Characterizations for classical finite hexagons

Leen Brouns

Hendrik Van Maldeghem^{*}

Abstract

We characterize some classical finite hexagons as the only generalized hexagons containing ovoidal subspaces all of whose points are spanregular.

1 Introduction

A generalized n-gon $\Gamma = (\mathcal{P}, \mathcal{B}, \mathbf{I})$ of order (s, t) is an incidence structure of points and lines with s+1 points incident with a line and t+1 lines incident with a point, $s, t \geq 1$, such that Γ has no ordinary k-gons for any $2 \leq k < n$, and any two elements are inside some ordinary n-gon. Distances are measured in the incidence graph.

If two points x, y are at distance 2, we call them *collinear* and write $x \sim y$.

If two points x, y are at distance 4 and n > 4, the unique point at distance 2 from x and at distance 2 from y is denoted by $x \bowtie y$.

If two elements u, v are at distance k < n, we denote the unique element at distance 1 from x and at distance k - 1 from y by $\operatorname{proj}_x y$, and call this the *projection of* y *onto* x.

The set of all elements at distance i from an element u is denoted by $\Gamma_i(u)$.

The trace x^y , with x and y opposite elements (= at maximal distance n), is the set of all elements (t+1 if x is a point) at distance 2 from x and distance n-2 from y. The point x is said to be regular, if $\forall y, z$ opposite x, $|x^y \cap x^z| \ge 2 \Rightarrow x^y = x^z$. This implies that two traces x^{y_1} and x^{y_2} with x regular have 0, 1 or t+1 points in common.

Bull. Belg. Math. Soc. 5 (1998), 163–176

^{*}The second author is a Research Director of the Fund for Scientific Research – Flanders (Belgium)

Received by the editors August 1997.

Communicated by J. A. Thas.

¹⁹⁹¹ Mathematics Subject Classification. 51E12.

 $Key\ words\ and\ phrases.$ Moufang hexagon, classical hexagon, geometric hyperplane, regular points.

The point x is said to be spannegular, if x is regular and for all points p, a, b with d(x, p) = 2, d(p, a) = n, $d(p, b) = n : x \in p^a \cap p^b$, $|p^a \cap p^b| \ge 2 \Rightarrow p^a = p^b$. One could give the following interpretation: x is spannegular if x is regular and every point collinear with x behaves as a regular point in the neighbourhood of x.

Given some trace p^a with $u, v \in p^a$, we have the equivalent notations $p^a = (u \bowtie v)^a = \langle u, v \rangle_a$. The trace $\langle u, v \rangle_a$ through u and v and defined by a is called an *ideal line*, if every trace $\langle u, v \rangle_b$ through u and v coincides with $\langle u, v \rangle_a$. So we can use the notation $\langle u, v \rangle$ — independent of a — if this trace is an ideal line.

A sub-*n*-gon Γ' of order (s', t') of a generalized *n*-gon Γ of order (s, t) is a subgeometry of Γ which is itself a generalized *n*-gon of order (s', t'). If s' = s, Γ' is called *full*. If t' = t, Γ' is called *ideal*. A generalized *n*-gon of order (s, t) is called *thin*, whenever s or t is equal to 1, and is called *thick* whenever $s, t \geq 2$.

2 Definition of ovoidal subspace

An ovoidal subspace \mathcal{A} of a generalized 2m-gon $\Gamma = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ is a proper non-empty set of points $\mathcal{A} \subset \mathcal{P}$, with an induced set of lines $\mathcal{A}' = \{L \in \mathcal{L} \mid \Gamma_1(L) \subset \mathcal{A}\}$, such that all elements of Γ are at distance $\leq m$ from a certain point of \mathcal{A} , and such that for all elements of $\Gamma \setminus (\mathcal{A} \cup \mathcal{A}')$ at distance < m from a certain point p of \mathcal{A} , this point p is unique.

The notion 'ovoidal' is inspired by the ovoids, being special cases of ovoidal subspaces.

To show the likeness between the definition of Γ itself and the definition of an ovoidal subspace of Γ , we define the distance between a point b and a point set \mathcal{A} as $d(b, \mathcal{A}) = \min\{d(b, a) | a \in \mathcal{A}\}$. Then we can formally write their respective definitions as follows (disregarding the order (s, t)):

- $\begin{array}{c|c} \hline & (1) \text{ Given } a; \max\{d(a,b)|b \text{ element of } \Gamma\} = 2m \\ (2) \text{ Given } a; \forall b \text{ element of } \Gamma: d(a,b) < 2m \\ \Rightarrow \exists \text{ unique shortest path between } a, b \end{array}$
- $\begin{array}{|c|c|} \hline \mathcal{A} \end{array} (1) \text{ Given } \mathcal{A}; \max\{d(\mathcal{A}, b) | b \text{ element of } \Gamma\} = m \\ (2) \text{ Given } \mathcal{A}; \forall b \text{ element of } \Gamma \backslash (\mathcal{A} \cup \mathcal{A}') : d(\mathcal{A}, b) < m \end{array}$
 - $\Rightarrow \exists$ unique shortest path between \mathcal{A}, b

For Γ a generalized quadrangle of order (s, t), an ovoidal subspace is the same as a geometric hyperplane \mathcal{A} , which is defined as a set of points such that every line intersects \mathcal{A} in exactly 1 or s+1 points. One can easily show that \mathcal{A} is an ovoid $(\forall L : |L \cap \mathcal{A}| = 1)$, the point set of a subquadrangle of order (s, t'), st' = t (called a grid if t' = 1), or the set of all points collinear with a given point.

For Γ a generalized quadrangle of order s (i.e. order (s, s)), it is known that all points are regular (and then Γ is known, i.e. Γ is the generalized quadrangle W(s) arising from a symplectic polarity of PG(3, s)) iff all points of a geometric hyperplane \mathcal{A} are (span-)regular. For these proofs we refer to Payne & Thas [3]: 5.2.5 (\mathcal{A} an ovoid), 5.2.6 (\mathcal{A} the point set of a grid), 1.3.6(iv) (\mathcal{A} the set of all points collinear with a given point x).

We extend this theorem to generalized hexagons.

3 Main Result

We will use the following notations for the known finite generalized hexagons:

- H(q) the split Cayley hexagon (of order (q, q)) over the finite field GF(q), cfr. [6], par. 2.
- $T(q, \sqrt[3]{q})$ the triality hexagon (of order $(q, \sqrt[3]{q})$) over the finite field GF(q) with field automorphism $\sigma : x \mapsto x^3$.

Main Result

Let Γ be a generalized hexagon of order (s,t) having an ovoidal subspace \mathcal{A} , satisfying

(*) any 2 opposite points of Γ are contained in a thin ideal subhexagon \mathcal{D} , then all points of \mathcal{A} are spanregular $\Leftrightarrow \Gamma \cong H(q)$ or $T(q, \sqrt[3]{q})$.

From the proof, it will follow that the condition (\star) becomes superfluous in certain cases.

4 Preparations for the proof of the Main Result

4.1 Equivalent definition of ovoidal subspaces in generalized hexagons

Lemma 1 Let $\Gamma = (\mathcal{P}, \mathcal{L}, I)$ be a generalized hexagon of order (s, t). An ovoidal subspace \mathcal{A} is a set of points such that each point of the hexagon not in \mathcal{A} , is collinear with a unique point of \mathcal{A} .

Proof. \implies Take $x \in \Gamma \setminus \mathcal{A}$. As the distance between 2 points is even, x is at distance 2 from a certain point p of \mathcal{A} . By the second condition, this point p is unique.

 $\overleftarrow{\in}$ Take $x \in \Gamma$. If $x \in \mathcal{A}$, it is at distance $0 \leq 3$ from a point of \mathcal{A} . If $x \notin \mathcal{A}$, it is at distance 2 < 3 from a unique point of \mathcal{A} .

We will use the following properties of ovoidal subspaces of generalized hexagons frequently.

- Whenever a line meets \mathcal{A} in 2 points, all points of the line belong to \mathcal{A} because they are collinear with two different points of \mathcal{A} .
- Whenever two points x, y at distance 4 belong to $\mathcal{A}, x \boxtimes y$ belongs also to \mathcal{A} (in the other case, $x \boxtimes y$ would be collinear with 2 points of $\mathcal{A}, x \boxtimes y$ being off \mathcal{A}).

4.2 Classification of ovoidal subspaces in generalized hexagons

Theorem 1 An ovoidal subspace of a generalized hexagon of order (s,t) is either an ovoid, or the set of all points at distance 1 or 3 from a given line L, or the point set of a full generalized subhexagon of order $(s, \sqrt{\frac{t}{s}})$.

Proof.

- 1. If every point, lying inside or outside \mathcal{A} , is collinear with exactly one point of \mathcal{A} , the subspace \mathcal{A} is an ovoid by definition.
- 2. Suppose there is a point in \mathcal{A} , collinear with a second point of \mathcal{A} ; this means, suppose \mathcal{A} contains a line L.
 - (a) We show that for 2 points of \mathcal{A} , their distance $d_{\mathcal{A}}$ measured in \mathcal{A} will be the same as their distance d_{Γ} measured in Γ , provided we add to \mathcal{A} all lines N of Γ with $\Gamma_1(N) \subseteq \mathcal{A}$. Say $x, y \in \mathcal{A}$. If $d_{\Gamma}(x, y) < 6$, the unique path of length d_{Γ} between x and y also belongs

to \mathcal{A} . It follows that $d_{\Gamma}(x, y) = d_{\mathcal{A}}(x, y)$. Suppose $d_{\Gamma}(x, y) = 6$. 1 Suppose $d_{\Gamma}(x, L) = 5 = d_{\Gamma}(y, L)$. Draw the

unique path $(x, x_2, x_2, x_2x_3, x_3, L)$. As $d(x, x_3) = 4$ and $x, x_3 \in \mathcal{A}$, we know that all points of this path belong to \mathcal{A} . As $d_{\Gamma}(y, xx_2) = 5$, we can project y onto xx_2 , and call this projection y'. As d(y, y') = 4 and $y, y' \in \mathcal{A}$, all points of the path between y and y' belong to \mathcal{A} . So we constructed a path in \mathcal{A} of length 6 between x and y: $d_{\Gamma}(x, y) = d_{\mathcal{A}}(x, y)$. 2 For $d_{\Gamma}(x, L) \neq 5$ or $d_{\Gamma}(y, L) \neq 5$, the proof is completely similar.

- (b) Now we claim that there are two points of \mathcal{A} at distance 6 from each other. Take a point p of Γ , at distance 5 of L and denote the joining path by $(p, pp_2, p_2, p_2p_3, p_3, L)$. 1 If $p \in \mathcal{A}$, one can find s pairs (p, u), $u \in L$, with u at distance 6 from p. 2 If $p \notin \mathcal{A}$, p is collinear with a unique point x of \mathcal{A} . a If $x = p_2$, then take a point q collinear with p, but not on pp_2 . This point q does not belong to \mathcal{A} (as p is collinear with p, but not on pp_2 . This point q does not belong to \mathcal{A} (as p is collinear $(x, xp_2, p_2, p_2p_3, p_3, L)$) belongs to \mathcal{A} , and so does p, a contradiction. C If $x \notin pp_2$, then $d(x, p_3) = 6$.
- (c) At this point, we know 2 points of \mathcal{A} at distance 6 (in \mathcal{A}), say x and y. So \mathcal{A} contains at least one path (x, xx', x', M, y', y'y, y) between x and y (by (a)).

If \mathcal{A} contains an appartment, it is a full subhexagon of order (s, t'). By Thas [5], we know $st'^2 = t$. (Using the notations of the article mentioned, we know $P' = \text{point set of } \mathcal{A}, V = P$ and $W = \phi$. So |W| = d = 0, hence $t = st'^2$ if s = s'.) If Γ has order s, \mathcal{A} will be of order (s, 1).

If \mathcal{A} does not contain any appartment, we show that $\mathcal{A} = \Gamma_1(M) \cup \Gamma_3(M)$. 1] We show that every point of \mathcal{A} is at distance ≤ 3 from M.

Suppose $z \in \mathcal{A}, z \in \Gamma_5(M)$, $\operatorname{proj}_M z = z'$. Without loss of generality, $z' \neq y'$, so d(z, yy') = 5. As $\operatorname{proj}_{yy'} z = y''$ belongs to \mathcal{A} , there are 2

paths of length 6 joining z and y'. This is an appartment, and hence a contradiction.

[2] We show that every point of Γ at distance ≤ 3 from M belongs to \mathcal{A} . Suppose $u \notin \mathcal{A}, u \in \Gamma_3(M)$, $\operatorname{proj}_M u = u'$. Take a point z collinear with u, at distance 5 from M. As $z \notin \mathcal{A}$ (by the previous section), z is collinear with a unique point z' of \mathcal{A} . If $z' \in \Gamma_3(M)$, then there is a pentagon with edges $\{z', z, u, u', u' \bowtie z'\}$ (if d(u', z') = 4) or a quadrangle (if d(u', z') = 2). If $z' \in \Gamma_1(M)$, it's even worse: a quadrangle or a triangle arises.

5 Proof of the Main Result

5.1 Organization

By the previous classification, we distinguish 3 different types of ovoidal subspaces in a generalized hexagon. We will consider each of them separately in the proof of the Main Result. Our proof is organized as follows:

1. To start with, we let \mathcal{A} be an ovoid. As for all known finite generalized hexagons, it are only the ones with order s = t which possibly possess an ovoid, we first consider this particular case. In fact, this proof is already known. The main idea is to count the thin ideal subhexagons \mathcal{D} of the given hexagon Γ . This counting argument (1) can be written as follows:

$$X \le \beta \le Y$$

with

- X the number of pairs of opposite points through which there exists a \mathcal{D} containing 2 points of \mathcal{A} ;
- β the number of pairs of opposite points through which there exists a \mathcal{D} ;
- Y the number of pairs of opposite points.

Whenever $\boxed{1} X = \beta$, each \mathcal{D} contains 2 points of \mathcal{A} . Whenever $\boxed{2} \beta = Y$, we know that through each $x, y \in \mathcal{P}$, there is a \mathcal{D} .

For \mathcal{A} being an ovoid in Γ of order s, condition 1 as well as condition 2 will be satisfied. Hence the Main Result holds without condition (*).

2. Then we consider $\mathcal{A} = \Gamma_1(L) \cup \Gamma_3(L)$, Γ of order s. In lemma 2 we do approximately the same counting as mentioned before, and — as s = t — we conclude that 1 and 2 are satisfied. Hence the second part of the proof of the Main Result is completely similar to the first part. Here, too, the condition (*) is redundant.

- Let A be the point set of a full subhexagon in the third part. Here we can prove that Γ should be of order s, while A has order (s, 1). Indeed, if Γ of order (s, t) contains a subhexagon A of order (s, t'), we know t' ≤ s ≤ t (see [6] 1.8.8). As Γ has spanregular points, we know t ≤ s (see [6] 1.9.5). So t = s, and t' = 1 ([6]). Unfortunately, we cannot use the same counting argument (1), as X is never equal to Y if A is a thin full subhexagon. Nevertheless, we are able to rearrange the proof with only half of the countingargument: we assume that 2 β = Y (this is exactly condition (*)), and we don't use the (wrong) assumption 1 that X = β.
- 4. But by now, we can also re-arrange the proof in case of $\mathcal{A} = \Gamma_1(L) \cup \Gamma_3(L)$: we don't require s to be equal to t, but we assume condition (\star). Only using condition 2, we are still able to complete the proof.
- 5. At last, we can technically do the same for \mathcal{A} being an ovoid. Suppose you don't know anything of the order (s, t) of Γ , then assuming condition (\star) the Main Result is still true. (However, it is known $T(q, \sqrt[3]{q})$ does not have an ovoid.)

5.2 \mathcal{A} an ovoid, Γ of order s

Theorem 2 Let Γ be a finite generalized hexagon of order s containing an ovoid \mathcal{A} . Every point of \mathcal{A} is spanregular $\Leftrightarrow \Gamma$ is isomorphic to H(q), q = s.

Proof. This proof is given by V. De Smet and H. Van Maldeghem in [2]. ■

5.3 $\mathcal{A} = \Gamma_1(L) \cup \Gamma_3(L)$, Γ of order *s*.

For this part of the proof, we will use a similar counting argument (lemma 2) as used in [2].

Lemma 2 Let Γ be a finite generalized hexagon of order (s,t), which contains a set $\mathcal{A} = \Gamma_1(M) \cup \Gamma_3(M)$ for which all points are spannegular. Then every thin ideal subhexagon of Γ contains 2 collinear points of \mathcal{A} if and only if s = t.

Proof.

- 1. First we count the thin ideal subhexagons containing M. There are $\frac{(s+1)s^3t^2}{2}$ sets $\{u, v\}$ of opposite points in \mathcal{A} . As u is spanregular, there is a thin ideal subhexagon through u and v, named $\Gamma(u, v)$, containing M (see [6] 1.9.10). But in every ideal subhexagon $\Gamma(u, v)$, one can find t^2 sets $\{u', v'\}$ of opposite points in \mathcal{A} . So there are $\frac{s^3(s+1)}{2}$ thin ideal subhexagons containing M and hence containing 2 + 2t points of \mathcal{A} .
- 2. Now we count the thin ideal subhexagons \mathcal{D} containing two collinear points u, v of $\Gamma_3(M)$. Hence M is not a line of \mathcal{D} , as there are only 2 points on the line uv in \mathcal{D} . We count in 2 different ways the couples $(\{u, v\}, \mathcal{D})$, with $\{u, v\}$

a set of collinear points in $\Gamma_3(M)$, and \mathcal{D} a thin ideal subhexagon containing u and v (as u is spanregular, there will be an ideal subhexagon through u). Denoting the number of \mathcal{D} 's by X, it follows that

$$\frac{(s+1)s(s-1)t}{2} \cdot s^2 = 1 \cdot X$$

3. Now we compare these 2 quantities with the total number of thin ideal subhexagons in Γ . We count the pairs $(\{u, v\}, \mathcal{D})$ with $\{u, v\}$ a set of opposite points in Γ , and \mathcal{D} a thin ideal subhexagon containing u and v. Denoting the total number of \mathcal{D} 's by α , and noting that for each set $\{u, v\}$ there is at most 1 subhexagon \mathcal{D} , we know

$$\frac{(1+s)(1+st+s^2t^2)s^3t^2}{2} \cdot 1 \ge \frac{2(1+t+t^2)t^2}{2} \cdot \alpha$$

The total number of thin ideal subhexagons containing 2 (collinear) points of \mathcal{A} will be less than or equal to α :

$$\frac{(s+1)s^3}{2} + \frac{(s+1)s^3t(s-1)}{2} \le \alpha \le \frac{(1+s)(1+st+s^2t^2)s^3}{2(1+t+t^2)} \tag{1}$$

Equality in both cases is satisfied if and only if $t^2(t-s)(s-1) = 0$.

For s = t, we can conclude two things: the equality between the first and second quantity expresses that every \mathcal{D} contains 2 collinear points of \mathcal{A} ; while the second equality expresses that through every 2 points of Γ , there is a thin ideal subhexagon \mathcal{D} .

Corollary

Let Γ be a finite generalized hexagon of order (s,t), which contains a set $\mathcal{A} = \Gamma_1(M) \cup \Gamma_3(M)$ for which all points are spanregular. Then, through every 2 points at distance 6, there exists 1 thin ideal subhexagon; through every 2 points at distance 4, there are s thin ideal subhexagons; through every 2 points at distance 2, there are s^2 thin ideal subhexagons; through every point, there are s^3 thin ideal subhexagons.

Theorem 3 Let $\Gamma = (\mathcal{P}, \mathcal{L}, I)$ be a finite generalized hexagon of order s. Consider the set \mathcal{A} consisting of all points at distance 1 or 3 of a certain line. Every point of \mathcal{A} is spannegular $\Leftrightarrow \Gamma$ is isomorphic to H(q), q = s.

Proof.

- \leftarrow This follows from Ronan [4].
- ⇒ Due to Ronan [4] we have to prove all traces of Γ are ideal lines. So, for 2 points $x, y \in \mathcal{P}$ with $d(x, y) = 4, z = x \bowtie y$ we must prove that z^w , $w \in \Gamma_4(x) \cap \Gamma_4(y) \cap \Gamma_6(z)$, is independent of w.

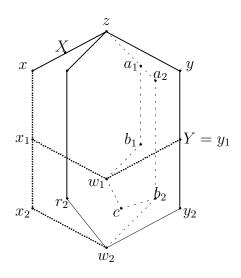


Figure 1: $X \neq Y, X = Z$

From the corollary, it follows that there are s thin ideal subhexagons \mathcal{D}_i containing x and y. They can be obtained by choosing a point y_i on a line through y at distance 5 from x and they all contain 2 collinear points of \mathcal{A} . Since there is only one trace z^w in \mathcal{D}_i (there are only 2 points on a line), $z^w = z^{w'}, \forall w, w' \in \Gamma_4(x) \cap \Gamma_4(y) \cap \mathcal{D}_i$. So we have to prove that $z^{w_1} = \ldots = z^{w_s}$ with $w_i \in \mathcal{D}_i$.

If $x \notin \mathcal{A}$, we denote the unique point of \mathcal{A} collinear with x by a capital letter X, possibly with some index i (depending on the thin ideal subhexagon \mathcal{D}_i where this point belongs to). The same for $y \sim Y$ and $z \sim Z$. We denote the line yY by L.

- (a) If $x \in \mathcal{A}$ or $y \in \mathcal{A}$ then it is immediate that z^w is ideal.
- (b) If X = Y = z then it is immediate that z^w is ideal.
- (c) Suppose $X \neq Y, X = Z$.

With every point $y_i \in L \setminus \{y\}$ (with $y_1 = Y$, without loss of generality), there corresponds a thin ideal subhexagon \mathcal{D}_i through x, y and y_i . First we look at \mathcal{D}_1 and the hyperbolic line $\langle x, y \rangle_1$ in \mathcal{D}_1 . We will show that the hyperbolic lines $\langle x, y \rangle_i$ in the other \mathcal{D}_i 's are the same.

Let y_2 be a point of $L \setminus \{y, y_1\}$ and let \mathcal{D}_2 be the thin ideal subhexagon through x, y and y_2 . By lemma 2, each \mathcal{D}_i contains 2 collinear points of \mathcal{A} , say r_i and s_i . If $d(r_i s_i, z) = 5$ and $\operatorname{proj}_{r_i s_i} z = r_i$, then $d(r_i, z) = 4$. If $d(r_i s_i, z) = 3$ and $\operatorname{proj}_{r_i s_i} z = r_i$, then $d(s_i, z) = 4$. If $d(r_i s_i, z) = 1$, then $r_i = s_i$ or $r_i = z$, a contradiction. So z is at distance 4 from one of these 2 points; say at distance 4 from r_i . Let $\mathcal{D}_i = \mathcal{D}_2$. Since r_2 and L are in \mathcal{D}_2 , also the shortest path between them lies in \mathcal{D}_2 . So the projection of r_2 onto L should be y_2 (as $d(r_2, y) = 6$), and we denote $r_2 \bowtie y_2$ by w_2 . As $d(w_2, xz) = 5$, also the path between w_2 and x belongs to \mathcal{D}_2 . Say $x_2 := w_2 \bowtie x$.

Denote $\operatorname{proj}_{xx_2}y_1$ by x_1 , and $x_1 \bowtie y_1$ by w_1 . Suppose that $\langle x, y \rangle_2 = z^{w_2}$ is

different from $\langle x, y \rangle_1 = z^{w_1}$. So there is a line N through z on which the point a_1 at distance 4 from w_1 is different from the point a_2 at distance 4 from w_2 . Denote $a_i \bowtie w_i$ by b_i . One can show (see [6] 1.9.9) that whenever a trace contains a spanregular point, this trace is an ideal line. As y_1 and r_2 are spanregular, we have ideal lines $\langle x_1, y_1 \rangle$ and $\langle x_2, y_2 \rangle$. So $w_1^z = w_1^{w_2}$ and $w_2^z = w_2^{w_1}$. As $b_2 \in w_2^z = w_2^{w_1}$, $d(b_2, w_1) = 4$. Denote $b_2 \bowtie w_1$ by c. As $c \in w_1^{w_2} = w_1^z$, d(c, z) = 4. But d(c, z) = 6 as one supposed that $(z, za_2, a_2, a_2b_2, b_2, b_2c, c)$ is a path of length 6. So this is a contradiction. To solve this, a_1 should be a_2 , and hence $b_1 = c$, and a_1, b_1, b_2 are collinear.

- (d) Suppose $X \neq Y, Y = Z$. Similar to the previous case.
- (e) Suppose $X \neq Y \neq Z \neq X$. If $Z \in z^w$ for some $w \in \Gamma_4(x) \cap \Gamma_4(y) \cap \Gamma_6(z)$ then $\langle x, y \rangle_w$ is ideal since it contains the spanregular point Z. If not, take a point $w \in \Gamma_4(x) \cap \Gamma_4(y) \cap \Gamma_6(z)$ and put $\operatorname{proj}_{zZ} w = t$. By case (c) (with x replaced by t, and with X replaced by T = Z), we have that $\langle t, y \rangle_w$ is ideal, so $\langle x, y \rangle_w$ is ideal.

5.4 A a full subhexagon, and conditon (*) is satisfied

Theorem 4 Let $\Gamma = (\mathcal{P}, \mathcal{L}, I)$ be a finite generalized hexagon of order (s, t). Consider a proper full subhexagon \mathcal{A} of Γ , and suppose there is a thin ideal subhexagon \mathcal{D} through any 2 points of Γ . Then every point of \mathcal{A} is spanregular $\Leftrightarrow \Gamma$ is isomorphic to H(q), q = s = t, with q a power of 3.

Proof.

 \leftarrow This follows from Ronan [4].

 \implies By the preliminary remark in lemma 2, we know that Γ has order s, and \mathcal{A} is thin.

If s = 2, the result is trivially true by Cohen and Tits [1]. Hence we may assume s > 2.

Due to Ronan [4] we have to prove that Γ has ideal lines. So, for 2 points $x, y \in \mathcal{P}$ with $d(x, y) = 4, z = x \bowtie y$ we must prove that $\langle x, y \rangle_w = z^w, w \in \Gamma_4(x) \cap \Gamma_4(y) \cap \Gamma_6(z)$, is independent of w.

As we supposed that any 2 opposite points are contained in a thin ideal subhexagon \mathcal{D} , there are $s \mathcal{D}_i$'s containing x and y. They can be obtained by choosing a point $y_i \neq y$ on a fixed line through y at distance 5 from x. Since there is only one trace z^w in \mathcal{D}_i , $z^w = z^{w'} \forall w, w' \in \Gamma_4(x) \cap \Gamma_4(y) \cap \Gamma_6(z) \cap \mathcal{D}_i$. So we have to prove that $z^{w_1} = \ldots = z^{w_s}$ with $w_i \in \mathcal{D}_i$.

If $x \notin \mathcal{A}$, we denote the unique point of \mathcal{A} collinear with x by a capital letter X and some index i (depending on the thin ideal subhexagon \mathcal{D}_i where this point belongs to). The same for $y \sim Y$ and $z \sim Z$.

- 1. If $x \in \mathcal{A}$ or $y \in \mathcal{A}$ then it is immediate that z^w is ideal.
- 2. If X = Y = z then it is immediate that z^w is ideal.
- 3. Suppose $X \neq Y \neq Z \neq X$ and d(X,Y) = 6, so $\mathcal{D}_1 = \Gamma(y,X) \neq \Gamma(x,Y) = \mathcal{D}_2$. Attaching indices, we get $X = X_1, Y = Y_2$. We denote $\operatorname{proj}_{xX_1}Y_2$ by x_2 , $\operatorname{proj}_{yY_2}X_1$ by y_1 , and $w_1 := X_1 \bowtie y_1, w_2 := x_2 \bowtie Y_2$.

Take a point $w_3 \in \Gamma_3(xX_1) \cap \Gamma_3(yY_2)$, $w_3 \neq z$, and suppose $\Gamma(z, w_3) = \mathcal{D}_3$ not equal to \mathcal{D}_1 or \mathcal{D}_2 . We show that $z^{w_1} = z^{w_2} = z^{w_3}$. As $X_1 \in w_1^z$ and $Y_2 \in w_2^z$, these traces are ideal lines. So $w_1^z = w_1^{w_2} = w_1^{w_3}$ and $w_2^z = w_2^{w_1} = w_2^{w_3}$. Using the same arguments (and notations) as in the proof of theorem 3 case (c), we know that $z^{w_1} = z^{w_2}$ and also $w_3^{w_1} = w_3^{w_2}$. Using this knowledge, we show that $z^{w_1} = z^{w_3}$.

Suppose $z^{w_1} \neq z^{w_3}$; this means there is a line N through z on which the point $a_1 = a_2$ at distance 4 from w_1 (and w_2) is different from the point a_3 at distance 4 from w_3 . Denote $a_i \bowtie w_i$ by b_i . In the proof of theorem 3, we showed already that a_1, b_1 and b_2 are collinear. As $b_1 \in w_1^z = w_1^{w_3}, d(b_1, w_3) = 4$. Similarly $d(b_2, w_3) = 4$. But then we have a pentagon, a quadrangle or a triangle, unless $w_3 \bowtie b_2 = w_3 \bowtie b_1$ and $w_3 \bowtie b_i \sim b_i$, i = 1, 2. Conclusion: $d(b_1b_2, w_3) = 3$ and $a_1 = a_2 = a_3$.

4. Suppose $X \neq Y \neq Z \neq X$ with d(X,Y) = 4, and suppose $s \ge 4$. So the path between $X = X_1$ and $Y = Y_1$ belongs also to \mathcal{A} and we can denote $X_1 \bowtie Y_1$ by the capital letter W_1 . Take a point $w_3 \in (\Gamma_3(xX_1) \cap \Gamma_3(yY_1)) \setminus \mathcal{D}_1$ and say $\operatorname{proj}_{yY_1}w_3 = y_3$, $\operatorname{proj}_{xX_1}w_3 = x_3$. Take a line through z, different from zx, zyor zZ, and project w_3 onto this line. The projection is the point u. As $u \notin \mathcal{A}$ (otherwise $z \notin \mathcal{A}$ would be collinear with 2 points of the ovoidal subspace), u is collinear with a unique point U of \mathcal{A} . Suppose this spanregular point is also at distance 4 from X_1 and Y_1 . Then we take another line through z, we project w_3 onto this line, denoting the projection and its unique collinear point of \mathcal{A} by v and V, respectively. Now we show that V is at distance 6 from at least one of the three points X_1, Y_1 or U. The points X_1, Y_1, U define an ordinary sixgon in the thin full subhexagon \mathcal{A} . Suppose d(U, V) = 4 and $T := U \bowtie V$. As there are only 2 lines through one point in \mathcal{A} , T should be on the line $\langle U, U \bowtie Y_1 \rangle$ or on the line $\langle U, U \bowtie X_1 \rangle$. Say $T \in \langle U, U \bowtie Y_1 \rangle$. If $T \neq U \bowtie Y_1, d(V, Y_1) = 6$. If $T = U \bowtie Y_1, V$ should be on the line $\langle U \bowtie Y_1, Y_1 \rangle$ (as there are only 2 lines through a point in \mathcal{A}), hence $d(V, X_1) = 6$. So in this situation one can find a spanregular point V = V' at distance 6 from X_1 , Y_1 or U. Suppose $d(V', X_1) = 6$. We now use case (3.) of this proof, for $X_1 \neq V' \neq Z \neq X_1.$

First suppose $d(w_3, V') = 6$, and see figure 2. Put $\operatorname{proj}_{xX_1} V' = x_2$, $\operatorname{proj}_{vV'} X_1 = v'_1$, $\operatorname{proj}_{vV'} x_3 = v'_3$, $w_3 \bowtie v = v_3$, $x_3 \bowtie v'_3 = w'_3$, $X_1 \bowtie v'_1 = w'_1$, $x_2 \bowtie V' = w'_2$. By case (3.) of the proof, $z^{w'_1} = z^{w'_2} = z^{w'_3} = z^a$, for all $a \in \Gamma_3(xx_3) \cap \Gamma_3(vv_3) \cap \Gamma_6(z)$. As w_3 and w'_3 are in the same thin ideal subhexagon $\mathcal{D}_3 = \Gamma(x_3, v)$, we know that $\langle x, v \rangle_{w_3} = \langle x, v \rangle_{w'_3}$. As $x, u, v, y \in \Gamma_2(z) \cap \mathcal{D}_3$, $\langle x, v \rangle_{w_3} = \langle x, y \rangle_{w_3}$. So $\langle x, y \rangle_{w_3} = \langle x, v \rangle_{w'_3} = \langle x, v \rangle_{w'_3} = \langle x, v \rangle_a$, for all $a \in \Gamma_3(xx_3) \cap \Gamma_3(vv_3) \cap \Gamma_6(z)$. This finishes the proof if $d(w_3, V') = 6$.

Suppose $d(w_3, V') = 4$. Then $\langle x, v \rangle_{w'_2} = \langle x, v \rangle_{w_3}$ by case (3.) of this proof.

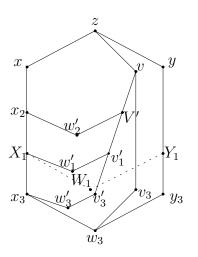


Figure 2: $d(X_1, Y_1) = 4, d(w_3, V') = 6$

Using $\langle x, y \rangle_{w_3} = \langle x, v \rangle_{w_3}$, we have the same result as before. Suppose $d(w_3, V') = 2$. Then $V' = v_3$. As in case (c) of the proof of theorem 3, one shows that $\langle x, v \rangle_{w_3} = \langle x, v \rangle_{w'_1}$.

4.bis Suppose s = t = 3.

As we assumed the existence of five lines through a point in the previous section, we now investigate the case s = t = 3, for $X \neq Y \neq Z \neq X$ and d(X,Y) = 4. So X_1, Y_1 are in the same \mathcal{D}_1 , and $W_1 := X_1 \bowtie Y_1$. Take w_3 at distance 3 from xX_1 and yY_1 , and define $x_3 := \operatorname{proj}_{xX_1} w_3$ and $y_3 := \operatorname{proj}_{yY_1} w_3$. As we must prove $\langle x, y \rangle_{W_1}$ to be equal to $\langle x, y \rangle_{w_3}$, we suppose $Z \notin \langle x, y \rangle_{w_3}$ (otherwise the proof is done). As Z is spanregular, x, Z define an ideal line $\langle x, Z \rangle$. If y would be in $\langle x, Z \rangle$, this would imply Z to be in $\langle x, y \rangle_{w_3}$ — a contradiction. For the same reason, $x \notin \langle y, Z \rangle$.

Now we look at the fourth line through z, let's call it L. As $\langle x, Z \rangle$ and $\langle y, Z \rangle$ are different ideal lines, their intersection only contains the point Z. So their respective intersection points with L are different — and by this named t_x and t_y , respectively.

Now we consider again the traces $\langle x, y \rangle_{W_1}$ and $\langle x, y \rangle_{w_3}$. If t_x would be in $\langle x, y \rangle_{w_3}$, the trace $\langle x, y \rangle_{w_3}$ contains 2 points (x and t_x) of the ideal line $\langle x, Z \rangle$, and hence $\langle x, y \rangle_{w_3} = \langle x, Z \rangle$. This is of course a contradiction. For the same reason, $t_y \notin \langle x, y \rangle_{w_3}$. We can conclude that $|\langle x, y \rangle_{w_3} \cap L \cap \langle x, y \rangle_{W_1}| = 1$, and we call this intersection point t. We put $a_1 := t \bowtie W_1$ and $a_3 := t \bowtie w_3$.

As W_1^z contains spanregular points X_1 and Y_1 , this trace is ideal. As $W_1^{w_3}$ intersects W_1^z in at least 2 points, $W_1^{w_3}$ should be equal to W_1^z . So $a_1 \in W_1^{w_3}$, which means $d(a_1, w_3) = 4$. If a_1 is not on the line ta_3 , there arises an ordinary pentagon with edges $t, a_1, a_1 \bowtie w_3, w_3, a_3$. So a_1 is on ta_3

Now we construct $s_1 := \operatorname{proj}_{zZ} W_1$; $s_3 := \operatorname{proj}_{zZ} w_3$; $b_1 := s_1 \bowtie W_1$; $b_3 := s_3 \bowtie w_3$. By a previous argument, neither s_1 nor s_3 coincide with Z (because $\langle x, Z \rangle$ is ideal and doesn't contain y). We know that $b_1 \in W_1^z = W_1^{w_3}$, so $d(b_1, w_3) = 4$. As there are only 4 lines through w_3 , and the lines w_3x_3, w_3a_3, w_3y_3 already correspond to the respective points $X_1, a_1, Y_1 \in W_1^{w_3}$, we know that $b_1 \bowtie w_3$ is on b_3w_3 . But this results in an ordinary pentagon $b_1, s_1, s_3, b_3, b_3 \bowtie b_1$ if b_1 is not on s_3b_3 . Conclusion: b_1 is on s_3b_3 and $s_1 = s_3$. So $z^{W_1} = z^{w_3}$, and this part of the proof is completed.

5. Suppose $X \neq Y = Z$.

Take $w_3 \in \Gamma_3(xX) \cap \Gamma_4(y)$, and say $\operatorname{proj}_{xX} w_3 = x_3$. Take a line N through z, different from zx or zy, and say $\operatorname{proj}_N w_3 = v_3$. As $v_3 \notin \mathcal{A}, v_3$ is collinear with a unique point $V \in \mathcal{A}, V \notin v_3 z$. At this point, we can use parts (3.) and (4.) of the proof to conclude that $\langle x, v_3 \rangle_{w_3} = \langle x, v_3 \rangle_{w_i}$, i = 1, 2, 3. As $x, y, v_3 \in \Gamma_2(z) \cap \mathcal{D}_3$, we know $\langle x, y \rangle_{w_3} = \langle x, v_3 \rangle_{w_3}$, so $\langle x, y \rangle_{w_3}$ is ideal.

By now, we know $\Gamma \cong H(q)$. As Γ contains a full as well as ideal subhexagons, q must be a power of 3 by [6] 3.5.7.

5.5 $\mathcal{A} = \Gamma_1(L) \cup \Gamma_3(L)$, Γ of order (s, t), and condition (*) is satisfied

Theorem 5 Let $\Gamma = (\mathcal{P}, \mathcal{L}, I)$ be a finite generalized hexagon of order (s, t). Consider the set \mathcal{A} consisting of all points at distance 1 or 3 from a certain line L, and suppose there is a thin ideal subhexagon \mathcal{D} through any 2 points of Γ . Then every point of \mathcal{A} is spanregular $\Leftrightarrow \Gamma$ is isomorphic to H(s) or to $T(s, \sqrt[3]{s})$.

Proof. If $s \neq t$, we cannot use lemma 2. But by assuming $\beta = Y$ (see 5.1.1), we can re-arrange the (provisional) proof of theorem 3 in the same way as in proof 4: the new proof only uses the second equality in (1).

Where possible, we refer to the proof of theorem 4.

 \Leftarrow This follows from Ronan [4].

 \Rightarrow Due to Ronan [4] we have to prove that Γ has ideal lines.

For $z^w = z^{w'} \forall w, w' \in \Gamma_4(x) \cap \Gamma_4(y) \cap \mathcal{D}_i$: cfr. theorem 4. For $z^{w_1} = \ldots = z^{w_s}$ with $w_i \in \mathcal{D}_i$: cfr. below.

- 1. cfr. theorem 4(1.)
- 2. cfr. theorem 4(2.)
- 3. cfr. theorem 4(3.)
- 4. cfr. theorem 4 (4.): Suppose $X \neq Y \neq Z \neq X$ and d(X,Y) = 4. So the path between $X = X_1$ and $Y = Y_1$ belongs also to \mathcal{A} and we can denote $X_1 \bowtie Y_1$ by the capital letter W_1 . Take a point $w_3 \in (\Gamma_3(xX_1) \cap \Gamma_3(yY_1)) \setminus \mathcal{D}_1$ and say $\operatorname{proj}_{yY_1}w_3 = y_3$, $\operatorname{proj}_{xX_1}w_3 = x_3$. Take a line through z, different from zx, zyor zZ, and project w_3 onto this line. The projection is the point u^1 . As $u^1 \notin \mathcal{A}$ (otherwise $z \notin \mathcal{A}$ would be collinear with 2 point of the ovoidal subspace), u^1 is collinear with a unique point U^1 of \mathcal{A} .

New for this proof:

We can do the same for the remaining lines through z, to obtain the points U^1, \ldots, U^{t-2} .

(•) If we suppose that none of these points U^j is at distance 6 from X_1 or at distance 6 from Y_1 , then they should all be at distance 4 from X_1 and Y_1 , and hence at distance 2 from W_1 (as \mathcal{A} contains no appartment). So W_1 is a point of the 'central' line L of \mathcal{A} . None of the t lines W_1X_1, W_1Y_1, W_1U^j is equal to L. Indeed, suppose $W_1U^1 = L$. We know $Z \in \mathcal{A} = \Gamma_1(L) \cup \Gamma_3(L)$, so $d(Z, W_1U^1) = 3$ (as Z doesn't belong to W_1U^1). But this results in an ordinary pentagon. Conclusion: the line L is the projection of Z onto W_1 , and this completes the linepencil $\Gamma(W_1)$. So $d(W_1, Z) = 4$. This means: $Z \in z^{W_1} = \langle x, y \rangle_{W_1}$. By this, $\langle x, y \rangle_{W_1}$ contains a spanregular point and hence is ideal.

If on the other hand the assumption (\bullet) is false, i.e. if there is a point U^j at distance 6 from X_1 or Y_1 , then we refer to theorem 4 (4.) for the remaining part of the proof.

5. cfr. theorem 4(5.)

5.6 \mathcal{A} an ovoid, Γ of order (s, t), and condition (*) is satisfied

Theorem 6 Let $\Gamma = (\mathcal{P}, \mathcal{L}, I)$ be a finite generalized hexagon of order (s, t) containing an ovoid \mathcal{A} . Suppose there is a thin ideal subhexagon \mathcal{D} through any 2 points of Γ . Then every point of \mathcal{A} is spanregular $\Leftrightarrow \Gamma$ is isomorphic to H(q), q = s.

Proof. In a completely similar way as in the proof of theorem 4 — noting that all points of \mathcal{A} are at distance 6 from each other (and hence case (4.) of the proof of 4 cannot occur) —, we prove that Γ is classical. As it is known that $T(q, \sqrt[3]{q})$ does not have an ovoid (see [6] 7.2.4), Γ is isomorphic to H(q), s = t = q.

References

- A. Cohen and J. Tits. On generalized hexagons and a near octagon whose lines have three points. *European J. Combin.*, 6:13–27, 1985.
- [2] V. De Smet and H. Van Maldeghem. Ovoids and windows in finite generalized hexagons. In F. De Clerck et al., editor, *Finite Geometry and Combinatorics*, pages 131–138. Cambridge University Press, London, 1993.
- [3] S. E. Payne and J. A. Thas. *Finite generalized quadrangles*. Pitman, Boston, Boston, 1984.
- [4] M. A. Ronan. A geometric characterization of moufang hexagons. *Invent. Math.*, 57:227–262, 1980.
- [5] J. A. Thas. A restriction on the parameters of a subhexagon. J. Combin. Theory Ser. A, 21:115–117, 1976.

[6] H. Van Maldeghem. Generalized Polygons. Birkhäuser, Basel, to appear.

Leen Brouns and Hendrik Van Maldeghem Universiteit Gent Vakgroep Zuivere Wiskunde en Computeralgebra Galglaan 2 9000 Gent e-mail: lb@cage.rug.ac.be e-mail: hvm@cage.rug.ac.be