
Generalized Quadrangles Weakly
Embedded in Finite Projective Space

J. A. Thas H. Van Maldeghem∗

Abstract

We show that every weak embedding of any finite thick generalized
quadrangle of order (s, t) in a projective space PG(d, q), q a prime
power, is a full embedding in some subspace PG(d, s), where GF(s) is
a subfield of GF(q), except in some well-known cases where we classify
these exceptions. This generalizes a result of Lefèvre-Percsy [4],
who considered the case d = 3.

1 Introduction and Statement of the Main
Result

A weak embedding of a point-line geometry Γ with point set S in a projective
space PG(d, K) is a monomorphism θ of Γ into the geometry of points and
lines of PG(d, K) such that

(WE1) the set Sθ generates PG(d, K),

(WE2) for any point x of Γ, the subspace generated by the set X = {yθ ‖ y ∈ S
is collinear with x} meets Sθ precisely in X.

In such a case we say that the image Γθ of Γ is weakly embedded in PG(d, K).

A full embedding in PG(d, K) is a weak embedding with the additional prop-
erty that for every line L, all points of PG(d, K) on the line Lθ have an
inverse image under θ.

Weak embeddings were introduced by Lefevre-Percsy [2, 3], who required
a third condition, namely
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(WE3) if for two lines L1 and L2 of Γ the images Lθ
1 and Lθ

2 meet in some point
x, then x belongs to Sθ.

But it was shown by Thas & Van Maldeghem [8] that (WE3) is a conse-
quence of (WE1) and (WE2) if Γ is a non-degenerate polar space of rank at
least 2, that is, they proved that “sub-weak” is equivalent to “weak” where
“sub-weak” was used for a θ satisfying (WE1), (WE2) and “weak” was used
for a θ satisfying (WE1), (WE2), (WE3). Lefevre-Percsy [4] classified all
finite thick generalized quadrangles weakly embedded in a finite projective 3-
space (in fact she erroneously thought that she had proved a stronger result,
namely she only assumed conditions (WE1) and (WE3) mentioning without
proof that (WE2) follows from these; this is unfortunately not true and we
will meet counterexamples in the proof of Lemma 8). In the present paper we
will classify all weak embeddings of all finite thick generalized quadrangles
in any finite projective space.

Let Γ be a finite thick generalized quadrangle with point set S and line
set L. Let θ be a monomorphism from Γ into the point-line geometry of a
projective space PG(d, q). Usually, we simply say that Γ is weakly embedded
in PG(d, q) without referring to θ, that is, we identify the points and lines
of Γ with their images in PG(d, q).

For finite polar spaces of rank at least 3, it follows from Thas & Van Mal-
deghem [8] that any weak embedding is a full embedding in some subspace
over some subfield. This is certainly not true for generalized quadrangles as
the following counterexample shows. Let x1, x2, x3, x4, x5 be the consecutive
vertices of a proper pentagon in W (2), with W (2) the generalized quadrangle
arising from a symplectic polarity in PG(3, 2) (note that the automorphism
group of W (2) acts regularly on the set of all such pentagons). Let K be any
field and identify xi, i ∈ {1, 2, 3, 4, 5}, with the point (0, . . . , 0, 1, 0, . . . , 0)
of PG(4, K), where the 1 is in the ith position. Identify the unique point
yi+3 of W (2) on the line xixi+1 and different from both xi and xi+1, with the
point (0, . . . , 0, 1, 1, 0, . . . , 0) of PG(4, K), where the 1’s are in the ith and
the (i + 1)th position (subscripts are taken modulo 5). Finally, identify the
unique point zi of the line xiyi (it is easy to see that this is indeed a line of
W (2)) different from both xi and yi, with the point whose coordinates are all
0 except in the ith position, where the coordinate is −1, and in the positions
i−2 and i+2, where it takes the value 1 (again subscripts are taken modulo
5). It is an elementary excercise to check that this defines a weak embedding
of W (2) in PG(4, K). We call this the universal weak embedding of W (2) in
PG(4, K).

Our Main Result reads as follows.
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Theorem 1 Let Γ be a finite thick generalized quadrangle of order (s, t)
weakly embedded in the projective space PG(d, q). Then either s is a prime
power, GF(s) is a subfield of GF(q) and Γ is fully embedded in some subspace
PG(d, s) of PG(d, q), or Γ is isomorphic to W (2), the unique generalized
quadrangle of order 2, and the weak embedding is the universal one in a
projective 4-space over an odd characteristic finite field.

Note that all full embeddings of finite thick generalized quadrangles are
known (see Buekenhout & Lefevre [1] and Payne & Thas [6]) and
only the natural modules of the groups of the classical quadrangles turn up.
So the above theorem gives a complete classification of all weakly embedded
thick generalized quadrangles in finite projective space.

Finally, we introduce one more notion. Let Γ be a polar space weakly embed-
ded in some projective space PG(d, K) for some field K. Let L be any line
of PG(d, K). If L contains at least two points of Γ which are not collinear
in Γ, then we call L a secant . It is easy to show that no secant line contains
two collinear points of Γ (see Lemma 1 of Thas & Van Maldeghem [8]).
Lefevre-Percsy [2] shows that the number of points of Γ on a secant line
is a constant δ. We call δ the degree of the embedding.

For notation about generalized quadrangles not explained here, we refer to
the monograph by Payne & Thas [6].

2 Proof of the Main Result

In this section, we prove our Main Result in a series of lemmas. So from now
on we suppose that Γ is a thick generalized quadrangle of finite order (s, t)
with point set S and line set L. We also assume that Γ is weakly embedded
of degree δ in PG(d, q) for some prime power q and some positive integers d
and δ (necessarily d ≥ 3).

First we recall the result of Lefevre-Percsy [4], which we will use in the
course of our proof.

Lemma 1 If d = 3, then there is a subfield GF(s) of GF(q) and a subspace
PG(3, s) of PG(3, q) such that Γ is fully embedded in PG(3, s).

In this case either Γ ∼= W (s) or Γ ∼= H(3, s) and δ = s + 1 respectively
δ =

√
s + 1. Note also that t + 1 = δ in these cases.

And we also recall from Lefevre-Percsy [3], Proposition 4, the following
result.
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Lemma 2 If L and M are two lines of Γ meeting in a point x of Γ, then
the plane LM of PG(d, q) contains exactly δ lines of Γ through x.

We now consider the case d = 4.

Lemma 3 If d = 4 and δ = 2, then Γ ∼= Q(4, s).

PROOF. Consider any two opposite lines L and M of Γ (i.e. two lines which
do not meet in Γ). By (WE3), L and M span a 3-dimensional subspace U
(over GF(q)) of PG(4, q). By 2.3.1 of Payne & Thas [6] the points of S
in U together with the lines of L in U form a subquadrangle Γ′ of Γ. By
(WE2) and Lemma 2, the order of Γ′ is (s, 1). Hence (L, M) is a pair of
regular lines of Γ, and consequently every line of Γ is regular. By 1.3.6(i) of
Payne & Thas [6] this implies s ≤ t. Now consider two opposite points
x and y of Γ. By (WE2) the points of Γ collinear with x span at most a
3-dimensional subspace of PG(4, q); by Lemma 2 these points span at least
a 3-dimensional subspace of PG(4, q). Hence the points of Γ collinear with
x span a 3-dimensional subspace Ux of PG(4, q); similarly one defines Uy.
By (WE2) the spaces Ux and Uy are distinct and hence they meet in a plane
π. Suppose there exists a point z of Γ collinear (in Γ) with three different
points u, v and w of Γ in π (since δ = 2, u, v, w are not on a common line
of PG(4, q)). Then, by (WE2), z is collinear with the t + 1 points of Γ in
π. If z′, with z′ /∈ {x, y, z}, is collinear (in Γ) with u and v, then, as w is
collinear with x, y, z, the point w is collinear with all points collinear with
u, v, hence w is collinear with z′. It follows that z′ is collinear with all points
of Γ in π. Consequently we obtain a subquadrangle of order (1, t). Hence
in this case the pair (x, y) is a regular pair of points and so by 1.3.6(i) of
Payne & Thas [6] we have s ≥ t. Now by Payne & Thas [6], 5.2.1 (dual
statement) and 3.3.1(i), Γ ∼= Q(4, s) and s is even. So we may assume that
no point of Γ, distinct from x and y, is collinear with at least three points of
π. But then the pair (x, y) is antiregular and by 1.3.6(i) of Payne & Thas
[6] we again have s ≥ t. Hence, again by the same theorem as in the even
case, Γ ∼= Q(4, s) and s is odd. !

Lemma 4 If d = 4, δ = 2 and, if for q odd we assume s )= 2, then the
points of every line L of Γ form a subline of L over the subfield GF(s) of
GF(q). Also, every subquadrangle of order (s, 1) is fully embedded in some
3-dimensional subspace over GF(s) of PG(4, q).
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PROOF. By Lemma 3, Γ ∼= Q(4, s). Let L and M be two opposite lines of
Γ. Let π be a plane of PG(4, q) containing M and disjoint from L. Clearly,
any grid of Γ is defined by two such lines and therefore lies in a unique 3-
dimensional subspace PG(3, q) of PG(4, q); by the first part of the proof
of Lemma 3, this grid is formed by all points and lines of Γ in PG(3, q).
Consider now all grids of Γ containing L, and intersect the corresponding 3-
spaces with π. We obtain s2 lines of π which are said to be of type (I). Also,
consider the s + 1 3-spaces of PG(4, q) spanned by the points of Γ collinear
with any point of Γ on L. Since these 3-spaces contain L, each of them meets
π in a line. Hence we obtain s + 1 lines (not of type (I)) in π which are said
to be of type (II). Suppose K1 and K2 are two lines in π of type (I) or (II),
but not both of type (II). Since Γ ∼= Q(4, s), the corresponding grids, or the
corresponding grid and the set of all lines of Γ incident with a fixed point of Γ
on L share exactly two lines one of which is L. These two lines span a plane
meeting π in a point of π lying on both K1 and K2. Also, any two distinct
lines of type (II) do not meet. As there are s(s+1) lines of Γ concurrent with
L, but different from L, and as each of these lines defines a common point of
two lines in π of type (I) or (II), but not both of type (II), there are exactly
s2 + s points in π on at least two lines in π of type (I) or (II), but not both
of type (II). It is also clear that any two distinct of these s2 + s points in π
are contained in exactly one line of type (I) or (II) (this follows directly from
the construction of the points and from the definition of the lines of type (I)
and (II)). Hence we obtain a linear space with s2 + s points and s2 + s + 1
blocks; each block of type (I) contains s + 1 points, each block of type (II)
contains s points and each point is contained in s + 1 blocks. Deleting one
block K of type (II) with all points on it gives us an affine plane of order s,
which is a substructure of the projective plane π. By Limbos [5], either this
affine plane uniquely embeds in a projective subplane π′ of π, or s ∈ {2, 3}.
If s = 3, then again by Limbos [5], no three distinct lines of any parallel
class of that affine plane meet in a common point, contradicting the fact that
for three of the four parallel classes (those which have as point at infinity a
point of the deleted block K) all lines meet in a unique point. We conclude
that the s + 1 points of Γ on M form a subline PG(1, s) over GF(s), since
for s = 2 and q even this is trivial.

Now let Γ′ be any subquadrangle of order (s, 1) of Γ. Consider two opposite
lines L and M of Γ′ and let N be a line of Γ′ meeting both L and M . The
3-space U in PG(4, q) defined by L and M meets S in the point set of a
subquadrangle which is clearly Γ′. Since the points of Γ′ on each of the lines
L, M, N form a subline over GF(s), the points of Γ on the lines L and N
generate a unique subplane over GF(s). Also, that subplane together with
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the points of Γ′ on M generate a unique sub-3-space V over GF(s) of U .
Let x be any point of Γ′. Since Γ′ is a grid, there is a unique line N ′ of Γ′

containing x and intersecting L and M . So N ′, as a line of U , is also a line of
V since it contains at least two points of V , namely its intersections with L
and M . Similarly, all lines of Γ′ opposite N ′ are lines of V . Let N ′′ be such
a line, N )= N ′′ )= N ′ (N ′′ exists since s > 1). Also, there is a unique line L′

of Γ′ containing x and intersecting N in, say, the point y of Γ′. The line L′

is the unique line in U containing y and meeting the two skew lines N ′ and
N ′′. But as y and both N ′, N ′′ lie in V , we see that also L′ lies in V . Hence
x ∈ V . So Γ′ is fully embedded in V . !

Lemma 5 If d = 4, then every line L of Γ meets every subspace of PG(4, q)
(not containing L) generated by two arbitrary opposite lines of Γ in a point
of Γ.

PROOF. If δ = 2, then this follows from Lemma 3. Suppose now δ > 2.
By 2.3.1 of Payne & Thas [6] the points and lines of Γ in a 3-space of
PG(4, q) containing two opposite lines of Γ, form a subquadrangle Γ′ of Γ of
order (s, t′); by (WE2) and Lemma 2 we have t′ + 1 = δ. Also, Γ′ is weakly
embedded in that 3-space, hence by Lemma 1 we have t′ = s or t′ =

√
s. If

t′ = s, then by 2.2.2 and 2.2.1 of Payne & Thas [6] t = s2 and every line
of Γ not in Γ′ meets Γ′ in a unique point. So suppose that t′ =

√
s. Let

L be a line of Γ not belonging to Γ′ and let U be the 3-space over GF(q)
generated by the points of Γ′. Suppose L meets U in a point not belonging
to S. Let x be any point of Γ on L. Then x /∈ U . The set of all points of
Γ′ collinear in Γ with x forms an ovoid O of Γ′ (see 2.2.1 of Payne & Thas
[6]). Hence there are 1 + s

√
s such points. Let y be any element of O. The

plane π generated by L and xy contains by Lemma 2 exactly t′ + 1 lines of
Γ (through x). If M is one of these lines and M )= xy, then we show that M
does not meet U in a point of Γ′. Assume, by way of contradiction, that z is
the (unique) point of M in U . Then the line yz of PG(4, q) is a secant and
contains t′ + 1 points of Γ′, hence, by (WE2) and Lemma 2, it also contains
a point of L, a contradiction. So with every line of Γ through x which meets
Γ′ in an element of O, one associates t′−1 =

√
s−1 other lines of Γ through

x different from L and meeting U in points not belonging to Γ′. If z, z′ ∈ O,
z )= z′, then clearly the plane generated by L and xz does not contain xz′,
otherwise by the same argument as above L would meet U in an element of
O. Hence we obtain 1 + (1 + s

√
s)
√

s > s2 + 1 ≥ t + 1 lines of Γ through x,
a contradiction. Hence the result. !
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Lemma 6 If d > 4, then d = 5, δ = 2, Γ ∼= Q(5, s) and every line L of Γ
meets every subspace of PG(d, q) (not containing L) generated by three lines
L1, L2, L3 of Γ, such that L1 and L2 are opposite and L3 meets L2 but does
not lie in the space (over GF(q)) generated by L1 and L2, in a point of Γ.

PROOF. Consider two opposite lines L1 and L2 of Γ. By (WE3), they
generate a 3-space U3 of PG(d, q). The points and lines of Γ in U3 form a
subquadrangle Γ′ of Γ of order (s, t′) with t′ + 1 = δ. If t = t′, then d = 3;
so t′ < t and hence there exists a line L of Γ containing any point of Γ′ but
not contained in Γ′. Let U4 be the 4-space of PG(d, q) generated by U3 and
L. Then the points and lines of Γ in U4 form a subquadrangle Γ′′ of Γ of
order (s, t′′) and again t′ < t′′ < t. But by 2.2.2 of Payne & Thas [6],
t′ = 1, t′′ = s and t = s2; so δ = t′ + 1 = 2. Hence there exists a line L′ of Γ
containing any point of Γ′′ but not contained in Γ′′. Let U5 be the 5-space of
PG(d, q) generated by U4 and L′. Then the points and lines of Γ in U5 form
a subquadrangle Γ′′′ of Γ of order (s, t′′′). We have t′ < t′′ < t′′′ and hence
again t′′′ = s2. So Γ′′′ = Γ and d = 5. The other assertions immediately
follow from 5.3.5(i) and 2.2.1 of Payne & Thas [6]. !

Lemma 7 If s > 2 or d = 3 or q is even, then s is a prime power, GF(s) is
a subfield of GF(q) and Γ is fully embedded in a projective subspace PG(d, s)
of PG(d, q).

PROOF. We prove this by (a very short) induction on d. For d = 3, this is
Lemma 1. Suppose the lemma is true for d = 3 or d = 4. We show that it is
true for d + 1.

Let U ′ be a d-dimensional subspace (over GF(q)) of PG(d + 1, q), q even
or s > 2, such that the points and lines of Γ in U ′ generate U ′ and form
a subquadrangle Γ′ of Γ of order (s, t′) with t = st′ (this is possible by
Lemmas 5 and 6, and by 2.2.1 of Payne & Thas [6]). Clearly Γ′ is weakly
embedded in U ′ and if t′ > 1, we can apply induction. If t′ = 1, then s = t
and d = 3 (by the proof of Lemma 6); as δ = t′ + 1 = 2 (by (WE2) and
Lemma 2) we can apply Lemma 4. In either case we conclude that Γ′ is fully
embedded in a projective subspace V ′ of U ′ of dimension d and defined over
the subfield GF(s) of GF(q). Also, every line of Γ not contained in Γ′ meets
Γ′ in a unique point. Let L be such a line and let x be the point of Γ′ on
L. Since also L belongs to a subquadrangle with similar properties as Γ′, we
deduce that the points of Γ on L form a projective subline over GF(s) of L.
Hence the points of V ′ together with the points of Γ on L generate a unique
(d + 1)-dimensional subspace V over GF(s) of PG(d + 1, q). Let z be any
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point of Γ. We show that z belongs to V and this will imply the assertion.
We may suppose that z is not incident with L.

Let M be the unique line of Γ containing z and intersecting L in, say, the
point y of Γ. First suppose y )= x. Let u be the intersection point of M with
U ′. As above, u belongs to Γ′. Let N be any line of Γ′ containing u. Clearly
the lines N and L are skew and the 3-dimensional subspace U ′′ (over GF(q))
of PG(d + 1, q) generated by L and N meets the point set of Γ in the point
set of a subquadrangle Γ′′ which is, by Lemma 1, fully embedded in some
subspace V ′′ over GF(s) of U ′′ and which contains z. But V ′′ contains the
points of Γ on L, N and on the line of Γ′ meeting N and containing x. Hence
V ′′ is a subspace of V . We conclude that z belongs to V .

Now suppose y = x. Let x′ be any point of Γ′ collinear with x, x )= x′, and let
L′ be any line of Γ not belonging to Γ′ and incident with x′. By the preceding
paragraph all points of Γ on L′ belong to V . Clearly z is not collinear with
x′ and substituting L′ for L in the preceding paragraph shows that z ∈ V .
The lemma is proved. !
We now handle the case s = 2 and q odd.

Lemma 8 If s = 2 and q is odd, then t = 2, d = 4 and the weak embedding
is isomorphic to the universal one defined in the introduction.

PROOF. If s = 2, then t = 2 or t = 4.

First let t = 2. By Lemma 1, d > 3 and by Lemma 6, d < 5. Hence d = 4.
Note that Γ ∼= W (2). The generalized quadrangle W (2) can be defined as the
geometry of pairs of a set of six elements where triples of mutually disjoint
pairs are the lines (see 6.1.1 of Payne & Thas [6]). If we consider the set
{1, 2, 3, 4, 5, 6}, then, without loss of generality, we can coordinatize PG(4, q)
according to the following table.

{1, 2} (1, 0, 0, 0, 0)
{1, 4} (0, 1, 0, 0, 0)
{4, 5} (0, 0, 1, 0, 0)
{5, 6} (0, 0, 0, 1, 0)
{2, 6} (0, 0, 0, 0, 1)

This follows from the fact that W (2) is generated by any pentagon and that
Γ generates PG(4, q).

The five points above are the vertices of a pentagon Ω of Γ, and for each of the
five sides of Ω we know the coordinates of two points of Γ on it. Choosing the
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intersection of the hyperplanes {3, 6}{1, 4}{5, 6}{2, 6}, {2, 3}{1, 2}{4, 5}{2, 6},
{1, 3}{1, 2}{1, 4}{5, 6}, {3, 4}{1, 4}{4, 5}{2, 6} as point (1, 1, 1, 1, 1) we ob-
tain

{3, 6} (1, 0, 1, 0, 0)
{2, 3} (0, 1, 0, 1, 0)
{1, 3} (0, 0, 1, 0, 1)
{3, 4} (1, 0, 0, 1, 0)
{3, 5} (0, 1, 0, 0, a)

where a ∈ GF(q)\{0}. Each other point of Γ, e.g. {1, 6}, lies on exactly one
line through one of the vertices of Ω; we know already the coordinates of two
points of such a line. For example, {1, 6} lies on the line {2, 3}{4, 5}. Hence
there exist b1, b2, . . . , b5 ∈ GF(q) \ {0} such that we can make the following
identification:

{1, 5} (1, 0, 0, 1, b1)
{2, 4} (0, 0, 1, b2, 1)
{1, 6} (0, 1, b3, 1, 0)
{2, 5} (1, b4, 1, 0, 0)
{4, 6} (b5, 1, 0, 0, a)

Expressing that the three points of every line of Γ are also collinear in
PG(4, q), we obtain

b1 = b2 = · · · = b5 = −1 = −a. Hence we have the universal weak embed-
ding. Note that, for q large enough, we can always find a point x in PG(4, q)
not lying in any of the 10 3-spaces generated by opposite pairs of lines of Γ,
and not lying in any of the 15 3-spaces generated by the points of Γ collinear
to some point of Γ. Hence the projection of Γ from x onto a hyperplane not
containing x will satisfy (WE1) and (WE3), but not (WE2). This shows that
(WE2) is not a consequence of (WE1) and (WE3).

Next suppose t = 4. By Lemma 1 we have d > 3. Assume that δ > 2. Then,
by Lemmas 1 and 2, in any 3-space generated by opposite lines L, M of Γ a
subquadrangle Γ′ of Γ of order (s, t′), with 1 < δ − 1 = t′ < 4, is induced.
Hence, again by Lemma 1, t′ = 2 and s = 2 divides q, a contradiction. Hence
δ = 2. By Lemma 3, d = 4 implies s = t, contradicting (s, t) = (2, 4). Hence
d = 5 by Lemma 6. It follows that every subquadrangle Γ′ of Γ of order (2, 2)
is weakly embedded in a 4-dimensional subspace U (over GF(q)) of PG(5, q).
By the first part of the proof, it must be isomorphic to the universal weak
embedding of W (2) in U . Now consider any point x of Γ not lying in Γ′.
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The points of Γ′ collinear with x form an ovoid in Γ′. It is well-known that
each ovoid of Γ′ can be obtained in this way. So without loss of generality
and with the above description of Γ′, we can take as points of the ovoid the
points {1, 2}, {2, 3}, {2, 4}, {2, 5}, {2, 6}. By (WE2) these points should be
linearly dependent in U , hence the determinant

∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0
0 1 0 1 0
0 0 1 −1 1
1 −1 1 0 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣

= 2

should be equal to 0. This implies that q is even, a contradiction.

Now the lemma is completely proved. !
Putting all previous lemmas together, our Main Result follows.

REMARK. In the infinite case, a different approach is needed. The situa-
tion is also totally different. Actually, the theorem is not true in the infinite
case, e.g. all Moufang quadrangles of so-called mixed type are weakly em-
bedded in projective 3-space over a field of characteristic 2 and some of them
are not fully embedded in a projective subspace.
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