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VALUATIONS ON PTR’S INDUCED BY TRIANGLE
BUILDINGS

ABSTRACT. A valuation v (in the sense of [10]) is defined on all coordinatizing planar ternary
rings (R, T) of any projective plane which can be thought of as the spherical building at infinity
of a triangle building. It is shown that (R, T) is complete with respect to v.

INTRODUCTION

By a recent work of J. Tits [9], all affine buildings of rank > 4 are classified
and are known to arise from algebraic groups over a local field. Affine
buildings not arising in that way are called ‘non-classical’. So the only
candidates are the rank 3 affine buildings whose Buekenhout diagram [1] is

one of
A, type A,

o tyPe €,

o— === type <‘32

For each of these three types there are examples of non-classical buildings
([4],16]1,[10]). They arise in different ways: as universal covering of certain
(finite) geometries; as free constructions; or via pure construction. The main
idea behind the present paper is the use of the spherical building at infinity
of buildings of type A, (the so-called ‘triangle buildings’). This notion of
‘building at infinity of an affine building’ was introduced by Bruhat and Tits
in [1], and in [9] it plays a crucial role. The purpose of the present work is
to characterize triangle buildings by means of their building at infinity
which, in this case, is the building of a projective plane. More exactly, by
[10] we know that a planar ternary ring (R, T) (briefly a PTR) which
admits a valuation v: R? > Z U {00} gives rise to a triangle building. In this
paper we show that there is a reverse procedure and that both operations
are mutually inverse, granted that (R, T,v) is complete (for definition see
Section 2.2). (R, T) is in fact a coordinatizing PTR of the projective plane
corresponding to the building at infinity of the triangle building in question.
This leads us to the main result of this paper:

MAIN THEOREM. There is a bijective correspondance between the class
of triangle buildings (with a complete set of apartments) and the class of
projective planes coordinatized by a complete PTR with valuation.
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The proof of this theorem will be completed in subsection 5.3.

The paper is organized as follows: In Section 1 we define triangle
buildings and list some properties. We closely follow the terminology of
Tits ([1],[9]). In Section 2, we briefly repeat the coordinatization of a
projective plane according to Hughes and Piper [3]. We define the notion
of a (complete) valuation v on a PTR (R, T). Section 3 is an abstract of [10]
to which the present paper is a sequel. Section 4 is an important step in the
proof of our main result. We show that any coordinatizing PTR of the
‘projective plane at infinity’ of a triangle building admits a valuation. We do
not yet show completeness. In Section 5 we prove that the operations of
Sections 3 and 4 are mutually inverse and we finish off the proof of the main
theorem by showing:

THEOREM (I). Any coordinatizing PTR of the projective plane at infinity
of a triangle building (with a complete set of apartments) admits a complete
valuation.

Section 6 finally explains the connection with Tits’ projective valuation.

1. TRIANGLE BUILDINGS
1.1. The Apartment

Suppose I = {1,2,3} and let &/ be the real affine plane provided with the
usual Euclidean distance d and an origin O. Also let R, = {e,,e,, e, + e,,
—e,,—e,, —e, —e,}, with |e;| = |e,| =1 and e,-e, = —1, be the set of
vectors of the root system A4, (e.g. e, =(1,0), e, = (—3, Y3 ) and W, the
group generated by the reflexions about the vector lines perpendicular to
the vectors of R, (note that W, = S;). Consider the line L with equation
4 -e; = 1. Then the group generated by W, and the reflexion about L is the
affine Weyl group W; W can be written as the semi-direct product
W = Wye<T, where T is the group of translations generated by 2- R, (see
[1]). The reflexions of W are precisely those about the lines with equation
Z-e=n, where ee R, and n € N. These lines are called walls. The topologi-
cal closure of a connected component of the complement in & of ail walls is
called a chamber. If C is a chamber, then there are exactly three walls having
non-empty intersection with C. Let L be one of them, ihen C n L is called a
panel. Any intersection point of two non-parallel walls is a vertex. Vertices
and panels which are subsets of a chamber C are called faces of C. Note
that, in contradistinction to [1], all our chambers and panels are closed in
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the topological sense: this has only a practical reason (it sometimes
provides a shorter formulation). Let S, be the set of walls through a vertex v
(|1S,] = 6). Then the topological closure of a connected component of
A —\U(S,) is called a quarter. A quarter Q 1s bounded by two closed
halflines, called the panels of the quarter Q, which we shall abbreviate to
pennels, to make the difference with panels of chambers. A half plane
bounded by a wall is a half apartment. If Q is a quarter and p,,p, are the
pennels bounding @, then the common vertex v of p, and p, is called the
source of Q, p;, p,. If H is a half apartment whose boundary L meets both
p, and p,, and the vertex visnotin H — L, then Q n H is called a truncated
quarter. If two quarters Q,,Q, with common source meet in a pennel then
Q,vQ, is called a double quarter. Suppose H, and H, are two half
apartments with parallel boundaries the walls L,, resp. L,. Suppose also
L,cH, and L, < H,, then H,nH, is called a strip. If D is a double
quarter bounded by the pennels p, and p,, and S is a strip  whose

v = vertex
p = panel
C = chamber

Q = quarter with source s

po = pennel with source 0
S = strip

S, = half strip

D = double quarter

M = wall

AVAVA“VAVAVAVAVAVAVA

Fig. 1.
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boundaries are not parallel to the wall containing p, or p,, then DN S is
called a half strip. For an illustration of these definitions, see Figure 1. There
is a type map ‘typ’ which assigns to any face of a chamber a subset of I such
that |typ (vertex)| = 1 and typ(panel) is the union of the types of the vertices
on that panel. Also, any one-subset of I is type of a vertex of any chamber.

Eeaallsyr TAF %a +wima Aaracaevmmag faas 11
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1.2. System of Apartments

1.2.1. For the definition of a discrete system of apartments of type A, we
refer to Tits [9]. Let A be such a discrete system of apartments, then A is the
(non-disjoint) union of copies of the apartment & of (1.1). Recall that a
vertex, panel, chamber, quarter, etc., in A is a subset of A which is a vertex,
resp. a panel, chamber, quarter, etc., in some apartment of A. Denote the set
of vertices of A by Ve(A). We now show how we can see A as an abstract
building. We define the simplicial chamber complex |A| as follows: the set of
vertices Ve(|A]) is the set Ve(A). The 1-dimensional complexes are the pairs
of vertices of A belonging to the a common panel. The chambers of |A| are
the triples of Ve(A) belonging to a common chamber of A. Similar de-
finitions for apartments, quarters, pennels, etc., in |Al. It follows now that
|A| is an abstract building of type A,. Viewed as a chamber system (see
[51,[8]), the rank is 3, and so [5, Cor.(2.3)] implies:

PROPOSITION (1.2.1). A 2-dimensional simplicial complex is a(n abstract)
triangle building if it is simply connected and there is a suitable type map on
the set of vertices such that any residue (in the usual sense of [1]) is a
spherical building of type 4,.

By Tits [9, Th. 1], |A| admits a complete (or a maximal) set of apartments.
In this paper, we assume that any triangle building (and equivalently any
corresponding discrete system of apartments A) is endowed with a complete
set of apartments. Also, we shall always view a triangle building as a
discrete system of apartments; if not, then we use the term abstract triangle
building.

Recall that there is a distance map d on A defined as follows: if x, y € A,
then there is an apartment — which we can denote without loss of generality
by &/ — containing both x and y. By definition, d(x, y) = d,(x, y) (see 1.1). A
germ of quarters in A is an equivalence class in the set of quarters of A with
respect to the equivalence relation: Q, is equivalent with @, if 0, N0, is a
truncated quarter (see Tits [9]).

1.2.2. DEFINITIONS AND PROPERTIES. (1) One deduces that (A, d) is
a metric space (see [9]).
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(2) Let x, ye A. Then the closed line segment joining x to y is denoted by
[x, y]. If B is an apartment containing x and y, then B also contains [x, y].
A convex set E is defined as usual (E 1s convex if for any x,y in E,
[x, y] < E). If E is convex and can be written as the union of chambers or
faces of chambers, then E is called a chamber convex set.

(3) Two chambers are called adjacent if they meet in a panel. A gallery
joining two points x and y is a chain (C,,C,,...,C,,) of chambers such that
consecutive chambers are adjacent and xe C, and ye C,,. m is called the
length of the gallery. A gallery joining x and y with minimal length is called
a gallery stretched between x and y (see [7]).

(4) The next two propositions can be found in [9]:

PROPOSITION (1.2.2), Any germ of quarters contains a quarter with
source any vertex of A (see [9, Prop. 5]).

PROPOSITION (1.2.3). Any subset of A which has the ‘metric structure’ of
a subset of an apartment, is contained in an apartment (see [9, Th. 1]).

A direct consequence of the last proposition is the next

COROLLARY (1.2.4). Any convex set of A which can be embedded in A, is
contained in an apartment.

1.3. The Building at Infinity

Two pennels p and q are parallel if they are on bounded distance from one
another, ie. if the sets {d(x,q)|xe p}, and {d(y,p)|ye€q} are bounded
(where d(x, g) = inf{d(x, y)| y € q} similar for d(y, p)). This relation is clearly
an equivalence relation and the class of a pennel p w.r.t. that relation is
denoted by c(p).

Now define the 1-dimensional simplicial chamber complex (A, Ch(A,))
as follows:

A = parallel classes of pennels.

Ch(A,) = {{c(p),c(q)} | there exist representatives p’ and g’ of ¢(p)
and c(g) resp. such that pu g is the boundary of a
quarter}.

PROPOSITION (1.3). (A, Ch(A,,)) is the rank 2 building corresponding to
a projective plane. If B is an apartment of A, then the six germs of quarters of
B define six elements of Ch(A_ ) which define a unique apartment B, of A_ .
The map B —» B, is a bijection from the set of apartments of A to the set of
apartments of A, . The ‘trace at infinity’ of a wall L of A is a pair {M, Q} in
A, which is not a chamber, i.e. {M,Q} is a wall (a non-incident point-line
pair).
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NOTATION. From now on, A always denotes a triangle building. The
building at infinity is denoted by A_ and one of the mutually dual
projective geometries of A by PG(A) (cf. 4.2.1). We also write:

Ch(A) = set of chambers of A
Pa(A) = set of panels of A
Ve(A) = set of vertices of A
Qu(A) = set of quarters of A
Pe(A) = set of pannels of A

2. VALUATIONS ON A PTR
2.1. Planar Ternary Rings

This section is a rewrite of Chapter V in [3].

2.1.1. Let R be a set not containing the symbol c0 and let T be a ternary
- operation on R. Then we call (R, T) a ternary ring. Moreover, we call (R, T)
a planar ternary ring, or PTR for short, if (O), (A), (B), (C), (D) and (E)
below hold for all a, b, ¢, d in R:

(O) 0,1eR.

(A) T(a,0,c) = T(0,b,c) = c.

(B) T(a,1,0)=T(,a,0) = a.

(©) If a+#c, then there is a unique x€R such that T(x,a,b) =
T(x,c,d).

(D) There is a unique xe€ R such that T(a,b, x) = c.

(E) If a # c, then there is a unique (x, y)e R? such that T(a,x,y) =

b and T(cx,y)=d.

THEOREM (2.1.1). If (R, T) is a PTR then the structure PG(R, T) defined
as follows is a projective plane. The points of PG(R, T) are the ordered pairs
(x, v) where x, y,€ R together with elements of the form (x) where x € R and
(00). Lines are represented by ordered pairs [m, k] where m, ke R together
with elements of the form [m], where me R and [o0]. Incidence is defined in
the following manner:

(x,y)is on [m k] < T(m,x,y) =k,
(x,vy) is on [k] <= x =k,
(x)is on [m k] < x =m,
(x) is on [o0] jor ail xe R and {0) is on [k] for all ke R.
(0) is on [o0].

(see [3, Th. 5.21)



VALUATIONS ON PTR’S 35

Note that we introduced the notation PG(R, T). Denote also O = (0,0),
X =), Y=(0) and E=(1,1), then (O, X, Y, E) is a non-degenerate
quadrangle in PG(R, T). We call (R, T) a coordinatizing PTR of PG(R, T)
with respect to (0, X, Y, E). By [3, Th. 5.1], any projective plane — up to
isomorphism — can be coordinatized by a PTR with respect to any non-
degenerate quadrangle in the above way. However, distinct quadrangles
may give rise to non-isomorphic PTR’s. We now introduce some further
notation:

Let V = (P(V), L(V), I) be a projective plane with P(V) the ‘point set’ L(V)
the ‘line set’ and ‘I’ the incidence relation. If P, Q are distinct points, then we
denote by PQ the unique line incident with both P and Q. If M, L are
distinct lines, then we denote by LN M the unique point incident with both
L and M. (Any line is viewed as the set of points incident with it.)

2.1.2. Let (R, T) be a PTR, then one defines a product in R by

ab=T(a,b,0)
and a sum
a+b=TU,a,b)

Also recall the following:

(1) (R, T) is linear if T(a,b,c) = (a-b) + c.

(2) (R, T) is a quasifield if (R, T) is linear, (R, +) is a group and the left
distributive law holds in (R, +, ). Note that (R, +) is Abelian in that
case.

(3) (R, T) is a nearfield if (R, T) is a quasifield and (R,-) is a group.

(4) (R, T) is a division ring if (R, T) is a quasifield and also the right
distributive law holds in (R, +,").

(5) (R, T) is a skewfield if (R, T) is both a nearfield and a division ring.

(6) (R, T)is a field if (R, T) is a skewfield and (R,-) is Abelian.

2.2. PTR’s with Valuation v

Let (R,T) be a PTR. If v: R* > Z U {0} is a map satisfying (d1), (d2), (d3)
and (d4) below, then we call (R, T,v) a PTR with valuation or briefly a V-
PTR. We extend the order relation and the addition in Z (as usual: o0 > z;
z+ 0 =0+z=0+ 00 =00 VzeZ)toZu{o} and then we have:

(d1) v(a,b) = © «a =b.
(d2) If v(a,b) < v(b,c), then v(a,b).
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(d3) SUppOSC T(al;blacl) = T(alabZ,CZ) and T(a29b1acl) = T(aZ’b29C3)a
then

v(ay,a,) + v(by,b,) = v(c,,c3)
d(4) v is onto.

We usually write v{x) instead of v(x,0).
The next proposition was proved in [10]:

PROPOSITION (2.2). Any V-PTR (R, T,v) has the following properties:

\vl) v is onto.

(v2) wla,b) = v(b,a).

(v3) wla,c) = inf{v(a,b), v(b,c)} and if v(a,c) # v(b,c), equality holds.
(v4) v(a,b) = o0 < a=b.

(v5) (1) =0; v0) =
For (v6) through (v11) we suppose T(a;, b;,c;) =4d;, i =1, 2.

(v6) Ifa, =a, and by = b,, then v(c,,c,) = v(d,,d,).
v7) If ay, =a, and ¢, = c,, then v(b,,b,) + v(a,) = v(d,,d,).
(v8) Ifa, =a, and d, = d,, then v(b,b,)+ v(a,) = v(c,, ;)
(v9) If b, =b, and c, = c,, then v(a,,a,) + v(b,) = v(d,,d,).
(v10) If b, = b, and d, = d,, then v(a,,a,) + v(b,) = v(c,, c,).
(vil) If ¢, =c, and d, = d,, then

va,,a,) + vby) = v(by,b,) + v(a,)

and

way,a,) + vb,) = vlb

and in particular

U\u1}+v(b \i:n(n \l-i-n{h \

(vi2) If T(a, b, c) =d, then v(a) + v(b) = v(c, d).

b))+ vla

For (v13) through (v16) we suppose
T(ay,by,¢y) =d; = T(a, b,,¢5),
T(ay,by,cy) = d, and Tlas, bs, c3) = ds.

(v13) If a, = a3; b, = by and ¢, = c3, then
v(a,,a,) + ov(by,b,) = v(d,,ds).

(vid) if a, = a5; b, = by and d, = d5, then
U(alaau + U(bls /_) - U(Czsc")-

wi5) if a, = a3; ¢, = ¢y and d, = d,, then
v(ay,ay) + vlby,b,) =v(b,y,b3) + via,)

and
v(a,,a,) + v(b,,b;) = v(b,,bs) + v(a,).
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(v16) If b, = bs; ¢, = c5 and d, = d;, then
v(ay,a,) + v(by, by) = vlay, a3) + v(b,)
and
way,as) + v(by, by) = v(a,,a;) + v(b,).

REMARK (2.2). If (R, T) is a quasifield, then (d3) can be replaced by:
(Q) v(a b —ay b) =v(a, — a,) + v(b)

If (R, T) is a division ring, then (d3) can be replaced by:
DR v(a- b) = v(a) + v(b)
(see [10, §1.2])

EXAMPLES (2.2). (1) Q, with the usual p-adic valuation.
(2) The field K((t)) of Laurent series over the field K. The valuation v for.
non-zero elements is defined by:

v(Za,t') = inf{l€ Z | a, # 0}.

Given a field K and a finite automorphism group G of K((t)), +, - generated
by S = {s;|je J}, one defines the ‘norm map’

n: K(1)) = N:f(t)~ [ ] f(0)°.

geG

Choose a map ®@: N — G arbitrarily but such that Laurent series with same
valuation go to the same automorphism. Then we denote the corresponding
(André) quasifield K((t)), +,© (where f,O f, =f, 3"V see [3, p. 187]) by
K(®, S) (asin [10]). Particular examples are:

(3) Suppose K is a field with finite characteristic. Set S = {s}, where

1
s: K((¢)) — K(1)): f(t) *f(r:)

Then K(®, s) is a V-PTR. .
(4) Suppose K has a non-trivial root of identity, say e” = 1. Set S = {s},
with
s: K((t)) = K((1)): f(t) = f(et).

Then again K(®,s) is a V-PTR.
(5) If a* = {aF: K - K |je J} generates a finite automorphism group of

K, then set
o = {o;: K((t)) = K((1)): Za,t' - ZoF(a)t' | je J}
Again K(®, ) is a V-PTR.
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(6) Suppose K = GF(q?), q odd and o*: K - K:x — x%. Let a« be the
automorphism of K((t)) induced by a* as above. Now we choose @ such
that ®(f) = id if f is a square in GF(g)((¢)) and ®(f) = a otherwise (one can
indeed check that N = GF(g)((¢))). Now K(®, «) is a nearfield with valuation
and we denote it by GF((g?)).

Our last class of examples is a distinct type:

(7) Let (R, T) be a quasifield. Then we can define the set of formal
Laurent series R((¢t)) with coefficients in R. Addition and multiplication are
defined exactly in the same way as for fields. It is a trivial verification that
R((t)) is a quasifield. Moreover, if (R, T) is a division ring, then R{{¢)) is as
well. One checks R((t)) is a V-PTR (v as above).

2.3. Positive Valuated Ternary Rings

Let (S,T) be a ternary ring (not necessarily planar), and v:§ x § —
Nu {c0} be a map such that for all a,b,c,d in S:

(PO) 0,1€S.

(PA) T(a,0,C)=T(©O,b,c) =c.

(PB) T(a,1,0)=T(, a, 0)=a

(PC) Suppose uv(b,d) = v(a,c), then there exists xeS such that
(T(x,a,b) = T(x,c,d).

(PD) There exists x€ S such that T(a, b, x) = c.

(PE) Suppose v(b,d) = v(a,c), then there is a couple (x,y) such that
T(a,x,y)=b and T(c,x,y) = d.

(Pdl) v(a,b) = 0, a=bh.

(Pd2) If v(a,b) < v(b,c), then v(a,c) = v(a,b).

(Pd3) Suppose T(a;,b,,c;)=T(a,,b,,c;) and T(a,,b,,c;)= T(a,,b,,c3),

then v(a,,a,) + v(b,,b,) = v(c,, c3).
(Pd4) v is onto.

Then we call (S, T, v) a positive valuated ternary ring or briefly a PV-TR
Again we write v(x) for v(x, 0), and then we have:

PROPOSITION (2.3). If (S, T, v) is a PV-TR, then (v1) through (v16) hold.
Moreover, x, x, (x,y) in resp (PC), (PD), (PE) are unigue.
For a proof, see [10, §4.3] and [11, §3.4.1]

EXAMPLES (23). (1) Let (R, T, v) be a V-PTR and define
R™ = {re R|v(r) >0}, then one can check that (R*, T, v) is a PV-TR.
(2) Suppose (R, T)is a PTR. Define S = R[[¢]] = {£2, a;t' | a,€ R} and
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extend T to S by the rule: the coefficient of t" of T(Zq,t', Zb,t', Zc;t') is:
T(a,,by, T(a,_,,b,, T(a,_,,b,, T(... T(a,,b,_,,T(a,,b,_, T(ay,b,,c,))...).
Define v: S x S > Nu {0} by:

U(Za t! Zb tl) — {inf{n l a, # b,,}, if Za,t’ #* Zbltl
1% 1 =

00, otherwise

(S, T, v) is a PV-TR (see [10, §7.3]).

2.4. Complete Valuations
24.1. Let (R, T, v) be a V-PTR. We can define a map 6: R x R —» N by
d(a,b) = 27 V@),

(R, ) is a metric space sine by (v3), d(a,c) < sup {d(a,b), 6(b,c)}. If (R,0) is a
complete metric space, then we say that v is complete and that (R, T,v) is a
complete V-PTR, briefly a CV-PTR. For instance all the examples in (2.2)
are complete. For a non-complete example, let K be a field and K(t) = K({(t))
the field of rational functions in one variable. The valuation on K((t)) in
(2.2) restricts to a valuation on K(t) which is not complete.

PROPOSITION (2.4.1). Suppose (a,), (b,), (c,), (d,), ne N are sequences in a
CV-PTR (R, T, v). Suppose that T(a,,b,,c,) = d, for all n. If three of the
above sequences are Cauchy, then also the fourth (granted that (a,) or (b,) does
not converge to 0) does. If a, b, ¢, d are their resp limits, then

T(a, b, ¢) =d.

Proof. Suppose, e.g., (b,), (c,), (d,) are Cauchy. b # 0 implies that for ne N
large enough, v(b,) is constant (namely v(b,) = v(b)). Define for all ne N x,:

(1) T(a,,b,,x,)=4d.
By (v6), we have v(c,, x,) = v(d, d,), hence (x,) converges to c. Define (y,) as
(2) T(ay, ync) = d

for all n for which this is well defined. Note that y, is not well defined only
for a finite number of n’s, otherwise ¢ would be equal to d (after all, there
are infinitely many a,’s zero and thus infinitely many c,’s equal to d,’s). By
(v12), v(a,) = v(c,,d,) — v(b,), and so (a,) would converge to O, hence the
result would follow. Hence we can assume that (y,) is an infinite sequence
and, by the above argument, also that ¢ # 4. By (1), (2), (v8) and (v12), we
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have:
U(bn’yn) = U(X",C) + U(bn) - U(xm d)

For n large enough, v(x,, d) is constant (and finite). Hence, since (x,)
converges to ¢, (y,) converges to b. Since b # 0, we can define a as T(a, b,
c) = d. This implies together with (2) and (vil) that wvia,a,)=u{y,,0)+
v(a) — v(y,). Hence (a,) is Cauchy and converges to a. QED

24.2. In a similar way, we can define complete positive valuated ternary
rings, or briefly CPV-TR’s. Proposition (2.4.1) is also true for CPV-TR’s.

EXAMPLES (2.4.2). (1) If (R, T, v) is complete, then so is (R*, T, v).
(2) For any PTR(R, T), (R[[t]], T, v) as defined in Examples (2.3) is
complete.

REMARK (2.4.2) Proposition (2.4.1) remains true for V-PTR’s and PV-
TR’s. Moreover, if three of the sequences converge, so does the fourth.

3. TRIANGLE BUILDINGS DEFINED BY V-PTR’S

This section is an abstract of [10]. The reader should refer to that paper for
proofs and detailed information.

3.1. The Geometries W,

The way a triangle building is defined by a V-PTR is via geometries W,
ne N, which we define now.
Let (R, T, v) be a V-PTR. Let

R* = {xe R |v(x) >0}, R™ = {xeR|uv(x) <0}
w(x, y) = u(x,y) — v(x) — v(y).
The relation E,, with
((x,y)e R* x R" and v(x,y)=2n forn>0
xE,y if (x,y)e R™ x R™ and w(x,y)2n forn>0
(x,y)eR xR forn=20

is an equivalence relation (see [10, §2.3]). We denote the quotient sets by
R,=R/E,, R =R*/Ef, R, =R /E; (ne N) where E = E,/R" x R*,
E =E,/R™ xR™. For n=0, W, = (P(W,), L(W,), I) is defined as the
degenerate geometry P(W,) = L(W,) = {(0,0)} = {[0,0]} and (0,0)I[0,0].
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Now let n > 0. We define W, = (P(W,), L(W,), 1):

(i) The point set P(W,) = R, x RT UR x R; UR, x R . A point is
denoted by round brackets, e.g. (x, y).

(i) The line set L(W,) =R x R UR, x R UR,; x R;. A line is
denoted by square brackets, e.g. [m, k].

NOTATION. (1) If re R,, then we write r*. Similarly, if re R, we write
ro.

Writing just r leaves the possibility open, if no hypotheses were made
before. (2) If r € R,, then  denotes a representative in R of r. It will always
be clear whether 7 is unique, variable, arbitrary, etc.

(111) Incidence is defined as follows:

1) (x*,y")I[m*,k*] if there exist X, , m, k such that
T(h,x,9) = k

(12) (x*,y*)I[m ,k*] if there exist X, y, m, k and be R such that:
T k,0)=b and T(n,x%,7)=>b

(I13) (x*, y )I[m™,k*] if there exist X, , m, k and a€ R such that:
T(X,9,a)=0 and T(m,p,a)=k

(14) (x*,y " )I[m~, k] if there exist X, », m, k and a, b€ R such that:
T(X,9,a) =0 Tb,k,0)=m and T(b,p,a)=m

(I5) (x,y )I[m~,k*]if there exist X, p, m, k and a, be R such that:
T(X,a,9)=0, T@k0) =b and T(h,a)=>h

(16) (x ,y ) I[m~, k] if there exist X, y, m, k and a, b€ R such that:
T(X,a,9) =0, T(b,k,0)=m and T(b,a,p)=rm

Symbolically, we write this definition as:
(I P 1L if there exist P,L such that PIL.

EXAMPLES (3.1). (1) n= 1. W, is a projective plane coordinatized by the
PTR (R, T,), where T,(a,b,c) = d if there exist d, b, ¢, d such that T(4, b,
¢) = d. T, is well defined. (See [10, §2.7.2].)

(2) Suppose R is a skewfield, then W, is the ring geometry over R, . For
example, R = GF(q)((t)) or GF(q)(t) with the usual valuation, then

R = GF(g)[t]/t" = 0.
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If R = Q, with the p-adic valuation, then R, = Z/p"Z (see [10, §2.7.3]).

3.2. Properties of W,

In fact, W, is an n-uniform Hjelmslev plane (see [11]). But we need a little
more than that!

3.2.1. We define the maps
[T;:R,— R, —>r;=7/E;(j<n)

where 7, is arbitrary. I} is well defined ([10, §3.5.5]) and can be extended to
P(W,) and L(W,) via the ‘coordinates’. It turns out that II} preserves
incidence and is a surjective morphism ([10, §3.5.5]).

3.2.2. We define the ‘partial valuation map’ u in W, as follows: Let
P,Qe P(W,), L, M € L(W,). Then we define:

u(P,Q) = sup { jeNIT(P) =T, 0<j< n},
w(L, M) = sup { je N|ﬂj(L) = ﬂ:f(M), 0<;< n}
u{P, Ly = u(L, P) = sup{j eNITT P I HZ(L), 0<;< n}

3.2.3. W, now has the following three basic properties (PS), (RP) and (ND):
(PS) For any Pe P(W,) and any ke {0,1,...,n — 1}, we have:

<H2+1)—1 (H,'; 1 (P)) = (nj)—l«njm)

Similarly for lines.

Note that (ITf)”' determines a partition P (W,) (resp. L{W,)) of P(W )
(resp. L(W))).

(RP) Let P,Qe P(W,) and L, M € L(W,). Again we view any line as the
set of points incident with it. Let k < inf {u(Q, L), u(L, P), u(P, M)}.
Then
(1) LnM # @ and dually.
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(i) w(QM) 2 k < u(P,Q) + u(L,M) > k.
(ND) W, contains a non-degenerate quadrangle.

With a slightly different notation, this is proved in [10, §3.2.2] for (PS); [10,
§3.5] for (RP) and [10, §2.7.2] for (ND). Note that we proved on our way:

PROPOSITION (3.2.3). Let Pe P(W,); Le L(W,). Then P 1L is equivalent
to each of the following two conditions:

(i) For any representative P of P, there exists L such that P1L
(ii) For any representative L of L, there exists P such that P1L

(see [10, §3.5.2 and §3.5.3])

3.3. Definition of A

3.3.1. One can see easily that a line is completely determined by the set of
points incident with it. Also the dual holds. For the next definition, we
identify a line (resp. a point) with the set of points (resp. lines) incident with
it. We define:

BI = {(IT)~"Y(IIP)) "L | Pe P(W,),Le L(W,),P1L}
Br i = {(I1) "(IL) ~P|PeP(W,),Le L(W,),P1L};
for example,

Br=~pP,V, =B

n

B ~L (V) = B°.

There is a natural bijective correspondence between BX and B* as follows: If
b,e B%, then there is a unique b, B such that (b,,b,,I) is a generalized
digon and b, is maximal with that property, in other words if (b,, b, I) is
also a generalized digon with b} < I(W,), then b}, = b, (see [10, §5.1.9]).
We identify b, and b, and denote it by b. The set of all such b’s is denoted
by B, We define the maps IT?_, and I1!_, on B* as:

Iy, ()= H:—1(bp)8B§~1 =B, ,

M, ,(b) =TI, (b,)eB, "] = B~}

} 0<k<n
n—1 =
Note that b, = b, < b, = b,.

3.3.2. We now define a simplicial chamber complex A together with a type
map ‘typ’ on the set of vertices Ve(A) of A. In what follows, Pa(A) denotes
the set of I-simplices of A and Ch(A) the set of chambers of A.

(i) Ve(A) = union of all possible B¥ over k and n.



44 HENDRIK J. VAN MALDEGHEM

(ii) typ: Ve(A) > Z/3Z:be B - n + k(mod 3)

(i) {b,b'}ePa(A)  if (1) b, b, for be B: and b'e B**!
or (2) b’ =TI?2_,(b) for be BX
or (3) b’ =TI}_,(b) for be B*

(iv) (bbb eCh(A) if  {{bb), {b,b"),{b",b}} < Pa(A).

In [10], we prove that A is a triangle building.

34. Case of a PV-TR

In case we are dealing with a positive valuated ternary ring (S, T), the
definition of W, is slightly different. The equivalence relation E is still well
defined, and so is the quotient set S, = S/E,.
For n=0, W, is the same as above. Suppose now n>0. Let
S° = {re S|v(r) > 0}, then also S? = S°/E is well defined.
W, = (P(W,), L(W,), I) is defined as follows:
(i) P(OW,) = {(w,)€S, x 5,} U {(x),| (x.))€S, x 5}
U {(00,), 1 (6, y)€ Sy x 87}
(i) L(W,) = {[m k]e S, x §,} v {[k],|(mk)eS; x 5,}
U {[00, ], | (m k)e S x SC}.

(i) With the same notation as in (3.1), incidence is defined as:

(PI1) (x,y)I[m k] if T(#,X,9) =k for some m, X, 7,k
(P12) (x,y)I[Kk],  if T(h,$,%)= kfor some A%, p,k

PI3 (x),I1[m,k] if T(k,,X)=m for some m,%,7,k

(PI14) (x), 1[0, ],  if T(# %,5) =k for some m, %, 7, k

(PI5) (0,), 1[k],  if T(k $,X)=r for some m, %,k
)

(PI6) (Oox)y I I:Ook]m f T( ,32, y

S

With that definition, we can prove again the properties (PS), (RP) and
(ND), for suitable defined IT* and u. Since A is defined only by using the
geometries W, and their properties, (S, T) implies the existence of a triangle
building A. If (R, T, v) is a skewfield, then both ways (via R; via S =R™)
give rise to the same geometries W, and hence to the same building A ([10,
§4.41).

3.5. EXAMPLES. (1) The buildings obtained from skewfields with discrete
valuation are all classical.
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(2) The buildings obtained from the André quasifields K(®, s) and K(®,
a) are non-classical and some (if not all) have no non-Desarguesian residues.

(3) The buildings obtained from the formal power series R((t)), with R a
quasifield, are non-classical and have non-Desarguesian residues.

(4) The buildings obtained from the André nearfields GF((g?)) are non-
classical and have non-Desarguesian residues.

(5) The buildings obtained from (R[[t]], T) have residue planes coordi-
natized by (R, T).

(6) The buildings obtained from R™, where (R, T, v) is a V-PTR, are in
general not necessarily isomorphic to those obtained from R itself.

4. V_.PTR’S DEFINED BY A TRIANGLE BUILDING

The aim of this section is to show:

THEOREM (4). Any coordinatizing PTR of PG(A) is a V-PTR.

4.1. Lemmas

4.1.1. Chamber convex sets
(For general definition, see [1, §2.4].) The chamber convex closure of two
vertices a and b is by definition:

cl(a,b) = M {Qe Qu(A)|a,be Q}

and is consequently a chamber convex set since any quarter is. It is the
smallest chamber convex set containing a, b. We also have ([1, §2.4.4]):

LEMMA (4.1.1). Suppose cl(a,b) contains at least one chamber, then it is the
union of all chambers of all galleries stretched between a and b.

By [7, §2.19(iv)]; cl(a, b) lies in each apartment containing a and b and
hence cl(a, b) is either a non-degenerate parallelogram or an interval. (See
Figure 2.)
a a
E; E; 52 E; E; E; E; E; E; E; \ b \b

Fig. 2.
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4.1.2. The intersection of two apartments

In general, all we can say about the intersection of two apartments A and B
1s that it is convex. However, if we know the mutual position of their traces
at infinity A _ resp. B, we have (see[11, §2.1.2]):

Let A, = {x;|i{mod 6) and x; 1x;.,},

(i) A,nB=Q, then AnB= or An B is a bounded chamber
convex set, i.e. a 6-, 5-, 4- or 3-gon bounded by intervals lying on
pennels.

(i) A, "B, ={x,}, then AN B is empty or a haif strip which
contains a pennel with trace at infinity x,.

(i) A, "B, = {x,,x,}, then A "B is empty or a strip bounded by
two parallel walls having {x,,x,} as trace at infinity.

(iv) A, "B, ={x,,x,} ®ANB is a truncated quarter having
{x,,x,} as trace at infinity.

(v) A, nB, ={x;,x,,x3} <> AN B is a double quarter having
{x,,x,,X3} as trace at infinity.

(vi) A, "B, = {x;,x,,x3,X,} <> A N Bisalso a half apartment bound-
ed by a wall having {x,,x,} as trace at infinity and containing the
three germs of quarters {x,,x,}, {X,,x;} and {x3,x,}.

(vii) A, =B, = A = B.

4.1.3. Equivalent definition of A,

Just as the plane at infinity of a 3-dimensional affine space can be defined in

two different but equivalent ways ((i) via paraliel classes of lines and planes;
(i) via vector lines and vector planes after choosing an arbitrary origin), we
can also define the spherical building at infinity of A in a second way. The
next proposition follows mainly from Proposition (1.2.2):

PROPOSITION (4.1.3). Choose an arbitrary vertex s in the triangle building
A over J = {1, 2, 3} and suppose without loss of generality typ(s) = 3. We
define an incidence structure (P(A_), L(A ), 1) as follows:

(1) P(A,) is the set of all pennels p with source s such that typ(s,) =1,
where s, is the vertex on p adjacent to s.

(2) L(A_) is the set of all pennels | with source s such that typ (s) = 2,
where s, is the vertex on p adjacent to s.

Elements of P(A_) are called point-pennels and elements of L(A ) are called
line-pennels.

(3) A point-pennel p is incident with a line-pennel | if p Ul is the boundary
of a quarter (with source s).
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(P(A,), L(A,), 1) is a projective plane canonically isomorphic to PG(A) or its
dual.

LEMMA (4.1.4). Let, with the same notation as in Proposition (4.1.3), p, and
p, be two point-pennels. Suppose p, " p, = {s}, then p, U p, is the boundary
of a double quarter and thus lies in an apartment.

Proof. Let | be the line-pennel incident with p, and p,. Let Q, resp. @, be
the quarters with topological border [ p,, resp. [ p,. Suppose s’ is a
vertex in both Q, and @,, but not on [, then cl(s,s’) contains a vertex on p,
(and also p,) adjacent to s. So the intersection of p, and p, contains more
than only s, a contradiction, hence @, N Q, = 1. One can check (though it
is not trivial) that ¢, u @, is convex, and hence by Corollary (1.2.4),
Q, v Q, is a double quarter. QED

LEMMA (4.1.5). Let (O, X, Y, E) be a non-degenerate quadrangle in PG(A)
and let A, resp. Ay, Ay, Ag be the apartments of A determined by {X, Y, E}
resp. {0, Y, E}, {0, X, E}, {O, X, Y}. Then (0, X, Y, E) determines a unique
vertex s = s(0, X, Y, E). Moreover:

Ao N Ay N Ay N Ap =5,
and

Ao N Ay nAy, =e

Ao N Ay N Ag=v

Ao N Ay N Ag =X

Ay N Ay N Ag =0

are pennels with source s(O, X, Y, E) and with trace at infinity resp. E, Y, X,
0.

Proof. By 4.1.2(v) A, N Ay 1s a double quarter D, bounded by pennels y
and e with same source s € Ve(A). Suppose x and o are pennels with source s
and trace at infinity X, resp. O. Then xno={s} since
x N Dyg = 0" Dyg = {s}. By Lemma (4.1.4) there is a double quarter D,y
bounded by x and o. Define Dy,, Dyg, D,y and D, resp. by the double
quarters bounded by x Uy; x Ue; o Uy and ou e and lying in A, or Ay.
They all have source s. One can check that D,, v Dy w D, 1s convex and
hence an apartment, which is by uniqueness A,. Similar D,y D,y v
D,y = Ag. Putting (0, X, Y, E) = s, the result follows. QED.

4.2. The Geometries V,, ne N

42.1. Let (R, T) be a coordinatizing planar ternary ring of PG(A) with
respect to the non-degenerate ordered quadrangle (0, X, Y, E). Let X = OX,
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Y=0Y, L_=XY. Let s=s(0, X, Y, E). From now on, all pennels and
(double) quarters have source s, if not stated explicitly otherwise. So let o, x,
v.e,x,yl, be the pennels with trace at infinity resp. O, X,Y, etc. Also,
from now on use the notation of Proposition (4.1.3) and we suppose
without loss of generality that (P(A ), L(A_),I) is isomorphic to PG(A), as
opposed to its dual.

4.2.2. Define the incidence structure V, = (P(V,), L(V,), I) as follows:
(i) The point set P(V,) = {P"e Ve(A)| P*e pe P(A_) and d(P",s) = n}

(iii) P"1L" if there is a quarter Q containing P" and L".

42.3. REMARK. (1) For n =0, V, is the trivial geometry isomorphic to
W, of the previous section.

(2) For n =1, V, is nothing other than the residue R(s), thus a projective
plane.

4.3. Properties of V,
4.3.1. The maps I1}:V, -V,

NOTATION. Elements of V, (points or lines) are always denoted by a
capital letter and a superscript n. Small letters without a superscript stand
for elements of (P(A_), L(A ), I) (except s€ Ve(A), numbers and elements of
Rj}. Capital letters without a superscript stand for lines and points of PG(A).
If a vertex P"e P(V,) is on a point-pennel p, then we say that p represents P"
and that P" is the n-trace of p. Similarly for lines.

Now fix je N and let n > j. Let P"e P(V,), then there is a unique point P’
such that P/e[s, P"]. Similarly for lines. We denote this map P" — P’ by
IT7. Let IT; be the union over n 2> j of all II] and extend II; to PG(A) by
I[1,(P) = P’ if the point-pennel p with trace at infinity P represents P,
Similarly for lines. Clearly II; preserves incidence and is onto.

4.3.2. The partial valuation map u

Let P", Q"e P(V,); L", M"e L(V,), then we define: :
(1) u(p",Q") = sup {je N| II,(P") = TI(Q"), 0 <j <n},

(2) w(L",M") = sup {je N|TI,(L") = [1,(M™,0 <j <n},
(3) u(P",L") = w(L", P") = sup {je N|IT,(P") I TI,(L"), 0 <j <n}.

Similar definitions for elements of PG(A), with sup N = co.
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Fig. 3.

For j <n (and both fixed), the inverse images of IT} define a partition of
each of the sets P(V,) and L(V,). Note that these partitions also can be
obtained by the equivalence relations: P" is equivalent to Q" iff u(P", Q") =2 j
for points, and similarly for lines. This follows directly from the definitions.

We now prove the three basic properties (PS), (RP), (ND) stated in (3.2.3)

4.3.3. Proof of (PS)
(PS) For any P"e P(V,) and any ke {0, 1,...,n — 1}, we have:
(T2, )~ (I, , (PM) € (T1) (T, (P™))
Similarly for lines.

The inclusion is trivial. To show proper inclusion, it suffices to prove that
for any ke N and any point P*, there are at least two distinct points P%*!
and P%X*! such that II,(P**') = P* i =1, 2. So let P*e P(V,) and consider
the residue R(P¥). R(P¥) is a projective plane. Let II,_,(P*) = P* 1
Without loss of generality, we can assume that P*~! is a line in R(P¥). Let
a,, &, be two points of R(P*), not incident with P*~!(a,,a, € Ve(A)). Let B,
be an apartment containing s and {a;, P*}, i = 1, 2. Since «; is not adjacent
to P*7!, a; is on a pennel in B;, i = 1, 2. (See Figure 3). That is so because
P*~ e cl(s, P¥) and hence P*"! lies in both B, and B,. Putting «; = P¥*!,
i =1, 2, the result follows. QED

4.3.4. Proof of (RP)
(RP) Let P", Q"€ P(V,); L", M"e L(V,).
Let k < inf {u(Q", L"), u(L", P"), u(P", M")}

(1) there is a point incident with both L" and M" (and dual)
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(i) w(Q", M™) >k < u(P", Q") + u(L", M") > k.

(i) Let [ and m be line-pennels representing resp. L" and M". The unique
point-pennel p incident with both [ and m represents a point P" which is
incident with both L" and M".

(i) By mapping down all points and lines onto V,, one can see that it
suffices to prove the property for k = n.

LEMMA (4.3.4). Let I be an arbitrary representative of a line L" and suppose
P"1L", with P"e P(V,). Then there is a point-pennel p which represents P"

cur'ln flanf p I! in \1 A }’ L(Am), I}

Proof. Let B be an apartment through a quarter ¢ containing P" and L".
Let K" be the line of ¥, in B incident with P". Then P"e cl(L", K"). (See
Figure 4). Let k be the pennel in B representing K". | and k satisfy the
conditions of Lemma (4.1.4). So let B’ be an apartment containing k and |
and a point-pennel p incident with both k and [ in (P(A ), L(A ), I). Since B’
contains L", and M", it contains P", so p represents P". QED.

LEMMA (4.3.5) Suppose P"IL"P"IM" and Q"IL" If u(L", M") =0, then
QrIM"iff P" = Q"

Proof. If P" = Q", then Q"1 M".
Suppose now Q"I M". u (L", M") = 0 implies that any two pennels [ and m
representing L", resp. M" only meet in s. As in the proof of Lemma (4.3.4)
Q"ecl(L",M"), moreover, the parallelogram (Q", L" s, M") coincides with
the parallelogram (P",L",s, M"), hence Q" = P". QED

LEMMA (4.3.6). Let P"e P(V,); L"e L{V,). If d(P",L") <n, then P"1L".
Proof. Suppose P"IL". Let j=u(P"L")<n and I1,(P") = P/
I (L") = L?. Choose I representing L" arbitrary, then [ represents L’ as well.
Let g be a point-pennel such that gu !l is a wall (e.g. g is in an arbitrary
apartment through [). Let [, be the line-pennel such that g I/, I p and let p,
be the point-pennel determined by I, I p, I . Then {l, py, Iy, g} determines a
half apartment H bounded by the wall g U/ (just as in Lemmas (4.1.4) and
(4.1.5)). Let L} be the j-trace of l,, then L{ IP/I1L/. But in H we have
Li 1 P, 1L/, where P is the j-trace of P,. Since u(L}, L’) = 0 and by Lemma
(4.3.5), P{, = P/. But u(P",L")=j, so pp, = [s, P']. (See Figure 5.) Let B
be an arbitrary apartment containing H. Let m and g, be the pennels of B
such that gImIg, 1l Let M be the wall (not necessarily through s) in B
through L; and paraliel to [, U g,. So M contains also P’. Since p 11, the
triangle !p Do»dos is non-degenerate in (P(A,),L(A,), I) and hence it
determines a unique apartment B’ in A (but g, p,, 4o are not necessarily part
of B'!). By 4.1.2(vi), B B’ is a half apartment H bounded by a wall M’
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parallel to [, U q,, so M’ is parallel to M. By Lemma (4.1.4) and the fact
that an apartment is convex, A has the following property (APP):

(APP) The set of vertices of an apartment of A determined by the non-
degenerate triangle {A, B, C} of PG(A) is exactly the set of vertices
o for which the pennels a,, b,, c, with source o and trace at infinity
resp. A, B, C meet pairwise in nothing more than .

Hence, one can easily see that M = M’. In B’, we now have the situation of
Figure 6:

B
Fig. 4.
\\
BN n
FRSN
P" TN L
H ~ o j
~\ P M
P, 1
B
1o 9y
VA
Fig. 5.
A

-—j—

Fig. 6.
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P
SI/X\\
Fig. 7.
Clearly, d(P",L") = V/nz + 3(n —j)* > n. QED

COROLLARY 4.3.7). PPIL"inV, iff dP",L")=nin A
Proof. If P"IL" then d(P",L") =n (clearly from the picture) and if
d(P",L"™) = n, then P"1L" by (4.3.6). QED

We now finish off the proof of (RP)(ii). Since k=n, we have
Q"IL"IP"IM" If L"= M", then there is nothing to prove, so suppose
u(L",M") =j<n. Let L’=TI(L") = 1{M"). By Lemma (4.1.4), Lemma
(4.3.5) and Corollary (4.3.7), there is a unique vertex o« with the properties

d(L’,a) = d(L", o) = d(M",0) = n — j.

On the other hand, any quarter containing P" and L" (or M") contains L,,
hence it contains cl(L/, P") which contains a vertex B at distance j from P~
and at distance n — j from M", L" and L’ (see Figure 7). Hence « = f.

\ \/
PnOR;\ L"orRM"
PJ
CL(s,x!
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(1) Suppose first Q" I M", then, as above, any quarter containing M" (or
L") and Q" contains a. So any quarter containing L" (or M") and P" (or Q")
contains cl(s,«) which contains a vertex P’ at distance n —j from s on
[s,P"] and [s,Q"]. Hence [s,P’] < [s,P"] n[5,Q"] and thus:

u(P",Q") = n —j=n—ul",M").

(See Figure 8.)

(2) Suppose u(P",Q") = n — j, then all quarters containing Q" and L", (or
P" and L") contain P/ = IT,(P") = TI,(Q"). Hence they all contain the set
cl(P/L"), which obviously contains a Note that d(P/,a) =j, and so
d(Q",a) = j. Hence

dQ",M") < d(Q",a) + dM",0) = j + (n — j) = n.
By Lemma (4.3.6), Q" I M". QED.

We now write down a few consequences of this property:

COROLLARY (4.3.8). Let P",Q"e P(V,) and L", M" € L(V,). Suppose that
u(Q", M") < inf {u(Q", L"), u(L", P"),u(P", M")}
then we have
uw(@Q", M") = u(P",Q") + u(L", M").
Proof. Apply (RP) for k resp. equal to u(Q", M") and u(Q", M") + 1.
QED

COROLLARY (4.39). Let P, Q be points of PG(A) and L,M be lines of
PG(A). Then (RP) holds for P, Q, L, M.

Proof. Apply (RP) for n>sup{w(@,M), u(Q,L), u(L,P), u(P,M),
u(P, Q) + u(L, M)} QED

COROLLARY (4.3.10). Let P, Q"eP({V, and L", M"eL({V,) and
Q"IL"IP"IM,. Thenu(Q", M") = u(P",Q") + u(L", M™"). This is also true in

PG(A).
Proof. Follows directly from Corollaries (4.3.8) and (4.3.9). QED

COROLLARY (4.3.11). Let P"eP(V,) and L"eL(V,) be such that
u(P",L") = 0. Suppose P" is incident with two lines L} and L. Then there are
unique points P! incident with both L" and L}, i =1, 2. Moreover, we have:

u(P, Py) = u(LY, L) = u(PY,L3) = u(P3, LY).

This is also true for points and lines in PG(A).
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Proof. Let P! and Q! be incident with both L" and Lj. Since
P"IL'IP!IL", we have by Corollary (4.3.10), 0 =u(P",L") = u(P", P}) +
u(L", L"), hence both last numbers are 0. Since P/IL"IQ;IL}IP}, we
have u(P!,QF)=n, so P! is unique (i=1,2). Now we have: LI1IPTIL"IPj,
SO

(1) WLy, Py =u(L" L) + u(P}, Ph) = u(P}, P)
and L" IP*1L% 1 P2, so
) wlh, Py =L, L) + u(P", Py) = u(L],L}).

Combining (1) and (2) and by symmetry, the result follows. QED

4.3.5. Proof of (ND)
(ND) V, contains a non-degenerate quadrangle.
Proof. V| = R(s) is a non-degenerate projective plane. QED

THEOREM (4.4). The inverse limit V of (V,),. with respect to the maps
[T} _, is isomorphic to (P(A,), L(A_),I) = PG(A).

Proof. Define the map f:(P(A,), L(A,), ) >V by fla) = (A"), ., Where
A" is the n-trace of the pennel a.

(1) f is well defined since I1%_,(A") = A"~ !

(2) f 1s injective since two distinct pennels have distinct n-traces for n
large enough.

(3) Let (A"),. be an element of V. Then the union of all [s, A"] over n is
convex and lies by Corollary (1.2.4) in an apartment. Therefore, it is a
pennel itself. So f(a) = (A"), and f is onto.

(4) If p1i, then f(p) If(I) by definition.

If f(p) If(l), then let s, be the (chamber) convex closure of {s,p",L"};
Clearly, S, = S,,, and so the union Q over n of all S, is convex. It clearly
can be embedded in &, so Q is a quarter which is obviously bounded by
pul QED

4.5. The Valuation Map v

4.5.1. Suppose PG(A) is coordinatized by the PTR (R, T) with respect to

il e 4 PUN P Y e Y v A %4 ) A D-- ) S (A1 &\
LIIC HOI-AacgcCict dalc LiUd.Ul auglc v, A, i, o). DYy L.CIIld (F.1.0)
(0", X", Y", E") is a non-degenerate quadrangle in V,, where O", X", etc.,

ns

denote the n-trace of the pennel corresponding resp. to O, X, etc. Define:

R* ={reR|MI,(0,r))#Y'}, R =R-R".
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We now define the valuation map v: R* > Z U {0} as:

u((0,r), (0, s))

—u((0),(0,s))

—u((0), (0,r))

u((0,r), (0, ) — u((0),(0,r)) — u((=0),(0,s))

v(r,s) =

55

We denote v(0,r) =-v(r,0) by v(r). Clearly v(r) >0 < reR".

PROPOSITION (4.5.1). Let r,seR; [m, k] and [m', k'] be lines in PG(A)
(a,b)and (a’,b") be points in PG(A) such that m, m', k, k', a, a’, b, b’ e R",

then we have:

u((r,0),(s,0))
—u((0),(r,0))
1) o(r,s) =
() vir.s) L—u«ox (5,0)
u((r,O), (S,O)) - U((O), (ra 0)) - U((O), (Sa O))
u((r),(s))
;o N —U((OC),(I'))
W HE9=9  Leonis)
u((r),(s)) — u((o0),(r)) — u((o0),(s))
(2) u((a, b), (a', b)) = inf{v(a, a’), v(b, b')}.
(2) u(lm, k1, [m', k']) = inf{o(m, m"), v(k, k')}.
(3) u((a, b), [m, k]) = vik, T(m, a, b)).

if (r,s)e RT x R*
if (r,s)e R™ x R"
if (r,s)eR" x R~
if (r,s)e R~ x R~

(r,s)e R™ x R*
f(r,s)e R~ x R™
(
(

=y

if (r,s)eR™ x R~
r,s)eR~ x R™.

<

if

Proof. (1) follows from Corollary (4.3.11) applied twice: let P = (0, r),

Q = (0,s) and J = (1), then we have:
u((0,r),(0,s)) = u(JP, JP) = u((r, 0),(s, 0))

since u(J, X) = 0 (after all, (O', X', Y', E') is non-degenerate in V).

(1)’ Similarly, but use L and B = (1,0) instead of X and J resp.

(2) By Corollary (4.3.11), u(XP, XP') = v(b,b") and w(YP,YP') = v(a,da’),
where now P =(a,b) and P =(d,b’). Now u(XP,YP)=0 (using
XPIPIYPI1Y and Corollary (4.3.10)), so the intersection of Il (XP) and
[1(YP) is uniquely determined for all n. Similarly for XP'. Choose
for n first inf {v(a,a’),v(b,b’)}, then I1,(XP)=T1(XP’) and I1,(YP)=TI1,(YP)
and hence II,(P)=II,(P’), Secondly, choose n = inf{v(a,a’),v(b,b’)} + 1.
Then I1,(P)=I1,(P’') implies I1(XP)=1II(XP’') and Il (YP)=1I1(YP’),
since u(X,P) = u(Y,P) = u(X, P') = u(Y,P’) = 0; a contradiction.
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(2) Dual to (2).
(3) By Corollary (4.3.10), we have:

u((a, b), [m, k]) = u([m, T(m, a,b)], [m, k1)
By (2), this equals v(k, T(m, a, b)). QED

PROPOSITION (4.5.2). Let P,,P,,P; be three points of PG(A)), then
w(P,, P,) <u(P,, Py) implies u(P,, Py) = u(P, P,).

Proof. Obvious by mapping down the points onto V, for suitable n. Note
that the proposition also holds for lines. QED

PROPOSITION (4.5.3). Let P,,P,,P,, P, be four points of PG(A), then
uP,,P,) +u(P5,P,) <u(P,,P;)+ u(lP,, P,) implies u(P,, P,) + u(P;,P,) =
u(P,,P,) + u(P,, Py). Similarly for four lines.

Proof. Suppose

<u(P,,P3)+ u(lP,,P,)

(P,.P,) + u(P,, P
u(P,P,) + u(Ps, 4){<u(P1,P4)+u(P2,P3).

Without loss of generality, we can assume that u(P,,P,) < u(P,, P;). By
Proposition (4.5.2), this implies u(P,P,) = u(P,,P3). Hence u(P3,P,) <
u(P,,P,), which implies u(P,, P;) = u(P5,P,). Hence u(P,,P,) < u(P,,P,)
which implies u(P,,P,)=u(P,,P,). Hence u(P;,P,)<u(P,,P;), which
implies u(P,, P,) = u(P5,P,). So we have

(>2.u(P,,P,)

wlP,,P,)+ u(P5,P,) 1>2u(P P.)
. 3 4 7°

a contradiction, hence the two smallest sums have always to be equal.
QED
4.5.4. We now prove the four axioms of valuations (see (2.2)).

(*) v satisfies (d1)
By definition. QED.

(**) v satisfies (d2)

Suppose v{a,b) < v(b,c). We then have to show v{a,c) = v{a,b). There are
six possible cases (a,b,c in R or R~ such that v(a,b) < v(b, ¢)):
e

(I) a,b,ce R™. This is a direct cons

D
2
D
=
lp]
(¢
Q
=z
—
-

Proposition (4.5.2).
(I) ae R™; b,ce R™. We have v(a, ¢) = v(a) = v(a, b) by definition.
(III) ae R™;b,ce R~. We have v(a, b) = v(b) < v(b,c). So

—u((0),(0,b)) < u((0,b),(0,c)) — u((0), (0, b)) — u((), (0,c).
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Hence
u((0), (0, b)) < u((0,b),(0,¢))
and by Proposition (4.5.2)
u((0), (0, b)) = u((0), (0, ¢)).
We conclude
o(a,c) = v(c) = v(b) = v(a, b).
(IV) a,ce R";be R™. We have v(a,b) = v(a) < v(c) = v(b, ), so
u((0), (0, ¢)) < u((0), (0,a)
and by Proposition (4.5.2)
u((0), (0, ¢)) = u((0, a), (0, c)).
Hence
v(a,c) = —ul((o0),(0,a)) = v(a) = v(a, b).
(V) a,be R™;ce R™. We have v(a,b) < v(b,c) = v(b). So
u((0,a),(0,b)) — u((0),(0,a)) <O.
Again by Proposition (4.5.2)
u((0,a), (0,b)) = u((0), 0, b)).
Hence
v(a,b) = —u((20),(0,a)) = v(a) = v(a,c).
(VI) a,b,ce R .v(a,b) < v(b,c) 1s equivalent to
u((0,a),(0,b)) + u((=0), 0, ¢)) < u((0,b),(0,¢)) + u((0), (0, a)).
By Proposition (4.5.3)
u((0,a),(0,b)) + u((0), (0. ¢)) =u((0,a), (0, ¢)) + u((), (0, b))
hence
v(a,b) = v(a,c). QED

(***) v satisfies (d3)

Suppose
T(alablacl) = T(alaszCZ) = dla
T(GZabl,CI) = T(a2ab2’c3) = dZ'

(I) Suppose the valuation of each appearing element is positive (or 0). Let
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P, =(b,cy), P, =1(b,,c;), Py =1(b,,c3), L, =[a,,d,], L, =[a,,d,]. By
Corollary (4.3.11),

u(Ly,L,) =v(a;,a,) and w(Py, P,)=v(b;,b,).
By Proposition (4.5.1(3)),
u(P,,L,) = vld,, T{a,,b,,c,)) = vic,, T(b29a2ad2)) = v(c,,C3),

where T(a,b,c) = d < T(b,a,d) = c. The result follows from P,IL,I1P;I
L, 1P, and Corollary (4.3.10).

(II) Suppose inf{v(a,),(a,),v(b,),..., v(d,)} = k < 0. Denote the n-trace
of an element of PG(A) by the same letter with a superscript n. We
coordinatize the apartment A with trace at infinity {O, X,Y} by barycentric
coordinates with respect to the quadrangle (s;0',X',Y'). This is well
defined since A is a Euclidean plane (a copy of & in (1.1)). Consider the
vertex s* with coordinates (5 + k, 3, 3 — k) (see Figure 9).

We recoordinatize PG(A) with respect to a new quadrangle (O,X,
Y, E*), where E* is such that s* = S(0, X, Y, E*) (this is always possible!)
Denote by (R*, T*) the new PTR and by v* resp. u* the induced valuation
map on (R*, T*), resp. the partial valuation map induced on PG(A). There
is a bijective map p — p* which assigns to a pennel p with source s, the
pennel p* with source s* and same trace at infinity; this induces three
bijective maps b_, bg,by: R — R* such that: '

T(m,a,b) = k <> T*(b,(m), bx(a), by(b)) = by(k),

Fig. 9.
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[b, (m),bs(k)] and (bg(a), b3(D)) are the new coordinates of [m, k], resp. (a, b).
If R is a division ring, then (b, bg, by) is an isotopism and R and R* are
isotopic (see [3, p. 177]).

Let P be a point of PG(A) on the line Y of PG(A), let A again be the
apartment of A determined by the triangle {O, X,Y}, then the apartment B,
determined by {O, P, X } meets 4 in a half apartment H bounded by a wall
M parallel to X U Y (X and Y are here considered as elements of P(A_) or
L(A_)). We can do that for any point incident with Y in PG(A). So we
obtain a set of apartments (Bp| P 1Y}. All these apartments meet pairwise in
half apartments bounded by walls parallel to X Y. Hence we can factor
out X UY. We denote the acquired set by TxY (see Figure 10) and the
corresponding quotient map by ¥:\U {B,| P1Y} > Ty;. We define a dis-
tance map d’ on the set of elements of T,y which have as inverse image a

wall of A, by:

23
dW(M), Y(M") ===+ d(M, M),
This implies: d'(y(M),y(M")) =1 iff M and M’ are neighbouring walls. By
the property (APP), we conclude that if P and Q are incident with Y, and By

is the apartment determined by {P,Q, X}, then

u(P, Q) = d'((s), ¥(Bpo))-

(In fact, Tyy is nothing other than the tree (I(M*), {f* | f(M)* = M*})
with M* = {X,Y}, introduced by Tits in [9, Prop. 4].)

Each point incident with Y determines a direction in Tyy (an ‘end’ of the
tree). Now d'(¥(s), Yy (s*)) = 2| k| and y(s*) lies in the direction of Y with
respect to ¥(s). To prove (d3), there are six cases to consider. We draw a
picture in each of the cases.

Let r,seR, by(r) =r* by(s)=s* P=(0,r) and Q =(0,s) (old co-
ordinates).

(I) r,se R*. Then ov(r,s) = u(P,Q). Clearly r* s*e(R*)* and v*(r¥* s*) =
v(r,s) + 2|k| (see Figure 11).

(I) re R™, 2k < u(s) <0. Then v(r,s) = —u(Y,Q). Clearly r* s*e(R*)"
and also v*(r*,s*) = u*(P,Q) = d'(Y(s*), Y(Bpy)). On the other hand, we
have —u(Y,Q) = —(2|k| — d'(Y(s*), Y(Bpy))). Hence v*(r*,s*) = v(r,s) + 2|k]|
(Figure 12).

(III) reR*, v(s) < —2lk|. Then o(r,s) = —u(Y,Q). Clearly r*e(R*)",
s*e(R*)™ and thus v*(r*,s*) = —u*(¥,Q)= —d'(Y(s*),¥(Bpy)). On the
other hand, we have —u(Y,Q)= —Q2|k|+ d'(Y(s*),¥(Bpy)). Hence
v¥(r*, s*) = v(r,s) + 2|k| (Figure 13).
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(IV) 2k < ov(r) = v(s) < 0. Then v(r,s) = u(P, Q) — u(Y, P) — u(Y, Q). Clearly
r¥,s*e(R*)"  and  o*(r*,s*) =dWY(s*).,H)=  dW(s*),n) +d 0, =
d(n, &) — d((s*),n) + 2|k|, where £ and # are defined as on Figure 14. On
the other hand, o(r,s) = u(P,Q) — 2.u(Y,P) = d'(n,&) — d'(¥(s),n). So again
v¥(r*,s*) = o(r,s) + 2|k| (see Figure 14).

(V) v(r)<v(s) <0. Then vo(r)=uv(r,s) and by ((II) and (III),
v¥(r*) = v(r) + 2|k| < v(s) + 2|k| <= v*(s*) and hence v*(r*, s*) = v*(r*) (af-
ter all, v* satisfies (d2)), so again we have v*(r*,s*) = v(r,s) + 2|k|.

(VI) v(r) = v(s) < 2k. By a similar argument as above (in (I) through (IV)),
we again conclude v*(r*, s*) = v(r,s) + 2|k| (see Figure 15).

So, for all r,s€ R, we have

v*(r*, s*) = v(r,s) + 2|k|. (*)
Similarly, one can show

v*¥(b o (), b (s) = vl(r,s) + K| (*)

v¥(bx(r), bx(s) = v(r,s) + [kl. (*)
Now we have:

T*(by(ay), bx(b,), by(c,)) = by (d,;)
= T*(b(a,),bz(b,), by(c,))

T*(b,(a,), bx(b;), by(c,)) = by(d;)
= T*(b(a,),bg(b,), by(cs)).

All elements have positive valuation and so (d3) holds:

0¥(b s (a1), b (a3)) + v*(bx(by), by (b))
= v*(bs(c,), by(cs)).
By (*), the result follows. QED.
REMARK(4.5.5.). Using the same technique, one can show in general that,

if s* has barycentric coordinates (k,,[,,m,), then
v*(b(r),b(s) = v(r,s) + my — [,
v¥(bg(r), bx(s) = vlr,s) + Iy — ko
v*(by(r), by(s)) = v(r,s) + my — ko

All properties of v are invariant under these transformations.

(****) v satisfies (d4)
The following proof, using the above result differs from that in [11,
§2.6.4]. We know (1) = 0 since u(A4,0) = 0 and v(0) cc. For ke Z, take in
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n

y . ) o 0

Yis™) ; Y (s)

Fig. 14.
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Y 4 — o 0

4 Y(s™) Y(s)

Fig. 15.

the apartment A the vertex s* with barycentric coordinates the 3-tuple
G + k3,3 —k). With the same notation as in (***), we have
o(r) = v¥(b(r)) + k. So choosing r such that b_(r) is the 1 in (R*, T*), the
result follows. QED

This completes the proof of Theorem (4). In Section 5 we shall show that
(R, T, v) is complete.

REMARK (4.5.6) Suppose (O’,X",Y',E’) is another non-degenerate quad-
rangle of PG(A). Denote the corresponding V-PTR by (R, T',v').

(1) It might happen that s(0,X,Y,E) =s(0, X, Y,E') (e.g. if (0,X.Y,E)
is a permutation of (O', X',Y’, E')), but nevertheless, this induces no general
connection between (R, T,v) and (R, T'v"). The following example shows
that the position of s(O’, X',Y’,E) with respect to s(O, X,Y,E) has no
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influence on the PTR’s. Let A be the triangle building corresponding to a
‘proper’ André-quasifield K(®,s) of (2.2). Then we can assume that R is
precisely K(®,s) (by PTRAPTR) of Section 5). With the notation of (4.3.2),
we choose O’ such that o0 # u(0’, XY) 2 1; E’ is the image of E under the
elation of PG(A) with axis XY (see [3, Ch. 1V, §4]) mapping O to O"; X' = X
and Y' =Y. In view of (APP) one has s(0, X, Y, E) # s(O', X, Y, E') and if we
denote by (R"”, T"”) the PTR corresponding to (X,Y,0, E), then:

s(0,X,Y,E) = s(X,Y,0,E) and (R, T) % (R", T"),
s(0,X,Y,E) # s(0',X,Y,E') and (R.T) = (R, T").

In the last case one can even show that v is compatible with v* (see also
below).

(2) Suppose (R, T) = (R’, T'). Then v is not necessarily compatible with v’,
even if s(0,X,Y,E) =s(O', X', Y',E’). But it seems reasonable to conjecture
that v is compatible with v’ < the collineation of PG(A) corresponding to
the isomorphism (R, T) = (R, T') extends to an automorphism of A.

5. PROOF OF THE MAIN THEOREM

In Section 4, we showed that PG(A) can be coordinatized by a V-PTR for
any triangle building A and in [10], it was shown that a V-PTR gives rise to
a triangle building. We now show that, in case we have a CV-PTR, these
operations are mutual inverse. In detail:

(APTRA)  If A is any triangle building, then any coordinatizing PTR of
PG(A) gives rise to A itself.

(PTRAPTR) If (R, T) is any CV—~PTR, then PG(A), where A is the triangle
building defined by (R, T), can be coordinatized by (R, T).

5.1. Proof of (APTRA)

Let A be a triangle building and (R, T) a coordinatizing V-PTR of PG(A)
with respect to the non-degenerate quadrangle (O,X,Y,E). Let
s=a(0,X,Y,E) and V, the geometry derived from A and s as in Section 4
(for all ne N). Then PG(A) =V = ligl V, (see (4.4)). Let T" be the triangle
building obtained from (R, T) by using the method of Section 3. Let W,
denote the geometries derived from (R, T) as in Section 3. Let R™ and R~
be as usual. If reR™, then we write r*; if re R™, then we write r . Let
R, =Ru{o} and R = R™ u {o0}.

DEFINITION (5.1.1). We define the incidence structure W =
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(P(W). L(W),1) as follows:

(i) PW)=R* x R"UR" x R_UR_ x R_
(i) LW)=R" x R*UR_ x R" UR_ x R

As usual, points are denoted by round brackets and lines by square
brackets. Incidence is defined as follows:

(i) (W1) (x*, y")I[m™, k"] if Timx,y)=k
(x*, y)I[m,k*] if T(mk,0)=>b and
‘ T(m,x, yy=05b {for some be R.
(xT,y ) I[m k7] if T(x,y,a) =0 and
T(m,y,a) =k for some a€ R.
(x*,y )I[m k" ]if T(x, y,a) =0, T(b,k,0) =m and
T(b, y,a)=m for some a,be R.
(x7,y )I[m ,k*]if T(x,a, y)=0, T(m,k,0) =b and
T(m,a, y)=b for some a,be R.
x ",y )iim ,k ]if T(x,a,y)=0,T(b,k,0)=m and
T(b,a, y)=m for some a,be R.
(W2) (x,00)I[m k™ ] if T(x,k,0)=m.
Y (oo, y)I[m kY] i T(m,k,0) = y.
(x7,y ) 1[0, k] if T(x,k,y)=0.
(x*,y )Im ,0] if T(x, y,m)=0.

(W3) (x,0) I[x,k*] for all xe R and all ke R™
(c0,x )I[x",k™] forall x,keR_.
(k*,x*)I[oo,k*] for all x,ke R".

(x*,k )I[oo,k™] forall xeR™ and all ke R,.
(x,k )I[k~,00] forall x,ke R_.

(W4) (0,0)I[m™, 0] for all me R.

(00,x7)I[00,0] for all xeR .

PROPOSITION (5.1.2). W is isomorphic to PG(R, T) = PG(A).

Proof. We establish the coordinate transformation formulas g:
PG(R, T)—» W, h: W—-PG(R,T) and we show that they are mutually
inverse and also that they preserve incidence.

(1) Definition of g
g:PGR,T)»W:(x",y")—=(x",»")

X,y )= x) where T(z,x, y) =0

(x*,y )=,y ) where T(z,x, y) =0

©, y7 )= (o0, y7) if x #0

(x,y )=,y ) where T(z,x, y) =0
if v(y) < v(x)
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(x,y )o@ x") where T(z,x, y) =0
if v(y) = v(x)

(x) = (x, 00) for all xe R,

[m+,k+] N [m+,k+]

[m ,k*]—>[m~,I1*] where T(m,1,0) =k

[m*,k~]1—-[k™,1"] where T(m,1,0) =k
if m#0

[0,k ] - [k, 0]

[m ,k~]->k",1"]  where T(m,,0) =k
if v(k) < v(m)

[m,k™]->[m~,I"] where T(m,10)=k
if v(k) = v(m)

[k] — [0, k] for all ke R .

(2) Definition of h
h: W—-PGRT): (x*, y*)>(x*, y")

x"y )=y 2 where T(x, y,z) =0
(x,y )= y) where T(x,z, y) =0
(x, 00) + (x) for all xe R

(00,x7) = (0,x7)

[m+,k+]—>[m+,k+]

[m™, k"] >[m™,1] where T(m, k,0) = [
[m™,k ]->[m ] where T(l,k,0) = m
[c0, k] = [k] for all ke R,

[k, 0] [0,k ].

(3) g and h are mutually inverse. This is a long and tiresome, though
elementary work. We restrict ourselves to two examples.

@) (@°m(x", y N=(x"»")
h(x™, y7) =(y,z) with T(x, y,z) = 0. There are two possibilities:
(a) if v(z) =0, then g((y ,z))= (", y~) with T(zZ, y,z) =0, hence
x =z,
(b)yif wv(z)<0, then vv(z)=uv(y)+v(x)=2v(y) and hence
g(y~,z2) =", y") with T(Z, y,z)=0 and again we have
x =7z,
(i) (heg)([m k™ 1) =[m k"]
- (a) if v(k) < v(m), then g([m ,k™ ) =[k,1" ] with T(m,[,0) =k and
Wk, 1" ) =1[lk"] with T(l',|,0) = k, hence I' = m;
(b) if v(k) = v(m), then g([m~,k~ 1) = [m~,1" ] with T(m,,0) = k and
W[m~,1"])=[m~,I'] with T(m,1,0) =, hence I' = k.

(4) g preserves incidence. This is again a long but elementary job. We give
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one example. In PG(R, T), im™)I[m™, k"] we have:

g((m~)) =(m", )
gllm™, k™) =[m",
By (W3), the result follows.
(5) h preserves incidence. Again, we restrict ourseives to an exampie for
the same reason as above.
Suppose in W, (x~, y~ ) [m™,k™ ], then there are a,b € R such that

(*) 0, T(b,k,0) =
But then h((x ",y ")) =(a,y ) and h(lm ™,k ]) = [b,m™ ]. by (%), the result
follows. That completes the proof of the proposition. QED

PROPOSITION (5.1.3). Let x,y,a,b,mk,p,q€ R. Recall that for r,s€ R,
w(r,s) = v(r,s) — v(r) — v(s). If x#0 (resp. a #0), then let z (resp. c) be
defined by T(z,x, y) =0 (resp. T(c,a,b) =0). Then in PG(R, T), we have:

I"] with T(m,1,0) =k

T(x,a, y) = m, T(b,a, y) = m.

u(x®, y*), (a*,b")) = inf{v(x,a),v(y,b)}
u((x~, y7), (@”,b")) = inf{v(z,c), w(x,a)}
ul(x*, y7), (a*,b7)) = inf{w(z,c), w(y,b)}
u((0, y ,( b)) = w(y,b)
ul(x", y~ ) (@,b7)) = inf{w(z,c), w(y,b)}
if (y) <uvix) and ov(b) < v(a)
ul(x", ¥y ), (@ ,b7)) =inf{v(z,c), w(x,a)}
if (y) 2 uv(x) and v(b) = v(a)
ul(x™), (a™)) = v(x,a)
ul(x"), (@a7)) = w(x, a)
ul(x™, y7), (@7,b7)) =inf{v(z,c),w(x,a)} if v(b) = v(a)

u(x, y*), (@a*))
ulx™, »7), (0,67))

= inf{v(z, a), [v(x)|}
= inf{w( », b), |v(z)|}

w(x*, y7) (@a”,b7))
u(x®, y7), (@)
u((x*, y7), (0)
u(@, y7), (a-,b7))
u((0, y~),(a™))

ul(0, y™ ) (o)
ux", y @)
ul(x”, y~), (00))
ul(x~, y7), (@™))
u((x"), (00)

In all other cases u(P,Q) =

= inf{w(z,c), w(y,b)} if v(b) < v(a)
=inf{w(z, a), [v( y)|}

= inf{[v@)], |v(¥)|}

= inf{jo(c)l, w(y,b)} if v(b) < v(a)
= inf{[v(a)l, [v(»)I}

= Il )

= U

inf{w(z,a),[v(Y)I} if v(y) <

= inf{|p)], lo(p)} i ol

) < o(x)
inf{u(z, @), W(x)l} i o(y) > o(x)
= Ju(x).

v(x)

0 for P,Q points of PG(R, T).
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Let | and r be defined as T(m,1,0) =k, resp. T(p,r,0)=q if m # 0,
resp. p # 0. Then we have:

u(lm*,k*1, [p*,q"]) = inf {v(m, p),v(k, q)}
ulm™,k*1.[p",q"]) = inf{wim, p),v(l,r)}
ul[m®, k™ 1,[pT,q" 1) = inf{w(k,q),w(,r)} ifm+# and p#0
u([l0,k~ 100,97 ]) =w(k,q)

ullm™, k™ 1,[p",q 1) = inf{w(k,q), w(l,r)}

if k) <uvim) and v(q) < v(p)
ullm™,k™1,[p~,q" 1) = inf{wim, p),v(l,r)}

if k) = v(m) and v(q) = v(p)
ulk* 1,07 ) = v(k, q)
u(lk™),(q" 1) w(k, q)
ullm™,k*1,[p~,q~ ) = inf{w(m, p),v(,r)} if v(q) > v(p)
wllm ™, k" 1,[q"]) inf{v(l, q), [v(m)|}
u([m™,k~1,[0,g7 1) inf{w(k, g), [v())}
ulm™, k™ 1,[p",q" ) = inf{wk,q),w(l,r)} if v(q) < v(p)
w[m™, k™ 1,[q™]) inf{w(l, q), lv(k)|}
u((m™, k™ 1,[00]) inf{|o()], |v(k)|}
wlO, k" 1,Lp~>q™ ) inf{w(k, q), [v()l} if v(q) < v(p)
w0,k 1,[q" 1) inf{|v(q)l, [v(k)|}
u([0,k™ 1, [o0]) lu(k)|
ullm™, k" 1,[q" ] inf{[v(k)l, w(l,q)} if v(k) < v(m)
u(lm™, k™ 1,[o0]) inf{lo(K)], (DI} if v(k) < v(m)
ullm™, k" 1,[qg"]) inf{|o(m)], (], @)} if v(k) > v(m)
u(lk ™ 1,[o0]) = [v(k)|.

In all other cases u(L, M) =0 for L,M lines of PG(R, T).

Proof. Again, this is a long case-by-case proof without difficulties worth
mentioning. We give two typical examples:

(1) Suppose P=(x",y") and Q=(a",b~) with uv(b) <uv(a). Since
u((x,0), X) =0, we have u(L_,[x])=0 by Corollary (4.3.11). Since
u((0,y),Y) >0, we have w(L_,[0,y]) >0 by Corollary (4.3.11). Hence
u([x],[0,y]) = 0. Since IT,([0,y]) is incident with Y, u([0,y],Y) > 0. Now
YI[x]I(x,p) I[0,y], so by Corollary (4.3.10)

u(Y, (x,y)) + u(lx], [0,y]) = u(Y, [0, y]) > O,

hence u(Y,(x, y)) > 0. And since Y 1 X 7%, u((x, y), X) > 0.
Note that the intersection of [z,0] and [0, y] is (x, y). By Corollary
(4.3.11), '

u([z,0], [0, y]) = u((0,0),(0)) = 0.
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On the other hand, (a,b) is incident with [a] and [0,b]. Mapping down
onto V, for n = |v(b)|, we see that u((a,b),Y) > 0 (because u((a,b),L_) > 0,
and if u((a,b),Y) were 0, then [a] would have to be mapped down onto L"
contradicting v(b) < v(a)). Similarly, we conclude u((a,b), X) >0 and by
Corollary (4.3.11), u([¢,0]1,[0,b]) = 0. Also (a,b) is the intersection of [¢,0]
and [0,b]. Now u(P,0) = w(P,X) = u(Q,0) = u(Q, X) =0, so by mapping
down onto V, for r = inf{w(z,c), w(y,b)}, resp. inf{w(z,c),w(y,b)} + 1 we
easily see that u(P, Q) = inf{w(z, c), w( y,b)} (after all, w(z, ¢) = u([z,0],[¢,0])
and w(y,b) = u([0, y],[0,b])).

2) P=(x",y )witho( y) 2 v{x)and Q ={a,b ) with v(b) < v(a). Since
(x, y) i1s the intersection of [z,0] and [x], and uv(z) 20, we have
u((x, y),Y) =0. On the other hand, we know that u((a,b),Y) > 0 (see (1)).
Hence, by Proposition (4.5.2), u((x, y),(a,b)) = 0. QED

The next proposition is the key to the preof of (APTRA).

PROPOSITION (5.1.4). V, is isomorphic to W, for all ne N.

Proof. We establish maps x:V,—> W, and 4: W, -V, and we show that
they preserve incidence and that they are mutually inverse.

(1) Definition of x: V,—» W,. Let P" be a point of V, and P any point
of PG(A) such that P"=1TII(P). Let g(P)=(x,y), then define
xk(P") = (x, y)/E,, where co/E, denotes the class of E, containing all re R
for which v(r) < —n. Similar definition for the image of lines.

(2) x is well defined. Let Q be another point such that P" = I1,(Q). Let
g(Q) = {a,b). We must show that (a,b)/E, = (x,y)/E,. Again, this needs a
long case- by case proof full of similar arguments. We give an example. Let
P={x",y"), then g(P)=(z",x ) where T(z,x,y) =0. Since n >0 (n =0 is
a trivial case), there are only a few p0531b111tles for the ‘shape’ of the
coordinates of Q (in view of Proposition (5.1.3)):

(i) @Q=(a",b") and n <inf{v(z,c),w(x,a)}, where T(c,a,b)=90. But
then ¢g(Q) = (c¢*,a") and since (z, x)/E, = (c,a)/E,, the result follows.
() Q=(a",b") with v(b)>v(a). Again let T(c,a,b)=0. Then
9(Q) = (c,a) with n < inf{ v(z c), w(x, a)}. So the result follows.
(iii) Q = (a") and n < inf{v(z,a), [v(x)|}. g(Q) = a, ©0) and again, the result
follows casily.

Similarly for all other cases. We conclude that x is well defined.

(3) k preserves incidence. Let P" I L" then there are P and L in PG(A)
such that PIL and II,(P) = P"; I1,(L) = L". Hence g(P) I g(L). Note that
we always can choose P and L such that g(P) and g(L) does not contain an
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oo-symbol (the proof is left to the reader since it is quite simple and
uninformative).

From the definitions of incidence follows x(P") I x(L").

(4) Definition of +: W,—V,. Let (x, y)e P(W,). Take any representative
(X, ). This can be viewed as a point in W. Then by definition
A((x, y)) = IT,(h(x, y)). Similarly for lines.

(5) A is well defined. Again we prove that for one example. Let x€ R,” and
yeR, . Let (x*,57) and (@*,h") be two representatives of (x, y). Then
u(X, d) = n and w(3,b) > n. We have:

h((x, y) =(p,2) with T(x,9,2)=0

h((d, b)) = (b,é) with T(4,b,é) =0
Note that v(?) > v() and v(é) > v(h) by (v12). So by Proposition (5.1.3)
u(( 9, %), (b,&) = inf{v(x,d), w(¥,b)} > n (this is independent of the signs of
v(z) and v(¢)!). Hence, A((x,y)) is well defined.

(6) 4 preserves incidence. This follows immediately from Definitions
(5.1.1.)(11)(W1) and (3.1)(ii1).

Denote that identity map in any set F as id.

(7) A°k =1idy. Let P"e P(V,). Let P in PG(A) be such that II,(P) =
and P is incident with no coordinate axis (always possible: see [ 10, Lemma
(6.1.1.)]). Then g(P) contains no oo and hence g(P) is a representative of
kK(P"). Now P = h(g(P)) and II,(P) = P". So (4°k)(P") = P". Similarly for
lines.

(8) k° A =idy . Reverse the reasoning of the proof of (7). QED

PROPOSITION (5.1.5). A is isomorphic to T, the triangle building arising
from (R, T, v).

Proof. We establish p: A>T and 7: ' > A and show they are mutually
inverse. Note that in order to prove that p and t are morphisms, it suffices
to show that they preserve adjacency of vertices.

(1) Definition of p: A — 1. Denote for vertices o and f, d*(a,p) =
inf {ne N|n is the number of panels of a sequence of panels joining
a to B}. Clearly d*(a, f) = d(a, f). Now, let a€ Ve(A), then any apartment
containing « and s, contains some. Let o be any vertex of A. The paral-
lelogram cl(s,«) has sides of length i and j where i + j = n = d*(s,®); let
P'(x) and L'(x) be the two angular points of cl(s,a) with P{(a)e P(V;) and
Li(a)e L(V;). Now let P"e P(V,) and L"e L(V,) be arbitrary but such that
ae [P",L"]. We now conceive the above points and lines of V, as points and
lines of W,,h =1i,j,n (this is possible by Proposition (5.1.4)) and define
p(ax) to be the vertex of T' corresponding to (IT7)~'(P'(x)) nL". Note
that p(a)e B. (notation of 3.3.1) and that p(x) also corresponds to
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(1'[;-‘)_1 (L7(a)) » P", where P" is viewed as the set of lines incident with P" in
w..
(2) p is well defined. Clearly, the definition is independent of the choice of
P". Now, let M" be such that ae [P",M"]. Then II,(L") = I1,(M"). The
result follows from [10, Lemma (5.1.8)]. (After all. TT,(L") = Li(a) = IT.(M"))

(3) p preserves adjacency. Let {a,,a,}€ Pa(A). It can have three distinct

positions w.r.t. s:

(i) P¥(a,) # P**a,) and L¥(a,) # L'~ *a,), i +j = n. Then, consider-
ing an apartment through s and {a,,a,} (see Figure 16), p(x,)
corresponds to (IT7)"*(P(ay))nL" and p(x,) corresponds to
(17, )~ (P Y(a,)) » L", where IT,(P'* *(a,)) = P'(a,). By Definition
(3:3.1), {p(a,), p(a;)} € Pa(T).

(i) P'(a,) = P(o,) and L'(x;) # L'~ !(a,), i +j = n. Then, as above,
p(a,) corresponds to S, = (IT") ~}(P¥e,)) » L" and p(«,) corresponds
to S,=I1""1)"YP¥a,))nL""', with II,_,(L")=L""'. Hence
IT,_,(S,)=S,, so by (3.3.1), p(a,) is adjacent to p(x,).

(iii) P¥(a;) # P'*'(a,) and L/ («,) = L¥(a,). Dual to (ii).

(4) Definition of ©:T —A. Let beBl. Then b,eB] and b,eBi.
Let P"e b, and L"€ b,. Define t(b) as the vertex in A on [P™ L"] on distance
j from L" and distance n —j from P" (again we identified V, and W,
by Proposition (5.1.4)).

(5) t is well defined. First note that P" I L", so there is at least one vertex
7(b) satisfying the conditions in (4).

Fig. 16.
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m \(n n
PTORQ L

Fig. 17.

Let Q"€ b, be distinct from P". Then u(P",Q") >j. Let P’/ =II;(P") and
let A (resp. B) be an apartment through s, L" and P" (resp. Q"), then the
intersection of A and B contains P" and L’, and hence it contains cl(P’, L")
which contains t(b) (see Figure 17). Hence t(b) is on distance n — j from Q"
By the dual argument, we can also take another M" € b,. We conclude that 1
is well defined.

(6) T preserves adjacency. Again, there are three cases from which two are
mutually dual.

(i) Suppose be B}, ce B{*" and ¢, = b?, then b, = ¢,. Choose L"€ b,
P"ec,. By definition, t(b) lies on [P",L"] on distance j + 1 from L"
while t(c) is on the same [ P", L"] on distance j + 1 from L". Hence
7(b) and t(c) are adjacent.

(i) Suppose be B} and ce BJ_, with TIZ_, (b) = c. Choose P"€ b, and
L"e b, arbitrary, then by [10, Lemma (6.1.9)(i)], IT,_,(P") € c, and
I1,_ ,(L")€ ¢;. So t(c) lies in any quarter Q (with top s!) through P"
and L". Moreover, t(c) lies on distance j from II,_, (L") and distance
n—j—1 from II,_,(P"). There is only one vertex in Q which
satisfies these conditions and that vertex is adjacent to t(b) (see

Figure 18).
po —n-j— T (b) —j
Ln
—n-j-1— 5 —
g (P T(c) A

Fig. 18.
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(iii) be B and ce BIZ} with IT,_,(b) = ¢ is dual to case (ii).
(7) =°p =1d, and p° 1 = id;. This is obvious (by definition). QED
This concludes the proof of (APTRA).

5.2. Proof of (PTRAPTR)

Let (R, T) be a CV-PTR and let PG(R, T) be the corresponding projective
plane. Let for all ne N, W, be the geometry derived from (R, T), as in
Section 3. Let A be the triangle building obtained from (W), ., as in
Section 3. Let PG(A) be the ‘plane at infinity’ of A (at this point, we do not
know whether PG(A) is isomorphic to PG(R, T) or not!). For all ne N, let
V, be the geometry obtained from A by the procedure in Section 4, taking
for s the unique element of By. Note that, at this point, we also do not know
whether V, is isomorphic to W, or not. We prove the assertion by a

sequence of propositions.

PROPOSITION (5.2.1). V, is isomorphic to W,, for all ne N.

Proof. Note that A is a combinatorial triangle building. By an elemen-
tary inductive argument, one can see that, if P"e P(W,,‘), then
{pr,pr=1, P2, P,P°=s} is part of a pennel (P/=TI/(P"),j<n).
Hence, d(P", s) = n. In this manner, we can view P" as a point of V, (after
switching the names point and line in V,, if necessary) because the type of
P! is fixed and equal to 2(mod3) for all P"e P(W,). By another, but
similar, inductive argument we can see that if b,eBj, j+#n, then
{by,b,_1,...,by,bg =s} (where b, = I1£(b, . ) for k < n) is part of cl(b,,s),
but for j # 0, it cannot be part of a pennel (since the types do not suite, and
for j =0, b, has the wrong type in order that b, should correspond to a
point in V,. So vertices of A corresponding to points of V, can only
correspond to points of W, and hence there is a bijective correspondence
between P(W,) and P(V,). Similarly for lines.

Suppose now P"IL" in W,. Then ((IT;) "' (IT,(P")) n L"), is a sequence
of adjacent vertices joining P" to L", hence d(P",L") <n,so P"IL"in V, by
Lemma (4.3.6).

Suppose P*I L"in V,. Consider [P",L"] = P",b,,...,b,_,,L"). Now, the
only way to go from P"e B” to L"e B? in n steps is via BX. Hence b, € B" ™%,
Since b, is adjacent to b, ;, we have:

Pne(bl)p C(bZ)p S C(bnﬁl)p < L"
Hence P"I1 L in W,. QED
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COROLLARY (5.2.2). Let V be the inverse limit of (V,),en w.rit. I, let W
be the inverse limit of (W,),.yw.r.t. I1,, then V is isomorphic to W. Moreover,
W is isomorphic to PG(A).

Proof. This follows directly from Proposition (5.2.1) and Theorem (4.4).

PROPOSITION (5.2.3). Let R  be the inverse limit of (R,),e (R, as in (3.1))
w.r.t. I1,. Then the map

/J:Roc_)RN:r_’(r/En)nem lfr?éOO

(Fo/Enen T Such that v(r,) < —n

is a bijection.

Proof. (1) u is onto. Let us denote elements of R without the subscript
‘ne N. Suppose (r,) € Ry and let 7, be arbitrary. Then v(r,) has fixed sign. (i)
Suppose v(r,) = 0 for all ne N. Then clearly (7,) is a Cauchy sequence and if
r is its limit, then v(#,7,) 2 n for all ne N. Hence u(rf) = (r,). (ii) Suppose
v(f,) <O for all ne N. If v(r,) < —n for all n, then u(o0) = (r,). Sosuppose
v(f,) > —k for some ke N. Then v(r,) = v(r,), for all n = k (see [10, §2.3]).
Hence we have

U(f", fm) = w(fm fm) + 2U(fk) >n— 2k, m>n = k.

So (r,) is Cauchy! Again by [10, §2.3], one checks that w(r,7,) = n for all
ne N, where 7 is the limit of (7,). Hence u(r) = (r,).

(2) p is one-to-one. Suppose r,se R and r #s. If r = oo, then clearly
u(r) # u(s). Also, if v(r) and v(s) have distinct signs, then clearly u(r) # u(s). If
v(r), v(s) = 0, then r/E, # s/E, for n > v(r,s). If v(r), v(s) <O, then r/E, # s/E,
for n > w(r,s). QED

PROPOSITION (5.2.4). PG(A) is isomorphic to PG(R, T), i.e. PG(A) can
be coordinatized by (R, T).

Proof. In view of Proposition (5.1.2) and Corollary (5.2.2), it suffices to
show that W can be coordinatized as in Definition (5.1.1).

The coordinates can be viewed as inverse limits of points or lines in W,
up to the bijection u (by Proposition (5.2.3)). We only have to check that
the definition of incidence is correct.

(1) Suppose (P") and (L") are resp. a point and a line in W, with P" 1 L",
for all ne N. Let P"=(x,,»,), L=1[m,k,]. Also, let x,y,m ke R_ be
such that u(x) = (x,), etc. The remainder of (1) is a long but easy case-by-
case study. We give three typical examples:

(i) x, y, m, ke R. By Proposition (3.2.3), there are, for all ne N, X,, ., a
b € R such that

(1) T(X,,a,y,) =0

n°
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(2) T(b,k,0)=m
) Th,amp)=m
Note that (x,), resp. (y,) converges to x, resp. y. Now (a,) converges to a € R
by Proposition (2.4.1), and we have by Equations (1), (2), (3):
T(x,a,y)=0
T, k, 0)=m
T, a, y) = m.
(i) x€ R”:,,y, me R™, k = co. Again by Proposition (3.2.3), there are a,
b,, m, and k,€ R such that
(*1) T(x, y,a)=0
(*2) T(b,, k,,0) = 1,
(*3) T(b,, y, a) = m,

By Proposition (2.4.1) and (*3), (b,) converges to be R and
(*4) T(b, y, a) = m.

Suppose b # 0, then by (*2), v(i,) = v(k,) + v(b,) < —n + v(b,), hence (i1,)
diverges to co; a contradiction. So b = Q and by (*4), a = m. Hence by (*1)
T(x, y, m) = 0. So by the incidence condition (W2), (x, y) I [m, oo].

(i) x =k = oo, y, me R™. Again there are X,, J,, a,, b, such that for

arbitrary k,:
**1) T(X,a,y,) =0
(**2) T, k,0) =m

n’ " n’

(**3)  T(b,a,y,) =m

By (**2), v(b,) = v(m) — v(k,) > n + v(m), hence (b,) converges to 0. By (**1),
wa,) = v,) — v(%,) > n + v, |
hence (a,) converges to 0. By Proposition (2.4.1) and (**3), T(0,0,y) = m, so
y = m and by the incidence condition (W3), (o0, y) I[y, c].

(2) Suppose that for P =(x,y), L = [m,k], one of the conditions (W1)
through (W4) is satisfied (x, y, m, k€ R ). Again, there are several cases. Let
us examine two examples.

(i) If x, y, m, ke R, then (x,y)/E, I[m,k]/E, by definition.
(1)) Suppose x = o0; y=meR™; ke R, so (c0,y)I[y,k]. Define be R
as:

(1% T(b,k,0) =y
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Let ne N and let y, # y be such that w(y,y,) 2 n — v(k) (this can always be
arranged) and define a, as:

(2%) T®,a,y,) =y
a, is well defined since b = 0 implies y = 0 (by (1*)), contradicting the fact
that v( y) < 0. Note that also a, # 0, otherwise y, = y. So we can define x, by
(3%) T(x,,a,,y,) = 0.

Now

v(x,) = v(y,) — vla,) = v(y,) — vy, y,) + v(b)
= o(y,) — v y) + 0) — vlk)
= —v(k) = wl,y,) S —n.
Hence, (x,)/E, = (0, »)/E, and by (1*), (2%), (3%)
(00, y)/E, 1Ly, k]/E,. QED
REMARK (5.2.5) (W1) justifies our symbolic definition in (3.1).
This concludes the proof of (PTRAPTR).

5.3. End of the Proofs of Theorem (I) and the Main Theorem

We can interpret Proposition (5.2.4) and Corollary (5.2.2) as follows: let A
be the triangle building arising from an arbitrary V-PTR (R, T). Then
PG(A) can be coordinatized by R, = liln R,. But R is clearly complete (cf.
Proposition (5.2.3)). Since every triangle building arises from some V-PTR
(by (APTRA)), any coordinatizing V-PTR of PG(A) is a CV-PTR. This
completes the proof of Theorem (I) in the Introduction, and the Main
Theorem now follows directly from (APTRA), (PTRAPTR) and Theorem
(I). QED

5.4. Complete Positive Valuated Ternary Rings

THEOREM (5.4). Let (S, T,) be a CPV-TR. Let A be the triangle building
derived from (S, T, ) as explained in Section 3.4, then PG(A) can be coordi-
nated by a CV-PTR (R, T) with the property:

(R*,T)=(S,T,)

If (S, +, ) is a ring, then (R, T) is a skewfield, namely the quotientfield of S.
Proof. Let W be the inverse limit of (W,),. .. We again have that PG(A) is
isomorphic to W. We coordinatize PG(A) w.r.t. the quadrangle

(((0,0), (0)o, (300)g, (1, /E, )e
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Let s€ S, then (P"),cn = ((0,s/E)),c n is a point of W and hence it defines
a point (0, =(s)) of PG(A), with =(s)e R. Now v(=(s)) > 0 since P' # Y.
Conversely, any point P = (0,r) of PG(A) incident with the y-axis, defines a
point (0,r,) in W, incident with the line [0]/E," . Taking any 7, for all ne N,
one can see that (7,),. v is a Cauchy sequence and thus it defines a unique
element “(r)e S. Clearly (=(s)) =s and Z(Y(r) =r.

Now let a, b, ¢, deS. T,(a, b, ¢)=d is equivalent with (b, ¢)/E I
[a,d]/E,. (Use Proposition (2.4.1) to prove that.) But that is exactly equival-
ent to T(Z(a), =(b), Z(c)) = =(d).

The second assertion follows from [10, §4.4]. QED

REMARKS. (1) The map (S, T,, v.)— (R, T, v) is an injective map (v, 1s
the valuation map in S) from the set of all CPV-TR’s to the set of all CV-
PTR’s.

(2) If (S, T, ) has all properties of a quasifield, except for the inverse for
the multiplication, then (R, T) is not necessarily a quasifield!

(3) If (R, T, v) is a V-PTR, then there is a surjective map (R, T, v)—
A—- (R, T', v') from the set of all V-PTR’s to the set of aill CV-PTR’s
which maps (R, T, v) to its completion (R’, T', v") with respect to v. (R, T, v)
can be embedded in (R, T',0").

@) If (S, T,,v,)is a PV-TR, then there is a surjective map (S, T,,v,)—
A - (R, T,v) from the set of all PV-TR’s to the set of all CPV-TR’s,
which maps (S, T,, v, ) to the positive valuated part of a complete V-PTR.
(S, T, v,) can be embedded in both (R, T, v) and (R*, T, v).

EXAMPLES

Z, < Qi K[[J1" < K[[1] < K((®)
0 < Q;K[[]]" <K(®) <K((1), (K a field).

6. WHAT ABOUT PROJECTIVE VALUATIONS?

In this section, we examine the connection between Tits’ projective valuation
and the valuation v of the present paper. In 6.1 we start with a brief

1 D FAELL I gunr SR
O.L. Recapiutation

6.1.1. Suppose I = Z/2Z; R is the real line with the usual metric |-|. Let
R, = {e,,e,} be the root system A,; e, = (1), e, = (—1); r, is the reflexion
about the point (z). Then sp{ry,r,} is an affine Weyl group W and can be
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written as {r,, 11 }o<T, where T is the group of translations generated by
2-e,. The reflexions belonging to W are exactly those about integer points.
These points are therefore called walls, but at the same time vertices. A
chamber 1s a closed interval [(2), (z + 1)], ze Z. A closed half line bounded
by a vertex is a quarter. Since it 1s also bounded by a wall, quarters are also
called half apartments. There is a type map typ: Z — [: z - z (mod 2). Note
that W is type-preserving and acts sharply transitively on the set of
chambers (see [9]).

6.1.2. Discrete systems of apartments (for the definition we again refer to
Tits [9]) having the above structure as apartment correspond to buildings
of affine type A, (diagram >—{=1——°) which are in fact trees without finite
endpoints. The ‘building’ at infinity (defined as in 1.3) of such a building is
just a set without structure whose elements are called ends and which is
denoted by End (7). An end is contained in an apartment if a representative
does. Two ends p, and p, are contained in a unique apartment A(p,, p,).
For any three (pairwise distinct) ends p,, p,, ps, there is a unique ‘cross-
point’ k(p,, p,, p3), namely the intersection of the apartments A(p,, p,),
A(p,, p3), A(ps, py) (this intersection consists of one vertex since T is a tree).
Let (p,, p2, P3, pa) be a fourtuple (py, p2, P3, Ps pairwise distinct ends). We
map R into A(p,, p,) as follows: O is mapped to x(p,, p,, p3); Lo, ©] is
mapped onto A(p;, p2) N A(p,, p3) and Z = R is mapped onto the set of
vertices of A(py, p,). By definition, B(py, p2; P3, P4) € R denotes the inverse
image of the vertex x(py, p,, pa) € A(py, p2)- If d; denotes the distance
in T induced by the axioms, then |[B(py,ps; ps, pa)l = dr(k(py, p2, P3)s
K(py, P2, Pa))- Tits ([9]) shows that T is uniquely determined by f: T can be
recovered from the set End(T) and the function . Moreover Tits proves:

PROPOSITION (6.1.2). Let T, be a set with at least three elements and f be
a map from the set of 4-tuples of pairwise distinct elements of T, to the set of
integers Z. Then (T, B) defines a tree T (with a discrete set of vertices) < f3
satisfies (VP1), (VP2), (VP3) and (VP4), stated below:

Let a, b, c, d, e be five pairwise distinct elements of T .

(VP1) Bla,b;c,d) = B(c,d;a,b) = — f(a,b;d,c).

(VP2) If Bla,b;c,d) = k > 0, then B(a,b;c,d) =k and B(a,c;b,d) = 0.

(VP3) B(a,b;c,e) = B(a,b;c,d) + fla,b;d,e).

(VP4) B is non-degenerate, i.e. 1€ Im .

In this formulation, we exclude trees with only one ‘crosspoint’.



78 HENDRIK J. VAN MALDEGHEM

We can extend f to 4-tuples containing exactly two equal elements as
follows:

p(a,b;c,c) = P(c,c;a,b) =0
Bla,b; c,b) = Bib,a;b,c) = + oo
pla,b;b,¢) = pib,a;¢,bj = — 0.
With that definition, (VP1) through (VP4) still hold (for (VP3) with the
additional condition that the sum must be defined).
A map B defined on 4-tuples over a set T, satisfying (VP1) through
(VP4), is caiied a projective valuation.
The reasons why we want 1€ Im f are:

(1) We do not want to call a map which maps everything to 0 a
projective valuation. Otherwise Proposition (6.1.4) has to be restated.

(2) We do not want to call a map f which maps anything to a multiple
of an integer p # 1, —1 a projective valuation (then (1/p)f would also
be a projective valuation defining the same tree up to vertices
adjacent with exactly two other vertices) Otherwise Proposition
(6.1.4), Theorem (6.2) and Remark (6.2.2) have to be adjusted, e.g. a
building would induce infinitely many projective valuations instead of
exactly one (see Proposition (6.1.4)).

6.1.3. Let T, be a set with projective valuation f. Let a, b, ce T be

pairwise distinct. Denote by S(a, b, ¢) the set {xe T | B(a, b; ¢, x) > 0}. A

meteor is a family M = {S(a,b,,c,)|ne Nand b, ,, ¢, € S(a,b,,c,) for all

n}. M is briefly denoted by {S{(q, b,, ¢,)}sc n-

LEMMA (6.1.3). Let M = {S(a, b,, c,)},c~ be a meteor, then we have:
S(a,b,4,,¢,+1) & Sa,b,,c,)

Proof. (1) S(a, b, 4, ¢y 1) # S(a, b,, c,) since c,, , € S(a,b,, c,) — S(a, b, , 1,

Cn+ 1)'
(2) Suppose x € S(a,b,,,,¢,+ ), then

k, = pla,b,.;Chsq1,x) > 0.
We also have by definition:

k, = Bla,b

ky = pla,b

Cpsbpi1) >0

n
Cnacn+1) > O

; C,,x) > 0. By (VP3), we have:

no

(*) ﬁ(as bn; Cn’x) = kz + B(a’ bn; bn+ lsx)°

n°

We have to show that f(a,b
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If k= Ba,b,;b,+1,x) >0, the result follows, so suppose k < 0. Then by
(VP1) and (VP2), B(a,b, +1;x,b,) = —k > 0. Hence by (VP3):

0< —k + kl = ﬁ(a’bn+1;cn+l’bn) = ﬂ(a’bn;cn+1’bn+l)'
Adding k5, we have (using (VP3)):

—k + k; +ky=pab,;c,b,, ) =k,.
So k, + k =k, + ky; >0, and by (*), the result follows. QED

PROPOSITION (6.1.4). Let V be a projective plane. Let L be a line of V and
G the group of projectivities of L into itself. Then the set of triangle buildings
A for which V is isomorphic to PG(A), is in bijective correspondence with the
set of projective valuations on L invariant under the action of G and for which
the intersection of any meteor is non-empty.

Without the last condition, this can be found in [9, §9]. We have added
that condition on the meteors to avoid triangle buildings with a non-
maximal set of apartments (see below).

In the next paragraph, we study the correspondence between valuation
and projective valuation.

6.2. Equivalence Theorem

THEOREM (6.2). Let (R, T) be a PTR and PG(R, T) the corresponding
projective plane. Let Y be the y-axis of PG(R, T) and B a map from the set of
all 4-tuples over Y with at most two equal elements to the set
Z U {+ o0, —o0}. Suppose we also have a map v: R* - Z U {+ o}. Suppose:

(vB1) v(a,b) = B(00,0;1,a) + P(c0,a;0,b) if a # 0

(vB2) v(0,b) = p(c0,0;1,b)

(Bvl) B(a,b;c,d) = v(a,c) — v(a,d) + v(b,d) — v(b,c)

(Bv2) p(c0,b;c,d) = (c,d; 00,b) = (b, 0;d, c) = (d, c; b, 0) = v(b,d) — v(b, c),

where r in the argument of f stands for (0,r) and oo for (c0). We then have:

(1) (R, T,v) satisfies (d1) and (d2) < (Y,B) satisfies (VP1), (VP2) and
(VP3).

(2) (R, T,v) satisfies (d1), (d2) and (d4) < (Y, B) satisfies (VP1), (VP2),
(VP3) and (VP4).

(3) (R, T,v) satisfies (d1), (d2), (d3) and (d4) < (Y, B) satisfies (VP1), (VP2),
(VP3), (VP4) and p is invariant under the action of G, the group of
projectivities of Y into itself.

(4) (R, T,v) is a CV-PTR < B is a projective valuation on Y, invariant
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under the action of G and with the property that the intersection of any
meteor is non-empty.

Proof. The direct algebraic proof of this is straightforward, but long. (1)
and (2) are nearly trivial. To show one direction of (3), the point is to
choose carefully the projectivities and to write down the algebraic equation
of them in terms of 7. To show the converse, the point is that any
projectivity can be writien as the juxtaposition of certain ‘special’ pro-
jectivities g,°g, ' where Im(g,) = Im(g,) can be any line; the center of g,
can be any point; but the center of g, can be chosen freely. A detailed proof
is written down in {11, §4].

We restrict ourselves to the proof of (4), granted (3). The proof of (4) is
not contained in [11].

(1) Let (R, T),v) be a CV-PTR. By (3), B is a projective valuation invariant
under the action of G.

Let M = {S(x,y,,Z,)}»c v be a meteor. Since G is 3-transitive, there is a
ge G which maps M onto a meteor M' = {§(0,a,,b,)} with g, =0 and
bo = 1. So g(X) = «0; g(y,) = b,. Clearly, the intersection of M is non-empty
iff the intersection of M’ is non-empty.

Since a,,b; € S(00,0,1), we have:

B(0,0;1,a,) = v(a,) >0
B(0,0;1,b,) =uv(b,) >0

Hence,

(°) v(ag,a,) > vlag, by) =v(l) = 0.

7

We now prove by induction that v(a,,b,) =

(I) For n =0, this is trivial (see (°)).
(IT) Let n be arbitrary. Since a,,b, € S(c0,a,_,,b,_), we have:

) va,_,,a,) >va,_,,b,-,) and vla,_,,b,) >v(a,_,b,_)
Hence, by (v3),

U(am n)/lnf{v(an 1» n) U(an 1> n)}>v n 1 n 1)/11—1

So vla,,b,) 2 n and hence (a,) and (b,) are ‘asymptotic’ sequences. By (¥),
v(a,,_l,a,,)>v(an_1, b,_;)>n—1, so (a,) is Cauchy and converges to
some a€ R. It is easy to see that v(a,a,) > v(a,b,) for all ne N. So we
have f(w,a,;b,,a) = v(a,a,) — v(a,,b,) >0, for all ne N. Hence a is in
the intersection of M’, and so g~ !(a) is in the intersection of M.

- (i) Let (x,) be a Cauchy sequence. Then, from a certain number k€ N on,
v(x,) has constant sign. Suppose first this sign is positive. Let (a,) be a
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subsequence such that v(a,,a,,,) = n + 1. Let y,€ R be such that v(y,) = n
and let b, = T(1,y,,a,)- By (v12), we have:

v(a,,b,)=n<n+1<uva,a,,,).

n>~n

Hence fp(c0,aqa,;b,,a,,,) >0, so a,,, € S(c0,a

(T) T(ladn’an+l) =d

then v(d,) = v(a,,a,,,) =n+ 1, hence vd,,y,,,) =n+1. Since b,,,; =
T(1,y,+1,a,+,), we have by (vT) and (7):

v(an’ bn+1) U(yn+ l’dn) >n= U(bn, n)

Hence f(c0,a,;b,,b,.,) > 0,s0b,,, €S(x,a,,b,). We conclude that the set
= {S(0,a,,b,)},cn is a meteor. If ae R is in its intersection, then
v(a,a,) > v(a,, b,) = nfor all ne N. So a is the limit of (a,) and hence of (x,).
Suppose now, v(x,) has constant negative sign from a certain number
ke N on. Note that v(x,) itself is constant after a while, so if we define y, as
T(x,,y,0) =1 for n =2k, then by (vll),

b,). Define d, by:

n>=-n

U(yn’yn-#—l) = v('xn’xn+1) - v(xn) - v(xn+1)

and hence (y,) is Cauchy and has a positive constant valuation for n large.
By the first part of (ii), (y,) converges to ye€ R — {0}. Defining xe R by
T(x,y,0) =1, we see that v(x,x,) = v(y,y,) + v(x,) —v(y), and hence (x,)
converges to Xx. QED

REMARK (6.2.1). From this proof it follows that the intersection of a
meteor in (Y, B), where B is a projective valuation invariant under the action
of G, contains at most one element (since a Cauchy sequence has at most
one limit). However, this is a general property and the proof runs as follows:
as in the proof of Lemma (6.1.3), one shows that, if xe S(a,b,,c,), then
p(a,b,;c,-1,x) > 1, and by induction, this becomes f(a,b,;cy,x) > n. So if
ye S(a,b,,c,), then also f(a,b,;cqy,y)>nFrom this, one deduces
p(a, x;cy,y) > n. This last equality is true for all ne N if x and y are in the
intersection of M = {S(a,b,,c,)}.~. But that is not possible for pairwise
distinct a,cy, x,y. Now, clearly x,y # cy,,a and also ¢, # a by definition,
hence x = y.

REMARK (6.2.2). The transformation formulas (vf) and (fv) have a nice
geometric interpretation.

Consider again — with the notation of (4.5.4) — the tree T ;. Recall that in
this tree, an end corresponds to a point on the y-axis. In fact T y is the rank
2 affine building (or the discrete system of apartments) corresponding to the
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projective line Y. Let us display (vf) in two cases:

(1) v{a) = p(c0,0;1,a). Note that x(00,0,1) = (s) and that d' =d
Figure 19 tells us that the formula is right!

Tx y°

/(O,H (0,0)

7

vial

I’'¢

'{/J‘(S} K{=,0,0!}

~
s U

Fig. 19.

(2) v(a) = v(b) < 0 (see Figure 20).

(0,a) (0, b}
A
\ / (0.1)
\ / /
\ﬁ/ /
Yoo IR 0
g Wis]
Fig. 20.

We denote x(00,0,a) = k(00,a,0) by { and x(o0, a,b) by . Then we have:

B(o0,0;1,a) + B(00,4,0,b) = —d'(Y(s),{) + d'(, ¢)
=d'(Y(s),0) + d{(, &) — 2d'(¥(s), {)
=d'(Y(s),8) — d'(Y(s),0) — d'(Y(s), ()
= w(a, b) + v(a) + v(b) = v(a, b)!
Note also that (vf) can be derived from (fv) and conversely.
There is an algebraic connection between (vf1) and (vf2). If we apply
(vp1) and (VP3) on v(0,b) formally, then we get:
v(0,b) = B(00,0,1,0) + B(0,0;0,b)
= B(0,0;1,b)
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This is nothing other than (vf2).

REMARK (6.2.3). Let (R, T,v) be a V-PTR, but not complete. Let A be the
corresponding triangle building and (R’, T’,v") the competion of (R, T,v)
with respect to v, coordinatizing PG(A). Let PG(R, T) be the subplane of
PG(A) coordinatized by (R, T). Take away the apartments of A which do
not correspond to apartments in PG(R,T). We then obtain a triangle
building I" whose set of apartments is not maximal of course and whose
structure at infinity (similar defined as the spherical building at infinity for
triangle buildings with a maximal set of apartments, cf. 1.3) is isomorphic to
the spherical rank 2 building corresponding to PG(R, T). The fact that T is
a system of apartments is due to the fact that, at finite distance, I' looks
exactly like A: all we did was remove apartments which are limits of
sequences of apartments that stay. Such buildings are called ‘symmetric
discrete systems of apartments’ in [9]. So, in fact, any V-PTR, complete or
not, can be seen as a coordinatizing PTR of the projective plane cor-
responding to the building at infinity of a system of apartments. In fact one
could even show that there is a bijective correspondence between the class of
symmetric discrete systems of apartments of type A, and the class of projective
planes coordinatized by a V-PTR.

ACKNOWLEDGEMENT

The main part of this work was done while I was staying at the University
of Illinois in Chicago. I must thank M. A. Ronan who kindly helped me a lot
during those nine months. He not only gave the idea behind this paper, but
he helped me (and my wife) in every possible way with any problem. He
also communicated to me the most recent results of Tits, which were vital to
a good understanding of triangle buildings. I am also very grateful to W. M.
Kantor for some very helpful remarks and comments and for his inquiries
in my work.

REFERENCES

1. Bruhat, F. and Tits, J., ‘Groupes réductifs sur un corps local. I, Données radicielles
valuées’, Publ. Math. Inst. Hautes Etudes Scientifique 41 (1972), 5-251.

2. Buekenhout, F., ‘Diagrams for Geometries and Groups’, J. Comb. Theory, Ser. A 27 (1979),
121-151.

3. Hughes, D. R. and Piper F. C,, Projective Planes, Springer-Verlag, Berlin, Heidelberg, New
York, 1972.

4. Kantor, W. M., ‘Generalized Polygons, SCABs and GABs’, in Biildings and the Geometry
of Diagrams, Lecture Notes 1181, Springer-Verlag, 1986, pp. 79—158.



84

HENDRIK J. VAN MALDEGHEM

Ronan, M. A., ‘Coverings and Automorphisms of Chamber Systems’, Europ. J. Comb. 1,
(1980) 259-269.

Ronan, M. A., ‘A Universal Construction of Buildings with no Rank 3 Residues of
Spherical Type’, in Buildings and the Geometry of Diagrams, Lecture Notes 1181, Springer-
Verlag, 1986, pp. 242-248.

Tits, J., Buildings of Spherical Type and Finite BN-pairs, Lecture Notes 386, Springer-
Verlag 1974,

Tits, J., ‘A Local Approach to Buildings’, in The Geometric Vein. The Coxeter Festschrift,
Springer-Verlag, pp. 519-547.

Tits, J., ‘Tmmeubles de type affine’, in Buildings and the Geometry of Diagrams, Lecture
Notes 1181, Springer-Verlag, 1986, pp. 159-190.

Van Maldeghem, H., ‘Non-Classical Triangle Buildings’ (to appear).

. Van Maldeghem, H., ‘Karakterisering van Drichoeksgebouwen’, Ph.D. Thesis at State

University of Ghent, 1984.

Author’s Address:

Hendrik J. Van Maldeghem,
Seminar for Geometry,
State University of Ghent,
Galglaan 2,

9000 Ghent,

Belgium.

(Received, October 23, 1985; revised version, March 17, 1987)



	4560_001
	4560_025
	4560_049

