the plane (λ′)σ of type [IB2] and so the line λ
is contained in (λ′)σ (because it is uniquely determined by ς ′ and τ ′). Hence (BSM) holds
in this case.

So we may assume that p is not collinear with ς ′. Now note that there is a unique plane
β of type [IB2] containing λ (indeed, β must contain the point y and hence it is uniquely
determined) and contained in the hyperline ςσ. The plane β of M(Γ) containes lines of
type (OI) (and let λ′′ be one of those) and one line of type (OB2), say λ′′′. Since these
lines contain a point of type (O) (namely y), p is collinear with a point p′′ on λ′′ (not
with all of them; that follows from inspection of the types of planes in ςσ: none of them
can contain all points of the line λ′′ (including z !) and the point p) and with a point p′′′

on λ′′′ (again not with all of them since otherwise p is also collinear with ς ′). As above,
p, p′′, p′′′ are inside a unique plane β′ of type [IB2]. This plane contains the line p′′p′′′ of
M(Γ), but so does β. And in β the line p′′p′′′ meets the line λ in a unique point which is
collinear with p (since it lies in β′). Hence the result.

Now let p again be a point of type (O) in h. By Proposition 51 the residue of {pσ, hσ} in
M(Γ) is a generalized quadrangle, hence also the residue of {p, h} is.

Now let p be again a point of type (I). Let p′ be any point of type (O) not collinear with
p. For any line λ through p in h, there is a unique line λ′ of h through p′ meeting λ;
this follows easily from the above cases in which (BSM) holds. Moreover, the mapping
Θ : λ .→ λ′ is a bijection from the set of lines through p to the set of lines through p′

(considering only lines in h). This follows also from the above cases for which we checked
(BMS) noting that no line of h through p′ can be of type (II). Let β be a plane in h
through p. For every line in β through p, there is a concurrent line of h through p′; let
λ1 and λ2 be two distinct lines through p in β and let λ′i be the unique line through p′

meeting λi, i = 1, 2, in the point, say, qi. Then by (BSM) there is a plane β′ of M(Γ)
containing p′, q1, q2 meeting the plane β in the line q1q2. Clearly the plane β′ is unique
with the property that it meets β in a line and that it contains p′. Conversely, every plane
β′ through p′ can be obtained in such a way (by interchanging the roles of p and p′ in the
previous argument and noting that no line in β′ can have type (II)). Hence Θ defines an
isomorphism from the residue of (p, h) to the residue of (p′, h). Consequently the residue
of (p, h) is a generalized quadrangle.
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Finally let p be a point of type (B). Axiom (BSM) is easily checked when the type of λ is
not (IB2) or (II). Suppose first that λ has type (II). Let p be a Suzuki trace ς ′ with focus
line M concurrent with L. Let x be the intersection of L and M . The line λ is a curtain
with some hem H and rail L. We leave the easy case where the projection M ′ of H onto
x is M to the reader. Suppose now that M ′ *= M . Let {N ′} = Γ2(M ′)∩Γ4(H) and let ς ′′

be the Suzuki trace with focus line M ′ and fringes L and N ′. Let z be the unique point
of type (O) in M(Γ) incident with the unique line of type (OB2) determined by ς ′ and
ς ′′. Let zH be the projection of z onto H, then Lemma 22 implies that the line N of Γ
concurrent with M and at distance 5 from zH is a fringe of ς ′. If y is the projection of
zH onto N and {x0} = Γ2(z)∩Γ4(zH), then x[y]

0 is a trace mark incident in M(Γ) with λ.
Hence p is in M(Γ) collinear with at least one point of λ. Collinearity of p with a second
point of λ would be in conflict with Corollary 33. Indeed, suppose that p is collinear with
a trace mark whose corresponding trace contains the point z′ of Γ incident with L, z *= z′.
Clearly z′ *= x. Let z′H be the projection of z′ onto H and let L′H be the projection of z′

onto z′H . By assumption ς ′ = M
L′

H
© , hence by Corollary 33 the point z′H is at distance 6

from z, which implies z = z′.

Finally let λ be a line of type (IB2). It is easily seen that there is a unique plane β of
type [IB1] incident with λ in M(Γ). Let u be the unique point of type (O) in β, then u
is collinear with p in h. We now assume that p is not incident with β, otherwise (BSM)
follows. Let λ′ be the line of h incident with u and p. Since the residue in h of u is
a generalized quadrangle, there is a unique plane β′ incident with λ′ and meeting β in
a line λ′′. Clearly λ *= λ′′ (they have different types) and so these two lines meet in a
point q. The point q is collinear with p since they both lie in the plane β′. We now show
uniqueness of q. Suppose the point q′ on λ is collinear with p. By Axiom (BSM) the point
u is collinear with all points of the line of M(Γ) joining p and q′ and there is a plane β′′

containing p, q′, u. Clearly β′′ meets β in a line; by the uniqueness of β′ we have β′′ = β′.
Hence q = q′. This completes the proof of (BSM) in this situation.

Under the assumption that p is a point of type (B) of M(Γ), let p′ be any point of type
(I) not collinear in h with p. Similarly as above there is a bijection Θ from the set of
lines (in h) through p to the set of lines in h through p′. Now let β be a plane of M(Γ)
in h through p. We show that there is at least one plane β′ through p′ meeting β in a
line of M(Γ). The plane β contains a line of type (OO) (if β has type [OB1]) or a line of
type (IB1) incident with p (if β has type [OB2] or [IB2]), or a line of type (IB2) incident
with p (if β has type [IB1] or [IB2]). In all these case one deduces readily (using (BSM))
that p′ is collinear with a point q of β with q of type (O) or (I) (since p′ is not collinear
with p). Let λ be the line of M(Γ) incident with q and p′. Since the residue of q in h is
a generalized quadrangle, there is a unique plane β′ containing λ and meeting β in line.
The claim is proved.

Hence if two lines λi, i = 1, 2, are incident with p in h and if they are contained in a plane
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β, then the two unique corresponding lines λΘ
i , i = 1, 2, meeting λi and incident with p′

lie in a plane β′ (because of the previous paragraph).

Similarly one shows that, if λ′i, i = 1, 2, are two lines in h through p′ lying in a plane

β′, then the corresponding lines λ′i
Θ−1

, i = 1, 2, meeting λ′i and incident with p lie in a
common plane β. Indeed, this follows from the fact that every plane through p′ contains
a line of type (OI) or (II) and hence p is collinear with at least one point q of type (O)
or (I) in β′. The result is obtained by looking at the residue in h of q, as before.

So Θ is an isomorphism and hence the residue of p in h is isomorphic to the residue of p′

in h, which was shown to be a generalized quadrangle.

This completes the proof of the proposition.

Proposition 53 The residue in M(Γ) of an incident point-hyperline pair, where the
hyperline has type [I], is a generalized quadrangle.

PROOF. Let τ be a trace mark in Γ. Let x be the center of the corresponding trace X
and let C be the post set of τ . Then the point x — as a point of type (O) in M(Γ) — is
incident with the hyperline h = τσ. Let Y be any crown trace of τ . Then Y supplied with
posts collinear to elements of C defines a unique trace mark which is incident with h. Let
z ∈ X and let L be any line in the gate set of X, L *= xz. Then the posts of τ define a
unique Suzuki trace ς with focus line L by considering the lines at distance 2 from L and
3 from posts which are at distance 5 from L. The definition of h implies that ς is — as a
point of type (B) — incident with h. Note that, if ς ′ is the Suzuki trace incident with h
with focus line L′, where L′ is also incident with z in Γ, then ς, ς ′ and x are three points
of M(Γ) lying on the same line of type (OB2). Finally let u be any post of τ . Then the
trace u[x] is also — as a point of type (I) — incident with h.

Let p be a point of M(Γ) in h. We have to show again that the residue of the pair {p, h}
is a generalized quadrangle. If p has type (O) or (B), then by Propositions 51 and 52 the
residue of the pair {hσ, pσ} is a generalized quadrangle. Since σ is an incidence preserving
involution, the result follows.

Hence we may assume that p has type (I). First let p be not collinear with x in h, i.e. the
trace belonging to p does not contain x, which is equivalent with saying that x is a post
of p. It is very easy and straight forward to check (BSM) for the point x and a line of
any type. Also, (BSM) — which is equivalent with (BS) in this case — is readily verified
for the point p and any line in h incident with the point x in M(Γ). This already implies
that there is a bijective correspondence Θ from the set of lines in h through x to the set
of lines in h through x which takes collinear elements in the residues of p to collinear
elements in the residue of x in h (and two lines correspond if and only if they meet in a
unique point). Hence Θ extends to an injective map from the set of planes in h through p
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to the set of planes in h through x. If we show that it is also surjective onto the latter set
of planes, then Θ is an isomorphism and the result for p follows. To prove surjectivity, let
β be any plane of h through x. The type of β is either [OI2] or [IB1]. In both cases, there
is a unique line λ of type (OB2) in β incident with x. Let λ′ be the unique line through
p in h for which λ′Θ = λ. Then the common point q of λ and λ′ has type (B). Since the
residue in h of q is a generalized quadrangle, there is a plane β′ through λ′ meeting β in
a line through q. Clearly β′Θ = β, whence the result.

Now let p be collinear with x in h. Then p is a trace mark with trace Y which has center
y ∈ X. Let L be an element of the gate set of Y distinct from xy through x. Let M
be any line of Γ through x contained in the circle of xΓ with corner L containing xy,
L *= M *= xy. Let F , F *= M , be any element of the gate set of X through z, where z is
the unique point on M contained in X. Let ς be the unique Suzuki trace with focus line
F incident in M(Γ) with h. As a point of h, we denote ς by p′. By our conditions on
L, M and xy, we see that p and p′ are not collinear in h. Our first aim is to show that for
every line λ′ in h through p′, there exists a unique line λ of h through p meeting λ′ (in
a point of h). This is obvious if λ′ has type (OB2) because in this case x is the unique
point on λ′ collinear with p in h. Also, if λ′ is contained in a plane of h containing x,
then the assertion follows easily. Indeed, let β′ be the plane generated by λ′ and x, then
there is a unique plane β containing xp (a line of type (OI) in h) and meeting β′ in a line
λ′′ through x (because the residue in h of x is a generalized quadrangle). Now λ′ and λ′′

meet in a point q and since q is incident with β, q is collinear with p. If q′ is some other
point on λ′ collinear with p, then since (BSM) holds for x, there is a plane β′′ containing
x, p, q′. This plane meets β′ in the line xq′ and contains the line xp, contradicting the fact
that the residue in h of x is a generalized quadrangle.

Of course, a similar argument shows that, whenever a line λ through p in h has all its
points collinear with x (in M(Γ)), then there exists a unique line λ′ in h through p′

meeting λ.

Now suppose that λ′ is a line through p′ for which only p′ is collinear with x. Since only
the trace marks with post x are not collinear with x in h, λ′ has necessarily type (IB2).
Let u be the point at distance 3 from F contained in every trace belonging to some trace
mark incident with λ′ in M(Γ). We are looking for a line L∗ containing a point of Y and
containing a point of a trace belonging to some trace mark incident with λ′. Clearly, if
L∗ exists, then δ(L∗, u) = 5 and δ(L∗, y) = 3. Hence L∗ ∈ yu

[3]. Let B be the circle of
uΓ containing the back up of the set of all centers of the track defined by λ′. Then L∗

should also be at distance 4 from an element of B. By Lemma 6, this is equivalent with
L∗ meeting an element of the gate set A of X through y in a point of Y . Since xy is
not the corner of the circle of xΓ containing L, M, xy, the traces Y and yu meet in a set
of points the back up of which onto y is a circle A′ of yΓ meeting A in at least one line,
namely xy. But xy is the corner of A and not of A′, so A and A′ have exactly one other
line Ly in common. Put {L∗} = Γ2(Ly) ∩ Γ5(u) and it now follows easily that L∗ is the

51



unique line meeting our requirements. Let τ ′ be the trace mark of λ′ whose center c lies
at distance 3 from L∗. Since x is a post of τ ′, the projection of u onto L∗ is a point of
τ ′. Moreover, cx is the trace belonging to τ ′. By Lemma 46 (putting w1 = c, w2 = y,
L = L∗, y = x and {x} = Γ2(c) ∩ Γ5(L) where the left hand sides are the notations used
in the statement of the lemma, and the right hand sides the corresponding notation in
the present proof), p and τ ′ (as points of type (I)) are collinear.

Now we show that, conversely, for every line λ of h incident with p, there exists a unique
line λ′ of h incident with p′ meeting λ (in h). By the foregoing, we only have to deal with
the case that λ is incident with points not collinear with x, i.e. λ has type (II). Let R be
the rail of the curtain η corresponding with λ. Clearly we can choose a hem H concurrent
with L. Since L is the corner of the circle of xΓ through L, M, xy, there exists a point
v by Axiom [RT4] at distance 3 from R and at distance 5 from both H and F and by
Lemma 13, v is unique with that property. But clearly these conditions on v are necessary
and sufficient for v[x] to be a trace mark of the curtain η (expressed by δ(v, R) = 3 and
δ(v, H) = 5) and for v[x] to be collinear with p′ (expressed by δ(v, F ) = 5 and hence some
element of vx is at distance 3 from F ). This shows our assertion.

So we have shown that “meeting” is a bijective correspondence between the set of lines
of h through p and those through p′. Call this correspondence Θ. Suppose now β is a
plane in h through p. Let A be the set of lines in β through p. Either all points of β are
collinear with x in h, or A contains an element of type (II). In the former case, β contains
an element of type (OI). In both cases, there is a point q in β of type (I) or (O) collinear
with p′ and if q has type (I), then it is not collinear with x in h. Hence the residue in h
of q is a generalized quadrangle and there exists a unique plane β′ through p′q meeting β
in a line of h. By the uniqueness of the line through p′ meeting a given line through p, all
lines through p′ meeting the elements of A lie in β. By interchanging the roles of p and
p′ in this argument, we see that Θ extends bijectively to the set of planes through p and
p′ in h. Hence we conclude that the residue in h of p is isomorphic to the one of p′, which
is a generalized quadrangle.

This concludes the proof of the proposition.

Now we can prove:

Proposition 54 The space M(Γ), furnished with points, lines, planes and hyperlines as
above, is the flag complex of a building ∆(M(Γ)) of type F4. The polarity σ is a type
permuting automorphism of order 2 of ∆(M(Γ)). The chambers of ∆(M(Γ)) fixed under

σ form a building of type I(8)
2 , i.e. the building associated with a generalized octagon, and

this generalized octagon is isomorphic to Γ provided incident point-hyperline pairs are
called points, and incident line-plane pairs are called lines.

PROOF. In order to show the first part of the statement, it suffices to prove by Tits
[22], Proposition 9, the following properties.
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(LL) If two lines are both incident with two distinct points, they coincide;

(LH) if a line and a hyperline are both incident to two distinct points, they are incident;

(HH) if two distinct hyperlines are both incident with two distinct points, the latter are
collinear;

(OT) if two lines are incident with the same set of points, they coincide.

Of course, (OT) follows from (LL) which in turn follows from the definition of lines and
from the various properties we have shown in Section 3. Also (LH) is easily checked. That
leaves (HH). From the explicit description of the hyperlines in terms of the points they
contain (in the proofs of Propositions 51, 52 and 53), it is tedious but straightforward and
easy to verify that the respective sets of points incident with two respective hyperlines can
only meet in the set of points incident with a plane, in a single point, or they are disjoint
(one must bear in mind that in fact hyperlines are defined as unions of certain planes).
Alternatively, one can determine the possible pairs of opposite points in the respective
hyperlines and notice that no pair appears twice. In view of the description of hyperlines
in terms of the points it is incident with, this is again an easy but tiresome exercise. So
we may conclude that M(Γ), furnished with points, lines, planes and hyperlines is the
flag complex of a building ∆(M(Γ)) of type F4.

It is obvious that if σ fixes a chamber, then the point of the chamber has to be a point of
type (O) (since these are the only points p for which pσ contains p) and the line of that
chamber must be a line of type (OO) (similar reason). The proposition now follows easily.

6 End of the Proof of the “if”-part of the Main Re-
sult

We can now end the proof of the fact that Γ is a perfect Ree-Tits octagon.

Lemma 55 The residue of an incident point-hyperline pair in M(Γ) is a symplectic
generalized quadrangle over some perfect field of characteristic 2.

PROOF. It suffices to show the result for one specific residue. We therefore consider a
point x of Γ — as a point of M(Γ) — and the hyperline xσ. The residue of {x, xσ} is
a generalized quadrangle ∆. Let Ω = xΓ be the block geometry in x of Γ. Let us call
points, respectively lines, of ∆ the lines, respectively planes, of M(Γ) through x in xσ.
Then points of ∆ are either lines of Γ through x, or Suzuki bundles with focus flag (x, L)
for some line L of Γ incident with x. We can identify the former with the points of Ω and
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the latter with the circles of Ω (identifying a Suzuki bundle with its foundation). The
lines of ∆ are either planes of type [OO] of the form Lσ, where L is a line of type (OO)
and hence also a line of Γ through x; or planes of type [OB1] of the form ζσ, where ζ is a
Suzuki bundle with focus flag (x, L), for some line L of Γ through x. In the former case,
we can identify these lines of ∆ with the points of Ω and in the latter case we can identify
these lines of ∆ with circles (the foundation of ζ again) of Ω. So if a is a point Ω we can
either view a as a point of ∆ — and we denote the corresponding point as ap — or as a
line of ∆ — in which case we write a". Similarly one defines the notations Cp and C" for
any circle C of Ω. It is easy to verify that, for a, b points of Ω and C, D circles of Ω, and
denoting incidence in ∆ by I, we have

apIb" ⇐⇒ a = b,

apID" ⇐⇒ a = ∂D,

CpIb" ⇐⇒ b = ∂C,

CpID" ⇐⇒ ∂C ∈ D and ∂D ∈ C.

From this, it follows immediately that, denoting collinearity in ∆ by ⊥,

ap ⊥ bp ⇐⇒ a = b,

ap ⊥ Cp ⇐⇒ a ∈ C,

Cp ⊥ Dp ⇐⇒ C touches D

(using Axiom [ST2] or, equivalently, result [MC3]). We now show that any point ap, a a
point of Ω, is distance-2-regular. Let C, D be circles of Ω and suppose that Cp and Dp

are collinear to xp, but not mutually collinear. Then they do not touch and hence they
have a unique other point b in common, b *= a. Suppose E is a circle of Ω such that
Cp, Dp ∈ aEp

p . Then there are two circles C, D containing a and b and touching E, hence

all circles through a, b touch E. Axiom [MP2] now readily implies that aEp
p = abp

p . Since
∆ has the Moufang property — as a residue of a spherical rank 4 building — all points of
∆ are distance-2-regular. Clearly the sets abp

p and acp
p , for distinct points a, b, c of Ω, share

the unique point Cp, where C is the unique circle of Ω through a, b, c. Hence by Schroth
[14], ∆ is a symplectic quadrangle over some commutative field K. Clearly σ induces a
polarity in ∆, hence K is a perfect field of characteristic 2 (if K were not perfect, then
the symplectic quadrangle ∆ would not be isomorphic to its dual, see Van Maldeghem
[29](7.3.2), which restates an unpublished result of Tits).

This completes the proof of the lemma.

Theorem 56 The generalized octagon Γ is a perfect Ree-Tits octagon.
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PROOF. Let (x0, L0, x1, L1, . . . , x7, L7) be a circuit of length 8 in Γ, where Li is incident
with xi and xi+1 (subscipts to be taken modulo 8). Let τi, 0 ≤ i < 8 be the trace
mark with center xi and post xi+4 (again with subscripts taken modulo 8). Finally let ςi,
o ≤ i < 8, be the Suzuki trace (Li)

Li+4

© (subscripts modulo 8). The twenty-four points xi,
τi, ςi, i = 0, . . . , 7, are the points of an apartment A of the building M(Γ).

The polarity σ induces in the residue of {x0, xσ
0} a polarity of a symplectic generalized

quadrangle. By Tits [17], this polarity defines a unique field automorphism θ whose
square is the Frobenius. Let σ′ be a polarity of M(Γ) for which the set of absolute points
and lines constitutes a Ree-Tits octagon Γ′, such that xi, i = 1, . . . , 7 are points of Γ′, and
Li, i = 0, . . . , 7 are lines of Γ′, such that xσ′

i and Lσ′
i belong to A, for all i ∈ {0, . . . , 7}

and such that the underlying field automorphism is precisely θ (this is possible by Tits
[23]). It then follows from Borel & Tits [1] that σ can be written as t · σ′, where t
belongs to the subgroup of the full automorphism group of M(Γ) generated by the torus
T corresponding to A and the automorphisms fixing A pointwise and being defined by
field automorphisms. Looking at the residue of {x0, xσ

0}, one sees that the restrictions of
σ and σ′ to that residue are conjugate (in the full automorphism group of the residue)
by Tits [17] (because they define the same field automorphism). Hence we may assume
that no field automorphism is involved in t.

Now, the torus T is 4-dimensional and we can write every element in the form (k1, k2, k3, k4)
∈ (K×)4. Since the tori related to Γ′ are two-dimensional, we may assume that (k1, k2, 1, 1)σ′

= (k1, k2, 1, 1), for all k1, k2 ∈ K×. We can also put (1, 1, k3, 1)σ′ = (1, 1, 1, k3), for all
k3 ∈ K×. Put t = (k1, k2, k3, k4). Since σ = t · σ′ is an involution, we see that t · tσ′ = 1,
hence t = (1, 1, k3, k

−1
3 ). Putting t′ = (1, 1, 1, k3), we have (t′)−1 · (t′)σ′ = t and so we

obtain σ = t · σ′ = ((t′)−1 · σ′ · t′ · σ) · σ = (σ′)t′ . Hence σ and σ′ are conjugate in the
full automorphism group of M(Γ). This now easily implies that Γ and Γ′ are isomorphic.
The theorem is proved.

7 Proof of the “only if”-part of the Main Result

7.1 A model of the Ree-Tits octagons

By Tits [23], every Ree-Tits octagon is determined by a field K of characteristic 2 and
an endomorphism σ in K whose square is the Frobenius endomorphism x .→ x2. This
generalized octagon will be denoted by O(K, σ).

The following description of O(K, σ), K and σ as above, is due to Joswig & Van
Maldeghem [8]. We write xσ+j := xσxj, j = 1, 2.

Let K(2)
σ be the group on the set of all pairs (k0, k1) ∈ K×K with operation law (k0, k1)⊕

(l0, l1) = (k0 + l0, k1 + l1 + l0kσ
0 ). For k = (k0, k1), set tr(k) = kσ+1

0 + k1 (the trace of
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k) and set N(k) = kσ+2
0 + k0k1 + kσ

1 (the norm of k). Define a multiplication a ⊗ k =
a⊗ (k0, k1) = (ak0, aσ+1k1). Also write (k0, k1)σ for (kσ

0 , kσ
1 ). Then the points of O(K, σ)

are the elements of

{(∞)}
∪K
∪K(2)

σ ×K
∪K×K(2)

σ ×K
∪K(2)

σ ×K×K(2)
σ ×K

∪K×K(2)
σ ×K×K(2)

σ ×K
∪K(2)

σ ×K×K(2)
σ ×K×K(2)

σ ×K
∪K×K(2)

σ ×K×K(2)
σ ×K×K(2)

σ ×K

(and these are all denoted by round parentheses); the lines of O(K, σ) are the elements of

{[∞]}
∪K(2)

σ

∪K×K(2)
σ

∪K(2)
σ ×K×K(2)

σ

∪K×K(2)
σ ×K×K(2)

σ

∪K(2)
σ ×K×K(2)

σ ×K×K(2)
σ

∪K×K(2)
σ ×K×K(2)

σ ×K×K(2)
σ

∪K(2)
σ ×K×K(2)

σ ×K×K(2)
σ ×K×K(2)

σ

(and denoted by square brackets); incidence is given by the sequence

(a, l, a′, l′, a′′, l′′, a′′′) I [a, l, a′, l′, a′′, l′′] I (a, l, a′, l′, a′′) I . . .

. . . (a) I [∞] I (∞) I [k] I (k, b) I . . .

. . . [k, b, k′, b′, k′′] I (k, b, k′, b′, k′′, b′′) I [k, b, k′, b′, k′′, b′′, k′′′],

and the rule : (a, l, a′, l′, a′′, l′′, a′′′) is incident with [k, b, k′, b′, k′′, b′′, k′′′] if and only if the
following six equations hold:
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(k′′′0 , k′′′1 ) = (l0, l1) ⊕ a⊗ (k0, k1) ⊕ (0, al′0 + aσl′′0) (I1)

b′′ = a′ + aσ+1N(k) + k0(al′0 + aσl′′0 + tr(l))
+aσ(a′′′ + l0k1) + al′′0

σ + l0l′0 (I2)

(k′′0 , k
′′
1) = aσ ⊗ (k1, tr(k)N(k)) ⊕ k0 ⊗ (l0, l1)σ

⊕ (0, tr(k)N(l) + aσ+1l0N(k)σ + tr(k)(aa′ + aσl0l′′0 + aσ+1a′′′)
+tr(l)(kσ

1 a + a′′′) + kσ
1 aσ+1l′′0 + kσ+1

0 a2l′′0
σ

+k0(a′ + al′′0
σ + k1aσl0 + aσa′′′)σ

+kσ
0 l0(a′ + al′′0

σ + k1aσl0 + aσa′′′)
+a(l′′1 + a′′′σl0 + a′′′l′0) + l′′0(a

′ + aσa′′′) + a′′l0 + l0l′0l
′′
0)

⊕ (l′0, l
′
1) (I3)

b′ = a′′ + aσ+1N(k)σ + a(k0l′′0 + l0k1 + a′′′)σ + tr(k)(l1 + aσl′′0)
+kσ

0 (a′ + aσa′′′) + l′0l
′′
0 + lσ0a′′′ (I4)

(k′0, k
′
1) = (l′′0 , l

′′
1) ⊕ a⊗ (tr(k), k0N(k)σ) ⊕ l0 ⊗ (k0, k1)σ

⊕ (0, N(k)(aσl′′0 + l1) + k0(a′′ + l′0l
′′
0 + aa′′′σ + lσ0a′′′)

+k1(k1l0aσ + a′ + al′′0
σ + aσa′′′) + k0kσ

1 alσ0 + a′′′σl0 + a′′′l′0) (I5)

b = a′′′ + aN(k) + l0k1 + k0l′′0 (I6)

where a, a′, a′′, a′′′, b, b′, b′′ ∈ K and k, k′, k′′, k′′′, l, l′, l′′ ∈ K(2)
σ and k = (k0, k1), etc. These

elements are called the coordinates.

This description is valid for σ bijective or not. But we will only use it in the perfect case
(σ a bijection).

7.2 The proof

In Van Maldeghem [26] it is shown that perfect Ree-Tits octagons satisfy Axioms [RT1],
[RT1′] and the part of [RT5] not between parentheses, see loc. cit., Lemma 4.4 (and the
discussion preceding it). Also, by loc. cit., the discussion preceding Lemma 4.6, and
Lemma 4.7., one easily deduces Axiom [RT2]

Let Γ be a perfect Ree-Tits octagon described using coordinates as in the previous sec-
tion. From loc. cit., we recall the following result. Let o be the point with coordinates
(0, 0, 0, 0, 0, 0, 0). Then the set of points v of Γ such that the back up of (∞)o ∩ (∞)v

contains the circle of (∞)Γ through [0] with corner [∞] is equal to

V = {(0, (0, l1), a′, l′, a′′, l′′, 0) : l1, a
′, a′′ ∈ K; l′, l′′ ∈ K(2)

σ }.
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Without loss of generality, the point y of Axiom [RT3] can be chosen to be equal to (0, 0),
granted we put x = (∞), u = o and z = (0). By loc. cit., Section 4.1, the circle of
(0,b)Γ with corner [0] and containing [0, b, 0] consists of {[0, b, (0, k′1)] : b, k′1 ∈ K} ∪ {[0]}.
Putting b = 0, [RT3] is proved if we show that, whenever v ∈ V and Γ1((0, 0)) ∩ Γ5(v) =
{[0, 0, (0, k′10]}, for some k′1 ∈ K, then necessarily (∞)o = (∞)v. So we let v ∈ V
and Γ1((0, 0)) ∩ Γ5(v) = {[0, 0, (0, k′10]}, for some k′1 ∈ K. Equation (I5) implies that
v = (0, (0, l1), a′, l′, a′′, (0, k′1), 0). The result now follows directly from Equation (I6),
noting that (∞)o consists of those points with two coordinates the second coordinate of
which is 0.

Next we consider Axiom [RT4]. Put x = (∞), y = o, L = [0, 0, 0, 0], z = (0), z′ = (0, 0)

and z′′ = (k, 0), with k ∈ K(2)
σ and k0 *= 0. We can do all this without loss of generality

by the transitivity properties of the automorphism group of Γ, see Tits [23]. Also, we
may assume that L′ = [0, 0, 0] and L′′ = [k, 0, (0, k′1)] (similarly as above). If y′ exists,

then it has coordinates of the form (0, 0, 0, 0, a′′, l′′, a′′′), a′′, a′′′ ∈ K, l′′ ∈ K(2)
σ . Distance

5 from L′ readily implies l′′ = 0 and a′′′ = 0. From Equation (I5), we deduce that
the line M ′′ at distance 5 from (0, 0, 0, 0, a′′, 0, 0) and incident with z′′ has coordinates
[k, 0, (0, k0a′′)]. Putting a′′ = k′1k

−1
0 , we obtain the result. Now let y′′ be any point at

distance 3 from L, opposite (∞) and at distance 6 from o. Then y′′ has coordinates of the

form (0, 0, 0, 0, a′′, l′′, a′′′), a′′, a′′′ ∈ K, a′′ *= 0, l′′ ∈ K(2)
σ . Expressing that (∞)o = (∞)y′′ ,

one obtains easily, using Equation (I6), that a′′′ = l′′0 = 0. Since the line at distance 2

from the line [k], k ∈ K(2)
σ and at distance 5 from o has coordinates [k, 0, 0], we are looking

for solutions of the equation
0 = l′′1 + k0a

′′,

for given l′′1 , a
′′ ∈ K with a′′ *= 0, and unknown k0 (this follows from Equation (I5)). This

has clearly a solution for k = (k0, k1) and hence Axiom [RT4] is shown.

8 Proof of the Main Result — Finite Case

In this section we suppose that Γ is a finite generalized octagon of order (s, t) satisfying
the Axioms [RT1f], [RT1′] and [RT3].

For the first three lemmas, we suppose that t = s2.

Let Ω be an inversive plane, i.e. a geometry satisfying Axioms [MP1] and [MP2]. If a is a
point of Ω, then the geometry Ωa with point set the set of points of Ω except for a, and
line set all circles of Ω containing a, is an affine plane. Usually this is called the internal
affine plane in a of Ω. If we take for Ω the block geometry xΓ for some point x of Γ, then
Ω contains s2 + 1 points — since there are s2 + 1 lines of Γ incident with x. Each circle
of Ω contains s + 1 points.
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Lemma 57 The generalized octagon Γ satisfies Axiom [RT1]. Also, s is an odd power of
2.

PROOF. By Feit & Higman [6], the number 2ss2 is a perfect square, hence s is even.
By Axiom [RT1f], xΓ is a finite inversive plane of even order, for all points x of Γ. Hence
s is a power of 2 by Dembowski [5]. Since 2s3 is a perfect square, s must be an odd
power of 2. A circle of xΓ not containing some point L of xΓ is an oval in the internal
affine plane in L of xΓ and its nucleus is an affine point (otherwise the line “at infinity”
is a tangent and hence the oval has only s affine points). This implies Axioms [CH1]
and [CH2]. The lemma is proved.

Lemma 58 Let x be a point of Γ, let X be a trace with center x and let z (respectively
z′) be a point of X (respectively of (Γ2(x) \X) \ Γ2(z)). Then there exists a unique trace
with center x containing z′ and meeting X trivially in z.

PROOF. Let X, x, z, z′ be as in the statement of the lemma. Let y be such that X = xy.
Let X ′ be a trace with center x containing both z and z′ and suppose that X ∩X ′ = {z}.
Let {L} = Γ1(y) ∩ Γ5(z) and let {y′} = Γ1(L) ∩ Γ6(z′). We must show that X ′ = xy′ .
Suppose by way of contradiction that X ′ *= xy′ . Then |X ′∩xy′| = s+1 by Axiom [RT1f].
Consider the set W = {xw : w ∈ Γ2(y)∩Γ6(z)} of s traces with center x containing z and
pairwise meeting trivially in z. For u ∈ X ′, u *= z, the trace xv, with {v} = Γ1(L)∩Γ6(u),
belongs to W , hence the set {(Y ∩X ′)\{z} : Y ∈ W} is a partition of X ′\{z}, with possibly
some empty classes. By Axiom [RT1f], each non-empty class contains s elements (since s2

is impossible because there is at least one class with s elements, namely (X ′ ∩ xy′) \ {z}).
It follows that s classes contain s elements, hence also (X ∩X ′)\{z} contains s elements,
a contradiction to our assumption. The lemma is proved.

A set of traces {xy : y ∈ Γ1(L) \ Γ6(x)}, for any line L at distance 7 from the point x, is
called a pencil of traces with origin u, where {u} = Γ2(x) ∩ Γ5(L). It is clear that every
trace is contained in a pencil of traces with origin any of its elements.

Lemma 59 The generalized octagon Γ satisfies Axiom [RT2].

PROOF. Let x be a point of Γ, let X be a trace with center x, let z1, z2 be two distinct
points of X and let Zi be a trace with center x meeting X trivially in zi, i = 1, 2. By the
discussion preceding this lemma, X and Z1 belong to a pencil T of traces with base point
z1. Each element of T meets Z2 either in a point or in a set of s + 1 points. Suppose k
elements meet in a point, then, since |T | = s, we have k + (s + 1)(s − k) = s2. Hence
k = 1 and so X is the unique element of T meeting Z2 trivially. So we obtain a flock of
the inversive plane xΓ by considering back ups onto x of these intersections. By Thas
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[15], this flock is linear, which means that it is unique with respect to the two elements
xz1 and xz2 which are not covered. So this flock is a transversal partition with extremities
xz1 and xz2. Hence the lemma.

Now we suppose that Γ has order (s, t), with s and t arbitrary, and that Γ satisfies
Axioms [RT1f], [RT1′], [RT2f] and [RT3]. We show that t = s2, where (s, t) is the order
of Γ.

Lemma 60 If the finite generalized octagon Γ of order (s, t) satisfies Axioms [RT1f],
[RT1′], [RT2f] and [RT3], then t = s2 and consequently Γ satisfies Axioms [RT1] and [RT2].

PROOF. Let x be a point of Γ, let X be a trace with center x, let z1, z2 be two distinct
points of X and let Z1 be any trace through z1 meeting X trivially. Let T be a pencil of
traces with origin z2. Then |T | = s and every element of T meets Z1 in a set of

√
t + 1

points except for X, by Axiom [RT2f]. Hence the set of t − 1 points of Z1 \ {z1, z2} is
partitioned into s− 1 sets of

√
t + 1 elements. So s =

√
t.

The second assertion follows from Lemma 57 and Lemma 59. The lemma is completely
proved.

Finally we show that Axiom [RT4] is a consequence of the others (still in the finite case).

Lemma 61 If a finite generalized octagon Γ of order (s, s2) satisfies Axioms [RT1],
[RT1′], [RT2] and [RT3], then it also satisfies Axiom [RT4].

PROOF. Note that Section 3 of this paper does not use Axiom [RT4], hence we can use
some of the properties shown there.

Let x and y be two opposite points of Γ and L ∈ Γ5(x)∩Γ3(y). Let {z} = Γ2(x)∩Γ3(L).
Let z′, z′′ ∈ xy be such that the lines xz, xz′, xz′′ do not lie in a circle of xΓ with corner xz.
Let L′ and L′′ be any lines of the gate set of xy through z′ and z′′ respectively. Let u be
a variable point on L, u /∈ Γ4(x), and let yu be the point at distance 2 from u and 5 from
L′. We have xyu = xy by Lemma 4 of loc. cit. Let {L′′u} = Γ1(z′′)∩Γ5(yu). By Lemma 13
of loc. cit., the mapping u .→ L′′u is injective. But u runs over a set of s elements and L′′u
runs over a set of

√
t = s elements (the gate set in z′′ of xy is a circle of z′′Γ). Hence this

mapping is bijective and L′′ is an image. This shows the first part of Axiom [RT4].

Now, let y′′ be opposite x, such that xy′′ = xy, δ(y, y′′) = 6 and δ(y′′, L) = 3. Let y′′ be
collinear with u′′ on L. Then y′′u′′ is a line which lies at distance 4 from some element of
the gate set of xy through z′ (except for xz′), and y′′ is unique on y′′u′′ with respect to the
property xy = xy′′ . Hence there are exactly s2−s choices for y′′. But s−1 of these choices
lead to L0 ∈ xy

[3]∩xy′′

[3] for L0 ∈ Γ3(x)∩Γ5(y). Let z0 be collinear with x and incident with
L0. By Lemma 13 of loc. cit., the s− 1 points y′′ obtained by considering L0 differ from

60



the s−1 obtained by considering L′0 if and only if xz0 and xz′0 (self-explanatory notation)
are contained in a circle of xΓ with corner xz. Since there are s such circles, we have in
total s(s− 1) points y′′ for which |xy

[3] ∩ xy′′

[3]| > 1. This proves the assertion completely.

Puttting all lemmas of this section together, the Main Result – Finite Case readily follows.

References

[1] A. Borel and J. Tits, Homomorphismes “abstraits” de groupes algébriques, Ann
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Sci. Publ. Math. 2 (1959), 14 – 60.
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