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ABSTRACT. We prove two new characterization theorems for
finite Moufang polygons, one purely combinatorial, another
group-theoretical. Both follow from a result of Andries Brouwer
on the connectedness of the geometry opposite a flag in a finite
generalized polygon.

1 Introduction

Some time ago in Oberwolfach, I heard Andries Brouwer talk about the
geometry far away from a flag in a spherical building. It crossed my mind
that in case of generalized polygons (which are after all the rank 2 spherical
buildings), this theory could have some implications on characterization
results. So I asked Andries if he knew something on the connectedness of
these geometries for generalized polygons. The next morning Andries came
with the answer, which he published in the meantime, see Brouwer [1]. The
result is apparently also useful for other purposes, for instance, Bernhard
Miihlherr and Mark Ronan use it to prove the Moufang property for almost
all twin buildings without an oco-stroke in the diagram. The applications
I had in mind were not so far-reaching and I have collected them in the
present paper.

A generalized n-gon (or polygon) is a point-line geometry the incidence
graph of which has girth 2n and diameter n (the girth being the length of
the smallest circuit), and we assume in this paper n > 3. If every element
of a generalized polygon I is incident with at least three other elements,
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then I is said to be thick. For a thick generalized polygon, it is easily seen
that the number s + 1 of points on a line is a constant and the number
t 41 of lines through a point is constant. The pair (s, t) is sometimes called
the order or the parameters of the polygon. Generalized polygons were
introduced by Tits [6], who remarked in [7] that from Theorem D of Fong
& Seitz [4] follows that all finite generalized polygons satisfying the so-called
Moufang condition arise naturally from finite Chevalley groups of (relative)
rank 2. These examples are sometimes called classical and they belong to
the following list: the symplectic (Spa(g)), orthogonal (O4(g), O3 (g)) and
Hermitian (H3(q), H4(q)) quadrangles; the split Cayley (G2(q)) and triality
(3D4(g)) hexagons and the Ree-Tits octagons (*Fy(q)) or their duals.

It is still an unsolved question whether there exist thick non-Moufang
finite generalized hexagons or octagons. Every characterization theorem
of the Moufang ones can therefore be useful in proving or disproving this
existence. This is the main motivation for this paper. Another motivation
is the fact that we deal with results valid for all polygons and not only
quadrangles or hexagons or etc. Common properties, characterizations and
proofs must eventually lead to a better understanding of the corresponding
exceptional Chevalley groups.

2 Main results

Let T' be a finite generalized n-gon. Then n € {3,4,6,8} by a result of
Feit & Higman [3]. For a positive integer k, a k-path is a sequence of
k + 1 consecutively incident elements which are all distinct. A 1-path is
also called a flag or a chamber. A (2n — 1)-path the extremities of which
are incident is an ordered apartment (the last two terms are inherited from
the buildingterminology). The elements of an ordered apartment form
an ordinary apartment. The polygon I' satisfies the k-Moufang condition,
or is a k-Moufang polygon, if for any k-path v = (zo,z1,...,Zk), the
collineation group of I fixing every element incident with z1,z2... or zx—3
acts transitively on the set of apartments containing all elements of .
With this definition, a Moufang polygon is simply an n-Moufang n-gon, for
some 7, and a Tits polygon (i.e. a polygon arising from an irreducible Tits
system, or a group with a BN-pair, of relative rank 2) is nothing other
than a 1-Moufang polygon. It is straightforward to see that k-Moufang
implies (k — 1)-Moufang. In Van Maldeghem & Weiss [9], it is shown that
4-Moufang implies n-Moufang, n > 4, and for firite generalized n-gons,
3-Moufang implies n-Moufang. Our first main result is:

Theorem 2.1 Every thick finite 2-Moufang polygon is a 3-Moufang poly-
gon, and hence a Moufang polygon.
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All the results mentioned so far can be proved without imposing the
classification of the finite simple groups. Assuming that classification, it is
possible to show that 1-Moufang implies Moufang, see Buekenhout & Van
Maldeghem [2], and that finishes the whole business. A classification free
proof of that result seems not to be for the near future and so the present
result could be a step in that direction.

For our second main result, we need some further preparations. Opposite
elements in a generalized n-gon are elements at mutual distance n. If two
elements z and y are not opposite, then the projection of z onto y is the
unique element incident with y closest to z (with respect to the natural dis-
tance function § in I', namely the one inherited from the incidence graph).
The distance of an element z to a flag {p, L} is the minimum of §(z, p) and
6(z, L).

Now we fix a flag F = {p, L} of " (and assume that p is a point and L
a line). Given an element z, the projection of z onto {p, L} is the unique
element incident with p or L, different from both p and L and closest to z.
It is equal to the projection of z onto p if the projection of z onto L is p (and
dually). A k-path (zo,z1,...,zx) such that §(zk, F) = 6(xo, F)+k =n—1
will be called a staircase up; a staircase down is a staircase up in reversed
order. A passage is a sequence of consecutively incident elements all at
distance n — 1 from F. A tour is the juxtaposition of a staircase up, a
passage and a staircase down (in that order), with the additional condition
that the last element is the same as the first one. Note that all elements
of a staircase up (respectively down) have the same projection onto F and
we call that projection the base step of the staircase.

Suppose (z,y) is a passage (respectively two consecutive element of a
staircase down) and z is an element having the same projection onto (respec-
tively the same projection onto and the same distance from) F as = does.
Then there exists a unique element u incident with z such that « has the
same projection onto (respectively distance from) F as y does. We denote u
by 2(z,y). Now consider a tour vy = (1,72, ¥3), where v; = (zo,z1,... ,Zk)
is a staircase up, v2 = (vo, 1, ... ,%e) is a passage (with the technical con-
vention that zx = yo) and y3 = (yer1,... ,¥m = Zo) is a staircase down.
For a given staircase up 7; with the same base step as v;, one can uniquely
define a path v5 3 = (20, 21, ... , 2m) inductively by z; = (%i—1)(y:_1,y:) and
zo is the last element of I'}. We call 3 5 parallel to v27y3. If for every choice
of v and ~1, the juxtaposition of v and 35 is a tour, then we call the
chamber F a master chamber. Our second main result reads:

Theorem 2.2 If in a thick finite generalized polygon v all chambers in
one apartment are master chambers, then I' is a Moufang polygon, except
possibly in the cases where I' is a hezagon of order (3,3) or an octagon of

order (2,4) or (4,2).

187



Note that both theorems are well-known in the case of projective planes,
where they even hold in the infinite case. So we may as well assume that
n > 4. The exclusion of hexagons of order (3,3) and octagons with st = 8
is not a serious problem and could with some effort be solved, but it is
believed that they are unique and so the effort is not worth the goal.

Also remark that the converse of both theorems is true. These are easy
consequences of the 3-Moufang property of Moufang polygons.

3 Proof of Theorem 2.1

Suppose T is a thick finite 2-Moufang n-gon, n > 4. Fix a chamber {p, L},
with p a point and L a line. Suppose first that s = 2. Every collineation
fixing all lines through p and fixing one further point on L fixes all points
on L. Therefore T is 3-Moufang and hence Moufang by Van Maldeghem
& Weiss [9]. Now suppose that (s,t) = (3,3) and n = 6. Then the result
follows directly from Yanushka [10]. So by Brouwer [1], we may assume
that the geometry induced by I" on the points and lines at distance n — 1
from {p, L} is connected. Let z and y be two points opposite p (note that
n is even) with common projection p’ onto L. We show that there exists a
collineation fixing all points on L and all lines through p and mapping z to
y. Let (z, M1,z1, Ma, Za, ... ,y) be a shortest path from z to y all elements
of which are at distance n—1 from {p, L}. Let u be the projection of p onto
Ms. By an inductory argument, we may assume y = u. By the 1-Moufang
assumption, there exists a collineation @ of I fixing all lines through p and
mapping z to z;. Dually, there exists a collineation o fixing all points on
L and mapping M; to M, (and thus fixing z; and mapping z to u). The
collineation 80— 16~ 1o fixes all points on L and all lines through p and maps
z to w. Hence our claim. But this means that T is 3-Moufang. The theorem
is proved.

A nice corollary is the following:

Corollary 3.1 A finite generalized quadrangle which contains an apart-
ment all poinis and lines of which are elation points and elation lines has
the Moufang property.

Indeed, an elation point p is exactly a point such that there exists a
collineation group fixing all lines through p and acting regularly on the
points opposite p, see e.g. Payne & Thas [5]. Dually, on finds the definition
of an elation line. But the assumptions of Corollary 3.1 readily imply that
every point is an elation point and every line is an elation line and so the
quadrangle is 2-Moufang.

An interesting question is whether all finite generalized quadrangles all
points of which are elation points can be classified without the classification
of the finite simple groups.

188



4 Proof of Theorem 2.2

Suppose every chamber in a certain apartment X of a finite thick generalized
n-gon I' is a master chamber. With the assumptions of Theorem 2.2, it
follows from Brouwer [1] that the geometry at distance n — 1 from such a
chamber F = {p, L} is connected. Let = and y be two points opposite p
having the same projection onto L. We construct a collineation 4 fixing all
points on L and all lines through p and mapping z to y in the classical way
as follows. If a is any element, then there exist a passage and a staircase
down the juxtaposition of which is a path from z to a. The last element
of the parallel to that path starting in y is by definition the image of a
by 6. This definition does not depend on the choice of the passage or
the staircase down, because another choice gives rise to a tour and so the
parallels must also form a tour by the master chamber condition. Incidence
is automatically preserved since every flag can be put into a passage or a
staircase down. This completes the proof of the theorem.

An interesting problem is to find weaker conditions by putting certain
conditions on the tours, e.g. Van Maldeghem, Payne & Thas [8] prove that
if n = 4, then it suffices to require the property only for apartments (viewed
as tours). A similar result for hexagons or octagons is not known and seems
hard to prove.
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