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Abstract

In this paper we study laxly embedded generalized hexagons in finite projective
spaces (a generalized hexagon is laxly embedded in PG(d, q) if it is a spanning sub-
geometry of the natural point-line geometry associated to PG(d, q)), satisfying the
following additional assumption: for any point x of the hexagon, the set of points
collinear in the hexagon with x is contained in some plane of PG(d, q). In particu-
lar, we show that d ≤ 7, and if d = 7, we completely classify all such embeddings. A
classification is also carried out for d = 5, 6 under some additional hypotheses. Fi-
nally, laxly embedded generalized hexagons satisfying other additional assumptions
are considered, and also here classifications are obtained.

1 Introduction

This paper presents improvements of the results obtained by the same authors in Thas
& Van Maldeghem [1996b], and can be seen as a continuation of the latter paper,
where the reader is referred to for additional information on embeddings of generalized
hexagons.

Definition 1 A (finite) generalized hexagon H of order (s, t), s, t ≥ 1, is a non-empty
point-line incidence geometry satisfying the following axioms (we denote the symmetric
incidence relation by I).

(i) Every line contains s + 1 points and two lines are incident with at most one point.

(ii) Every point is on t + 1 lines and two points are incident with at most one line.
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(iii) Given two distinct elements v, w (points and/or lines), there always exists a minimal
path v = v0 I v1 I v2 I . . . I vk = w with k ≤ 6, and if k < 6, then this minimal path
is unique.

If a generalized hexagon H has point set P and line set B, and if we denote incidence
with I, then we write H = (P, B, I). If s, t > 1, then we call H thick. A geometry
H′ = (P ′, B′, I′) is a subhexagon of H if P ′ ⊆ P , B′ ⊆ B, I′ is the restriction of I to P ′

and B′, and H′ is a generalized hexagon.

Definition 2 Let us view the lines of a given generalized hexagon as subsets of the set
of points. This is possible by axiom (i) above. Likewise, we will view the lines of any
projective space PG(d, q) as sets of points of PG(d, q). Now let H = (P, B, I) be a
generalized hexagon. Then we say that H is (laxly) embedded in PG(d, q) if P is a set
of points of PG(d, q) generating PG(d, q), if every line L ∈ B is a subset of a line L′ of
PG(d, q), and if different lines of B are not subsets of a common line of PG(d, q). If a
hexagon H is embedded in a projective space PG(d, q), and L is some line of H, then we
will always denote by L′ the corresponding line in PG(d, q). If L = L′ for all lines of H,
or equivalently, if H has order (q, t), then we call the lax embedding a full embedding. On
the other hand, we call the lax embedding flat if the following condition is satisfied:

(F) For every point x of H, the set x⊥ of points of H collinear with x in H is contained
in a plane of PG(d, q).

In order to make a distinction between collinearity in PG(d, q) and that in H, we will
call two points of H which are collinear in H polycollinear (as a shorthand for collinear
in the polygon), as in Thas & Van Maldeghem [1996b]. Also, two elements in H will
be called opposite if there exist at least two minimal paths between them. The distance
d(v, w) of two elements of H is the length of a minimal path between v and w. Two
elements of H are called opposite if and only if their distance is 6.

Now we will say that a lax embedding of H in PG(d, q) is weak, if the following condition
is satisfied:

(W) For every point x of H, the set x⊥⊥ of points of H not opposite x is contained in a
hyperplane of PG(d, q).

A lax embedding which is both flat and weak will be called regular or ideal.

Generalized hexagons were introduced by Tits [1959]. All presently known finite gener-
alized hexagons of order (s, t) with s, t ≥ 3 are described in loc. cit., up to duality, as full
embedded hexagons in PG(7, s) or PG(6, s). The first class of hexagons is related to the
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triality group 3D4(q), q = t, and the corresponding hexagon is denoted by T (q3, q) and
has order (q3, q). It is contained in the triality quadric Q+(7, q3), and we call this full
embedding the natural embedding of T (q3, q). A second class of finite hexagons is related
to Dickson’s group G2(q), q = s, and the corresponding hexagon is denoted by H(q). It
has order (q, q) and it has a natural (full) embedding in PG(6, q), in which case H(q) is
contained in some non-degenerate quadric Q(6, q). In fact all points of Q(6, q) are points
of H(q), but the set of lines of H(q) is only a subset of the set of lines of Q(6, q). If q
is even, one can project the natural embedding of H(q) from the nucleus of the quadric
Q(6, q) onto any hyperplane not containing the nucleus and obtain a full embedding in
PG(5, q). In this case, the points of H(q) are all points of PG(5, q), and the lines are
some lines of PG(5, q), which are totally isotropic with respect to a symplectic polarity.
We call this full embedding also a natural embedding of H(q). The hexagons T (q3, q) and
H(q) are called the classical hexagons. All natural embeddings we mentioned are full and
regular.

We can now state the main result of our paper.

Main Result

(i) If H is a thick generalized hexagon of order (s, t) regularly lax embedded in PG(d, q),
then d ∈ {5, 6, 7}, H is a classical generalized hexagon, and there exists a subspace
PG(d, s) over the subfield GF(s) of GF(q) such that H is naturally embedded in
PG(d, s).

(ii) If the thick generalized hexagon H of order (s, t) is flatly and fully embedded in
PG(d, s), then d ∈ {4, 5, 6, 7} and t ≤ s. Also, if d = 7, then H ∼= T (s, 3

√
s) and the

embedding is natural. If d = 6 and t5 > s3, then H ∼= H(s) and the embedding is the
natural one. If d = 5 and s = t, then H ∼= H(s), with s even, and the embedding is
the natural one.

(iii) If the thick generalized hexagon H of order (s, t) is flatly lax embedded in PG(d, q),
then d ≤ 7. Also, if d = 7, then H is regularly embedded, and hence we can apply (i).
If d = 6, and if H is classical or dual classical with s (= t3, then H ∼= H(s) and the
embedding is regular, and hence we can apply (i) again.

(iv) If the thick generalized hexagon H of order (s, t) is weakly lax embedded in PG(d, q),
then d ≥ 5. Also, if d = 5, then H is a regular lax embedding of H(s), s even, and
hence we can apply (i). If d = 6, if the embedding is full and if q is odd, then H is
a natural embedding of H(q) in PG(6, q).

Before we embark on the proof of the Main Result, we introduce some more terminology.
A subhexagon H′ of order (s′, t′) of a hexagon H of order (s, t) is called an ideal subhexagon
if t = t′ (this was called a full subhexagon in Thas & Van Maldeghem [1996b], but
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here we follow the terminology of Van Maldeghem [19**]). Note that, if also s = s′,
then H = H′. A circuit consisting of six different points and six different lines will be
called an apartment. If Σ is an apartment, and if L, M are two opposite lines of Σ, then
we call the set Σ ∪ {x, N, y, R, z}, where L I x I N I y I R I z I M , with x /∈ Σ, a
window of H. Let x, y be two opposite points of H. We denote xy := x⊥ ∩ y⊥⊥, where
y⊥⊥ denotes the set of points not opposite y. If for all opposite pairs x, y, the point set
xy is uniquely defined by any two of its elements, then it follows from Ronan [1980] that
H is a classical hexagon. Also, it follows from Thas & Van Maldeghem [1996b] that
every regular full embedding of a generalized hexagon H is a natural embedding of some
classical generalized hexagon.

We now prove the Main Result in a sequence of lemmas and theorems.

2 Regular lax embeddings

In this section, we assume that the thick generalized hexagon H = (P, B, I) of order (s, t)
is regularly lax embedded in PG(d, q), except if explicitly stated otherwise, as for instance
in the first lemma.

Lemma 2.1 Let H be flatly lax embedded in PG(d, q). Let U be a subspace of PG(d, q)
containing an apartment of H. Then all points of H contained in U and incident with
at least two lines of H in U , together with the lines of H through these points (which
automatically lie in U) and the natural incidence, form an ideal subhexagon H′ of H.

Proof. See Lemma 1 and Remark 2 in Thas & Van Maldeghem [1996b]. !
If U and H′ are as in the above lemma, then we say that H′ is induced by U .

Consider any x ∈ P , with P the point set of H. The points not opposite x span a subspace
which we denote by ξx. By assumption (W), ξx (=PG(d, q) for all x ∈ P .

Lemma 2.2 For any x ∈ P the space ξx has dimension d− 1 and does not contain any
point opposite x.

Proof. See proof of Lemma 3 in Thas & Van Maldeghem [1996b]. !

Corollary 2.3 For x, y ∈ P , x (= y, we have ξx (= ξy.

Proof. See proof of Corollary 4 in Thas & Van Maldeghem [1996b]. !
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Corollary 2.4 If L is a line of H and if L′ is the corresponding line of PG(6, q), then
the points of H on L′ are exactly the s + 1 points of L.

Proof. Assume, by way of contradiction, that x is a point of H on L′, but not on L. If
y ∈ L, then x ∈ ξy, so d(x, y) ≤ 4. It immediately follows that x ∈ L, a contradiction. !

For any x ∈ P , we denote by πx the unique plane in PG(d, q) spanned by all points
polycollinear with x.

Lemma 2.5 For every x ∈ P , the plane πx does not contain points of H not polycollinear
with x.

Proof. Let u ∈ P ∩ πx be not collinear with x. If u is opposite x, then u ∈ πx ⊆ ξx,
contradicting Lemma 2.2. So u is not opposite x. Then the unique line L of H through
u nearest to x lies in πx. Let y be polycollinear with x and at distance 5 from L. Then
u and y are opposite. As ξy contains all points polycollinear with x, it also contains πx,
hence also u, a contradiction. !

Lemma 2.6 H is a classical generalized hexagon. Hence also every thick ideal subhexagon
of H is classical.

Proof. See proof of Lemma 6 in Thas & Van Maldeghem [1996b]. !

If x and y are opposite points of H, then the set πx ∩ ξy ∩ P is called an ideal line in
Ronan [1980], or a distance-2-trace (or briefly trace) in Van Maldeghem [1995, 19**].

Theorem 2.7 We have 5 ≤ d ≤ 7. Also, if H ∼= H(s), then d (= 7. If H ∼= T (s, 3
√

s),
then no subhexagon of H isomorphic with H( 3

√
s) is contained in a PG(d− 2, q).

Proof. It is clear that d ≥ 3. If d = 3, then for every point x ∈ P we have πx = ξx,
contradicting Lemma 2.5. Now suppose that d = 4. If x and y are distinct collinear points
of H, then ξx ∩ ξy is a plane and so ξx ∩ ξy = πx = πy, a contradiction. Hence d ≥ 5.

Consider an apartment Σ in H and a line L in H concurrent with exactly one line of
Σ. Let L and Σ generate a PG(m, q). Then m ≤ 6. Let H′ be the ideal subhexagon
induced by PG(m, q). Then the order of H′ is (s′, t), with 2 ≤ s′ ≤ s. If s = s′, then
m = d ≤ 6 and we are done. So suppose s′ < s. Then there is a line M of H which does
not lie in PG(m, q), but which contains a point on a line of Σ. Let M and PG(m, q)
generate PG(m+1, q) and let PG(m+1, q) induce an ideal subhexagon H′′ of order (s′′, t),
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s′ < s′′ ≤ s. Note that H′ is an ideal subhexagon of H′′. If s′′ = s, then d = m+1 ≤ 7 and
we are done again. If s′′ < s, then it follows from Thas [1976] that s ≥ s′′2t, s′′ ≥ s′2t,
and hence s ≥ s′4t3. Now by Haemers & Roos [1981] we have s ≤ t3. This implies
s = t3 and s′ = 1, a contradiction. We conclude that d ≤ 7.

Assume that H ∼= H(s). Consider again the ideal subhexagon H′ of H. By Thas [1976],
either s = s′ or s ≥ s′2s. As s′ ≥ 2, necessarily s = s′ and so m = d ≤ 6.

Now let H∗ be a proper thick ideal subhexagon of H, contained in a PG(d − 2, q). The
subhexagon induced by the subspace PG(d−1, q) generated by this PG(d−2, q) and any
line of H not in H∗ but concurrent with a line of H∗ must coincide with H (as above), a
contradiction. In particular, if H ∼= T (s, 3

√
s), then no subhexagon of H isomorphic with

H( 3
√

s) is contained in a PG(d− 2, q). !

Theorem 2.8 If the thick generalized hexagon H of order (s, t) is regularly lax embedded
in PG(5, q), then s = t, s is even, and H is a natural embedding of H(s) in a subspace
PG(5, s) of PG(5, q) for some subfield GF(s) of GF(q).

Proof. Let L, M be two opposite lines of H. Let x1, x2 be two different points of L,
and let yi, i = 1, 2, be on M and not opposite xi. Let xi I Li I zi I Mi I yi in H. We
claim that the subspace U of PG(5, q) generated by x1, x2, y1, y2, z1, z2 has dimension 5.
Indeed, suppose that U has dimension k ≤ 4. Then without loss of generality, we may
assume that U is generated by x1, x2, y1, y2, z1. Since all the latter points lie in ξz1 , we have
U ⊆ ξz1 , which implies z2 ∈ ξz1 , contradicting Lemma 2.2. This proves our claim. Now
let S be the set of points of H polycollinear with some point on L and with some point
on M . Note that |S| = s + 1. Since the elements of L1 \ {x1, z1} belong to ξx1 ∩ ξy1 ∩ ξx2

but not to ξy2 , the hyperplane ξy2 is linearly independent of the hyperplanes ξx1 , ξy1 , ξx2 .
Similarly, every element of {ξx1 , ξx2 , ξy1 , ξy2} is linearly independent of the other three.
Hence ζ = ξx1 ∩ ξy1 ∩ ξx2 ∩ ξy2 is a line of PG(5, q) containing all elements of S. It follows
that for any two opposite points v, w of H we have |{v, w}⊥⊥⊥⊥| = s+1, where {v, w}⊥⊥⊥⊥ is
the set of points not opposite every point of {v, w}⊥⊥ = v⊥⊥ ∩w⊥⊥. By Van Maldeghem
[19**](6.5.6), s = t and H ∼= H(s) with s even. Now the points of H and the lines of
H together with the distance-2-traces form the symplectic polar space W5(s). Since the
lines of W5(s) through a fixed point x are contained in ξx, we see that W5(s) is (sub-
)weakly embedded in PG(5, q), and hence it is fully embedded in a subspace PG(5, s)
over the subfield GF(s) of GF(q), by Theorem 1 of Thas & Van Maldeghem [1996a].
Hence also H is fully embedded in PG(5, s) and the theorem follows from Thas & Van
Maldeghem [1996b]. !

Theorem 2.9 If the thick generalized hexagon H of order (s, t), s (= t3, is regularly lax
embedded in PG(6, q), then s = t and H is a natural embedding of H(s) in a subspace
PG(6, s) of PG(6, q) for some subfield GF(s) of GF(q).
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Proof. Let the thick generalized hexagon H of order (s, t), s (= t3, be regularly lax
embedded in PG(6, q). As H is classical and s (= t3 we have s = t. The points of H
together with the lines and distance-2-traces of H form a polar space Q(6, s) which is
weakly embedded in PG(6, q). Hence by Thas & Van Maldeghem [1996a] Q(6, s) is
fully embedded in a subspace PG(6, s) of PG(6, q) for some subfield GF(s) of GF(q). It
follows that H is fully embedded in PG(6, s). As it is clear that H is regularly embedded
in PG(6, s), we conclude that H is a natural embedding of H(s) in PG(6, s). !
We now show a fairly general lemma, also valid in the infinite case. For a given Moufang
hexagon, we call the group generated by all root elations the little projective group, see
Van Maldeghem [19**].

Lemma 2.10 If the thick generalized hexagon H is regularly lax embedded in PG(d, K),
for some field K, then H is a Moufang hexagon and the collineation group inherited from
PG(d, K) contains the little projective group of H.

Proof. First let H ∼= H(2). The same argument as in the proof of Theorem 2.7 shows
that 5 ≤ d ≤ 6. For d = 5, the proof of Theorem 2.8 remains valid for infinite projective
spaces. For d = 6, the same holds for Theorem 2.9. Hence, in this case, the embedding
is the natural one in a subspace over a subfield. Consequently, the full collineation group
of H is inherited from the projective space. So we may assume that H (∼= H(2).

Let x be any point of H. Suppose that a subspace U contains 〈x⊥⊥〉 and a point y of H
opposite x. Clearly, U contains all apartments of H through x and y, hence U induces a
subhexagon H′ which contains all lines of H through x and which contains all points of H
polycollinear with x. By Van Maldeghem [19**](2.8.2), H′ = H, hence U = PG(d, K),
ξx := 〈x⊥⊥〉 is a hyperplane and ξx does not contain any point of H opposite x. Also, it
is now clear that Lemma 2.5 is valid in the infinite case. Hence the proof of Lemma 2.6
implies that H is a Moufang hexagon.

Now we consider a line L of H and we show that there is a collineation of PG(d, K)
which preserves H and induces in H an axial collineation with axis L in the sense of e.g.
Ronan [1980]. Choose x, y ∈ L, x (= y. Then ξx (= ξy since there are clearly points
of H (at distance 4 from x) contained in ξx, but not in ξy. Hence ζL := ξx ∩ ξy is a
(d− 2)-dimensional subspace of PG(d, K). It clearly contains all points of H at distance
≤ 3 from L. We claim that these points generate ζL. Indeed, if they generate a strictly
smaller space U , then by considering a line M of H opposite L, we see that the subspace
〈U,M〉 of dimension at most d− 1 would induce an ideal subhexagon which contains all
points of H on L; by Van Maldeghem [19**](2.8.2), this subhexagon coincides with
H, a contradiction. The claim follows. Hence ξv ∩ ξw = ζL for every two distinct points
v, w ∈ L.

Now let M1 be any line of H opposite L. Let a, b be two distinct points both at distance 3
from both L and M1. Let M2, M2 (= L be any line at distance 3 from both a and
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b. Clearly neither M1 nor M2 meets ζL (otherwise H is induced in a hyperplane of
PG(d, K), a contradiction). Also, the lines L, M1, M2 are contained in the 3-dimensional
space generated by ab and ba. Hence there is a unique projective linear collineation α of
PG(d, K) fixing all points of ζL, stabilizing all hyperplanes containing L, and mapping
M ′

1 onto M ′
2. Let c1 respectively c2, a′ be the point on M1 respectively M2, L polycollinear

with a. Then c1, c2, a′ ∈ ab and hence they are collinear in PG(d, K). Moreover, they
lie in the plane 〈L, c1〉, which implies that cα

1 = (M ′
1 ∩ 〈L, c1〉)α = M ′

2 ∩ 〈L, c1〉 = c2. So
the line ac1 of PG(d, K) is mapped onto the line ac2. Varying a, we conclude that every
point of M1 is mapped by α onto a point of M2. It is also clear that α induces in πa an
elation with axis aa′ and center a′. Hence all points of H on ac1 are mapped onto points
of H on ac2.

Next we note that, if u is any point of H at distance 3 from L, but not polycollinear with
a′ and not opposite c1, then the spaces 〈πu, L〉 and πc1 meet in the unique point d of H
polycollinear with both c1 and u. Indeed, it is clear that d belongs to the intersection;
conversely, if this intersection would contain more, then V := 〈πu, L, πc1〉 is contained
in a d′-dimensional space, with d′ ≤ 4. Hence 5 points of the apartment determined by
L, u, c1 generate V , and so V is contained in ξx for some point x, a contradiction. Since
clearly (〈πu, L〉)α = 〈πu, L〉, and since πα

c1 = πc2 , we see that dα is the unique point of H
polycollinear with both c2 and u. Hence, similarly as above (interchanging roles of M1

respectively M2 and c1d respectively c2dα), all points of H on the line c1d are mapped by
α onto points of H on the line c2dα. Since c1d can be considered as a general line of H
opposite L and meeting M , we may conclude with Proposition 7 of Abramenko [1996]
(see also Abramenko & Van Maldeghem [1997]) that α preserves H and induces an
axial collineation with axis L. Since the group generated by all axial collineations is a
normal subgroup of the little projective group, and since the latter is simple if H (∼= H(2),
the result follows. !
The next corollary is also valid for infinite Moufang hexagons, but for reasons of simplicity,
we only state it for finite classical hexagons.

Corollary 2.11 If the thick generalized hexagon H of order (s, t) is regularly lax embedded
in PG(d, q), for some prime power q, then the points on any line of H form a projective
subline over GF(s) of PG(1, q). In particular, GF(s) is a subfield of GF(q).

Proof. Consider two opposite lines L, M of H. By the proof of Lemma 2.10, the projec-
tivity [L; M ] : L → M : x /→ y, where x ∈ L, y ∈ M and x, y not opposite, is induced by
an element of the automorphism group PGLd+1(q) of PG(d, q). Hence the group G of
projectivities of L in H is a subgroup of PGL2(q) in its natural action on L′ = PG(1, q),
having an orbit of length s + 1. By Knarr [1988], G ∼= PGL2(s). If s (= 2, then the
result follows from Lemma 3 of Thas & Van Maldeghem [19**b]. If s = 2, then, since
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by the proof of Lemma 2.10 H is classical, t = 2, and hence H ∼= H(2). The result follows
from Theorem 2.8 and Theorem 2.9. !

Theorem 2.12 A thick generalized hexagon of order (t3, t) cannot be regularly lax em-
bedded in PG(6, q).

Proof. Assume, by way of contradiction, that the thick generalized hexagon H of order
(t3, t) is regularly lax embedded in PG(6, q). Then H is classical. Let H′ be a subhexagon
of order (t, t). By Theorem 2.7 H′ is not contained in a PG(4, q), so H′ is regularly lax
embedded in PG(6, q) or in a hyperplane PG(5, q). From Theorems 2.8 and 2.9 it then
follows that any apartment of H generates a hyperplane of PG(6, q).

First, suppose that q is even (and note that this is equivalent with t even). Let Σ be an
apartment of H and let H′ be a subhexagon of order (t, t) containing Σ. If H′ is laxly
embedded in a hyperplane PG(5, q), then for any two distinct polycollinear points x, y of
Σ the space PG(5, q) contains exactly t2 + t + 1 lines of H concurrent with xy (including
xy itself) as otherwise H would be contained in PG(5, q). It follows that at most one
subhexagon of order (t, t) containing Σ, generates a hyperplane of PG(6, q). Let H′′ be
any subhexagon of order (t, t) containing Σ, which generates PG(6, q). The point set of H′′

is the point set of a non-singular quadric Q(6, t) in some subspace PG(6, t) of PG(6, q).
If x is a point of Σ and if θx is the tangent space (in PG(6, t)) of Q(6, t) at x, then the
hyperplane ξx of PG(6, q) generated by θx is independent of the choice of H′′. Hence the
nucleus n of the quadric Q(6, t) is independent of the choice of H′′ (n is the intersection
of the 6 hyperplanes ξz, with z in Σ). Now let y (= x be a point of Σ, with x and y
collinear in H. Then ξx ∩ ξy =: ξxy is 4-dimensional, contains all points of H at distance
at most 3 from the line xy of H, and is generated by these points (as ξxy is generated by
all points of H′′ at distance at most 3 from the line xy). Also, n ∈ ξxy. If z is any point
of H on xy, then ξz contains ξxy, so contains n. Now let u be any point of H not on a
line N̄ of H, with N̄ containing a line N of H′′. If L, M are distinct lines of H containing
u, then by 6.5 of Thas [1995] H′′ contains two lines L′′, M ′′ whose extensions L̄′′, M̄ ′′ to
H are concurrent respectively with L, M . If L ∩ L̄′′ = {l} and M ∩ M̄ ′′ = {m}, then we
choose a window Ω containing u, l,m, two distinct points l1, l2 on L′′ (li (= l, i = 1, 2),
and two distinct points m1, m2 on M ′′ (mi (= m, i = 1, 2), where li is at distance 4 from
mi, i = 1, 2. Also, l1, l2 can be chosen in such a way that 〈πl, πl1 , πl2〉 is 4-dimensional.
Then the subhexagon H′′′ of order (t, t) defined by the window Ω generates PG(6, q). As
H′′ and H′′′ share an apartment, the corresponding quadrics Q(6, t) and Q′(6, t) have the
common nucleus n. Hence ξu contains n. Now let u be any point of H not in H′′, but on
a line N̄ of H where N̄ contains a line N of H′′. Let z1, z2 be distinct points of N and let
Σ′ be an apartment in H′′ containing z1, z2. Then, by the foregoing, the hyperplane ξu

contains the nucleus n of Q(6, t). So it follows that for any point u of H the hyperplane
ξu contains n. Now assume, by way of contradiction, that there is a line W of PG(6, q)
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through n, which contains distinct points v and w of H. Let r be a point of H at distance
4 from v and 6 from w. Then ξr contains n and v, so contains w, a contradiction. Next,
assume that there is a plane πb = 〈b⊥〉, with b in H, which contains n. If c is a point of
H at distance 4 from b, then, as ξc contains n, it also contains πb, clearly a contradiction.
Next, let PG(5, q) be a hyperplane of PG(6, q) not containing n. Now we project H from
n onto PG(5, q). Then the projection H∗ of H is regularly lax embedded in PG(5, q),
contradicting Theorem 2.8 as s (= t. This proves the theorem for q (or equivalently t)
even.

Next, note that by Corollary 2.11, any line of H is a subline PG(1, s) of some line of
PG(6, q).

Now let q be odd. Consider an apartment Σ of H, and let PG(5, q) be the hyperplane
generated by the 6 points of Σ. Further, let H1,H2 be distinct subhexagons of order
(t, t) containing Σ; by Theorem 2.8 the point set of Hi generates PG(6, q), i = 1, 2. Let
PG(i)(6, t) be the subspace over GF(t) of PG(6, q) in which Hi is fully embedded by
Theorem 2.9, and let Q(i)(6, t) be the quadric of PG(i)(6, t) whose point set coincides
with the point set of Hi, i = 1, 2. Further, let PG(5, q) ∩ PG(i)(6, t) = PG(i)(5, t),

i = 1, 2. If x is a point of Σ and if θ(i)
x is the tangent space in PG(i)(6, t) of Q(i)(6, t) at x,

then ξx is the hyperplane of PG(6, q) generated by θ(i)
x . So the pole of PG(1)(5, t) with

respect to Q(1)(6, t) coincides with the pole of PG(2)(5, t) with respect to Q(2)(6, t); let p
be this common point. Hence p ∈ PG(1)(6, t)∩ PG(2)(6, t). Clearly p does not belong to
H. Let x1, x2, . . . , x6 be the 6 points of Σ, where xjxj+1 is a line of H (subscripts being
taken modulo 6). The lines xjxj+1 of H belong to the extension PG(i)(5, s) of PG(i)(5, t)
to GF(s). It immediately follows that PG(1)(5, s) = PG(2)(5, s); this common space
will be denoted by PG(5, s). Now assume, by way of contradiction, that PG(1)(6, s) =
PG(2)(6, s), with PG(i)(6, s) the extension of PG(i)(6, t) to GF(s), i = 1, 2. Let u be
a point of H not in PG(1)(6, s), and let V be a line of H containing u. By 6.5 of
Thas [1995], Hi contains a line Vi, whose extension V̄i to H contains a point of V . Put
V̄i∩V = {ai}, i = 1, 2. First, assume that a1 = a2. If V̄1 (= V̄2, then the plane over GF(s)
containing V̄1 ∪ V̄2 belongs to PG(1)(6, s), so u belongs to PG(1)(6, s), a contradiction.
Hence necessarily V̄1 = V̄2. Assume, by way of contradiction, that a1 /∈ PG(5, s). Then
V̄1 has exactly one point b in common with PG(5, s). So {b} = Vi ∩PG(i)(5, t), i = 1, 2.
Hence b belongs to H1 ∩ H2, and consequently V1 and V2 belong to PG(5, s). It follows
that a1 ∈ PG(5, s), a contradiction. Consequently a1 ∈ PG(5, s). Also, a1 is on exactly
one line of Hi containing two distinct points of H1 ∩ H2, i = 1, 2. It easily follows that
a1 = a2 for either zero, or one or all lines V of H through u. If a1 (= a2, then V contains
at least two points of PG(1)(6, s). Hence if a1 = a2 for either zero or one line V , then
u belongs to PG(1)(6, s). Now suppose that a1 = a2 for all lines V of H containing
u. Then there is a subhexagon H∗ of order (t, t) containing Σ and u. Let L be a line
of H through u and let v be a point of H on L which does not belong to H∗. Then
there is no subhexagon of order (t, t) containing Σ and v. It follows that v is a point
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of PG(1)(6, s). Now clearly every point of L belongs to PG(1)(6, s), and so u is a point
of PG(1)(6, s). Consequently H is contained in PG(1)(6, s), that is, H is regularly full
embedded in PG(1)(6, s), contradicting the Main Result of Thas & Van Maldeghem
[1996b]. We conclude that PG(1)(6, s) (= PG(2)(6, s). Hence PG(1)(6, s) ∩ PG(2)(6, s) =
PG(5, s) ∪ {p}. Now we consider a projective space PG(7, q) containing PG(6, q), and
in PG(7, q) a subspace PG(7, s) such that the projection Φ of PG(7, s) from some point
y ∈ PG(7, q) \ PG(6, q) contains PG(1)(6, s) ∪ PG(2)(6, s). Then there is a line M in
PG(7, s) whose extension M ′ to GF(q) contains y and p. Let u be a point of H not
in PG(1)(6, s) ∪ PG(2)(6, s), and let V be a line of H containing u. By 6.5 of Thas
[1995] Hi contains a line Vi whose extension V̄i to H contains a point of V , i = 1, 2. Put
V̄i ∩ V = {ai}, i = 1, 2. First, assume that a1 = a2. Then a1 ∈ PG(1)(6, s) ∩PG(2)(6, s),
and so a1 ∈ PG(5, s). Hence a1 is on exactly one line of Hi containing two distinct points
of H1 ∩H2, i = 1, 2. It easily follows that a1 = a2 for either zero, or one or all lines V of
H through u. Assume, by way of contradiction, that πu = 〈u⊥〉 contains p. Let V be any
line of H through u whose extension tot GF(q) does not contain p, and let V1 be the line
of H1 whose extension V̄1 to GF(s) contains a point a1 of V . Let v1 be a common point
of V1 and PG(1)(5, t). Then ξv1 contains V and p, so contains πu. It follows that v1 ∈ V ,
so u ∈ PG(1)(6, s), a contradiction. Consequently πu does not contain p. If a1 (= a2, then
〈a1, a2〉 ∩Φ is a line over GF(s) which is the projection from y of a uniquely defined line
a∗1a

∗
2 of PG(7, s), with {a∗i } = 〈ai, y〉 ∩ PG(7, s). Now assume that a1 = a2 for either

zero or one line V of H through u. Then we obtain at least two lines over GF(s) in Φ
which are the projections from y of uniquely defined lines a∗1a

∗
2 and b∗1b

∗
2 of PG(7, s). As

πu does not contain p, one easily shows that a∗1a
∗
2 and b∗1b

∗
2 have exactly one point u∗ in

common and that u is the projection of u∗ from y onto PG(6, q). So u is the projection
from y of some point of PG(7, s). Now assume that a1 = a2 for all lines of H containing
u. Then there is a subhexagon H̃ of order (t, t) containing Σ and u. Let L be a line of
H through u and let v be a point of H on L which does not belong to H̃. Then there
is no subhexagon of order (t, t) containing Σ and v. Hence v is the projection from y
onto PG(6, q) of some point v∗ of PG(7, s). As the extension L′ of L to GF(q) does not
contain p, the line L is the projection from y of a uniquely defined line L∗ of PG(7, s).
It now follows that u is the projection from y onto PG(6, q) of a uniquely defined point
u∗ of PG(7, s). Now we show that, putting {u∗} = 〈u, y〉 ∩ PG(7, s) for any point u
of H, one obtains a fully embedded generalized hexagon H̄ in PG(7, s). Let M be any
line of H. If M contains a point u /∈ PG(1)(6, s) ∪ PG(2)(6, s), then, as πu does not
contain p, it easily follows that M∗ = {u∗ ‖u ∈ M} is a line of PG(7, s). Now assume
that M is contained in PG(1)(6, s) ∪ PG(2)(6, s), say M is contained in PG(1)(6, s). As
the extension M ′ of M to GF(q) intersects PG(1)(6, s) in M and p /∈ M , we also have
p /∈ M ′, and so M∗ = {u∗ ‖u ∈ M} is a line of PG(7, s). It follows that there arises a
fully embedded generalized hexagon H̄ in PG(7, s). Let u∗ be any point of H̄. Assume,
by way of contradiction, that u∗⊥ is not contained in a plane of PG(7, s). Then πu,
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with {u} = PG(6, q)∩ < y, u∗ >, contains p. From the foregoing, we necessarily have
u ∈ PG(1)(6, s)∪PG(2)(6, s), with u not in H1 or H2. Let V be any line of H through u
which does not contain a line of H1, nor p, and let V1 be the line of H1 whose extension V̄1

to GF(s) contains a point a1 of V . Let v1 be a common point of V1 and PG(1)(5, t). Then
ξv1 contains V and p, so contains πu. It follows that v1 ∈ V , so V contains a line of H1,
a contradiction. We conclude that u∗

⊥
is contained in a plane of PG(7, s). So H̄ is flatly

full embedded in PG(7, s). As H is weakly embedded in PG(6, q), it is immediate that H̄
is weakly embedded in PG(7, s). Hence H̄ is regularly full embedded in PG(7, s). Then
by Thas & Van Maldeghem [1996b] H̄ is a natural embedding of T (t3, t) in PG(7, s).
Let Q∗(7, s) be the quadric which contains the points of H̄. As the projection H of H̄
from y onto PG(6, q) is weakly embedded in PG(6, q), it follows that for any point u∗

of H̄ the hyperplane ξu∗ of PG(7, q) contains y. As ξu∗ is the extension to GF(q) of the
tangent hyperplane of Q+(7, s) at u∗, we have that y ∈ PG(7, s) and that H̄ is contained
in a hyperplane, clearly a contradiction.

Now the theorem is completely proved. !

Theorem 2.13 If the thick generalized hexagon H of order (s, t) is regularly lax embedded
in PG(7, q), then s = t3 and H is a natural embedding of T (s, 3

√
s) in a subspace PG(7, s)

of PG(7, q) for some subfield GF(s) of GF(q).

Proof. Let the thick generalized hexagon H of order (s, t) be regularly lax embedded
in PG(7, q). As H is classical and s (= t by Theorem 2.7, we have s = t3. Consider
a subhexagon H′ of order (t, t) of H. Remark that for any point x of H′ the space ξx

does not contain a point y of H′ opposite x. Then by Theorem 2.7 H′ is a regular lax
embedding of H(t) in a hyperplane PG(6, q) of PG(7, q). Now by Theorem 2.9 H′ is a
natural embedding of H(t) in a subspace PG(6, t) of PG(6, q) for some subfield GF(t)
of GF(q).

By Corollary 2.11, any line L of H is a subline PG(1, s) of the line L′ = PG(1, q) of
PG(6, q) which contains L.

Consider a subhexagon H′ of order (t, t) of H and the subspace PG(6, t) containing it.
Let PG(6, s) be the 6-dimensional space over GF(s) containing PG(6, t). Then PG(6, s)
contains all lines of H which intersect PG(6, t) in a line of H′. Let Σ be an apartment of
H′. Then Σ is contained in a unique hyperplane PG(5, s) of PG(6, s). Now we consider a
subhexagon H′′ (= H′ of order (t, t) of H which also contains the points of Σ. Then H′′ is
a natural embedding of H(t) in a subspace PG′(6, t); also PG′(6, t) extends uniquely to a
PG′(6, s). The apartment Σ is contained in a unique hyperplane PG′(5, s) of PG′(6, s).
As PG(5, s)∩PG′(5, s) contains Σ and also the six lines of H defined by Σ, we have that
PG(5, s) = PG′(5, s). If PG(6, s) ∩PG′(6, s) (= PG(5, s), then PG(6, s) and PG′(6, s)
belong to a common PG(6, q). As H′ and H′′ belong to PG(6, q), it easily follows that
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H belongs to PG(6, q), a contradiction. Consequently PG(6, s) ∩PG′(6, s) = PG(5, s).
Also PG(6, s) ∪ PG′(6, s) generates PG(7, q), and so PG(6, s) ∪ PG′(6, s) is contained
in a unique subspace PG(7, s) of PG(7, q).

Now let y be a point of H not in PG(6, s) ∪ PG′(6, s). If the line L of H contains y,
then by Section 6.5 of Thas [1995] the subhexagon H′ respectively H′′ contains exactly
one line L′ respectively L′′ whose extension to GF(s) has a point z′ respectively z′′ in
common with L. If for at least two distinct lines L of H through y the corresponding
points z′, z′′ are distinct, then y clearly belongs to PG(7, s).

Now suppose that for at least t lines L of H through y we have z′ = z′′. For these lines
z′ = z′′ belongs to PG(5, s). Let L be a line of H through y for which z′ = z′′. The
hyperplane PG′′(6, q) = 〈PG(5, q), y〉, with PG(5, s) ⊆ PG(5, q), induces a subhexagon
H′′′ of order (t, t) (if y is contained in PG(5, q), then y belongs to the subhexagon of order
(1, t) containing Σ, so y belongs to H′ and hence to PG(5, s), a contradiction). Through
each point of L not in H′′′ there is a line of H which is not contained in PG′′(6, q), so which
does not contain a point of PG(5, s). From the foregoing it follows that each of these
t3 − t points of L are contained in PG(7, s). Hence L, and consequently y, is contained
in PG(7, s).

We conclude that H is fully embedded in PG(7, s). As it is clear that H is regularly
embedded in PG(7, s), we conclude that H is a natural embedding of T (t3, t) in PG(7, s).

!

3 Flat full embeddings

In this section, we assume that the thick generalized hexagon H of order (q, t) is flatly
and fully embedded in a projective space PG(d, q).

For any point x of H, we denote by πx the plane in PG(d, q) generated by the points of
H polycollinear with x.

Theorem 3.1 We have 4 ≤ d ≤ 7. Also, we have t ≤ q, and if d = 7, then H ∼= T (q, 3
√

q).

Proof. Clearly d ≥ 4 because the number of points of H, which is equal to (1 + q)(1 +
tq + t2q2), is always larger than the number q3 + q2 + q + 1 of points in PG(3, q). Since
the number of lines through a point in a plane of PG(d, q) is equal to the number q + 1
of points on a line of PG(d, q), it immediately follows that t ≤ q.

The proof of the fact that d ≤ 7 in Theorem 2.7 can be copied here. Also, that proof
reveals that in case d = 7 every window is contained in a proper ideal subhexagon. By
De Smet & Van Maldeghem [1993], H is isomorphic to T (q, 3

√
q). !

We now take a closer look at the dimensions d = 5, 6, 7.
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Theorem 3.2 If d = 5 and q = t, then the flat embedding is a regular embedding and
hence a natural embedding of H(q).

Proof. If d = 5 and q = t, then the point set of the flatly embedded hexagon H concides
with the point set of PG(5, q). Consider any hyperplane U of PG(5, q). We show that
there are exactly q3 + q2 + q + 1 lines of H in U . For any point x of U , either all lines
of H incident with x lie in U , or exactly one such line lies in U . Let a be the number of
points x of U for which x⊥ is contained in U and let b be the number of points of U for
which this does not hold. Then

a + b = q4 + q3 + q2 + q + 1.

Also, the number of lines of H in U , respectively not in U , is equal to

a(q + 1) + b

q + 1
, respectively bq.

Hence we have
a(q + 1) + b

q + 1
+ bq = q5 + q4 + q3 + q2 + q + 1.

Solving the system of equations thus obtained, we obtain a = q2 + q + 1 and b = q4 + q3.
Hence the number of lines of H in U is

a(q + 1) + b

q + 1
= q3 + q2 + q + 1.

We claim that every apartment spans PG(5, q). Indeed, if not, then by 6.5 of Thas [1995]
there is a full subhexagon of order (1, q) in a hyperplane. But such a subhexagon contains
(q + 1)(q2 + q + 1) lines, contradicting the previous paragraph. The claim is proved.

Now consider two opposite lines L1 and L2 of H, a point x at distance 3 from both L1

and L2, and two points y1 and y2 at distance 4 from x, at distance 4 from each other
and such that yi is on Li, i = 1, 2. Since every apartment spans PG(5, q), the elements
y1, L1, x, L2, y2 span a hyperplane U . Suppose that U contains a point v of H opposite
x. Then U contains a line M = πv ∩ U of H at distance 5 from x. Let z be polycollinear
with both x and y1. By possibly interchanging the roles of y1 and y2, we may suppose
that M is at distance 5 from z. We now consider the apartment Σ defined by x, M, z.
Since πx ⊆ U , πz ⊆ U and M ⊆ U , we conclude that Σ is in U , a contradiction. Hence no
point opposite x is in U . As there are exactly q5 points of H opposite x, the set of these
points coincides with PG(5, q) \ U . So U is the set of the q4 + q3 + q2 + q + 1 points of
H which are not opposite x. Hence the embedding is regular and the result follows. !
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Theorem 3.3 If d = 6 and if every hyperplane of PG(6, q) containing an apartment of
H induces a non-thick subhexagon (this happens for instance automatically if q3 < t5, in
particular if q = t), then the flat embedding is a regular embedding and hence a natural
embedding of H(q).

Proof. Consider any point x of H and let L and M be two opposite lines at distance 3
from x. For every point y on L, y not collinear with x, there exists a unique apartment
Σy containing x, L, M, y. Let Uy be the projective subspace generated by Σy. If Uy had
dimension ≤ 4, then, by Lemma 2.1, Uy would be contained in a hyperplane inducing
a subhexagon of order (q, q), a contradiction. So Uy is a hyperplane of PG(6, q). It is
clear that U = 〈x, L, M〉 is a projective 4-space. Hence Uy is a hyperplane in PG(6, q)
containing U . Remark that distinct points y define distinct hyperplanes Uy as otherwise
Uy would not induce a subhexagon of order (1, t). Since there are q choices for y, there is
a unique hyperplane U∞ containing x, L, M and not containing any point opposite x at
distance 3 from both L and M . Now consider any line N of H at distance 3 from x and
distance 4 from L or M . Then N is not contained in any Uy since otherwise Uy does not
induce a subhexagon of order (1, t). Hence N is contained in U∞. It easily follows that
Uy does not contain any apartment of H. Note that, if z is the point on L polycollinear
with x, then also all lines of H through z are contained in U∞. Now we note that U∞ is
in fact uniquely defined by x, L∗, M∗, where L∗ is the line of H incident with x and z,
and M∗ is the line of H through x meeting M . Hence we may rewrite U∞ as Ux,L∗,M∗ .
Put L∗ = L0 and let {Li : i ∈ {0, 1, 2, . . . , t}} be the set of lines of H through x, with
Lt = M∗. Also, let {xj : j ∈ {1, 2, . . . , q}} be the set of points of H on M∗, different from
x. For each point xj, we choose a line Nj through xj different from M∗. We put x = x0

and N0 = Lk, for some arbitrary k ∈ {0, 1, . . . , t − 1}. If Uxj ,Nj ,M∗ = Ux!,N!,M∗ , j (= &,
then Uxj ,Nj ,M∗ contains an apartment through NJ and N", a contradiction. In particular,
Ux0,N0,M∗ is distinct from the q different hyperplanes Uxj ,Nj ,M∗ , j = 1, 2, . . . , q, which all
contain the 4-dimensional space generated by the points of H at distance 3 from M∗ (this
is indeed a 4-dimensional space since it is contained in at least two different hyperplanes,
and since by adding a line opposite M∗, one generates a subspace inducing H itself). In
particular Ux0,N0,M∗ does not depend on k and so it follows that Ux,L∗,M∗ only depends on
x and contains all lines at distance ≤ 3 from x. Consequently Axiom (W) holds and we
have a full regular embedding. The theorem is proved. !
We now prove a lemma for flatly lax embedded hexagons. We will need this weaker form
in the next section.

Lemma 3.4 If H is a thick generalized hexagon of order (s, t) which is flatly lax embedded
in PG(7, q), then s = t3, H ∼= T (s, t) and every distance-2-trace of H is contained in a
line of PG(7, q).
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Proof. Consider an apartment Σ of H. The six points of Σ span a PG(m, q), with
m ≤ 5. Now consider a line L of H meeting a line of Σ but not containing a point of Σ.
Then L and Σ span a PG(m′, q), with m′ ≤ m + 1 ≤ 6. The space PG(m′, q) induces a
subhexagon H′ of order (s′, t), s′ ≥ 2. If s′ = s, then H′ = H and m′ = 7, a contradiction.
Hence s′ < s. Next we consider a line M of H, with L (= M , and containing a point of L
not in H′. Then M and PG(m′, q) generate a PG(m′′, q), with m′′ ≤ m′ + 1 ≤ 7. The
space PG(m′′, q) induces a subhexagon H′′ of order (s′′, t), s′ < s′′. If s′′ < s, then it
follows from Thas [1976] that s ≥ s′′2t, s′′ ≥ s′2t, and hence s ≥ s′4t3. Now by Haemers
& Roos [1981], we have s ≤ t3. This implies s = t3 and s′ = 1, a contradiction. Hence
s′′ = s,H′′ = H, and m′′ = 7. Also, m′ = 6 and m = 5. So every apartment of H generates
a 5-dimensional space. The subspace PG(m, q) = PG(5, q) induces a subhexagon H∗ of
order (s∗, t). As PG(5, q) = PG(m, q) (= PG(m′, q) = PG(6, q) we have H∗ (= H′, and
so s∗ < s′. Now it follows from Thas [1976] that s ≥ s′2t, s′ ≥ s∗2t, and hence s ≥ s∗4t3.
Now by Haemers & Roos [1981], we have s ≤ t3. This implies s = t3, s∗ = 1 and s′ = t.

The previous paragraph shows that every window of H is contained in a proper ideal
subhexagon. Hence, by De Smet & Van Maldeghem [1993], H is isomorphic to the
classical hexagon T (t3, t).

We now prove that each distance-2-trace of H is subset of a line of PG(7, q). Suppose
that x and y are opposite points in H and that xy is not contained in a line of PG(7, q).
Then xy spans the plane πx. Let K1, K2, K3 be 3 lines of H at distance 3 from both x
and y, and suppose that the points y1, y2, y3 nearest y on K1, K2, K3 respectively, are on a
line N of PG(7, q). As H satisfies the regulus condition (see Ronan [1980]), there exists
a point z of H at distance 3 from each of K1, K2, K3, where z /∈ {x, y}. If the points
z1, z2, z3 nearest z on K1, K2, K3 respectively are contained in a line N ′ of PG(7, q),
then 〈N, N ′〉 = 〈K1, K2, K3〉 is at most 3-dimensional, so 〈K1, K2, K3, x, y〉 is at most
4-dimensional, a contradiction as this last space contains an apartment. It follows that
z1, z2, z3 are not on a common line of PG(7, q). Hence z1, z2, z3 span the plane πz. As
〈K1, K2, K3〉 is at most 4-dimensional, we then have that 〈K1, K2, K3, x, z〉 = 〈K1, K2, K3〉
is at most 4-dimensional. As 〈K1, K2, K3, x, z〉 contains an apartment we have again a
contradiction. It follows that y1, y2, y3 are not collinear. If PG(r, q) = 〈K1, K2, K3〉, then
it is now clear that this space contains all points at distance 3 from each of K1, K2, K3.
Clearly r ≤ 5. Hence PG(r, q) induces an ideal subhexagon H′ containing all points of
K1. Consequently H′ = H, contradicting r ≤ 5. We conclude that each trace of H is a
subset of a line of PG(7, q). !

Theorem 3.5 If H is a thick generalized hexagon of order (q, t) which is flatly full em-
bedded in PG(7, q), then q = t3 and H is a natural embedding of T (q, 3

√
q) in PG(7, q).

Proof. By Lemma 3.4, H is a classical hexagon isomorphic to T (q, 3
√

q), and each distance-
2-trace is contained in some line of PG(7, q). Let x be any point of H. If H′ is any

16



subhexagon of order (t, t), then H′ ∼= H(t). The lines and distance-2-traces of H′ are
the lines of a polar space Q(6, t) which, by the proof of Lemma 3.4, is laxly embedded in
some PG(6, q). Hence by Thas & Van Maldeghem [19**a], the polar space is fully
embedded in some subspace PG(6, t) of PG(6, q), and so the set of points x⊥⊥ of H′ at
distance ≤ 4 from x is contained in a 5-dimensional space U . Let y be any point of H\H′

polycollinear with x and let L be the line of H incident with x and y. Then πy is not
contained in U , otherwise PG(6, q) induces H, a contradicton. Hence V := 〈U, πy〉 is a
hyperplane of H. Now let z1 and z2 be two distinct polycollinear points of H′ polycollinear
with x, but not with y (in H). Let H′′ be a subhexagon of order (t, t) containing z1, z2, y.
The points of H′′ at distance ≤ 4 from x are contained in a 5-dimensional space U ′ which
is generated by πz1 , πz2 , πy (as H′′ is naturally embedded in some subspace PG′(6, t) of
PG(6, q)). This implies that U ′ ⊆ V . Let R be the set of points of x⊥ with the property:
z ∈ R if πz ⊆ V . Now let z′1, z

′
2 be distinct polycollinear points of R which are polycollinear

with x. Further, let y′ be a point of R polycollinear with x, but not with z′1 nor with z′2.
If H′′′ is a subhexagon of order (t, t) containing z′1, z

′
2, , y

′, then again all points of H′′′ at
distance ≤ 4 from x are contained in V .

Now the geometry of distance-2-traces contained in the set x⊥ of points polycollinear
with x is a dual net N which clearly satisfies Veblen’s axiom (indeed, any two distinct
intersecting traces generate in N a dual affine plane of order t, see Ronan [1980]), hence,
by Thas & De Clerck [1977], the dual net N is isomorphic to the dual net Hq

t .
So the points of x⊥ are the points of a 4-dimensional projective space PG(4, t) (not
related to PG(6, q)) off a plane PG(2, t) of PG(4, t), the traces in x⊥ are the lines in
PG(4, t) skew to PG(2, t), and incidence is the natural one. The points in that model
corresponding to the points of H′ polycollinear with x are the points of a dual affine plane
π in PG(4, t) (the projective plane defined by π contains exactly one point of PG(2, t)).
The point y is a point off π, and so π and y generate in N a dual net whose point set is
of the form PG(3, t) \PG(2, t), with PG(3, t) some hyperplane of PG(4, t) (remark that
PG(3, t)∩PG(2, t) is a line). From the foregoing paragraph it now follows that all points
of x⊥ which are points of PG(3, t), are contained in R. Let R′ be the set of points of x⊥

contained in PG(3, t). So we have R′ ⊆ R. Every line of H through x contains exactly
t2 elements of R′ and R′ is closed with respect to collinearity in N .

Now let w be a point polycollinear with x but not contained in R′. There are exactly t3

traces through w in x⊥. Every such trace contains at most one point of R′. On the other
hand, there are t3 points of R′ not polycollinear with w, and so there are at least t3 traces
which do contain a point of R′. It follows that every trace in x⊥ through w contains a
unique element of R′. Now let N be a line at distance 3 from w, but not concurrent with
the line wx. Let u be the unique point of N polycollinear with w. Let u′ be any other
point of N and suppose that V contains u′. The trace xu′ contains w and hence it contains
some unique point z of R′. Since πz is contained in V , the point z′ polycollinear with both
z and u′ is contained in V , and hence so is the line u′z′. Consideration of any point u′′ on
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u′z′ at distance 4 from any point z′′ of R′ not polycollinear with z leads to an apartment
in V , a contradiction as otherwise V would induce H. Hence u′ is not contained in V . So
the hyperplane V meets the line N necessarily in the point u. Consequently the line uw
belongs to V and hence πw ⊆ V .

We have shown that the embedding is regular and the theorem now follows from Thas
& Van Maldeghem [1996b]. !

4 Flat lax embeddings

In this section, we assume that H is a thick generalized hexagon flatly lax embedded in
PG(d, q).

For any x ∈ P , with P the point set of H, we denote by πx the unique plane in PG(d, q)
spanned by all points polycollinear with x.

Theorem 4.1 If H is a thick generalized hexagon which is flatly lax embedded in the
projective space PG(d, q), then d ≤ 7.

Proof. See proof of Theorem 2.7. !
We first deal with d = 7 and with the smallest possible case (s, t) = (8, 2).

Theorem 4.2 If H is generalized hexagon of order (8, 2) which is flatly lax embedded in
PG(7, q), then H is a natural embedding of T (8, 2) in a subspace PG(7, 8) of PG(7, q)
(in particular GF(8) is a subfield of GF(q)).

Proof. By Lemma 3.4, H is a classical hexagon isomorphic to T (8, 2), and all distance-2-
traces are subsets of lines of PG(7, q). Note that for any point x of H and any subhexagon
H′ of order (2, 2) containing x, the geometry of distance-2-traces of H′ in x⊥ together
with the lines of H′ through x, is a projective plane of order 2 which is embedded in some
PG(2, q). Hence q is even.

Now let L be any line of H containing the points xi, i = 0, 1, 2, . . . , 8, and choose coor-
dinates in PG(7, q) in such a way that x0 = (0, 1, 06), x1 = (1, 07), x2 = (1, 1, 06) and
x3 = (1, a, 06), for some a ∈ GF(q), where 0i is an abbreviation for 0, 0, . . . , 0 (i zeros).
If L1 and L2 are the other two lines of H through x0, then we can choose coordinates
in such a way that the points y1 = (1, 0, 1, 05) and y2 = (1, 1, 1, 05) belong to L1, and
z1 = (0, 0, 1, 05) and z2 = (0, 1, 1, 05) belong to L2. Expressing that the traces in x⊥0 are
subsets of lines of the plane 〈L, L1〉, we see that we may assume that x4 = (1, a + 1, 06)
({x4} = y2r∩L with {r} = L2∩y1x3). This means that, whenever u, v, w are three points
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of H on L, and PG(1, q) is the line of PG(7, q) containing L, then the translation σ of
PG(1, q) fixing u and mapping v to w preserves the set of points of H on PG(1, q). It is
easily seen, however, that, considering the natural embedding H̃ of H in some PG′(7, 8),
with such a translation σ there corresponds a translation σ̃ of the line L̃ of H̃ which
corresponds to L. Hence, varying x0 over L, these translations generate PGL2(8), which
consequently is a subgroup of PGL2(q) and which has an orbit of length 9 (namely, the
points of L) in PG(1, q). Hence, by Lemma 3 of Thas & Van Maldeghem [19**b], L
is a projective subline of PG(1, q) over the field GF(8). Now the proof of Theorem 2.13,
from the third paragraph on, can be copied to show that H is flatly full embedded in a
subspace PG(7, 8) of PG(7, q). By Theorem 3.5, H is a natural embedding in PG(7, 8).

!

Lemma 4.3 For t (= 2, the 3− (t3 +1, t+1, 1) design C formed by the points of PG(1, t3)
together with the sublines of PG(1, t3) over GF(t), is generated by a block PG(1, t) and
a point y of PG(1, t3) not in PG(1, t).

Proof. Let GF(t3) = {a1α1 +a2α2 +a3α3 ‖ ai ∈GF(t)}, with α1, α2, α3 suitable elements
of GF(t3). On PG(1, t3) we choose affine coordinates in such a way that y = (∞).
If the point z (= y has coordinate (a), a ∈GF(t3) and a = a1α1 + a2α2 + a3α3, with
a1, a2, a3 ∈ GF(t), then we put zθ = (a1, a2, a3) ∈ AG(3, t), which unambiguously defines
the map θ : PG(1, t3)\{y} → AG(3, t). If D is a block of C containing y, then (D \{y})θ

is an affine line of AG(3, t); so with the t2(t2 + t + 1) blocks of C containing y there
correspond the t2(t2 + t + 1) affine lines of AG(3, t). With the t3(t3 − 1) blocks D of C
not containing y, there correspond the t3(t3−1) twisted cubics of PG(3, t), with PG(3, t)
the projective completion of AG(3, t), which contain 3 fixed non-collinear points c1, c2, c3

of the extension PG(2, t3) of the plane at infinity PG(2, t) of AG(3, t), where c1, c2, c3

are conjugate with respect to the cubic extension GF(t3) of GF(t). Let PG(1, t)θ be the
twisted cubic C. If V is the point set of C generated by PG(1, t) and y, then for any two
points z1 and z2 of V θ the affine line z1z2 belongs to V θ. Hence V θ is an affine subspace
of AG(3, t). As V θ contains the twisted cubic C, we clearly have V θ = AG(3, t). We
conclude that C is generated by PG(1, t) and y. !

Theorem 4.4 If H is a thick generalized hexagon of order (s, t) which is flatly lax em-
bedded in PG(7, q), then s = t3 and H is a natural embedding of H(s, 3

√
s) in a subspace

PG(7, s) of PG(7, q) for some subfield GF(s) of GF(q).

Proof. By Lemma 3.4, H is a classical hexagon isomorphic to T (s, t), with s = t3. By
Theorem 4.2, we may assume that t > 2. Let H′ be a subhexagon of order (t, t) of H.
By the first paragraph of the proof of Lemma 3.4, the points of H′ span a PG(6, q). By
the second part of the proof of Lemma 3.4, the points of H′ together with the lines and
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traces of H′ form a polar space Q(6, t) which is laxly embedded in PG(6, q). Hence, by
Thas & Van Maldeghem [19**a], Q(6, t) is fully embedded in some subspace PG(6, t)
of PG(6, q). It follows that H′ is regularly embedded in PG(6, t). Now by Cameron
& Kantor [1979], see also Thas & Van Maldeghem [1996b], the subhexagon H′ is a
natural embedding of H(t) in PG(6, t).

We now show that for any point x of H the set of all points of H not opposite x is contained
in a hyperplane of PG(7, q). Let L1, L2, · · · , Lt+1 be the lines of H containing x, let H′

be a subhexagon of order (t, t) containing x, and let L∗1 be the line of H′ contained in L1.
Further, let y ∈ L1 \ L∗1. As H′ is a natural embedding of H(t) in a subspace PG(6, t) of
PG(6, q), the planes πz, with z any point of H′ polycollinear with x, are contained in a
common PG(5, q). By the first paragraph of the proof of Lemma 3.4, no line M (= L1 of
H containing y is contained in PG(6, q). Hence 〈PG(5, q), πy〉 is a 6-dimensional space
which will be denoted by ξx. Consider points z1, z2, with z1 (= z2, on L∗1. Then y, z1, z2

are contained in a subhexagon H′′ of order (t, t). Let L∗∗1 be the line of H′′ contained in
L1. As H′′ is a natural embedding of H(t) in some 6-dimensional space over GF(t), the
planes πz1 , πz2 , πy span a PG(4, q) and moreover πz, with z ∈ L∗∗1 , is a plane of PG(4, q).
As PG(4, q) ⊂ ξx, we have πz ⊂ ξx. Let us consider the 3-(t3 + 1, t + 1, 1) design D with
point set L1 and having as blocks the subsets of L1 which are the lines of the subhexagons
of order (t, t) containing a point of L1. As H is classical , D is isomorphic to the design
with point set PG(1, t3) and having as blocks the lines over GF(t) contained in PG(1, t3).
By Lemma 4.3, for t (= 2 the design D is generated by the block L∗1 and the point y. It
immediately follows that πz, with z any point of L1, is a plane of ξx. Now we consider any
point z of H, z /∈ L1, polycollinear with x. Let z′1 and z′2 be distinct points of H′, with z′1
and z′2 polycollinear with x, where z′1 /∈ L1 and z′2 /∈ L1, with z′1 and z′2 not polycollinear
with z, and with z′1 polycollinear with z′2. Then there is a subhexagon H′′ of order (t, t)
containing z, x, z′1, z

′
2. The trace defined by z and z′i contains a point z′′i of L1, i = 1, 2.

The 5-dimensional space containing any plane πu, with u any point of H′′ polycollinear
with x, is spanned by πz′1

, πz′2
, πx, πz′′1

. As πz′1
, πz′2

, πx, πz′′1
are contained in ξx, also πz is

contained in ξx. Consequently, for any point x of H the set of all points of H not opposite
x is contained in a hyperplane ξx of PG(7, q).

We conclude that H is regularly lax embedded in PG(7, q), and so by Theorem 2.13, H is
a natural embedding of T (s, 3

√
s) in some subspace PG(7, t) of PG(7, q) for some subfield

GF(t) of GF(q). !

Theorem 4.5 If H is a generalized hexagon of order (s, t), with s (= t3, isomorphic to a
classical or dual classical generalized hexagon, which is flatly lax embedded in PG(6, q),
then H is a natural embedding of H(s) in a subspace PG(6, s) of PG(6, q) for some
subfield GF(s) of GF(q).

Proof. The generalized hexagon H clearly has a proper subhexagon of order (s′, t). By
Thas [1976] we have s ≥ s′2t, and so (s, t) (= (s, s3). Hence s = t.
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Let Σ be an apartment of the hexagon H. If Σ is contained in a PG(4, q), then PG(4, q)
induces a subhexagon H′ of order (s′, s), s′ < s. If L is a line of H concurrent in H with
a line of Σ but not containing a point of H′, then PG(4, q) and L generate a PG(5, q).
The space PG(5, q) induces a subhexagon H′′ of order (s′′, s), with s′ < s′′ < s. By Thas
[1976], we have 1 ≥ s′′2 and s′′ ≥ s′2s, clearly a contradiction. Consequently Σ generates
a hyperplane PG(5, q) of PG(6, q).

Suppose that x and y are opposite points in H. As in the proof of Lemma 3.4 we show
that xy is contained in a line of PG(6, q). It immediately follows that every trace of H is
determined by two of its elements, and so H ∼= H(s).

Then the points of H together with the lines and traces of H form a polar space Q(6, s)
which is laxly embedded in PG(6, q). Now by Thas & Van Maldeghem [19**a] Q(6, s)
is fully embedded in a subspace PG(6, s) of PG(6, q), for some subfield GF(s) of GF(q).
It immediately follows that H is regularly embedded in PG(6, s), and so, by Thas &
Van Maldeghem [1996b], H is a natural embedding of H(s) in PG(6, s). !

5 Weak embeddings

For weak embeddings of hexagons, we do not see a way at the moment to bound the
dimension of the projective space. But we are able to classify all weak lax embeddings of
thick generalized hexagons in dimension at most 5, and all weak full embeddings of thick
generalized hexagons of order (s, t) with s odd in dimension 6.

For a weakly lax embedded hexagon H in PG(d, q), and for any point x of H, we denote by
ξx the subspace of PG(d, q) generated by x⊥⊥. By assumption, this is a proper subspace,
i.e., ξx (= PG(d, q).

Theorem 5.1 If H is a thick generalized hexagon which is weakly lax embedded in the
projective space PG(d, q), d ≤ 5, then H is a regular lax embedding of a classical hexagon
H(s), with s even, and hence a natural embedding in some subspace PG(5, s) over the
subfield GF(s) of GF(q).

Proof. First suppose that the order (s, t) of H is distinct from (2, 2). Let x be any point
of H and let y be any point opposite x. Then it is immediately clear that all points z
of H \ x⊥⊥ for which there exist points y = u0, u1, . . . , ui = z opposite x, with uj ∈ u⊥j−1,
1 ≤ j ≤ i, belong to 〈ξx, y〉. By Brouwer [1993], all points z of H opposite x qualify,
hence H is contained in 〈ξx, y〉. This shows that no point of H opposite x is contained in
ξx, and that ξx is a hyperplane.

Now let x, y, z be three points of H, with y and z polycollinear with x, and y at distance 4
from z. Since there are points of H opposite z which are not opposite x and not opposite
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y, we easily see that ξx ∩ ξy ∩ ξz is a subspace of dimension d − 3. Since it contains the
t + 1 lines of H through x, it must be a plane, and so we have shown that d = 5 and the
embedding is flatly lax, hence regularly lax and we can apply Theorem 2.8 to finish the
proof.

Now let (s, t) = (2, 2). Then H is either isomorphic to H(2), or to its dual H(2)D, see
Tits [1959] or Cohen & Tits [1985]. If H ∼= H(2), then we can again rely on Brouwer
[1993] and copy the arguments of the previous paragraphs. Now let H ∼= H(2)D. Let
x, y, z be as above. Since the geometry H(y) of points and lines at distance ≥ 5 from y has
two components (see Brouwer [1993]), we see that ξy is either (d − 1)-dimensional or
(d−2)-dimensional. Suppose that ξy ⊆ ξz. There are at least 16 points of H in ξy opposite
z, hence exactly 16 points as each connected component of H(z) contains 16 points. Let
y′ be a point of H polycollinear with one of these 16 points, and also opposite both y and
z. Then y′ belongs to ξz. It follows that H(z) has a connected component of at least 17
points, a contradiction. Hence ξy (⊆ ξz and analogously ξz (⊆ ξy. If the dimension of one of
ξy, ξz is d−2, then ξz∩ξy has dimension at most d−3, hence d = 5 and x⊥ is contained in
a plane of PG(5, q). So suppose both spaces ξy and ξz are (d− 1)-dimensional. If ξx does
not contain ξy∩ξz, then x⊥ is contained in the (d−3)-space ξx∩ξy∩ξz and so again d = 5
and x⊥ is contained in a plane. Hence suppose that ξx contains ξy ∩ ξz. Then ξx contains
the 8 points of H opposite x and at distance 4 from both y and z. But every such point
is polycollinear with 3 points in the same connected component of H(x). Moreover, one
can check that these 8× 3 points are distinct (using s = t = 2). Hence ξx contains all 32
points opposite x, a contradiction.

The theorem is proved. !
Now we consider full weak embeddings of hexagons in PG(6, q). If q is odd, we have a
complete classification. First we need a lemma.

Lemma 5.2 Let H be a classical hexagon of order (s, t). Let L and M be opposite lines
and let S be the set of points at distance 3 from both L and M . If s is odd, then there
is a point x of H opposite every point of S. If s is even, then no point of H is opposite
every point of S.

Proof. First let s = t and consider the natural embedding of H in PG(6, s). The set S
is a conic and for every point x of H, the subspace ξx meets S in 0, 1, 2 or s + 1 points.
Let Q(6, s) be the quadric on which H is defined.

Let s be odd. Then we consider a point x of H for which the tangent hyperplane of Q(6, s)
at x contains exactly 2 points y, z of S. The point x is at distance at most 4 from y and
z, and ξx contains no other points of S. It is easy to see that x is at distance exactly 4
from y and z. Let N be any line through x distinct from the two lines at distance 3 from
y or z. Every element of S is at distance 4 from exactly one element of N , and x is at
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distance 4 from two elements of S. So there must be a point of N opposite every element
of S.

Now let s be even. Let n be the nucleus of the quadric Q(6, s). Then the plane π of S
contains n. As ξx is the tangent hyperplane of Q(6, s) at x, also ξx contains n. So either
S ⊆ ξx or π∩ξx is a line which contains exactly one point of S. Hence ξx∩S is not empty.

Now let s = t3. We consider the natural embedding of H in PG(7, s).

Let s be odd. Consider a subhexagon H1 of order (t, t) intersecting L in a line L1 of H1

and M in a line M1 of H1. Then H1 contains t + 1 points of S. By the foregoing, H1

contains a point x at distance 4 from exactly 2 elements a0, a1 of S in H1, and opposite
every other element of S in H1. Then x is at distance at least 4 from any element of
S. Suppose, by way of contradiction, that x is at distance 4 from a point a2 of S not
contained in H1. Let R be the line of H through a2 at distance 3 from x. Then R contains
a point r of a line W of H at distance 3 from every element of S. As W contains a line
of H1, the point r belongs to H1. At least one of L, M is distinct from W , say L (= W .
As L contains a line of H1 and r is a point of H1, the unique point a2 of H at distance 2
from r and at distance 3 from L, belongs to H1. Hence a2 ∈ {a0, a1}, a contradiction.
So x is at distance 4 from exactly two points of S. Now the same argument as above for
s = t completes the proof.

Now let s be even. Assume, by way of contradiction, that H contains a point x such that
ξx ∩ S is empty. Let l be the point of L at distance 4 from x, and let m be the point
of M at distance 4 from x. Further, let R be the line of H at distance 3 from x and at
distance 2 from M , and let r be the point of R at distance 4 from l (possibly r = m).
Then there is a subhexagon H1 of order (t, t) containing l, x, r and m. The hexagon H1

intersects L and M in lines of H1 and hence contains t + 1 points of S. From the case
s = t it now follows that ξx contains at least one point of S in H1, a contradiction.

The lemma is proved. !

Theorem 5.3 If H is a generalized hexagon of order (q, t), with q odd, weakly embedded
in PG(6, q), then H is a regular full (and hence natural) embedding of H(q).

Proof. As in the proof of Theorem 5.1, one shows easily that the subspace πx of PG(6, q)
generated by the points polycollinear with some point x of H is 2-dimensional or 3-
dimensional. If πx is 2-dimensional, then x is clearly a distance-2-regular point (since
no space ξy generated by y⊥⊥ for y opposite x can contain x). Note that each ξy is a
hyperplane in PG(6, q). Also, ξy′ (= ξy′′ for distinct points y′, y′′. Suppose now that πx is
3-dimensional. Let L be a line of H containing x and let y ∈ L \ {x}. Then ξx ∩ ξy = UL

is 4-dimensional. Clearly UL contains πx and each line at distance 2 from L. Let M be
a line at distance 3 from x. Then M is not contained in πx, since πx ⊆ ξz for every
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point z polycollinear with x and M (⊆ ξz for z at distance 5 from M . Hence the lines
M at distance 2 from L generate UL. Let w and z be two non-polycollinear points in x⊥

and put U = ξz ∩ ξw. Then U is a 4-dimensional space containing πx. If L is any line
containing x, then UL (= U (UL contains points opposite either w or z). So exactly one
of the q + 1 hyperplanes ξu ⊇ UL, u ∈ L, contains U . If ξu, u ∈ L, contains U , then,
as U contains points opposite x, we have x (= u. Let v be any point of H at distance
4 from both z and w. Then v ∈ U , and hence v ∈ ξu, implying u ∈ xv. Hence x is a
distance-2-regular point. Consequently every point x of H is distance-2-regular and so it
follows from Ronan [1980] that H is classical.

Still to prove is that the embedding is flat. Suppose by way of contradiction that it is not
flat. Then there is a point x with πx a 3-dimensional space (where again πx is the space
generated by the points polycollinear with x). Let L be a line of H at distance 3 from x,
and let M be opposite L and also at distance 3 from x. We claim that 〈πx, L,M〉 =: V
is 5-dimensional. Indeed, if z is incident with L and polycollinear with x, then M is
not contained in ξz, but the 4-dimensional space U = 〈πx, L〉 belongs to ξz. Whence our
claim. It follows that the space U ′ generated by L, M and xa, where a (= x is a point of
H at distance 3 from both L and M , is at least 4-dimensional. As U ′ is contained in both
ξx and ξa, it must be 4-dimensional. Varying a over the set of points at distance 3 from
both L and M , we obtain all hyperplanes ξa of PG(6, q) containing U ′. Hence every point
of H is at distance at most 4 of at least one such point, hence q is even by the previous
lemma, a contradiction. The theorem is proved. !
The previous theorem is not true in the even case. Without proof, we mention that there
is a counterexample for q = 2.

Also remark that the property for s even stated in Lemma 5.2 characterizes the finite
Moufang hexagons of order (s, t), s ∈ {t, t3} even. Indeed, in Govaert [1997], it is
shown that, if in a finite thick generalized hexagon H every two opposite lines L and M
have the property that any point x is not opposite at least one point at distance 3 from
both L and M , then H is classical of order (s, t) with s ∈ {t, t3}, and with s even.

References

[1996] Abramenko, P., Twin buildings and applications to S-arithmetic groups, Lect.
Notes Math. 1641, Springer.

[1997] Abramenko, P. and H. Van Maldeghem, Connectedness of opposite-flag ge-
ometries in Moufang polygons, in preparation.

[1996] Bon, J. van, H. Cuypers and H. Van Maldeghem, Hyperbolic lines in
generalized polygons, Forum Math. 8, 343 – 362.

24



[1993] Brouwer, A. E., The complement of a geometric hyperplane in a generalized
polygon is usually connected, in Finite Geometry and Combinatorics, Proceedings
Deinze 1992 (ed. F. De Clerck et al.), Cambridge University Press, London Math.
Soc. Lecture Note Ser. 191, 53 – 57.

[1979] Cameron, P. J. and W. M. Kantor, 2-transitive and anti-flag transitive col-
lineation groups of finite projective spaces, J. Algebra 60, 384 – 422.

[1985] Cohen, A. M. and J. Tits, On generalized hexagons and a near octagon whose
lines have three points, European J. Combin. 6, 13 – 27.

[1993] De Smet, V. and H. Van Maldeghem, Ovoids and windows in finite general-
ized hexagons, in Finite Geometry and Combinatorics, Proceedings Deinze 1992
(ed. F. De Clerck et al.), Cambridge University Press, London Math. Soc. Lecture
Note Ser. 191, 131 – 138.

[1997] Govaert, E., A combinatorial characterization of some finite classical generalized
hexagons, J. Combin. Theory Ser. A 80 (2), 339 – 346.

[1981] Haemers, W. H. and C. Roos, An inequality for generalized hexagons, Geom.
Dedicata 10, 219 – 222.

[1988] Knarr, N., Projectivities of generalized polygons, Ars Combin. 25B, 265 – 275.

[1980] Ronan, M. A., A geometric characterization of Moufang hexagons, Invent.
Math., 57, 227 – 262.

[1976] Thas, J. A., A restriction on the parameters of a subhexagon, J. Combin. Theory
Ser. A 21, 115 – 117.

[1995] Thas, J. A., Generalized polygons, in Handbook of Incidence Geometry, Build-
ings and Foundations, (ed. F. Buekenhout), Chapter 9, North-Holland, 383 – 431.

[1977] Thas, J. A. and F. De Clerck, Partial geometries satisfying the axiom of Pasch,
Simon Stevin 51, 123 – 137.

[1996a] Thas, J. A. and H. Van Maldeghem, Orthogonal, symplectic and unitary
polar spaces sub-weakly embedded in projective space, Compositio Math. 103,
1 – 19.

[1996b] Thas, J. A. and H. Van Maldeghem, Embedded thick finite generalized
hexagons in projective space, J. London Math. Soc. (2) 54, 566 – 580.

[19**a] Thas, J. A. and H. Van Maldeghem, Lax embeddedings of polar spaces in
finite projective spaces, to appear in Forum Math..

25



[19**b] Thas, J. A. and H. Van Maldeghem, Lax embeddings of generalized quad-
rangles in finite projective spaces, submitted.
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