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Abstract

We define the notion of a translation ovoid in the classical generalized quadran-
gles and hexagons of order q, and we enumerate all known examples; translation
spreads are defined dually. A modification of the known ovoids in the generalized
hexagon H(q), q = 32h+1, yields new ovoids of that hexagon. Dualizing and pro-
jecting along reguli, we obtain an alternative construction of the Roman ovoids due
to Thas & Payne [21]. Also, we construct a new translation spread in H(q) for
any q ≡ 1 mod 3, q odd, with the property that any projection along reguli yields
the classical ovoid in the generalized quadrangle Q(4, q); finally, we prove that for
q odd, the new example is the only non-hermitian translation spread in H(q) with
the property that any projection along reguli yields the classical ovoid in Q(4, q).

Mathematics Subject Classification (1991) numbers: 51E12,51E20.
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1 Introduction

A finite generalized n-gon is a point-line geometry whose incidence graph has diameter n
and girth 2n. A generalized 3-gon is a (generalized) projective plane; generalized 4-gons
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and 6-gons are usually called (generalized) quadrangles and hexagons respectively. These
notions were introduced by Tits [22]. If for a generalized n-gon Γ there exist positive
integers s, t such that all lines are incident with s + 1 points and all points are incident
with t + 1 lines, then we say that Γ has order (s, t). In this paper, we will only consider
finite generalized n-gons of order (s, t) with s, t > 1; finiteness means that both s and t
are finite. In fact, we will only consider two specific examples of generalized quadrangles
and hexagons, i.e., the quadrangle Q(4, q) and the hexagon H(q) (for the definitions, see
below), together with their duals (obtained by switching the terms ‘points’ and ‘lines’).
Note that finite generalized n-gons of order (s, t) with s, t > 1 only exist for n = 2, 3, 4, 6, 8
(by the result of Feit & Higman [3]).

Let n = 2m be equal to 4 or 6 and suppose that Γ is a finite generalized n-gon of order
(s, t) with s, t > 1. We call two elements opposite if they are at distance n in the incidence
graph. An ovoid of Γ is a set of sm−1t + 1 mutually opposite points (that is the maximal
number of mutually opposite points); dually one defines a spread. The aim of the paper
is to construct new examples of ovoids in the polygons Q(4, q), H(q) and their duals,
and to give new constructions of some known ovoids in these polygons. Along with these
constructions, we prove some classification results. The basic idea is to look for examples
with a relatively large automorphism group. This is expressed by introducing the notion
of a translation ovoid or spread (with respect to a point, a line or a flag).

The paper is organized as follows. In section 2 we introduce the various notions we need:
the quadrangle Q(4, q) and its dual W (q), the generalized hexagon H(q) and its dual,
coordinatization, the polar space Q(6, q), translation ovoids and spreads, the projection
of an ovoid of H(q) into Q(4, q), the projection along reguli of a translation spread of H(q)
into Q(4, q). In section 3, we briefly survey the known examples of ovoids and spreads
in Q(4, q) and H(q), and we prove some characterization results for them. In section 4,
we construct new ovoids of H(q) for q = 3h and we show that in the dual of H(q) the
projection along reguli of the dual of these ovoids yields a geometric construction of the
Roman ovoids due to Thas & Payne [21]. In section 5, we construct a new translation
ovoid in the dual of H(q) for all q odd with q ≡ 1 mod 3, or equivalently, a new translation
spread in H(q) for any such q. We also classify for all odd q the translation spreads of
H(q) (or more generally, the locally hermitian spreads of H(q)) for which any projection
along reguli yields a classical ovoid in Q(4, q).

Part of this paper was included in the Ph.D. thesis of the first author.
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2 Definitions and notation

2.1 The quadrangle Q(4, q)

Let Γ be the point-line geometry obtained from a non-singular quadric Q(4, q) in PG(4, q)
by taking for points the points of the quadric, for lines the lines of PG(4, q) which lie
entirely on Q(4, q) together with the natural incidence relation. Then Γ is a generalized
quadrangle, also denoted by Q(4, q); see Payne & Thas [12]. If Q(4, q) has equation
X2

0 −X1X2 −X3X4 = 0, then we may relabel the points and lines according to Table 1
and call this a coordinatization. The incidence relation in terms of these coordinates is as
follows:

[k, b, k′] I (k, b) I [k] I (∞) I [∞] I (a) I [a, l] I (a, l, a′)

for all a, a′, b, k, k′, l ∈ GF(q), and

(a, l, a′) I [k, b, k′] ⇔
{

b = ak2 + a′ − 2kl,
l = ak + k′.

(1)

POINTS
Coordinates in Q(4, q) Coordinates in PG(4, q)

(∞) (0, 1, 0, 0, 0)
(a) (0,−a, 0, 1, 0)

(k, b) (k,−b, 0, k2, 1)
(a, l, a′) (l, l2 − aa′, 1, a′, a)

LINES
Coordinates in Q(4, q) Representation in PG(4, q)

[∞] 〈(0, 1, 0, 0, 0), (0, 0, 0, 1, 0)〉
[k] 〈(0, 1, 0, 0, 0), (k, 0, 0, k2, 1)〉

[a, l] 〈(0,−a, 0, 1, 0), (l, l2, 1, 0, a)〉
[k, b, k′] 〈(k,−b, 0, k2, 1), (k′, k′2, 1, b + 2kk′, 0)〉

Table 1: Coordinatization of Q(4, q).

This coordinatization is a special case of a more general theory; see Hanssens & Van
Maldeghem [5, 6].

2.2 The hexagon H(q) and the polar space Q(6, q)

Let Q(6, q) be a non-singular quadric in PG(6, q). An i-system of Q(6, q), i ∈ {0, 1, 2},
is a set S of q3 + 1 i-dimensional projective subspaces of Q(6, q) such that any plane of
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Q(6, q) containing a member of S has no point in common with any other member of S
(see Shult & Thas [15]). A 0-system is called an ovoid of Q(6, q); a 2-system is called
a spread of Q(6, q).

Now let Q(6, q) be defined by the equation X2
3 = X0X4 + X1X5 + X2X6. Then Tits [22]

defines the generalized hexagon H(q) as follows. The points are all points of Q(6, q). The
lines are those lines of Q(6, q) whose Grassmann (Plücker) coordinates satisfy

p34 = p12, p35 = p20, p36 = p01,
p03 = p56, p13 = p64, p23 = p45

(for the definition of Grassmann coordinates, see e.g. Hirschfeld & Thas [7]). Just
as for Q(4, q), there exists a coordinatization of H(q); it is given in Table 2. Incidence is
given by

[k, b, k′, b′, k′′] I (k, b, k′, b′) I [k, b, k′] I (k, b) I [k] I (∞) I

[∞] I (a) I [a, l] I (a, l, a′) I [a, l, a′, l′] I (a, l, a′, l′, a′′),

for all a, a′, a′′, b, b′, k, k′, k′′, l, l′ ∈ GF(q), and by

(a, l, a′, l′, a′′) I [k, b, k′, b′, k′′] ⇔






b = a′′ − ak,
a′ = a2k + b′ + 2ab,
l = k′′ − ka3 − 3ba2 − 3ab′,
k′ = k2a3 + l′ − kl − 3a2a′′k − 3a′a′′ + 3aa′′2

(2)

(see De Smet & Van Maldeghem [2]). A point regulus on H(q) is a set of q+1 points at
distance 3 (in the incidence graph) from two opposite lines, and hence at distance 3 from
q+1 opposite lines by Ronan [14]. Dually, one defines a line regulus. The point regulus on
H(q) defined by the lines [0, 0] and [0, 0, 0] is the set {(∞)}∪{(0, 0, a′, 0, 0)|a′ ∈ GF(q)}. In
PG(6, q), this is readily seen to be the set of points with coordinates (a′2, 0, 0, a′d, d2, 0, 0),
with (0, 0) *= (a′, d) ∈ GF(q)2. Hence this represents a conic on Q(6, q). Dually, the line
regulus R on H(q) defined by the points (0, 0) and (0, 0, 0) is the set

{[∞]} ∪ {[0, 0, k′, 0, 0]|k′ ∈ GF(q)}.

In PG(6, q), all these lines form one set of generators of the hyperbolic quadric obtained
by intersecting Q(6, q) with the subspace with equations X1 = X3 = X5 = 0. The
hyperbolic quadric itself has equations X0X4 + X2X6 = X1 = X3 = X5 = 0. Hence, for
every point x on any member of the line regulus R, there is a unique line LR

x in Q(6, q)
through x and meeting every member of R non-trivially. We call LR

x the transversal of
R in x.
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POINTS
Coordinates in H(q) Coordinates in PG(6, q)

(∞) (1, 0, 0, 0, 0, 0, 0)
(a) (a, 0, 0, 0, 0, 0, 1)

(k, b) (b, 0, 0, 0, 0, 1,−k)
(a, l, a′) (−l − aa′, 1, 0,−a, 0, a2,−a′)

(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 − b′k)
(a, l, a′, l′, a′′) (−al′ + a′2 + a′′l + aa′a′′,−a′′,−a,−a′ + aa′′,

1, l + 2aa′ − a2a′′,−l′ + a′a′′)

LINES
Coordinates in H(q) Representation in PG(6, q)

[∞] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1)〉
[k] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1,−k)〉

[a, l] 〈(a, 0, 0, 0, 0, 0, 1), (−l, 1, 0,−a, 0, a2, 0)〉
[k, b, k′] 〈(b, 0, 0, 0, 0, 1,−k), (k′, k, 1, b, 0, 0, b2)〉

[a, l, a′, l′] 〈(−l − aa′, 1, 0,−a, 0, a2,−a′),
(−al′ + a′2, 0,−a,−a′, 1, l + 2aa′,−l′)〉

[k, b, k′, b′, k′′] 〈(k′ + bb′, k, 1, b, 0, b′, b2 − b′k),
(b′2 + k′′b,−b, 0,−b′, 1, k′′,−kk′′ − k′ − 2bb′)〉

Table 2: Coordinatization of H(q).

Note that every line regulus R is determined by any two of its elements. Therefore, we
denote sometimes the line regulus containing two lines L, M by R(L, M). Similarly for
point reguli. Also, the set of points at distance 3 from all elements of a line regulus forms
a point regulus and dually, all lines at distance 3 from all points of a point regulus forms
a line regulus. We call such reguli associated.

2.3 Translation ovoids

The definition of translation ovoid is inspired by the definition of a translation oval in
the projective plane PG(2, q), for q even. We introduce translation ovoids in general
for quadrangles and hexagons of order (s, t), but we will only deal with the case s = t.
Note that also the infinite case can be included in the following definitions, but we do
not insist on this because almost all interesting features of ovoids and spreads happen in
finite geometry.

Let Γ = (P ,B, I) be a generalized 2m-gon, m = 2, 3, of order (s, t) and let O be an ovoid
of Γ which contains the point x ∈ P. Let us denote by Γi(y) the set of points of Γ at
distance i from the point y (measured in the incidence graph of Γ). Let L be a line of Γ
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incident with x. It is easily seen that for each point y *= x on L, there are exactly sm−2t
elements in Vy := (O \ {x}) ∪ Γ2m−2(y). We call the ovoid O a translation ovoid with
respect to the flag {x, L} if there exists a group G{x,L} < Aut(Γ), which fixes the ovoid O,
which fixes x linewise and L pointwise, and which acts transitively on the points of each
set Vy, with y ∈ L \ {x} (viewing a line as the set of points incident with it). Also, the
ovoid O is a translation ovoid with respect to the point x if O is a translation ovoid with
respect to the flag {x, M}, for each line M through x. Note that, if O is a translation
ovoid with respect to the flag {x, L}, then in the above necessarily |G{x,L}| = sm−2t and
the action mentioned is regular. Indeed, any collineation of H(q) fixing all lines through
x, fixing all points on L and fixing at least one point of H(q) opposite x is readily seen
to be the identity. If O is a translation ovoid with respect to the flag {x, L}, respectively
the point x, the group G{x,L}, respectively G{x} = 〈G{x,M}|M I x〉, is referred to as the
group associated with the translation ovoid O with respect to {x, L}, respectively x.

Of course, the dual of a translation ovoid w. r. t. a point (resp. a flag) is called a translation
spread w. r. t. a line (resp. a flag).

Now let O be any ovoid of H(q). Then by Thas [17], O is an ovoid of Q(6, q) and,
conversely, any ovoid of Q(6, q) is an ovoid of H(q). Also, a spread of H(q) is a 1-system
of Q(6, q); see Shult & Thas [15]. Finally, if O is an ovoid of H(q), then the set of
planes of Q(6, q) whose points are the points collinear in H(q) with a point of O forms a
spread of Q(6, q).

Let O be any ovoid of Q(6, q) and consider a point x of Q(6, q) not contained in O. The
geometry Γx whose point set is the set of lines of Q(6, q) through x and whose line set
is the set of planes of Q(6, q) through x (with natural incidence) is isomorphic to the
quadrangle Q(4, q). The set of lines xy of Q(6, q), where y ∈ O, defines an ovoid O′ of
Q(4, q). We call O′ the projection of O from x. Hence every ovoid of H(q) gives rise to
ovoids of Q(4, q).

Now let S be a spread of H(q) with the following property: there is a line L of S such that
for every M ∈ S \ {L} we have R(L, M) ⊆ S. Then we say that S is locally hermitian
(in L) and we call L a hermitian line of S. Let x be any point on L. In Γx (see above)
we consider the set of points O formed by the transversals in x of the line reguli in S
containing L. We show that O is an ovoid of Γx, and we call that ovoid the projection of
S from x along reguli. To that end, we first mention the following theorem.

Theorem 1 (Shult & Thas [15], Theorems 5 and 6) Let S be a 1-system of Q(6, q).
(a) If PG(5, q) is a hyperplane of PG(6, q) which intersects Q(6, q) in a hyperbolic quadric
Q+(5, q), then PG(5, q) contains exactly q + 1 elements of S.
(b) If the hyperplane PG(5, q) of PG(6, q) is tangent to Q(6, q) at the point y, where y
is not on an element of S, then PG(5, q) contains exactly q + 1 elements of S.
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We will usually apply this theorem to spreads of H(q), in view of the previously mentioned
fact that every spread of H(q) is a 1-system of Q(6, q).

Theorem 2 Let S be a spread of H(q) which is locally hermitian in some line L. Let x
be any point incident with L. Then the projection along reguli of S from x is an ovoid of
Γx
∼= Q(4, q).

PROOF. Consider the set O of Γx
∼= Q(4, q) which is the projection along reguli of the

locally hermitian spread S from a point x on a hermitian line of S. Suppose two points of
O are collinear in Γx. Then the two corresponding reguli R1 and R2 of S are contained
in a hyperplane π of PG(6, q) which meets Q(6, q) in a quadric Q containing planes. By
the previous theorem, Q is not of hyperbolic non-singular type. Hence π is a tangent
hyperplane of Q(6, q) and all points of Q are, in H(q), at distance ≤ 4 from some fixed
point y of H(q). It is easily seen that y must belong to the point reguli associated with
respectively R1 and R2. But then clearly R1 ∪R2 contains pairs of elements at distance
4 from each other, a contradiction. !

3 Examples and properties

3.1 Translation ovoids and translation spreads in H(q)

Some general results

Lemma 3 Let S be a spread of H(q) containing the line [∞]. Then for every triple
(k, b, k′) ∈ GF(q)3, there exist unique elements f1(k, b, k′) and f2(k, b, k′) in GF(q) such
that the line [k, b, k′, f1(k, b, k′), f2(k, b, k′)] belongs to S.

PROOF. There are q2 + q + 1 lines of H(q) concurrent with a fixed line of S. In
total, there are (q3 + 1)(q2 + q + 1) lines of the hexagon concurrent with some line of S,
since no line of H(q) can meet at least two members of S. But H(q) contains exactly
(q3 + 1)(q2 + q + 1) lines, hence every line of H(q) not belonging to S is concurrent with
exactly one member of S. The mappings f1 and f2 are now defined by saying that the
line [k, b, k′, f1(k, b, k′), f2(k, b, k′)] of S is concurrent with the line [k, b, k′] (the latter does
not belong to S and is not concurrent with [∞]). !

Lemma 4 The group G[∞] of automorphisms of H(q) generated by all collineations fixing
all points incident with [∞] and stabilizing all lines through some point of [∞] has order
q5 and acts regularly on the set of lines of H(q) opposite [∞] (or equivalently, the set of
lines with 5 coordinates).
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PROOF. This follows from the fact that H(q) satisfies the so-called Moufang condition.
In Tits’ notation, our group G[∞] is contained in U+ (see Tits [24]) and is in fact equal
to the product of 5 so-called root groups U1.U2. . . . .U5 (all of which fix [∞] pointwise).
The result follows (see also Van Maldeghem [25]). !
In coordinates, a general element Θ[K, B, K ′, B′, K ′′], K, B, K ′, B′, K ′′ ∈ GF(q), of G[∞]

can be written as (and we give the action on the elements with five coordinates; the action
on the other elements is obtained by restricting coordinates):






(a, l, a′, l′, a′′)Θ[K,B,K′,B′,K′′] = (a, l + K ′′ − 3aB′ − 3a2B − a3K, a′ + B′ + 2aB + a2K,
l′ + K ′ + KK ′′ + 3aB2 + 3a′B + 3BB′ + a3K2 + lK+
+3aa′K + 3a2BK, a′′ + B + aK),

[k, b, k′, b′, k′′]Θ[K,B,K′,B′,K′′] = [k + K, b + B, k′ + K ′ − kK ′′ − 3bB′, b′ + B′, k′′ + K ′′].

Using the incidence relation (2) of Section 2, it can be easily checked that the above
mapping preserves incidence, that it fixes all points on [∞], that it is equal to the prod-
uct Θ[0, B, K ′, B′, K ′′]Θ[K, 0, 0, 0, 0] of two elements fixing all points of [∞] and sta-
bilizing all lines through respectively (∞) and (0). Moreover, it maps [0, 0, 0, 0, 0] to
[K, B, K ′, B′, K ′′], hence the group of all such collineations acts regularly on the lines
opposite [∞]. So we have exhibited the explicit expression of an arbitrary element of
G[∞].

Lemma 5 If S is a spread of H(q) containing [∞] such that the subgroup GS of G[∞]

stabilizing S has order q3, then S is a translation spread with respect to [∞].

PROOF. Let x be a point incident with [∞] and L a line distinct from [∞] incident with
x. First we notice that by the regular action of G[∞] on the lines opposite [∞], the group
GS acts transitively on S \ {[∞]}. Let M1 and M2 be two elements of S at distance 4
from L (in the incidence graph). The element of GS mapping M1 to M2 stabilizes every
line incident with x (this is because G[∞] fixes either one line through x, that is, the line
[∞], or all lines through x, see Weiss [26], Lemma 1). The assertion is proved. !

Theorem 6 If S is a translation spread of H(q) with respect to the flags {[∞], (∞)} and
{[∞], (0)}, then S is locally hermitian in [∞]. If moreover q *≡ −1 mod 3, then S is a
translation spread of H(q) with respect to the line [∞] and the group G{[∞]} acts regularly
on S \ {[∞]}.

PROOF. First suppose that the characteristic of GF(q) is different from 3. Let us assume
without loss of generality that [0, 0, 0, 0, 0] belongs to S. If [0, B, K ′, B′, K ′′] ∈ S, then by
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the regular action of G[∞], the group element Θ[0, B, K ′, B′, K ′′] belongs to G{[∞],(∞)}. It
follows that for any [k, b, k′, b′, k′′] ∈ S, the line [k, b, k′, b′, k′′]Θ[0,B,K′,B′,K′′] also belongs to
S. Hence for arbitrary k, b, k′, B, K ′ ∈ GF(q), the line

[k, b+B, k′−3bf1(0, B, K ′)−kf2(0, B, K ′)+K ′, f1(k, b, k′)+f1(0, B, K ′), f2(k, b, k′)+f2(0, B, K ′)]

belongs to S. Hence, for i = 1, 2,

fi(k, b + B, k′ − 3bf1(0, B, K ′)− kf2(0, B, K ′) + K ′) = fi(k, b, k′) + fi(0, B, K ′). (3)

If we put k = b = 0 in Equation (3), then we obtain

fi(0, B, k′ + K ′) = fi(0, 0, k
′) + fi(0, B, K ′). (4)

Similarly, we can also put B = 0 in Equation (3) to obtain

fi(k, b, k′ − 3bf1(0, 0, K
′)− kf2(0, 0, K

′) + K ′) = fi(k, b, k′) + fi(0, 0, K
′). (5)

If we put k = 0 in Equation (5), then we can use Equation (4) to obtain

f1(0, 0,−3bf1(0, 0, K
′)) = 0. (6)

If there exists K ′ ∈ GF(q) such that f1(0, 0, K ′) *= 0, then putting b = −K′

3f1(0,0,K′) in

Equation (6), we obtain the contradiction f1(0, 0, K ′) = 0. So f1(0, 0, K ′) = 0 for all
K ′ ∈ GF(q). Now let K ′ ∈ GF(q) be arbitrary. Let MK′ be the line of H(q) concurrent
with both [0, 0, K ′] and [0, 0, 0, K ′]; MK′ has coordinates [0, 0, K ′, 0, 0] and belongs to
the regulus R([∞], [0, 0, 0, 0, 0]). Then clearly the unique element of S concurrent with
[0, 0, K ′] is also concurrent with MK′ , as it has coordinates [0, 0, K ′, 0, f2(0, 0, K ′)]. Since
S is a translation spread with respect to the flag {[∞], (0)}, we may similarly conclude
that the unique element of S concurrent with [0, 0, 0, K ′] is also concurrent with MK′ .
Since two elements of S cannot meet the same line, we conclude that MK′ belongs to
S. But this means that the regulus R([∞], [0, 0, 0, 0, 0]) is contained in S. Since the line
[0, 0, 0, 0, 0] was chosen arbitrarily in S, the spread S is locally hermitian in [∞].

Now suppose that q is odd and that −3 is a non-zero square in GF(q), that is, assume
that q is odd with q ≡ 1 mod 3. Suppose that some line [0, b, k′, b′, 0] belongs to S, with
b *= 0. By the previous paragraph, also [0, b, K ′, b′, 0] belongs to S, for all K ′ ∈ GF(q).
Then one can check by direct computation that the line [0, b, k′1, b

′, 0], with

k′1 =
−3bb′ +

√
−3bb′

2
,

lies at distance 3 from the point (k′1+bb′

b2 , 0, 0, 0, 0), which is incident with [0, 0, 0, 0, 0].
Hence the two lines [0, 0, 0, 0, 0] and [0, b, k′1, b

′, 0] of S are not opposite, a contradic-
tion. So f2(0, b, k′) *= 0 for all b, k′ ∈ GF(q), b *= 0; as R([∞], [0, 0, 0, 0, 0]) belongs
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to S, we have f2(0, 0, k′) = 0. Now choose b1 ∈ GF(q) \ {0}. Then by applying
Θ[0,−b1, 0,−f1(0, b1, 0),−f2(0, b1, 0)] to S, we obtain a spread S ′ again containing [∞]
and [0, 0, 0, 0, 0]; also, S ′ is a translation spread with respect to the flag {[∞], (∞)}.
It is clear that, if we denote the analogue to f2 for S ′ by f ′2, we have the relation
f2(0, x, k′) = f ′2(0, x − b1, k′) + f2(0, b1, k′), for all x, k′ ∈ GF(q). Applying our previ-
ous result to f ′2, we have f ′2(0, b − b1, k′) *= 0, for all b, k′ ∈ GF(q), b *= b1. Noting
that f2(0, b1, y) is independent of y ∈ GF(q), we deduce that, for all b, k′, k′1 ∈ GF(q),
f2(0, b, k′) *= f2(0, b1, k′1) whenever b1 *= b. This means that x /→ f2(0, x, 0) is surjec-
tive onto GF(q). We claim that G{[∞],(∞)} acts transitively on the set of lines of H(q)
through (0) different from [∞]. Indeed, the element of G{[∞],(∞)} mapping [0, 0, 0, 0, 0]
onto [0, x, 0, f1(0, x, 0), f2(0, x, 0)] has the form Θ[0, x, z, f1(0, x, 0), f2(0, x, 0)], for some
suitable z ∈ GF(q); it is now clear that this element maps the line [0, 0] to the line
[0, f2(0, x, 0)] and the claim follows. Put G = 〈G{[∞],(∞)}, G{[∞],(0)}〉. Since (0) is fixed by
G, and since G is a subgroup of G[∞] (which acts regularly on the set of lines opposite
[∞]), we deduce that G has order q3. Hence by Lemma 5, S is a translation spread with
respect to the line [∞].

If q is an even square, and ω is a solution of the equation X2 + X + 1 = 0, then the same
argument as in the previous paragraph can be performed with k′1 = ωbb′.

Now suppose that q is power of 3. Consider two lines [k, b0, k′, b′0, k
′′] and [k, b1, k′, b′1, k

′′]
and suppose these lines belong to S. Applying a suitable element of G[∞] on S, we may
assume that k = k′ = k′′ = b0 = b′0 = 0 (use the fact that the characteristic is equal to 3).
Now the line [0, 0] is at distance 4 (in the incidence graph) from the lines [0, b1, 0, b′1, 0],
[0] and [0, b1, 0, 0, 0], all of which are concurrent with [0, b1, 0]. But [0, 0, 0, 0, 0] is also
at distance 4 from [0] and [0, b1, 0, 0, 0], hence by the distance-2-regularity of the lines in
H(q), for q a power of 3, we have that [0, 0, 0, 0, 0] and [0, b1, 0, b′1, 0] are not opposite, a
contradiction. This means that x /→ f2(k, x, k′) is injective for all k, k′ ∈ GF(q), hence
surjective, and as before this implies that G = 〈G{[∞],(∞)}, G{[∞],(0)}〉 has order q3 and acts
regularly on S.

We may now modify slightly our argument of the first paragraph of this proof as follows.

Let us assume without loss of generality that [0, 0, 0, 0, 0] belongs to S. If [K, B, K ′, B′, K ′′] ∈
S, then by the regular action of G[∞], the group element Θ[K, B, K ′, B′, K ′′] belongs to
G. It follows that for any (k, b, k′, b′, k′′) ∈ S, the line (k, b, k′, b′, k′′)Θ[K,B,K′,B′,K′′] also
belongs to S. Hence for arbitrary k, b, k′, K, B, K ′ ∈ GF(q), the line

[k +K, b+B, k′−kf2(K, B, K ′)+K ′, f1(k, b, k′)+f1(K, B, K ′), f2(k, b, k′)+f2(K, B, K ′)]

belongs to S. So, for i = 1, 2,

fi(k + K, b + B, k′ − kf2(K, B, K ′) + K ′) = fi(k, b, k′) + fi(K, B, K ′). (7)
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If we put k = b = 0 in Equation (7), then we obtain

fi(K, B, k′ + K ′) = fi(0, 0, k
′) + fi(K, B, K ′). (8)

Similarly, we can also put K = B = 0 in Equation (7) to obtain

fi(k, b, k′ − kf2(0, 0, K
′) + K ′) = fi(k, b, k′) + fi(0, 0, K

′). (9)

Now we apply Equation (8) to Equation (9), and obtain

f2(0, 0,−kf2(0, 0, K
′)) = 0. (10)

Similarly as in the first part of the proof, this implies that f2(0, 0, K ′) = 0 for all K ′ ∈
GF(q). If we interchange lower-case letters and upper-case letters in Equation (7), then
we obtain, for i = 1,

f1(k + K, b + B, k′ + K ′ − kf2(K, B, K ′)) = f1(k + K, b + B, k′ + K ′ −Kf2(k, b, k′))

which we can simplify in view of Equation (8) to

f1(0, 0, Kf2(k, b, k′)− kf2(K, B, K ′)) = 0, (11)

for all values of k, b, k′, K, B, K ′ ∈ GF(q). So we put k = k′ = 0 and K = 1. since
b /→ f2(0, b, 0) is surjective, we have f1(0, 0, K ′) = 0, for all K ′ ∈ GF(q). As above, this
implies that the line regulus R([∞], [0, 0, 0, 0, 0]) is contained in S. So we conclude that
S is locally hermitian in [∞].

The theorem is completely proved. !

Remark 7 From the previous proof follows readily that, if q is odd and not congruent to
−1 modulo 3, and if S is a locally hermitian spread of H(q) in [∞], then the map f2(0, x, 0)
is a permutation of GF(q). Similarly one shows that f2(a, x, b) is a permutation of GF(q),
for fixed a, b ∈ GF(q). Hence there are maps gi : GF(q)3 → GF(q), i = 1, 2, such that S
can be written as {[∞]} ∪ {[k, g1(k, k′, k′′), k′, g2(k, k′, k′′), k′′] : k, k′, k′′ ∈ GF(q)}.

We will see below that there exist translation spreads with respect to a flag which are not
locally hermitian in any line.

We can also prove the converse of Lemma 5 for odd characteristic. However, since we will
not use this result, we only very briefly sketch a proof.

Theorem 8 If R is a translation spread of H(q), q odd, with respect to a line L, then the
collineation group G generated by all groups G{x,L}, with x incident with L, acts regularly
on S \ {L} and hence has order q3.
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PROOF. Similarly as in the proof of Theorem 12 below (now calculating that two distinct
lines M1 and M2 of S \ {L} can be at distance 4 from 0, 1, 2, 3 or q + 1 lines concurrent
with L, and that the case q +1 only occurs for at most q− 1 choices of M2 if M1 is fixed),
we obtain that the orbit of any line M of S under G has at least length q3/3. Since the
characteristic of GF(q) may be assumed to be different from 2 (by assumption) and 3 (by
Theorem 6), it follows that the length of the orbit is equal to q3. !

Examples of translation spreads and ovoids in H(q)

The hermitian spreads If we intersect the non-singular quadric Q(6, q) : X2
3 = X0X4+

X1X5 + X2X6 with the hyperplane Π : X5 = γX1, with γ a non-square of GF (q), then
we obtain an elliptic quadric Q−(5, q). The lines of H(q) which are contained in Π, hence
also in Q−(5, q), constitute a spread S of H(q). This spread is called the hermitian spread
(see Thas [17]). Now consider the coordinatization of H(q) (see Table 2 above). The line
[∞] of H(q) corresponds with the line on Q(6, q) through the points (1, 0, 0, 0, 0, 0, 0) and
(0, 0, 0, 0, 0, 0, 1). Hence [∞] ∈ S. The line [k, b, k′, b′, k′′] of H(q) corresponds with the
line 〈(k′+ bb′, k, 1, b, 0, b′, b2− b′k), (b′2 +k′′b,−b, 0,−b′, 1, k′′,−kk′′−k′−2bb′)〉 on Q(6, q).
So the line [k, b, k′, b′, k′′] is an element of S if and only if k′′ = −γb and b′ = γk. Hence

SH = {[∞]} ∪ {[k, b, k′, γk,−γb] : (k, b, k′) ∈ GF (q)3}

is a hermitian spread SH of H(q). Here the functions f1 and f2 are given by f1(k, b, k′) =
γk and f2(k, b, k′) = −γb. Since both f1 and f2 are independent of k′, we easily deduce
that SH is locally hermitian in [∞]. But the line [∞] plays the same role here as any
other line in SH , hence SH is locally hermitian in any of its elements. This motivates the
earlier notion of “locally hermitian”. In fact, the property of being locally hermitian in
every element characterizes the hermitian spread. But we can do even better:

Theorem 9 If S is a spread of H(q) which is locally hermitian in at least two of its
elements, then S is a hermitian spread.

PROOF. Suppose that S is locally hermitian in the lines L1 and L2, L1 *= L2. Let
M1 ∈ S \ {L1, L2} be such that M1 /∈ R(L1, L2). By Theorem 1 and the fact that
every spread of H(q) is a 1-system of Q(6, q), the lines L1, L2, M1 define a PG(5, q) which
intersects Q(6, q) in a Q−(5, q). PutR(L2, M1) (all elements of which lie in PG(5, q)) equal
to {L2, M1, M2, . . . ,Mq}. Also, we put, for all i ∈ {1, 2, . . . , q}, the regulus R(L1, Mi)
equal to {L1, Mi, Mi,1, Mi,2, . . . ,Mi,q−1}. Every line Mi,j, 1 ≤ i ≤ q, 1 ≤ j < q, belongs to
PG(5, q), hence to Q−(5, q). Also all the elements of R(L2, Mi,j), for 1 ≤ i ≤ q, 1 ≤ j < q,
belong to Q−(5, q). Since a hermitian spread in H(q) provided with its reguli defines a
linear space which is isomorphic to the linear space obtained from a hermitian curve in
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PG(2, q2) by considering secant lines (see Thas [17] or De Smet & Van Maldeghem
[2]), we may interpret L1, L2, Mi and Mi,j, 1 ≤ i ≤ q, 1 ≤ j < q, as respective points
l1, l2, mi and mi,j of a hermitian curve H in PG(2, q2). Since by O’Nan’s property, see
O’Nan [11], no line l2mi,j coincides with l2mi′,j′ , for (i, j) *= (i′, j′), we obtain a set R of
2 + (q − 1)q different reguli R(L2, M1), R(L2, L1), R(L2, Mi,j), 1 ≤ i ≤ q, 1 ≤ j < q, all
contained in the hermitian spread defined by Q−(5, q). Now we apply the same argument
switching the roles of M1 and M1,1. Let R(L2, M1,1) = {L2, M1,1, N1, . . . , Nq−1}. Let
ni, 1 ≤ i < q, be the point on H corresponding with Ni. Suppose that we can show
that, up to a renumbering, the lines l1ni, 1 < i < q, have the following property (*): if
{ni,j|1 ≤ j < q} ∪ {l1, ni} is the intersection of l1ni with H, then there exists a unique
j ∈ {1, 2, . . . , q − 1} such that the regulus in Q−(5, q) corresponding with the secant line
l2ni,j does not belong to R. Then it follows immediately that the q− 2 reguli through L2

which do not belong to R also belong to S. Hence S is the hermitian spread obtained
from Q−(5, q).

So it remains to show that indices can be chosen in such a way that the lines l1ni, 1 < i < q,
satisfy property (*). Let PG(1, q2) be a line of PG(2, q2) not containing l2. It is well
known that the points of PG(1, q2) together with the projective sublines over GF(q) form
the classical inversive plane I of order q. The q2 − q + 2 secants of H corresponding to
the elements of R intersect PG(1, q2) in q2 − q + 2 points of I; let R be the set of these
points. Let p be the point of I corresponding with the tangent line of H at l2. Clearly
p /∈ R. The sets l1mi∩H, 1 ≤ i ≤ q, are projected from p onto q circles of I all containing
the projection l∗1 and m∗

1 of respectively l1 and m1. Similarly, the secants l1ni, 1 ≤ i < q,
give rise to q − 1 circles of I all containing l∗1 and the projection m∗

1,1 of m1,1. Translated
to the internal (or derived) affine plane A of I at l∗1, this means that, except for the line
m∗

1,1m
∗
1, we have all lines through m∗

1 except for the line m∗
1p, and all lines through m∗

1,1

except for m∗
1,1p. Now let the projection of l1n1 ∩H correspond to the unique line N in

A through m∗
1,1 parallel to m∗

1p. Then the circle N of I is incident with q + 1 elements
of R. On the other hand, each other line in A through m∗

1,1 and not through m∗
1 has a

unique intersection point p′ with m∗
1p, hence the line l2p′ in PG(2, q2) does not contain a

point of R, which shows property (*).

This completes the proof of the proposition. !
We also have the following theorem.

Theorem 10 A hermitian spread in H(q) is a translation spread with respect to every
line.

PROOF. It suffices to show that SH , defined as above, is a translation spread with
respect to [∞]. Therefore, we notice that the group

{Θ[K, B, K ′, γK,−γB]|K, B, K ′ ∈ GF(q)}
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stabilizes SH . The result now follows from Lemma 5. !
As a corollary we obtain:

Corollary 11 If a spread S of H(q) is a translation spread with respect to two different
lines, then it is a hermitian spread.

PROOF. By Theorem 6, S is locally hermitian in two different elements. The result
follows from Theorem 9. !
If q = 3h, then the generalized hexagon H(q) is self-dual. Dualize H(q) as follows.
Consider the map τ which acts as follows on the points and lines of H(q):

[∞] /→ (∞)
[k] /→ (k)
[k, b, k′] /→ (k, b3, k′)
[k, b, k′, b′, k′′] /→ (k, b3, k′, b′3, k′′)
(a) /→ [a3]
(k, b) /→ [k, b3]
(a, l, a′) /→ [a3, l, a′3]
(k, b, k′, b′) /→ [k, b3, k′, b′3]
(a, l, a′, l′, a′′) /→ [a3, l, a′3, l′, a′′3].

(12)

Using the incidence relation (2), it is easy to check that τ preserves the incidence and
so it dualizes H(q). It follows from the proof of Theorem 6 that in characteristic 3 the
map x /→ f2(k, x, k′) (for f2 associated with a given spread S of H(q) containing [∞]) is
bijective for all k, k′ ∈ GF(3h). Hence there are maps

gi : GF(q)3 → GF(q) : (k, k, k′′) /→ gi(k, k′, k′′), i = 1, 2,

such that

S = {[∞]} ∪ {[k, g1(k, k′, k′′), k′, g2(k, k′, k′′), k′′]|k, k′, k′′ ∈ GF(q)}.

It is now convenient to write the hermitian spread as (substituting γ for γ−1)

SH = {[∞]} ∪ {[k,−γk′′, k′, γ−1k, k′′]|(k, k′, k′′) ∈ GF (q)3}.

The duality τ maps a hermitian spread onto an ovoid UH of H(q). The ovoid UH is called
a hermitian ovoid of H(q), q = 3h, and is given by the set of points (use the formulae (12)
above)

UH = {(∞)} ∪ {(a,−γ′a′′3, a′, γ′−1a3, a′′)|(a, a′, a′′) ∈ GF (q)3},
with γ′ = γ3 a non-square of GF (q). It has all dual properties of the hermitian spreads
in H(q). So UH is a translation ovoid with respect to any of its points, and it is locally
hermitian in every point. Note that the dual of Theorem 9 and Corollary 11 characterize
hermitian ovoids in H(3h).
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The Ree-Tits ovoids in H(32e+1) A Ree-Tits ovoid is an ovoid that arises as the set of
absolute points of a polarity in H(q). Note that H(q) is self-polar if and only if q = 32e+1

for some non-negative integer e. The standard form of the Ree-Tits ovoid UR is given by
(see De Smet & Van Maldeghem [2])

UR = {(∞)} ∪ {(a, a′′s − a3+s, a′, a3+2s + a′s + asa′′s, a′′)|(a, a′, a′′) ∈ GF(q)},

with q = 32e+1 and s = 3e+1.

Suppose the ovoid UR described above is the set of absolute points with respect to the
polarity σ (for an explicit form of σ, see De Smet & Van Maldeghem [2]). The group

{Θ[0, B, B′s, B′, Bs]|B, B′ ∈ GF(32e+1)}

stabilizes UR. This implies that UR is a translation ovoid with respect to the flag
{(∞), [∞]}. By the transitivity properties of the automorphism group of UR, we may
conclude that the Ree-Tits ovoid UR is a translation ovoid with respect to any flag {x, xσ},
for all x ∈ UR.

Suppose that UR is a translation ovoid with respect to the flag {(∞), M}, with M I (∞)
and M *= [∞]. Then by the dual of Theorem 6 there follows that UR is a translation ovoid
with respect to (∞) and that UR is locally hermitian. By the transitivity, UR would be
hermitian by Theorem 9. But this would force the functions g1(a, a′, a′′) = a′′s− a3+s and
g2(a, a′, a′′) = a3+2s + a′s + asa′′s to be independent from a′, a contradiction. Hence UR is
no translation ovoid with respect to the flag {(∞), M}, for each M I (∞) with M *= [∞].

3.2 Translation ovoids in Q(4, q)

Some general facts

Let O be an ovoid of Q(4, q). Since the incidence relation between a point of type (a, l, a′)
and a line of type [k, b, k′] is given by the formula (1) in Section 2, two points (a, l, a′) and
(x, m, x′) are collinear if and only if (l −m)2 = (a− x)(a′ − x′). This means that the set
O = {(∞)} ∪ {(a, l, f(a, l))|a, l ∈ GF(q)}, with f a mapping from GF(q)2 to GF(q), is
an ovoid of Q(4, q) if and only if

(l −m)2 *= (a− x)(f(a, l)− f(x, m)),

for all a, l, x, m ∈ GF(q), with a *= x. Without loss of generality we may suppose that
(0, 0, 0) ∈ O, i. e. f(0, 0) = 0.

Now we want to determine the conditions the function f , which obviously defines the
ovoid O, has to satisfy in order that O is a translation ovoid w. r. t. the point (∞), resp.
the flag {(∞), M}, M I (∞).
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Suppose that O is a translation ovoid of Q(4, q) w. r. t. the flag {(∞), M} and let G{(∞),M}
be the corresponding group. Similarly as for H(q), the group G{(∞),M} is a subgroup of
the group G(∞) of all collineations Φ(A, L, A′), where Φ(A, L, A′) is defined as

{
(a, l, a′)Φ(A,L,A′) = (a + A, l + L, a′ + A′),
[k, b, k′]Φ(A,L,A′) = [k, b + A′ + k2A− 2kL, k′ + L− kA]

(this can be checked using the incidence relation (1)). Hence completely similar to the
case of H(q), one has that O is a translation ovoid with respect to {(∞), [∞]} if and only
if the corresponding mapping f has the property

f(a, l) + f(0, L) = f(a, l + L),

for all a, l, L ∈ GF(q).

Now we note that being a translation ovoid with respect to two different flags {(∞), L}
and {(∞), M} is not enough to guarantee that O is a translation ovoid with respect to
the point (∞). Counterexamples are provided by the ovoids OK1 of Kantor, see below.

Now we consider the case where O is a translation ovoid with respect to (∞). Let f be
the corresponding mapping. Since we assume that (0, 0, 0) ∈ O, the corresponding group
G{(∞)} must be contained in the translation group

{Φ(A, L, f(A, L))|A, L ∈ GF(q)},

hence |G{(∞)}| ≤ q2. In the next theorem we will prove that the group G{(∞)} acts
regularly on the q2 points of the set O \ {(∞)}, which implies that

G{(∞)} = {Φ(A, L, f(A, L))|A, L ∈ GF(q)}.

Theorem 12 If O is a translation ovoid of Q(4, q) with respect to a point x, then the
associated group G{x} acts regularly on the set of points O \ {x}.

PROOF. We coordinatize Q(4, q) in such a way that x is the point (∞) of Q(4, q). We
already have that |G{(∞)}| ≤ q2 and

G{(∞)} ≤ {Φ(A, L, f(A, L))|A, L ∈ GF(q)}.

We will show that the group G{(∞)} acts transitively on the set of points O \ {(∞)}. Let
y and z be two points of the set O \ {(∞)}. If the triad {(∞), y, z} is centric and if L
is the line through (∞) and one of the centers of this triad, then there exists an element
θ ∈ G{(∞),L} which maps y onto z. If q is even, then each triad is centric (see Payne &
Thas [12]). So suppose that q is odd and that the triad {(∞), y, z} is not centric. Let

16



Wy be the set of points w of O \ {(∞)} for which the triad {(∞), y, w} is centric and let
Wz be the set of points w of O \ {(∞)} for which the triad {(∞), z, w} is centric. Using
the fact that a centric triad of Q(4, q) has two centers, we have that

|Wy| =
|{(∞), y}⊥| · (q − 1)

2
=

q2 − 1

2
.

Similarly |Wz| = q2−1
2 . If the intersection Wy ∩Wz is empty, then O \ {(∞)} contains at

least |Wy|+ |Wz|+ |{y, z}| = q2 + 1 points, a contradiction. Hence let w be an element of
Wy∩Wz. Since in G{(∞)} there exists a collineation which maps y onto w and a collineation
which maps w onto z, there follows that the group G{(∞)} contains an element which maps
y onto z. Hence G{(∞)} acts transitively on the points of O \ {(∞)}. !
Notice that, just like in the dual of H(q), we have the following property:

Lemma 13 An ovoid of Q(4, q) containing (∞) and admitting a subgroup of G(∞) of
order q2, is necessarily a translation ovoid with respect to (∞).

PROOF.

The proof is similar to the proof of Lemma 5 (relying on the fact that a translation of
Q(4, q) with base point (∞) fixing a point y *= (∞) collinear with (∞) also fixes every
point of the line (∞)y). !
The next corollary and definition prepare some characterization results.

Corollary 14 If O is an ovoid of Q(4, q), with q = pe, then O is a translation ovoid with
respect to (∞) if and only if

O = {(∞)} ∪ {(a, l,
e−1∑

i=0

(λia
pi

+ βil
pi

))|a, l ∈ GF(q)},

with λi, βi ∈ GF(q).

PROOF. Let O be an ovoid of Q(4, q) which contains (∞), so

O = {(∞)} ∪ {(a, l, f(a, l))|a, l ∈ GF(q)},

with f a mapping from GF(q)2 to GF(q). If O is a translation ovoid with respect
to (∞), then each translation Φ(A, L, f(A, L)), with A, L ∈ GF (q), fixes the ovoid O.
This means that (a, l, f(a, l))Φ(A,L,f(A,L)) ∈ O, for all a, l, A, L ∈ GF(q), or equivalently
that f(a, l) + f(A, L) = f(a + A, l + L), for all a, l, A, L ∈ GF (q). Hence we have that
f(a, 0)+f(0, L) = f(a, L), f(a, 0)+f(A, 0) = f(a+A, 0) and f(0, l)+f(0, L) = f(0, l+L).
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This implies that f(a, l) =
∑e−1

i=0 (λiapi
+ βilp

i
), with λi, βi ∈ GF(q), see e. g. Lidl &

Niederreiter [9].

Conversely, if the ovoid O is given by

O = {(∞)} ∪ {(a, l,
e−1∑

i=0

(λia
pi

+ βil
pi

))|a, l ∈ GF(q)},

then each translation Φ(A, L, f(A, L)), with A, L ∈ GF(q), fixes O. The result now
follows from Lemma 13. !
Let O be a translation ovoid with respect to the point (∞) of Q(4, q), q = pe, i. e.
O = {(∞)} ∪ {(a, l, f(a, l))|a, l ∈ GF(q)}, with f(a, l) =

∑e−1
i=0 (λiapi

+ βilp
i
). Then the

kernel of O is the subfield K = GF (q′), q′ maximal, of GF(q) for which the following
holds:

∀x ∈ K, ∀a, l ∈ GF(q) : f(xa, xl) = xf(a, l).

Also, we call any polynomial f(a, l) of the form

f(a, l) =
e−1∑

i=0

(λia
pi

+ βil
pi

)

automorphic.

Remark. Let gx, x ∈ GF(q)∗, be the ((∞), (0, 0, 0))-generalized homology which maps
(a, l, a′) onto (xa, xl, xa′) (see e. g. De Smet & Van Maldeghem [2]). Then gx fixes
the translation ovoid O if and only if x is an element of the kernel of O.

Some examples

The classical ovoid OE. Let PG(3, q) meet Q(4, q) in an elliptic quadric. Then the
intersection is an ovoid OE of Q(4, q). Without loss of generality we may take, in the case
that q is odd, as an equation for PG(3, q) the equation X3 = γX4, with γ a non-square
in GF(q). It is easily computated (using Table 1) that

OE = {(∞)} ∪ {(a, l, γa)|a, l ∈ GF(q)}.

Obviously this is a translation ovoid of Q(4, q) with respect to the point (∞). The kernel
K of OE is the field GF (q).
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The ovoid OK1 of Kantor. The standard form of the ovoid OK1 of Kantor is

OK1 = {(∞)} ∪ {(a, l, γaσ)|a, l ∈ GF(q)},

with γ a non-square and σ an automorphism of GF (q), σ *= 1 and q odd (see Kantor
[8]). Since the polynomial f(a, l) = γaσ is automorphic, the ovoid OK1 is a translation
ovoid with respect to (∞). The kernel of OK1 is the subfield {x|xσ = x, x ∈ GF(q)} of
GF(q).

The Roman ovoid OTP of Thas and Payne. The standard form of the ovoid OTP

of Thas and Payne (see [21]) is

OTP = {(∞)} ∪ {(a, l, γ−1a + (γa)
1
9 + l

1
3 )|a, l ∈ GF(q)},

with q = 3h, h > 2, and γ a non-square in GF (q). Since the function f(a, l) = γ−1a +
(γa)

1
9 + l

1
3 is automorphic, there follows that OTP is a translation ovoid of Q(4, q) with

respect to (∞). One easily sees that the subfield GF(3) is the kernel of OTP .

The ovoid OK2 of Kantor. The standard form of the ovoid OK2 of Kantor is

OK2 = {(∞)} ∪ {(a, l, a2s+3 + ls)|a, l ∈ GF(q)},

with q = 32e−1, e > 2, and s = 3e; see Kantor [8]. Since f(a, 0)+ f(a′, 0) *= f(a+a′, 0) for
some a, a′ ∈ GF(q), the ovoid OK2 is not a translation ovoid with respect to (∞). But
since clearly the collineations Φ(0, L, Ls) leave the ovoid invariant, OK2 is a translation
ovoid with respect to the flag {(∞), [∞]}.
The ovoid OK2 is obtained from the Ree-Tits ovoid in H(q) by projection.

The Suzuki-Tits ovoid OS. The standard form of the Suzuki-Tits ovoid OS is

OS = {(∞)} ∪ {(a, l, a2e+1+1 + l2
e+1

)|a, l ∈ GF(q)},

with q = 22e+1 and e ≥ 1; see Tits [23]. Since f(a, 0) + f(a′, 0) *= f(a + a′, 0) for some
a, a′ ∈ GF(q), the ovoid OS is not a translation ovoid with respect to (∞). But since
clearly the collineations Φ(0, L, L2e+1

) leave the ovoid invariant, OS is a translation ovoid
with respect to the flag {(∞), [∞]}.
The ovoid OS is obtained as the set of absolute points of a polarity of Q(4, q).
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A sporadic ovoid in Q(4, 35). It was recently proved by Penttila & Williams [13]
that the set

OPW = {(∞)} ∪ {(a, l, a9 + l81)|a, l ∈ GF(35)},

is a translation ovoid of Q(4, 35) with respect to (∞).

The ovoids mentioned above are the only known translation ovoids with respect to a point
or a flag of the generalized quadrangle Q(4, q). In fact, they are the only known ovoids
in Q(4, q) at all.

Now we prove some useful characterization results.

The following result is due to Thas [18] and Gevaert, Johnson & Thas [4].

Lemma 15 If O is a non-classical ovoid of Q(4, q), then O ∼= OK1 if and only if O is the
union of q conics on Q(4, q) (viewed as a quadric in PG(4, q)) all containing a common
point x (O is a translation ovoid with respect to the point x).

We have the following corollaries.

Corollary 16 Let O be a translation ovoid with respect to the point (∞) of Q(4, q). If O
contains a conic C of Q(4, q), then either O ∼= OE or O ∼= OK1.

PROOF. This follows from the previous lemma by noting that the group G{(∞)} maps
C to q mutually tangent conics at (∞). !
If the kernel K is “large” enough with respect to the field GF (q), then one can prove
something more.

Corollary 17 Let O be a translation ovoid with respect to the point ∞ of Q(4, q) and let
K = GF(q′) be the kernel of O. If q = q′, then O is isomorphic to the classical ovoid OE

and if q = q′2 then O is isomorphic to the ovoid OK1 of Kantor.

PROOF. Let O be a translation ovoid with respect to the point (∞), i. e. O = {(∞)}∪
{(a, l, f(a, l))|a, l ∈ GF(q)} with f(a, l) =

∑e−1
i=0 (λiapi

+ βilp
i
) and q = pe. Then O has

kernel GF(q′), q = q′h, if and only if GF(q′) is the largest subfield of GF(q) consisting of
elements x for which f(xa, xl) = xf(a, l), for each (a, l) ∈ GF(q)2. This means that

e−1∑

i=0

(λi(xa)pi
+ βi(xl)pi

) = x
e−1∑

i=0

(λia
pi

+ βil
pi

),
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for each (a, l) ∈ GF(q)2 and x ∈ GF(q′), or, equivalently,

e−1∑

i=0

(λi(x− xpi
)api

+ βi(x− xpi
)lp

i
) = 0, ∀(a, l) ∈ GF(q)2,∀x ∈ GF(q′).

This implies that λi(x − xpi
) = βi(x − xpi

) = 0 for each i ∈ {0, . . . , e − 1} and each
x ∈ GF(q′). Hence λi = βi = 0, for each i ∈ {0, . . . , e−1} for which pi *∈ {1, q′, . . . , q′h−1}.
If q = q′, then f(a, l) = λa+βl, so (referring to Table 1) O is contained in the hyperplane
with equation X3 = λX4 + βX0, hence O ∼= OE.

If q = q′2 then f(a, l) = λ0a + λ1aq′ + β0l + β1lq
′
. If β1 = 0, then the q points (0, l, β0l),

together with (∞), lie in the plane with equations X4 = X3 − β0X0 = 0 (use Table 1
again), hence on a conic and the result follows from Corollary 16. If β1 *= 0, then the q
points

(a,−λq′

1 a

βq′

1

, λ0a−
β0λ

q′

1 a

βq′

1

),

together with (∞), lie in the plane with equations

X3 − λ0X4 − β0X0 = λq′

1 X4 + βq′

1 X0 = 0.

The result again follows from Corollary 16. !
If the kernel is smaller, but still large enough, then we have the following computer result.

Theorem 18 Each translation ovoid w. r. t. a point of Q(4, q′3), whose kernel contains
GF (q′), 3 ≤ q′ ≤ 31 and q′ odd, is either isomorphic to the the classical ovoid OE or to
the Kantor ovoid OK1 or to the Roman ovoid OTP .

PROOF. By computer using GAP (see below). !
Remark. There is a connection between semifield flocks of quadratic cones and transla-
tion ovoids with respect to a point of Q(4, q). In fact, they are equivalent objects. This
is due to Thas [19]; see also Bloemen [1]. So Corollary 17 and Theorem 18 can also be
formulated in terms of semifield flocks. In fact, the proof of Theorem 18 makes extensive
use of that connection, as we will explain now.

More about the proof of Theorem 18. By the above remark, we must classify all
semifield flocks in PG(3, q′3) whose kernel contains GF(q′). Dualizing the situation, and
assuming we do not have a classical ovoid OE or a Kantor ovoid OK1 , it is readily seen that
this implies that we must classify all subplanes Π isomorphic to PG(2, q′) in a projective
plane PG(2, q′3) containing only internal points of a given conic C. First, one classifies all
external lines of C containing sublines isomorphic to PG(1, q′) only consisting of internal
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points of C. For example, if 9 ≤ q′ ≤ 31, the computer does not find such lines! It
follows that for 9 ≤ q′ ≤ 31 only bisecants are possible in Π. But then considering any
line pencil in Π and applying the polarity associated with C, we obtain an external line
L containing a subline isomorphic to PG(1, q′) consisting only of external points. As the
group PGL(2, q′3) of L contains an element which interchanges the internal and external
points of C on L, this implies that on L there is also a subline isomorphic to PG(1, q′)
consisting only of internal points, a contradiction. This takes care of 9 ≤ q′ ≤ 31. If
3 ≤ q′ ≤ 7, then we do find such lines. We also find all sublines isomorphic to PG(1, q′)
which consist only of internal points and which lie on a bisecant of C. It is then easy to
write a programme to find all subplanes Π. The result is that only for q′ = 3 one finds
such subplanes, and they are all elements of one orbit with respect to the projective group
fixing C. The theorem easily follows.

For a complete detailed proof, including the programmes used, we refer to Bloemen [1].

A connection between locally hermitian ovoids of H(3h) and Kantor ovoids OK1

of Q(4, 3h).

Theorem 19 Let O be a locally hermitian ovoid in x of H(q), q = 3e, and let H(q)
be embedded in the quadric Q(6, q). Then each ovoid Ov of the generalized quadrangle
Q(4, q) which is obtained by projecting O from a point v collinear with x in H(q), v *= x,
is isomorphic to an ovoid OK1 of Kantor.

PROOF. This follows from the fact that the point reguli of H(q) through x are conics.
So Ov is the union of conics having two by two just the projection of x in common, and
the result follows from Lemma 15. !
Remark. Applying the definition of translation ovoid to the generalized quadrangle
H(3, q2), one can show that in this case translation ovoids are the union of q2 projective
sublines over GF(q) of the space PG(3, q2), all containing a common point. Since we will
not need that result, we omit the proof.

4 New classes of ovoids of H(q), q = 3h

Embed the generalized hexagon H(q) in the non-singular quadric Q(6, q). In this section
we will determine all ovoids of H(q) which contain a point-regulus R and are isomorphic
to the Hermitian ovoid UH under the group PGO(7, q) of Q(6, q) (but which are not
necessarily isomorphic to UH under the group G2(q) of the generalized hexagon H(q)).
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Let Q(6, q) be represented by the equation X0X4 +X1X5 +X2X6 = X2
3 , as before. Again

we coordinatize the generalized hexagon H(q) as in Section 2, see Table 2. Let

UH = {(∞)} ∪ {(a,−γa′′3, a′, γ−1a3, a′′)|(a, a′, a′′) ∈ GF (q)3},

with γ a given non-square of GF (q) (see 3.1).

If R is the regulus through the points (∞) and (0, 0, 0, 0, 0), then

R = {(∞)} ∪ {(0, 0, a′, 0, 0)|a′ ∈ GF(q)},

or in projective coordinates

R = {(1, 0, 0, 0, 0, 0, 0)} ∪ {(a′2, 0, 0, a′, 1, 0, 0)|a′ ∈ GF(q)}.

Now we determine all transformations ψ ∈ PGO(7, q), which fix the point (1, 0, 0, 0, 0, 0, 0),
which fix the regulus R and which do not necessarily fix the generalized hexagon H(q).
Then each ovoid Uψ

H is an ovoid of H(q) which is not necessarily isomorphic to UH under
the group G2(q) of H(q).

Let Q be the matrix which defines the quadric Q(6, q), i. e. Q is the permutation matrix
associated to the permutation (0 4)(1 5)(2 6) (fixing 3). If ψ is the transformation defined
by the matrix Tψ, then ψ fixes the quadric Q(6, q) if and only if T t

ψQTψ = λQ, with
λ ∈ GF (q). The transformation ψ fixes Q(6, q), (1, 0, 0, 0, 0, 0, 0) and R only if Tψ is a
non-singular matrix of the following form:

Tψ =





λ2 0 0 0 0 0 0
0 b2 c2 0 0 d2 e2

0 b3 c3 0 0 d3 e3

0 0 0 λ 0 0 0
0 0 0 0 1 0 0
0 b6 c6 0 0 d6 e6

0 b7 c7 0 0 d7 e7





.

Since the automorphisms ψ and ψφ, with φ ∈ G2(q), define mutually isomorphic ovoids
Uψ

H and Uψφ
H with respect to G2(q), we only have to determine the different cosets ψG2(q),

with ψ ∈ PGO(7, q). We will use this to simplify the matrices Tψ.

Let Txy and Uk be the following matrices defining automorphisms (the first one being
generated by generalized homologies, see De Smet & Van Maldeghem [2]) of H(q):

Txy = diag(x4y2, xy, x, x2y, 1, x3y, x3y2),
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Uk = I + kA1,2 − kA6,5,

where I is the 7 × 7 identity matrix, and Ai,j is the matrix with all entries equal to 0
except for the one on row i and column j, which is equal to 1 (starting with row 0 and
column 0, conform to our notation for coordinates in PG(6, q)). If Wr is the matrix





1 0 0 0 0 0 0
0 −r 1 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 −1 −r





,

then Wr defines an automorphism of H(q) which fixes the point (∞) and maps the line
[∞] onto the line [r].

Considering the matrix TxyTψ, with y = (λx2)−1, we see that we may assume that λ = 1
(geometrically, this means that ψ fixes the regulus R pointwise).

If b2 *= 0 and b3 *= 0, then we consider the matrix UkTψ, with k = −b2b
−1
3 , and if b2 *= 0

and b3 = 0, then we consider the matrix WrTψ, with r = 0. In both cases, we see that
the (1, 1)-entry of the resulting matrix is zero. Hence without loss of generality we may
suppose that Tψ has b2 = 0.

The automorphism ψ fixes the quadric Q(6, q) if and only if T t
ψQTψ = λQ; for such a Tψ

with λ = 1 we necessarily have Tψ ∈ PSO(7, q). This condition is satisfied if and only if
the following 10 equations hold:

b3b7 = 0, (13)

b3c7 + b6c2 + b7c3 = 0, (14)

b3d7 + b6d2 + b7d3 = 1, (15)

b3e7 + b6e2 + b7e3 = 0, (16)

c2c6 + c3c7 = 0, (17)

c2d6 + c3d7 + c6d2 + c7d3 = 0, (18)

c2e6 + c3e7 + c6e2 + c7e3 = 1, (19)

d2d6 + d3d7 = 0, (20)

d2e6 + d3e7 + d6e2 + d7e3 = 0, (21)

e2e6 + e3e7 = 0. (22)
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1. First we suppose that b3 *= 0, so let b3 = λ, with λ ∈ GF (q)∗. Equations (13), (14),
(15) and (16) yield

b7 = 0,

c7 = c2β, (23)

d7 = d2β + λ−1, (24)

e7 = e2β, (25)

with β = −b6λ−1, β ∈ GF(q).

(a) Suppose that c2 *= 0. So c2 = α, α ∈ GF(q)∗. Equations (23), (24), (25), (17),
(18), (19), (20), (21) and (22) then yield

c7 = αβ, (26)

c6 = −βc3, (27)

d6 = −αβλd3 + c3

αλ
, (28)

e6 =
1− αβe3

α
, (29)

d3 =
d2c3

α
, (30)

d2 =
e2c3 − αe3

λ
, (31)

e2 = 0. (32)

From e2 = 0 there follows that equation (31) is equivalent with d2 = −αe3
λ . If

we substitute this in (30), then we have that d3 = − c3e3
λ . This, together with

(28) yields d6 = c3
αβe3−1

αλ . If we substitute d2 = −αe3
λ in equation (24) there

follows that d7 = 1−αβe3

λ . Let c3 = µ and e3 = n, with µ, n ∈ GF(q). Then the
matrix Tψ is given by

T1(λ, α, β, µ, n) =





1 0 0 0 0 0 0
0 0 α 0 0 −αn

λ 0
0 λ µ 0 0 −µn

λ n
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 −λβ −µβ 0 0 −µ1−αβn

αλ
1−αβn

α

0 0 αβ 0 0 1−αβn
λ 0





,

with α, λ ∈ GF(q)∗ and µ, β, n ∈ GF(q).
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(b) Suppose that c2 = 0. If e2 = 0, then equation (23) implies c7 = 0 and from
(25) we have that e7 = 0. This together with (19) gives a contradiction. Hence
e2 *= 0. Let I2,6 ∈ PSO(7, q) be the permutation matrix associated to the
permutation (2 6). Consider the matrix T ′

ψ = TψI2,6. Then the elements
c2 and e2 are interchanged. So T ′

ψ is a matrix of type T1(λ, α, β, µ, n) and
the matrix Tψ can be written as T1(λ, α, β, µ, n)I2,6. Denote this matrix by
T3(λ, α, β, µ, n).

2. Suppose that b3 = 0. If b7 = 0, then b6 *= 0, otherwise the matrix Tψ is singular. So
from (14) and (16) follows that c2 = e2 = 0. A few calculations now show that Tψ is
singular, a contradiction. Hence b7 *= 0. Now consider the matrix T ′

ψ = I2,6Tψ. Since
the elements b3 and b7 are interchanged, we are back in the first case, hence T ′

ψ =
T1(λ, α, β, µ, n) or T ′

ψ = T3(λ, α, β, µ, n), which implies that Tψ = I2,6T1(λ, α, β, µ, n)
or Tψ = I2,6T3(λ, α, β, µ, n). Denote these matrices respectively by T2(λ, α, β, µ, n)
and T4(λ, α, β, µ, n).

Now we want to reduce the number of parameters λ, α, β, µ, n, by taking another repre-
sentative of the respective cosets ATi(λ, α, β, µ, n), with A the group of all non-singular
matrices representing the elements of G2(q), i = 1, 2, 3, 4.

• In the matrix TxyT1(λ, α, β, µ, n), with x = λ−1 and y = λ2, we replace α by αλ−1,
n by λn and µ by λµ. We then see that the parameter λ disappears. We denote
the resulting matrix by T ′

1(α, β, µ, n), with α ∈ GF(q)∗ and µ, β, n ∈ GF(q). Since
I2,6Txy = TxyI2,6, it is clear that we may replace T2(λ, α, β, µ, n) by T ′

2(α, β, µ, n) =
I2,6T ′

1(α, β, µ, n), T3(λ, α, β, µ, n) by T ′
3(α, β, µ, n) = T ′

1(α, β, µ, n)I2,6 and T4(λ, α, β, µ, n)
by T ′

4(α, β, µ, n) = I2,6T ′
1(α, β, µ, n)I2,6.

• The matrix WrT ′
1(α, β, µ, n), with r = µ

α , is independent of µ, hence we may denote
it by T ′′

1 (α, β, n), with α ∈ GF(q)∗ and β, n ∈ GF(q).

Since T ′
3(α, β, µ, n) = T ′

1(α, β, µ, n)I2,6, we also have that T ′′
3 (α, β, n) = WrT ′

3(α, β, µ, n) =
T ′′

1 (α, β, n)I2,6.

• Similarly WrT ′
2(α, β, µ, n), with r = β, does not depend on β = r, hence we may

denote it by T ′′
2 (α, µ, n), α ∈ GF(q)∗ and µ, n ∈ GF(q). The matrix T ′′

4 (α, µ, n) =
WβT ′

4(α, β, µ, n) is equal to T ′′
2 (α, µ, n)I2,6.

From now on, since there is no confusion possible, we will write Ti(α, β, n) instead of
T ′′

i (α, β, n). Let θi(α, β, n) be the automorphism which corresponds with Ti(α, β, n), i =
1, 2, 3, 4, and let K = {θi(α, β, n)|i ∈ {1, 2, 3, 4}, (α, β, n) ∈ GF(q)3, α *= 0}. In this way
we obtain the following result.
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Lemma 20 If O is an ovoid of H(q), q = 3e, which contains a regulus and which is
isomorphic to UH under the group PGO(7, q), then there exists an automorphism φ of
H(q) and an automorphism θ ∈ K for which Oφ = Uθ

H .

We are now ready to prove the main result of this section.

Theorem 21 If O is a translation ovoid of H(q), q = 3h, h > 1, with respect to (∞),
which is isomorphic to UH under the group PGO(7, q), then O is isomorphic under G2(q),
either to the Hermitian ovoid UH or to an ovoid of type

Oβ = {(∞)} ∪ {(a,−γa′′3 + βa, a′, γ−1a3 + βa′′, a′′)|(a, a′, a′′) ∈ GF(q)3},

with β ∈ GF(q)∗. Also, for β′ ∈ GF(q)∗, the ovoids Oβ and Oβ′ are isomorphic with
respect to Aut(H(q)).

PROOF. The Hermitian ovoid UH of H(q) is given by the set of points

UH = {(∞)} ∪ {(a,−γa′′3, a′, γ−1a3, a′′)|(a, a′, a′′) ∈ GF (q)3},

or in projective coordinates

UH = {(1, 0, 0, 0, 0, 0, 0)} ∪ {(x2
3 − γ−1(γx2

1 − x2
2)

2, x1, x2, x3, 1, f1(x1, x2, x3),
f2(x1, x2, x3))|(x1, x2, x3) ∈ GF (q)3},

where f1(x1, x2, x3) = γx3
1− x1x2

2− x2x3 and f2(x1, x2, x3) = x3
2γ

−1− x2
1x2 + x1x3, with γ

a non-square of GF (q). This means that

(x2
3 − (x1x5 + x2x6), x1, x2, x3, 1, x5, x6) ∈ UH ⇔

{
x5 = f1(x1, x2, x3),
x6 = f2(x1, x2, x3).

Let Oi(α, β, n) = Uθi(α,β,n)
H , for each i ∈ {1, 2, 3, 4}, α ∈ GF(q)∗ and β, n ∈ GF(q). We

will examine which of these ovoids are translation ovoids with respect to (∞). Since
the automorphism group of H(q) acts transitively on the incident pairs (x, point regulus
containing x), x any point of H(q), all translation ovoids of H(q) which are isomorphic
to UH under the group PGO(7, q) are obtained in this way. From Theorem 6 we have
that if Oi(α, β, n) is a translation ovoid with respect to (∞), then Oi(α, β, n) is the union
of q2 point reguli through (∞). The point regulus of H(q) through (∞) and a point
(a, l, a′, l′, a′′) is given by the set

{(∞)} ∪ {(a, l, a′ + λ, l′, a′′)|λ ∈ GF(q)}.
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If σλ is the group element Θ[0, 0, 0, λ, 0] ∈ T , then this set can also be written as

{(∞)} ∪ {(a, l, a′, l′, a′′)σλ|λ ∈ GF(q)}.

From this follows that an ovoid Oi(α, β, n) is the union of q2 point reguli through (∞)
if and only if for each element p of Oi(α, β, n) and for each λ ∈ GF(q), there holds that

pσλ ∈ Oi(α, β, n). Since Oi(α, β, n) = Uθi(α,β,n)
H , this is equivalent with the condition that

for each p ∈ UH , there must hold that pθi(α,β,n)σλθ−1
i (α,β,n) ∈ UH .

Let Tλ be the matrix which is associated with σλ, i. e.

Tλ =





1 0 0 λ λ2 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 −λ 0 0
0 0 0 0 1 0 0
0 0 λ 0 0 1 0
0 −λ 0 0 0 0 1





.

Then the ovoid Oi(α, β, n) is the union of q2 point reguli through (∞) if and only if

Ti(α, β, n)−1TλTi(α, β, n)





x0

x1

x2

x3

1
f1(x1, x2, x3)
f2(x1, x2, x3)





∈ UH ,

with x0 = x2
3−γ−1(γx2

1−x2
2)

2, for each (λ, x1, x2, x3) ∈ GF(q)4, i ∈ {1, 2, 3, 4}, α ∈ GF(q)∗

and β, n ∈ GF(q). Denote this condition by (∗).

1. First we will determine which ovoids of type O1(α, β, n) can be written as the union
of q2 point reguli through (∞).

The ovoid O1(α, β, n) is the union of q2 point reguli through (∞) if and only if
condition (∗) holds for i = 1. This is equivalent with

(x0 + λ(x3 + λ), x1 − αλn(nf2(x1, x2, x3) + x1), αλ(n2f1(x1, x2, x3)
−nx2) + x2, x3 − λ, 1, αλ(nf1(x1, x2, x3)− x2) + f1(x1, x2, x3),
αλ(nf2(x1, x2, x3) + x1) + f2(x1, x2, x3)) ∈ UH ,
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for each (λ, x1, x2, x3) ∈ GF(q)4. If x2 = x3 = 0, then f1(x1, 0, 0) = γx3
1 and

f2(x1, 0, 0) = 0. If condition (∗) is satisfied there must hold that
{

(αλn + 1)γx3
1 = f1((1− αλn)x1, αλn2γx3

1,−λ),
αλx1 = f2((1− αλn)x1, αλn2γx3

1,−λ),

for each (λ, x1) ∈ GF(q)2. The coefficient of λ in the first equation is given by
αnx3

1 and must be zero for each x1 ∈ GF(q). This implies that n = 0. If we use
this in the second equation we find that αλx1 = f2(x1, 0,−λ) = −λx1, for each
(λ, x1) ∈ GF(q)2; hence α = −1.

Each ovoid O1(−1, β, 0) is given by the set of points

{(1, 0, 0, 0, 0, 0, 0)} ∪ {(x2
3 − γ−1(γx2

1 − x2
2)

2, x1, x2, x3, 1,
f1(x1, x2, x3)− βx2, f2(x1, x2, x3) + βx1)|(x1, x2, x3) ∈ GF(q)3},

or in coordinates of H(q)

{(∞)} ∪ {(a,−γa′′3 + βa, a′, γ−1a3 + βa′′, a′′)|(a, a′, a′′) ∈ GF (q)3}.

If Θ(K, B, K ′, B′, K ′′) corresponds to Θ[ 3
√

K, B, 3
√

K ′, B′, 3
√

K ′′] under the duality τ
of H(q) (see the formulae 12 in Section 3.1), then the group

{Θ(A,−γA′′3 + βA, A′, γ−1A3 + βA′′, A′′)|(A, A′, A′′) ∈ GF(q)3}

acts transitively on the points of O1(−1, β, 0) \ {(∞)}. So by Lemma 5, we have
that O1(−1, β, 0) is a translation ovoid with respect to (∞).

This means that an ovoid of type O1(α, β, n) is a translation ovoid with respect to
(∞) if and only if n = 0 and α = −1.

2. The ovoid O2(α, β, n) is the union of q2 point-reguli through (∞) if and only if
condition (∗), with i = 2, is satisfied, or equivalently, if and only if

(x0 + λ(x3 + λ), x1 − αλx2, x2, x3 − λ, 1, f1(x1, x2, x3),
αλf1(x1, x2, x3) + f2(x1, x2, x3)) ∈ UH ,

for each (λ, x1, x2, x3) ∈ GF(q)4. This is equivalent with
{

f1(x1, x2, x3) = f1(x1 − αλx2, x2, x3 − λ),
αλf1(x1, x2, x3) + f2(x1, x2, x3) = f2(x1 − αλx2, x2, x3 − λ),

(∗∗)

for each (λ, x1, x2, x3) ∈ GF(q)4. It is easy to see that the first equation does not
hold for each (λ, x1, x2, x3) ∈ GF(q)4. This means that an ovoid of type O2(α, β, n),
with α ∈ GF(q)∗ and β, n ∈ GF(q)2, never is a translation ovoid with respect to
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(∞). We can say even more about these ovoids. The points p of O2(α, β, n) for which
the regulus through (∞) and p is contained in O2(α, β, n), are determined by the
values x1, x2, x3 ∈ GF(q)3 which satisfy the equations of (∗∗) for each λ ∈ GF(q).
It is not difficult to see that these equations are satisfied for each λ ∈ GF(q) if and
only if x1 = x2 = 0. This implies that p ∈ R, with R the regulus through (∞) and
(0, 0, 0, 0, 0). Hence an ovoid of type O2(α, β, n) contains a unique regulus through
(∞).

3. The ovoid O3(α, β, n) is the union of q2 point reguli through (∞) if and only if
condition (∗) holds for i = 3. Notice that, since T3(α, β, n) = T1(α, β, n)I2,6, there
follows that

T−1
3 (α, β, n)TλT3(α, β, n) = I2,6T

−1
1 (α, β, n)TλT1(α, β, n)I2,6.

This means that (∗) is satisfied if and only if

(x0 + λ(x3 + λ), x1 − αλn(nx2 + x1), αλ(nx2 + x1) + x2, x3 − λ, 1,
αλ(nf1(x1, x2, x3)− f2(x1, x2, x3)) + f1(x1, x2, x3),
αλn(nf1(x1, x2, x3)− f2(x1, x2, x3)) + f2(x1, x2, x3)) ∈ UH ,

for each (λ, x1, x2, x3) ∈ GF(q)4. Let x2 = x3 = 0. If the condition above is satisfied,
there must hold that

{
(αλn + 1)γx3

1 = f1(x1(1− αλn), αλx1,−λ),
αλn2γx3

1 = f2(x1(1− αλn), αλx1,−λ),

for each (λ, x1) ∈ GF(q)2. The first equation can be written as

(αλn + 1)γx3
1 = γx3

1(1− αλn)3 − x3
1α

2λ2(1− αλn) + αλ2x1,

for each (λ, x1) ∈ GF(q)2. The coefficient of λ2 is −x3
1α

2 + αx1, which is zero for
each x1 ∈ GF(q) if and only if α = 0, a contradiction. This means that an ovoid of
type O3(α, β, n), with α ∈ GF(q)∗ and β, n ∈ GF(q)2, never is a translation ovoid
with respect to (∞).

4. The ovoid O4(α, β, n) is the union of q2 point reguli through (∞) if and only if
condition (∗) holds for i = 4. We have that T4(α, β, n) = T2(α, β, n)I2,6, hence

T−1
4 (α, β, n)TλT4(α, β, n) = I2,6T

−1
2 (α, β, n)TλT2(α, β, n)I2,6.

Condition (∗) is satisfied if and only if

(x0 + λ(x3 + λ), x1 − αλf2(x1, x2, x3), x2 + λαf1(x1, x2, x3), x3 − λ,
1, f1(x1, x2, x3), f2(x1, x2, x3)) ∈ UH ,
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for each (λ, x1, x2, x3) ∈ GF(q)4. This is equivalent with






f1(x1, x2, x3) =
f1(x1 − αλf2(x1, x2, x3), x2 + αλf1(x1, x2, x3), x3 − λ),

f2(x1, x2, x3) =
f2(x1 − αλf2(x1, x2, x3), x2 + αλf1(x1, x2, x3), x3 − λ),

for each (λ, x1, x2, x3) ∈ GF(q)4. If x1 = x3 = 0, then the first equation becomes

0 = f1(−αλf2(0, x2, 0), x2,−λ),

for each (λ, x2) ∈ GF(q)2. So there must hold that

−γα3λ3f2(0, x2, 0)3 + αλf2(0, x2, 0)x2
2 + λx2,

for each (λ, x2) ∈ GF(q)2. The coefficient of λ3 is −γ−2α3x9
2, which should be zero

for each x2 ∈ GF(q), a contradiction.

This means that an ovoid of type O4(α, β, n), with α ∈ GF(q)∗ and β, n ∈ GF(q)2,
never is a translation ovoid with respect to (∞).

So the ovoid Oi(α, β, n) of H(q), q = 3e > 3, is a translation ovoid with respect to (∞) if
and only if i = 1, α = −1 and n = 0, and then Oβ = Oi(−1, β, 0) is given by

{(∞)} ∪ {(a,−γa′′3 + βa, a′, γ−1a3 + βa′′, a′′)|(a, a′, a′′) ∈ GF (q)3}.

If β = 0, then Oβ
∼= UH . We show that also the converse is true, i. e. if Oβ

∼= UH , then
β = 0. Each element g of G2(q) which fixes elementwise the apartment with elements

[∞], (0), [0, 0], (0, 0, 0), [0, 0, 0, 0], (0, 0, 0, 0, 0),

[0, 0, 0, 0, 0], (0, 0, 0, 0), [0, 0, 0], (0, 0), [0], (∞) ,

corresponds with a collineation gxy with matrix Txy, see above. The automorphism gxy

maps (a,−γa′′3 + βa, a′, γ−1a3 + βa′′, a′′) onto the point

(xa, x3y(−γa′′3 + βa), x2ya′, x3y2(γ−1a3 + βa′′), xya′′).

So gxy fixes Oβ if and only if

• y2 = 1 if β = 0,

• y2 = 1 and y = 1/x2 if β *= 0.
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So if β = 0, then this is a subgroup of order 2(q− 1) and if β *= 0, then this is a subgroup
of order 2 if q = −1 mod 4 and of order 4 if q = 1 mod 4. Since the automorphism group
of UH acts 2-transitively on the points of UH , and since it is readily checked that the
stabilizer in G2(q) of UH fixing two given distinct points of UH and fixing all the lines
of H(q) through these points has order q − 1, there follows that if Oβ, β ∈ GF(q), is
isomorphic to UH

∼= Oβ, then either q = 3 (in contradiction with our assumption) or
β = 0. So Oβ

∼= UH ⇔ β = 0.

To prove the theorem completely, we only have still to show that Oβ and Oβ′ are isomor-
phic if β, β′ ∈ GF(q)∗. If β′/β = A2 is a square in GF(q), then it is readily checked that
the transformation with matrix diag(A4, A,A, A2, 1, A3, A3) stabilizes H(q) and maps Oβ

to Oβ′ . If β′/β is not a square in GF(q), then we may write it as β′/β = A2/γ. If
we first apply the transformation defined on the coordinates in PG(6, q) by Xi /→ Xi

(i = 0, 4), Xj ↔ Xj+1 (i = 1, 5), X3 ↔ −X3, followed by the transformation with ma-
trix diag(γ−2A4,−γ−1A, A,−γ−1A2, 1,−γ−1A3, γ−2A3), then H(q) is stabilized and Oβ is
transformed into Oβ′ . !
From the above proof immediately follows that the condition of being a translation ovoid
in Theorem 21 can be weakened to being a locally hermitian ovoid without any change
in the result.

It is also clear that one obtains a lot of new ovoids which are not translation ovoids.
By dualizing H(q) one obtains a lot of spreads of H(q) which are not isomorphic to any
previously known spread; these new spreads are also new 1-systems in the quadric Q(6, q)
(cf. Section 2.3).

Now we dualize the new ovoids found in Theorem 21 (using the formulae (12)) and obtain
a spread of type

Sβ = {[∞]} ∪ {[k,−γk′′ + βk1/3, k′, γ−1k + βk′′1/3, k′′]|(k, k′, k′′) ∈ GF(q)3},

with β ∈ GF(q)∗ and γ a non-square of GF(q). If we project S along reguli from the
point (∞), then one can easily calculate the coordinates of the projection, and we obtain

Oβ = {(∞)} ∪ {(a,−γa′′ + βa1/3, γ−1a + βa′′1/3)|a, a′′ ∈ GF(q)},

where we have put a = k and a′′ = k′′. Hence

Oβ = {(∞)} ∪ {(a, l, γ−1a + β4/3γ−1/3a1/9 − βγ−1/3l1/3)|a, l ∈ GF(q)}.

Without loss of generality, we may consider O−γ1/3 and see that this is nothing else than
the Roman ovoid of Thas & Payne [21].

Next, consider the point (x) on [∞]. We now want to project Sβ along reguli from (x).
Reconsidering Oβ, the point (x) corresponds to the line [x]. We now apply the collineation
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Θ[−x, 0, 0, 0, 0] followed by the transformation defined on the coordinates in PG(6, q) by
Xi /→ X6−i (i = 0, 1, . . . , 6), and then we dualize again. The point (x) is thus mapped on
(∞). Hence we can again easily calculate the coordinates of the projection along reguli
from (∞), and after a tedious calculation, putting γβ3(1 − γx2) equal to y−3, for some
y ∈ GF(q), we find

Oβ,x = {(∞)}∪ {(a, l, γβ3y2(γya + β1/3a1/9 + l1/3 + γ2/3βx1/3ya1/3 + γxyl)|a, l ∈ GF(q)}.

Now we apply the collineation defined on the coordinates of Q(4, q) as follows:

(a, l, a′) /→ (γ3β3y6a, γy3l + γ3β3xy6a, γ−1β−3a′ + γ3β3x2y6a− γxy3l),

[k, l, k′] /→ [γ−2β−3y−3k + x, γ−1β−3b, γy3k′]

(which can readily be checked to be indeed a collineation using the formulae (1) of Sec-
tion 2). We obtain now the ovoid O−y, which is isomorphic to the Roman ovoid OTP (see
the previous paragraph).

Thus we have proved the following theorem:

Theorem 22 Let SH be a hermitian spread of H(q), q = 3h. Let τ0 be any anti-
automorphism from H(q) onto its dual. Then there exists an automorphism θ of Q(6, q)
such that Sτ0θ

H is a non-hermitian translation ovoid with respect to some point x. For any

such τ0 and θ, the projection along reguli of Sτ0θτ−1
0

H from any point on xτ−1
0 is isomorphic

to a Roman ovoid of Thas and Payne.

Remark. It is clear that many non-isomorphic new ovoids of H(q), q = 3h, arise by
applying an automorphism θ of Q(6, q) to a hermitian ovoid of some fixed H(q), where
θ does not preserve H(q). One can do the same trick with the Ree-Tits ovoids (cf.
Section 3.1). This gives us amongst others new translation ovoids UR,β with respect to
{(∞), [∞]}. The explicit form of those is:

UR,β = {(∞)} ∪ {(a, a′′s − a3+s + βa, a′, a3+2s + a′s + asa′′s + βa′′, a′′)|a, a′, a′′ ∈ GF(q)},

with q = 32e+1 and s = 3e+1. It is clear that, if UR,β is an ovoid, then it is a translation
ovoid with respect to {(∞), [∞]}. The fact that it is indeed an ovoid follows from the
following theorem:

Theorem 23 Let O be an ovoid of H(q) containing the point (∞). Then the set

Oβ = {(∞)} ∪ {(a, l + βa, a′, l′ + βa′′, a′′)|(a, l, a′, l′, a′′) ∈ O}

is an ovoid of H(q).
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PROOF. It is an elementary exercise to calculate that two points (x, m, x′, m′, x′′) and
(y, n, y′, n′, y′′) of H(q) are opposite if and only if

(m′ − n′)(x− y)− (m− n)(x′′ − y′′)
*= x′′y′′(x− y)2 + (x− y)(x′x′′ − y′y′′ − 2x′y′′ + 2x′′y′) + (x′ − y′)2

(use the coordinates in PG(6, q), see Table 2). The theorem now easily follows. !

5 New classes of locally hermitian spreads of H(q)

5.1 Preliminary results

Consider a non-singular elliptic quadric Q−(5, q) containing some fixed line L of H(q)
(for the calculations later on, we will assume L = [∞]). Let S be the corresponding
hermitian spread. In PG(5, q) ⊇ Q−(5, q) we consider a PG(3, q) skew to L. Let S =
{L, M1, . . . ,Mq3} and let τ be the 3-dimensional space which is tangent to Q−(5, q) at
L. Then the lines 〈L, Mi〉 ∩ PG(3, q) together with τ ∩ PG(3, q) = L′ form a regular
spread S of PG(3, q) (for the definition of regular spread, see Thas [20]). Let p I L.
Then the lines of Q−(5, q) through p are denoted by L, N1, N2, . . . , Nq2 . The planes
〈L, Ni〉, i = 1, 2, . . . , q2, intersect PG(3, q) in q2 points which, together with L′, form a
plane πp. In the tangent space τp of Q−(5, q) at p we now choose a 3-dimensional space
γ not containing p, and in the tangent space τ ′p of Q(6, q) at p we choose a 4-dimensional
space γ′ ⊇ γ not containing p. Then the lines L, N1, N2, . . . , Nq2 intersect γ in the points
of an elliptic quadric Op on Q(4, q) = Q(6, q) ∩ γ′. With the lines of πp different from L′

there correspond the conics of Op through l, with {l} = Op ∩ L. Hence each regulus of
S containing L′ defines a conic of Op through l, and conversely. The set of q reguli of S
defined by a regulus of S containing L′ will be called an R-conic of H(q).

Theorem 24 Let S be a non-hermitian locally hermitian spread in L of H(q). Suppose
that for any point x ∈ L, the projection Ox from x along reguli is a classical ovoid of
Q(4, q). If M1, M2 ∈ S \ {L} and if the reguli R(L, M1) and R(L, M2) are distinct,
then the 5-dimensional space containing R(L, M1) and R(L, M2) intersects Q(6, q) in
a non-singular elliptic quadric Q−(5, q) which contains exactly q reguli R(L, M), with
M ∈ S \ {L}. These q reguli are the elements of an R-conic of H(q).

PROOF. If M, N are distinct lines on Q(6, q) and 〈M, L〉 ∩ Q(6, q) is hyperbolic, then
we will denote the regulus of 〈M, N〉 ∩ Q(6, q) containing M, N by [M, N ]; the opposite
regulus will be denoted by [M, N ] (note that, if M and N are lines of H(q), then [M, N ] =
R(M, N) and [M, N ] does not contain any line of H(q)). As S is a translation spread of
H(q) with respect to the line L, we have [L, M ] ⊆ S for any M ∈ S \ {L}.
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Let M1, M2 ∈ S \ {L} with [L, M1] *= [L, M2]. If 〈L, M1, M2〉 ∩ Q(6, q) = Q′ is sin-
gular or hyperbolic, then, as S is a 1-system of Q(6, q), the space 〈L, M1, M2〉 contains
exactly q + 1 elements of S (see Section 2.3), a contradiction. So 〈L, M1, M2〉 ∩ Q(6, q)
is an elliptic quadric Q−(5, q). Let p ∈ L and let N1, N2 be the transversals through p
for [L, M1], [L, M2] respectively. The lines N1, N2 define respective points n1, n2 of the
elliptic quadric Op. Let C be the conic of Op containing n1, n2, l, with {l} = Op ∩ L. If
C = {l, n1, n2, . . . , nq} and pni = Ni, i = 1, 2, . . . q, then N1, N2, . . . , Nq belong to the
opposite reguli of respective reguli [L, M1], [L, M2], . . . ,[L, Mq] in S. Clearly the lines
L, N1, N2, . . . , Nq belong to a 3-space. As L, N1, N2 belong to Q−(5, q), also the lines
N3, N4, . . . , Nq of 〈L, N1, N2〉 belong to Q−(5, q). If p′ ∈ L, p′ *= p, then similarly M1, M2

and p′ define lines L, N ′
1, N

′
2, . . . , N

′
q of some 3-space; here we assume that N ′

1, N
′
2 are the

respective lines of [L, M1] and [L, M2] through p′. As L, N ′
1, N

′
2 belong to Q−(5, q), also

the lines N ′
3, N

′
4, . . . , N

′
q of 〈L, N ′

1, N
′
2〉 belong to Q−(5, q). The lines of H(q) in Q−(5, q)

are the elements of a hermitian spread S ′ of H(q). Clearly S ′ contains [L, M1] and [L, M2].
The reguli of S ′ through L for which N1, N2, . . . , Nq are the lines through p of the oppo-
site reguli, are exactly the reguli of S ′ through L for which N ′

1, N
′
2, . . . , N

′
q are the lines

through p′ of the opposite reguli (these q reguli through L are uniquely determined by
[L, M1] and [L, M2]). So S ′ contains [L, M1], [L, M2] and the opposites of q − 2 reguli
[Ni, N ′

j], i = 3, 4, . . . , q; indices can be chosen in such a way that i = j. If R ∈ S, with
R not in Q−(5, q), intersects Ni, then let R′ be the line of S which intersects N ′

i and for
which U = 〈R ∩Ni, R′ ∩N ′

i〉 ∈ S ′. So there is a line U of H(q) which is concurrent with
distinct lines of S, a contradiction. Consequently, all lines of S which are concurrent with
N1, N2, . . . , Nq belong to Q−(5, q). It follows that Q−(5, q) contains at least q distinct
reguli [L, M1], [L, M2], . . . , [L, Mq], where M1, M2, . . . ,Mq ∈ S \ {L} are the elements of
an R-conic of H(q).

Assume, by way of contradiction, that Q−(5, q) contains at least q + 1 reguli [L, M1],
[L, M2], . . . , [L, Mq+1], . . . . Let N1, N2, . . . , Nq+1, . . . be the respective transversals through
p. Then L, N1, . . . , Nq+1, . . . define points l, n1, . . . , nq+1, . . . of the elliptic quadric Op

(where {l, n1, . . . , nq} is a conic). As the internal (or derived) affine plane (Op)l of Op at l
(where Op is viewed as an inversive plane) is generated by the points n1, n2, . . . , nq, nq+1, it
follows from the preceding paragraph that all lines of S are contained in Q−(5, q). Hence
S is hermitian, a contradiction. !

Theorem 25 Let {R(L, Mi)|i = 1, 2, . . . , q} = C be an R-conic of H(q). Further we
consider a regulus R(L, M) on H(q) which is not contained in the elliptic quadric Q−(5, q)
defined by C, such that each 5-dimensional space 〈L, M, Mi〉 intersects Q(6, q) in an elliptic
quadric. Then R(L, M)∪R(L, M1)∪. . .∪R(L, Mq) is contained in exactly one (necessarily
non-hermitian) locally hermitian spread S of H(q) with respect to the line L, such that
for any point x ∈ L the projection from x of S along reguli is a classical ovoid of Q(4, q).
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PROOF. First, let q = 2. The line L is contained in exactly one 3-dimensional space
τ for which τ ∩ Q(6, q) = L. It follows that any hyperplane containing [L, M ] and
intersecting Q(6, q) in a non-singular elliptic quadric, also contains τ , and consequently
is uniquely defined. Hence [L, M ], [L, M1], [L, M2] belong to a common elliptic quadric,
a contradiction. It follows that q > 2.

Each pair {[L, M ], [L, Mi]}, i = 1, 2, . . . , q, defines a unique R-conic Ci of H(q). Let
x ∈ L and let PG(4, q) be a hyperplane, not through x, of the tangent space PG(5, q)
of Q(6, q) at x. The lines of Q(6, q) through x intersect PG(4, q) in the points of a non-
singular quadric Q(4, q). Let PG(4, q)∩L = {l}. The transversals N1, N2, . . . , Nq through
x of the respective reguli [L, M1], [L, M2], . . . , [L, Mq] intersect Q(4, q) in the respective
points n1, n2, . . . , nq. Then {l, n1, n2, . . . , nq} is a non-singular conic C on Q(4, q). The
transversal N in x of [L, M ] intersects Q(4, q) in the point n. By assumption, for any
point y ∈ C \ {l} the plane lny intersects Q(4, q) in a non-singular conic Cy. It follows
that the 3-dimensional space ζx containing C and n intersects Q(4, q) in a non-singular
elliptic quadric Ox which contains all conics Cy. Assume, by way of contradiction, that a
line M ′, with L *= M ′, in a regulus of Ci \ {[L, M ]} intersects a line M ′′, with L *= M ′′,
in a regulus of Cj \ {[L, M ]}, i *= j. If z′ ∈ M ′ ∩M ′′ and if z is the point of L collinear
in Q(6, q) with z′, then on the elliptic quadric Oz the R-conics Ci and Cj define distinct
conics having three points in common, a contradiction. Hence the q2 − q + 1 reguli of
the q R-conics C1, C2, . . . , Cq contain q3 − q2 + q + 1 mutually disjoint lines of H(q). Let
W = C1 ∪ C2 ∪ . . . ∪ Cq, and let V be the set of all lines in the elements of W .

Let R1,R2 be any two distinct elements of W . These two reguli are contained in a 5-
dimensional space π5. If π5 ∩ Q(6, q) is a non-singular hyperbolic quadric, then there
exist two planes π and π′ in π5 each of which contains a line of the regulus Ri, i = 1, 2;
if π5 ∩ Q(6, q) is singular, then there exists one plane π in π5 which contains a line of
Ri, i = 1, 2. If x is the common point of π and L, then on Ox there are two points
which are collinear in Q(6, q), a contradiction. Hence π5∩Q(6, q) is a non-singular elliptic
quadric and so all lines in R1∪R2 are at mutually distance 6 in H(q). It follows that the
q3 − q2 + q + 1 lines of V are at mutually distance 6 in H(q).

Let Q−
1 (5, q) be any non-singular elliptic quadric containing L, let C ′ be an R-conic whose

elements belong to Q−
1 (5, q), let R1,R2,R3 be three distinct elements of C ′ and let x ∈ L.

Further, let PG1(3, q) be a 3-dimensional space, not through x, in the tangent hyperplane
of Q−

1 (5, q) at x and let PG(3, q) be a 3-dimensional space, skew to L, in the PG1(5, q)
of Q−

1 (5, q). Put {l} = L ∩ PG1(3, q) and let r1, r2, r3 be the respective intersections
of PG1(3, q) with the transversals through x of R1,R2,R3. The spaces generated by
R1,R2,R3 intersect PG(3, q) in the respective lines U1, U2, U3 and the tangent space of
Q−

1 (5, q) at L intersects PG(3, q) in the line U . Then the lines xr1, xr2, xr3 and the
tangent line at l of the conic C ′ = Q−

1 (5, q) ∩ 〈r1, r2, r3〉 intersect the respective lines
U1, U2, U3, U in collinear points. Hence the cross-ratio (l, r1; r2, r3) is equal to the cross-
ratio (U,U1; U2, U3). It follows that the cross-ratio (l, r1; r2, r3) is independent of the choice
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of x on L.

Consider points x, x′ ∈ L. x *= x′, the corresponding elliptic quadrics Ox, Ox′ , the points
l, n, ni ∈ Ox and l′, n′, n′i ∈ Ox′ , which correspond respectively to L, [L, M ], [L, Mi], with
i = 1, 2, . . . , q. Then by the previous section there is a linear isomorphism θ of Ox onto
Ox′ for which lθ = l′, nθ = n′, nθ

i = n′i, with i = 1, 2, . . . , q. If W ∈ W and if w,w′ are
the corresponding elements of respectively Ox, Ox′ , then, again by the previous section
wθ = w′. Now we consider any two distinct reguli R1,R2 of W . Let z1, z2 be the respective
points of Ox defined by R1,R2. Assume that R3 is an element of the R-conic containing
R1,R2, for which the corresponding point z3 on Ox belongs to the set χ consisting of the
q2 − q + 1 points of Ox defined by W . Then l, z1, z2, z3 belong to a common conic on Ox.
Let R′

3 be the regulus of W defining z3. The point z′3 of Ox′ corresponding to R′
3 is the

point z′3 = zθ
3 ; also, (l, z1; z2, z3) = (l′, z′1; z

′
2, z

′
3). For the point z′′3 of Ox′ defined by R3

we also have (l, z1; , z2, z3) = (l′, z′1; z
′
2, z

′′
3 ). Hence z′3 = z′′3 . It immediately follows that

R3 = R′
3. Hence the R-conic defined by R1 and R2 contains either q or q − 1 elements

of W .

Let Q̃−(5, q) be the non-singular elliptic quadric containing [L, M ] and the tangent space
τ of Q−(5, q) (the elliptic quadric containing the elements of C) at L. Let x ∈ L, and as
before, let Ox be the elliptic quadric of Q(4, q) defined by x. Further, let m ∈ Ox \ χ,
with χ the set of q2 − q + 1 points of Ox defined by W , as above. If C is the conic of
Ox which corresponds to C and if n ∈ Ox corresponds to [L, M ], then xn and xT , with
T the tangent line of C at l, belong to the space of Q̃−(5, q). Hence, as m belongs to
the plane nT , the line xm belongs to Q̃−(5, q). Let C ′ be a conic through l and m, with
C ′ *= nT ∩Ox = Cx, and let z1 and z2 be distinct points of C ′ \ {l,m}. Then the R-conic
defined by z1 and z2 contains a regulus R′ for which xm ∈ R′

. This regulus R′ is the
unique regulus of the R-conic which does not belong to W . As x is any point of L, the
regulus R′

contains q + 1 lines of Q̃−(5, q). Hence R′ is a regulus of Q̃−(5, q) having xm
as transversal, and so R′ is uniquely defined by m. Let C0 be the R-conic of Q̃−(5, q)
defined by the conic Cx of Ox. Now it is clear that C0 is independent of the choice of x
on L. An argument used before shows that the lines in the reguli of C0 ∪W are mutually
at distance 6 in H(q). As there are q3 + 1 lines in the reguli of C0 ∪W , these lines form
a spread S of H(q). Finally S is locally hermitian in L and for any point of L the ovoid
of Q(4, q) defined by S is an elliptic quadric. !
A locally hermitian spread S of H(q) with respect to the line L, such that for any point
x ∈ L the projection from x of S along reguli is a classical ovoid of Q(4, q), will be called
a semi-classical spread.

Lemma 26 Let q be odd and suppose γ is a non-square in GF(q). For r ∈ GF(q),
put Mr = [0,−γr, 0, 0, r]. Then C = {R([∞], Mr)|r ∈ GF(q)} is an R-conic of H(q).
If M = [k, b, k′, b′, k′′] is an arbitrary line of H(q) not lying in the projective 5-space
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determined by C and skew to the reguli of C (i.e., b′(γb′ − k)2 *= (b + γk′′)2k), then
〈L, M, Mr〉 intersects Q(6, q) in an elliptic quadric for all r ∈ GF(q), if and only if for
each r ∈ GF(q), the line in PG(2, q) with equation

((r − k′′)(b + γr)− b′2)X − (k(r − k′′)− b′(γr + b))Y + (kb′ − (b + γr)2)Z = 0 (33)

does not contain any point of the conic Y 2 = XZ.

PROOF. Let S be the hermitian spread of H(q) contained in the space with equation
X1 = γX5 (with respect to Table 2). Then it is clear that S contains the line [∞].
The tangent space τ ′(∞) of Q(6, q) at (∞) has equation X4 = 0 and we consider the 4-
dimensional space δ′ with equations X0 = X4 = 0 in τ ′(∞) (δ′ does not contain (∞)). The

quadric Q(4, q) = δ′ ∩Q(6, q) has equations X0 = X4 = X1X5 + X2X6 −X2
3 = 0. Since

S = {[∞]} ∪ {[γb′,−γk′′, k′, b′, k′′]|k′, b′′, k′′ ∈ GF(q)}

(as one easily computes), and since the unique point on the line [γb′,−γk′′, k′, b′, k′′] collin-
ear with (∞) (in Q(6, q)) has coordinates (γb′,−γk′′, k′, b′) in H(q) (and hence coordinates
(k′ − γk′′b′, γb′, 1,−γk′′, 0, b′, γ2k′′2 − γb′2) in PG(6, q)), it is clear that the transversals
through (∞) of the reguli of S through [∞] meet Q(4, q) in the points with coordinates
(0, γb′, 1,−γk′′, 0, b′, γ2k′′2−γb′2). Hence these points lie on the elliptic quadric O(∞) with
equations

X0 = X4 = X1 − γX5 = X1X5 + X2X6 −X2
3 = 0.

The intersection of O(∞) with the space X1 = 0 is the irreducible conic C : X0 = X1 =
X4 = X5 = X2X6 −X2

3 = 0 containing the point (0, 0, 0, 0, 0, 0, 1) (which corresponds to
the line [∞] of S). The q2 lines of S\{[∞]} defined by the points of C\{(0, 0, 0, 0, 0, 0, 1)},
together with [∞], are the lines of the reguli of an R-conic; they all have b′ = 0, hence
they have coordinates [0,−γk′′, k′, 0, k′′]. This proves the first assertion.

Now let M = [k, b, k′, b′, k′′] be any line of H(q) at distance 6 from [∞]. Fix r ∈ GF(q)
and let PG(5, q) be the subspace of PG(6, q) generated by [∞], [0,−γr, 0, 0, r], M . Sup-
pose that PG(5, q) intersects Q(6, q) in a non-elliptic quadric Q. This means that the
hyperplane with equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X0 X1 X2 X3 X4 X5 X6

1 0 0 0 0 0 0
0 0 0 0 0 0 1

k′ + bb′ k 1 b 0 b′ b2 − b′k
b′2 + k′′b −b 0 −b′ 1 k′′ −kk′′ − k′ − 2bb′

0 0 1 −γr 0 0 γ2r2

−γr2 γr 0 0 1 r 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (34)
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has at least one plane through [∞] in common with the quadric Q(6, q). It is clear that
the coefficients of X0 and X6 in Equation 34 are both equal to 0. Hence Equation 34 is
equivalent with

∣∣∣∣∣∣∣∣∣∣

X1 X2 X3 X4 X5

k 1 b 0 b′

−b 0 −b′ 1 k′′

0 1 −γr 0 0
γr 0 0 1 r

∣∣∣∣∣∣∣∣∣∣

= 0 (35)

Let ζ be the tangent space of Q(6, q) at [∞]. The intersection PG(5, q)∩PG(6, q) is non-
elliptic if and only if PG(5, q)∩PG(6, q)∩ ζ contains a plane. The space ζ has equations
X2 = X4 = 0. Since the points of ζ∩Q(6, q) satisfy X2 = X4 = X1X5−X2

3 = 0, it follows
that the intersection of the surfaces with equations

X2 = X4 = X1X5 −X2
3 = 0

and

∣∣∣∣∣∣∣∣∣∣

X1 0 X3 0 X5

k 1 b 0 b′

−b 0 −b′ 1 k′′

0 1 −γr 0 0
γr 0 0 1 r

∣∣∣∣∣∣∣∣∣∣

= 0

must contain plane. Since X0 and X6 can be chosen freely, this is equivalent to saying
that the system of equations






X1X5 = X2
3∣∣∣∣∣∣∣∣∣∣

X1 0 X3 0 X5

k 1 b 0 b′

−b 0 −b′ 1 k′′

0 1 −γr 0 0
γr 0 0 1 r

∣∣∣∣∣∣∣∣∣∣

= 0

must have some solution. Interpreting this in a projective plane with coordinates X1, X3, X5,
and varying r, the result easily follows. !
If q ≡ −1 mod 3, then it will be more convenient to have the following lemma at our
disposal.
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Lemma 27 Let q be odd with q ≡ −1 mod 3. For r ∈ GF(q), put Mr = [0, r, 0, r, 0].
Then C = {R([∞], Mr)|r ∈ GF(q)} is an R-conic of H(q). If M = [k, b, k′, b′, k′′] is an
arbitrary line of H(q) not lying in the projective 5-space determined by C and skew to the
reguli of C (i.e., (b− b′)3 + kk′′(k− 3b + 3b′ + k′′) *= 0), then 〈L, M, Mr〉 intersects Q(6, q)
in an elliptic quadric for all r ∈ GF(q), if and only if for each r ∈ GF(q), the line in
PG(3, q) with equation

(k′′(b− r) + (b′ − r)2)X − ((b− r)(b′ − r) + kk′′)Y + (−k(b′ − r) + (b− r)2)Z = 0 (36)

does not contain any point of the conic Y 2 = XZ.

PROOF. This is completely similar to the proof of Lemma 26. Note that the projective
5-space containing the R-conic C has equation X3 = X1 + X5. !

5.2 Examples

Let q be odd, but not a power of 3. If we put b = k′′ = 0 and k = 9γb′, b′ *= 0, in
Equation (33), then we obtain the q lines

(γr2 − b′2)X − 8rγb′Y + γ(9b′2 − γr2)Z = 0, r ∈ GF(q). (37)

Eliminating X from (37) and Y 2 = XZ, we obtain

(γr2 − b′2)Y 2 − 8rγb′Y Z + γ(9b′2 − γr2)Z2 = 0. (38)

The discriminant of that quadratic equation equals γ(4γ2r4 + 36b′4 + 24γr2b′2), which is
obviously equal to γ(2γr2 + 6b′2)2. Clearly the latter is a non-square in GF(q), for all
r ∈ GF(q), if and only if −3 is a square in GF(q). It is an elementary exercise to calculate
the other elements of a spread thus arising and we obtain the following theorem.

Theorem 28 Let q be odd and equal to 1 mod 3 (so that −3 is a non-zero square in
GF(q)). Then the set

S[9] = {[∞]} ∪ {[9γb′,−γk′′, k′, b′, k′′]|k′, b′, k′′ ∈ GF(q)}

is a semi-classical non-hermitian translation spread in H(q) with respect to [∞].

PROOF. Using the formulae just preceding Lemma 5, one easily verifies that the group

{Θ[9γK,−γB,K ′, K, B]|K, B, K ′ ∈ GF(q)}
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stabilizes S[9]. Lemma 5 now implies that the spread is a translation spread with respect
to [∞].

Next, we show that S[9] is not a hermitian spread. If it were hermitian, then all lines would
lie in the same 5-dimensional subspace U of PG(6, q). From the proof of Lemma 26 we
deduce that U has equation X1 = γX5 (it is the space of the R-conic C). But the element
[9γ, 0, 0, 1, 0] of S[9] does not belong to U . Indeed, using Table 2, we see that this line is
spanned by the points (0, 9γ, 1, 0, 0, 1,−9γ) and (1, 0, 0,−1, 1, 0, 0). The first point does
not lie in U . !

6 Some characterizations

Lemma 29 Let P (X) be a monic polynomial of degree 4 with the property that P (r)
is a non-zero square for all r ∈ GF(q), q odd. Then P (X) can be written as the square
(X2 +AX +B)2 of an irreducible quadratic polynomial X2 +AX +B, with A, B ∈ GF(q).

PROOF. If Y 2 − P (X) were absolutely irreducible, then by Smidt [16], page 32, we
would have q + 1 ≤ 2

√
q, a contradiction. Hence Y 2−P (X) is not absolutely irreducible.

Lemma 6.54 on page 309 of Lidl & Niederreiter [9] now implies that P (X) = (X −
α1)2(X −α2)2, with α1, α2 possibly equal, and contained in an extension of GF(q). Since
all coefficients of P (x) lie in GF(q), the result readily follows. !

Theorem 30 If q is a power of 3, then every semi-classical spread S in H(q) is a her-
mitian spread.

PROOF. By definition, S contains an R-conic. Without loss of generality, we may take
C = {R([∞], Mr)|r ∈ GF(q)}, where Mr = [0,−γr, 0, 0, r], for all r ∈ GF(q), and some
non-square γ ∈ GF(q). By Remark 7 we may assume that the line M = [1, b, 0, b′, 0]
belongs to S, for some b, b′ ∈ GF(q). By Lemma 26 there arises a semi-classical non-
hermitian spread if b′(γb′ − 1)2 *= b2 and if for each r ∈ GF(q) the equation

(r(b + γr)− b′2)X2 − (r − b′(γr + b))XY + (b′ − (b + γr)2)Y 2 = 0 (39)

has no solution in GF(q). Hence, for every r ∈ GF(q), the element

(r − b′(γr + b))2 − (b′ − (b + γr)2)(r(b + γr)− b′2) (40)

must be a non-square in GF(q). Working out (40), we see that γ3r4 + r2 + b3r + b′3 must
be a non-square for all r ∈ GF(q). Multiplying with γ−3, we see that, using Lemma 29,
there exist A, B ∈ GF(q) such that X4 + γ−3X2 + γ−3b3X + γ−3b′3 = (X2 + AX + B)2.
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This implies A = b = 0 and b′ = γ−1, and so b′(γb′ − 1)2 = b2. We conclude that there
does not exist a semi-classical non-hermitian spread. !
In the same way, we can classify all semi-classical spreads in H(q), q odd, with q ≡ 1 mod
3.

Theorem 31 If q ≡ 1 mod 3 and q is odd, then every semi-classical spread S in H(q) is
either hermitian or isomorphic to S[9].

PROOF. We can copy the proof of the previous theorem up to Equation (39). The
discriminant of that equation (which must be a non-square), is equal to

(r − b′(γr + b))2 − 4(b′ − (b + γr)2)(r(b + γr)− b′2) (41)

Multiplying (41) with 4γ and putting b = γb′′, t = 2γ(r + b′′), we see that

t4 − 2γb′′t3 + (γ−1 − 6b′ − 3γb′2)t2 + 2(6γb′b′′ − 2b′′)t + 16γb′3 + 4γb′′2 (42)

must be a non-zero square in GF(q) for all t ∈ GF(q). Then, by Lemma 29, there exists
A, B ∈ GF(q) such that (X2+AX+B)2 = X4+KX3+LX2+MX+N , with K = −2γb′′,
L = γ−1− 6b′− 3γb′2, M = 2(6γb′b′′− 2b′′) and N = 16γb′3 + 4γb′′2. This implies that we
must have 8M = 4KL −K3, and 64N = (4L −K2)2, and gives us the following system
of equations:

{
64(16γb′3 + 4γb′′2) = (4γ−1 − 24b′ − 12γb′2 − 4γ2b′′2)2, (∗)

0 = 3b′′ − 6γb′b′′ + 3γ2b′2b′′ + γ3b′′3. (∗∗)

If b′′ *= 0, then by dividing (∗∗) by b′′, we obtain b′′2 in function of γ and b′. Plugging this
in into (∗), we get, after some elementary calculations, (γb′ − 1)3 = 0, which implies by
(∗∗) that b′′ = 0, a contradiction. Hence we may assume that b′′ = 0. In this case, (∗) is
equivalent with (after multiplying with 16−1γ2)

9(γb′)4 − 28(γb′)3 + 30(γb′)2 − 12(γb′) + 1 = 0.

This factors as (γb′ − 1)3(9γb′ − 1) = 0. As b′(γb′ − 1)2 *= γ2b′′2, so b′(γb′ − 1) *= 0, we
must have 9γb′ = 1. This yields the spread S[9] constructed in the previous section. !
To conclude the odd case, we show:

Theorem 32 If q ≡ −1 mod 3 and q is odd, then every semi-classical spread S in H(q)
is a hermitian spread.
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PROOF. The proof is similar as the previous one. This time we use Theorem 27. So
we assume that S is a semi-classical non-hermitian spread of H(q) which, without loss of
generality, contains the R-conic C = {R([∞], Mr)|r ∈ GF(q)}, with Mr = [0, r, 0, r, 0].
It is clear that S must contain a line with coordinates [k, b, k′, b′, k′′] with k *= 0 and
k′′ *= 0. Indeed, each line concurrent with [k], k *= ∞, is concurrent with an element
of S, hence since each such line has coordinates [k, . . .], there are q2(q − 1) elements of
S with coordinates [k, . . .], with k *= 0. Similarly, there are q2(q − 1) elements of S
with coordinates [. . . , k′′], with k′′ *= 0. Since q > 2, there exists a line with coordinates
[k, b, k′, b′, k′′], with k *= 0 *= k′′. For any such line we have (b−b′)3+kk′′(k−3b+3b′+k′′) *=
0 (see Lemma 27). By applying a suitable generalized homology (see De Smet & Van
Maldeghem [2]), we may assume that k′′ = 1. Hence, we deduce from Lemma 27 that,
for all r ∈ GF(q), the element

((b− r)(b′ − r) + k)2 − 4(−k(b′ − r) + (b− r)2)((b− r) + (b′ − r)2) (43)

is a non-square in GF(q). If we put b − r = x and b′ − b = /, then (43) becomes, after
calculation,

−3x4 + (4k − 6/− 4)x3 + (6k + 12k/− 3/2)x2 + (6k/ + 12k/2)x + k2 + 4k/3.

If we multiply with −27 (which is a non-square in GF(q)), and substitute y = 3x, then
there results that

y4 − (4k − 6/− 4)y3 − (18k + 36k/− 9/2)y2 − (54k/ + 108k/2)y − 27k2 − 108k/3 (44)

is a non-zero square in GF(q), for all y ∈ GF(q). Similarly as in the previous proof, this
implies that, if we write (44) as y4 +Ky3 +Ly2 +My+N , the equalities 8M = 4KL−K3

and 64N = (4L−K2)2 must hold true. Writing K, L, M, N in terms of k and /, one finds
after an elementary calculation:
{

0 = 27k/3 + (6k + 3)2/2 + (12k3 + 36k2 + 27k + 6)/ + (k4 + 5k3 + 15k2 + 5k + 1),
0 = 18(k − 1)/2 + 18(k − 1)(k + 1)/ + (k − 1)(k + 2)(4k + 2).

Note that if k = 1, then the first equation implies that / = −1, and so (b− b′)3 + kk′′(k−
3b + 3b′ + k′′) = 0, a contradiction. So we may assume that k *= 1 and we can divide
by k − 1. Making appropriate linear combinations, we subsequently obtain the following
systems of equations in k, /:

{
0 = (9k2 + 9k + 9)/2 + (6k3 + 21k2 + 21k + 6)/ + (k4 + 5k3 + 15k2 + 5k + 1),
0 = 9/2 + 9(k + 1)/ + (k + 2)(2k + 1).

⇐⇒
{

0 = (3k3 − 3k2 − 3k + 3)/ + (k4 + 2k3 − 6k2 + 2k + 1),
0 = 9/2 + 9(k + 1)/ + (k + 2)(2k + 1).
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⇐⇒
{

0 = 3(k + 1)/ + (k2 + 4k + 1),
0 = 9/2 + 9(k + 1)/ + (k + 2)(2k + 1).

We can now easily eliminate / and we obtain −k3 + 2k2 − k = 0, hence k = 0 or k = 1, a
contradiction. !
Final Remark. Semi-classical spreads of H(q), q even, will be studied in a forthcoming
paper.
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