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Abstract. In this paper, we introduce the-adic Moufang condition for hyperbolic buildings of
rank 3. It is the most obvious and simplest generalization optlaglic Moufang condition for affine
buildings, introduced in Part Ill of this sequence of papers. We showptigvery restricted, which
confirms (but does not prove) the conjecture thapradic analogue is possible for the construction
of Moufang (hyperbolic) buildings by Ronan and Tits.
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1. Introduction

In the previous parts of this paper, we have characterized several classes of rank 3
affine Bruhat-Tits buildings (the ‘classical’ examples of such buildings) by
assumptions on the automorphism group. One of the conditions wgs-#laéc
Moufang condition, which is in a way complementary to the usual Moufang con-
dition in that it is satisfied by affine buildings over local fields with a character-
istic different from its residue field, whereas the usual Moufang condition implies
that the local field has the same characteristic as its residue field (see, e.g., Van
Maldeghem and Van Steen [8]).

An open problem in the theory of affine buildings is whether phadic build-
ings can be constructed in a similar way as the Moufang affine buildings in Ronan
and Tits [2]. Such a construction would probably give risepeadic’ hyperbolic
(and other types of) buildings. In the present paper, we have tried to give the
simplest generalization of the notion pfadic Moufang to compact hyperbolic
rank 3 buildings (i.e., the rank 2 residues are not trees). We show that in thig case
is very restricted, which makes it very unlikely that such hyperbolic buildings exist.
This, in turn, makes it very unlikely that g-adic analogue to the construction of
Ronan and Tits [2] exists. At the same time, some geometric insight is gained in
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the structure of hyperbolic buildings of rank 3, which is the second motivation for
this paper.

We will view the apartments of a hyperbolic building of rank 3 as tessellations
of the hyperbolic plane into congruent triangles (the latter are the chambers). The
notion of ap-adic Moufang building in the affine case requires the notion of par-
allel walls, hence we will have to define this in the hyperbolic case, too. Also,
we will view the hyperbolic plane itself as the points inside the unit citClen
a(n oriented) Euclidean real plaiie The lines are the parts of the lines through
the center ofC inside C, and also the parts of the circles Bfinside C meeting
C perpendicular. This way, it will make sense to talk about clockwise progressing
around a point (and it should be clear what is meant by it; once an orientation is
chosen, everything below will be independent of it).

Moreover, we will say that a compact hyperbolic building of rank 3 is of type
A;_;_ ifthe residues of the vertices of different type are, respectively, generalized
i-gons, j-gons and-gons.

An interesting feature that comes along with our result is that apparently the
primes 2 and 3, but also the hyperbolic buildings of tybg 4_¢ play a special
role.

2. Definitions and Statement of the Main Result
2.1. PARALLELISM IN HYPERBOLIC APARTMENTS

We denote bySt(P), for P a point in an apartment, the set of all walls of=

through P. Also, c/(P, Q), for two points P and Q lying on the same walN, is

the intersection of all half apartments containing bétand Q. It is obviously a
subset ofN (the ‘interval[ P, Q7).

DEFINITION 1. Two wallsM and N in an apartmenk of a (compact) hyper-
bolic rank 3 building areseparating wallsf they intersect as hyperbolic lines in a
hyperbolic plane.

DEFINITION 2. SupposeM andN are separating walls in some apartm&nof
a compact hyperbolic rank 3 building. Then the wallM’ is called N-parallel to
M (M'//yM) if and only if the following conditions are satisfied:

(i) M’ separatedy.

(i) Let {N = ho,...,h,_1} be the set of walls irE that are incident with the
vertex P determined by andN. Let{N = hy, ..., h,_,} be the set of walls
in X, all incident with the vertexP’ determined by’ and N. The labelling
is done in such a way that if one progresses clockwise aréufrdspectively
around P’) starting fromx, h; (i) is met just beforer; ;, (k') for all i,
O<ig<r—2(forallj,0<j<s—2).1f M =h;forsomei, 1<i <r—1,
thenM’ = 1, of {N = hg, ..., hy_j}withi/r = j/s.
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DEFINITION 3. SupposeV andN are separating walls of some apartm&nof
a compact hyperbolic rank 3 building. Then two vertices® andQ on N that are
incident (in the hyperbolic plane) with walls which a¥eparallel toM are called
(N, M)-successivef and only if none of the vertices oW \ {P, Q} that are in
cl(P, Q) contains a wallV-parallel toM.

In view of Definition 3, we introduce a new distan&g ,, (P, Q) between two
verticesP and Q on N such thatP and Q are contained in wallgv-parallel to
some wallM, with M separatingV. The value of & 5}, ,,(P, Q) is defined as the
number of vertices otV in c/(P, Q) that contain a wallV-parallel toM.

2.2. THE p-ADIC MOUFANG CONDITION

Let us denote bya the boundary of the roat in some apartment of A. We
assume that roots (or, equivalently, half apartments) are closedgi.€ «. Also,
we denote by-« the root inX oppositey, i.e.,—a = (X \ o) U dc.

DEFINITION 4. A compact hyperbolic rank 3 building satisfies thep-adic
Moufang condition(with respect to a given apartmei), p a prime, if for every
two separating wall3/ and N in X and for every rootr in X with 0o = M a
group pU («, N) exists such that the following conditions are satisfied (wh&re
is the intersection point aV and M).

(HPM1) Every element opU («, N) fixes every chamber having a panebif d«.

(HPM2) pU (o, N) acts transitively on the chambers$if(rr) \ {c}, with = a panel
in o andc the chamber ok in St (7r) (WhereSt (i) is the set of chambers
in A containingr).

(HPM3) Suppose is a panel irhe and suppose thatis the chamber ist (7)NX
notine. If g € Stab,y @, n(c), theng fixes the wallM’ of ¥ \ « that is
N-parallel toda and for whichPy and the vertex determined I3’ and
N are(N, M)-successive.

(HPM4) Supposer is a panel ima and suppose that is the chamber ofz (;7)N
Y notina. Then(pU (o, N))? = Stal,yq,n)(c’) and Stahy q,n)(c) =
pU(B, N), where O « is the root of X such thatdg is N-parallel
to da, and such that the verte® determined bydsg and N, and the
vertex P determined bya andN are(N, M)-successive.

(HPM5) If « andg are roots inz with 3o anddp separating walls, both separating
N, with ¢ N 98 N N nonempty, and withN C (o« N AU
(=) N (=p)), then[pU(a, N), pU(B, N)] < pU(le, B, N), where
pU(la, B[, N) denotes the group generated by all gropps(y, N) with
y satisfyingg N B C y and(—a) N (—B) C (—y) and withy & {«, B}. If
such a rooty does not exist, thepU (e, B[, N) is, by definition, trivial.

The set of rooty satisfyinggN g C y and(—a) N (—B) C (—y) andy ¢ {«, B},
as in (HPM5) above is sometimes itself denoted]dyB[. The conditionN C



118 H. VAN MALDEGHEM AND K. VAN STEEN

(xNB) U ((—x) N (—=B)) in (HPM5) implies that for every €lo, B[, the walldy
separatedV.

Our main result reads as follows:

THEOREM IV. In characteristic neitheR nor 3, p-adic Moufang hyperbolic rank
3 buildings of type different fromz_,_g do not exist.

Moreover, we will show that the above definition can be applied to affine build-
ings and that it precisely gives the definition pfadic Moufang affine building of
rank 3.

3. Proof of Theorem IV

LEMMA 5. If A is a thick compact hyperbolic rarik building that satisfies the
p-adic Moufang condition with respect to some apartn®enthen for every vertex
P in ¥, the residueReg P) in A is a Moufang generalized polygon.

Proof. For every rootr in ¥ such thaba containsP, and for any wallV in X
that separate8a and is incident withP, the grouppU («, N) clearly induces in
Reg P) a root group. We conclude that Ré5 satisfies the Moufang conditiom

Hence, by a result of Weiss [12] (see also Tits [5, 6]), we must only deal with
hyperbolic buildings of type\;_;_ with i, j, k € {2, 3, 4,6, 8}.

LEMMA 6. If A is a p-adic Moufang building of type,; _;_, then8 & {i, j, k}.
Proof. Since Moufang octagons only exist in characteristic 2 (see Tits [7]), itis

clear thatp = 2. But byloc. cit., every Moufang octagon has root collineations of

order 4, hence Condition (HPM4) can never be satisfied. O

A crucial tool is the following well-known and elementary result in group theory.

LEMMA 7. Supposeg and h are arbitrary elements of some group. If

[[g, k], h] = [lg, hl, g] = 1, then[g", h*] = [g, h]".
Proof. See Gorenstein [1] (Lemma 22(i)). O

LEMMA 8. SupposeA is a thick compact hyperbolic rark building satisfying
the p-adic Moufang condition with respect to some apartm&nin A. Let «
and 8 be different roots inz such that]e, B[= {y}, for some rooty in X, then
[g” h?'] = [g, h]""", forall g € pU(a, N), for all h € pU(B, N), and for all
natural numbers, ;.

Proof. SinceA satisfies (HPM5), we have the relations

[pU(a, N), pU(B, N)] < pU(y, N),

[pU(y,N), pU(a, N)]=1 and [pU(y,N), pU(B,N)]=1.
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Hence[[g, h], g] = 1and[[g, k], ] = 1. The result now follows from Lemmaiz.

For the remaining proofs of this section, we assumeIhata given apartment
of a rank 3 compact hyperbolic buildint, and thatA satisfies thep-adic Moufang
condition with respect t&. We further denote byv; and N, two separating walls
in X. The intersection point aV; with N, is denoted byP.

The label of a pointQ; on N; (i € {1,2}) ism (¢ N) if ReQ;) in Ais a
generalizedn-gon. In the pictures, we sometimes (also) denote the points by their
labels.

SupposeD; is a point ofN; (i € {1, 2}) and suppose that R@3;) is a general-
izedm-gon for a specific value oft > 2. Then we let], ..., ), be roots inT
(in a natural clockwise cyclic order) the boundary of every one of them containing
Q;, as in Figure 1.

Suppose R€®) is a generalizedn-gon for somem in {2, 3,4, 6}. Then we
denote byU,, ..., U,, the root groups (in a natural cyclic order) in the apartment
of Req P) determined bye. Note that the walls corresponding to these root groups
can be identified with the walls af in X throughP. Hence, we can choose indices
in such a way that/; corresponds witle";, 1 < j < 2m. We then note thal/; is
induced bypU(aj., N;), and hence independent of the (suitable) wallthrough

THEOREM 9. No p-adic Moufang rank3 building of typeAs_sz 4 exists forp #
2.

Proof. The wall N, contains vertices with label 3 and 4. LBtand Q be two
vertices onN; labelled 4 and at minimum distance. Letand g’ be arbitrary
elements ofpU (a1, N1) respectivelypU (a3, N1) inducing nontrivial elements in,
respectively,U; and Uz as in Figure 2, where the shaded aread/pfand U;
mark the respective rootg; and «sz. Then by Condition (HPM4), an element
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h € pU(ai, N1) and an elemeng € pU (a3, N1) exist such that’ = h? and
g = gP. By Lemma 8, we havén?, g”] = [h, g]f’z, hence[h’, g'] = 1 is re-
stricted to Re&P), becausdh, g]f’2 fixes the ‘second’ wall (drawn in dashes in
Figure 2)N;-parallel toda?. By the arbitrary choice of’ andg’, we conclude that
[U, Us] = 1. Similarly, replacingV; by N,, one show$U,, Us] = 1. By Tits [4],
p=2. O

In a similar way we prove the following theorem:

THEOREM 10. No p-adic Moufang rank3 building of typeAsz_4 4 Or Agq_4_4
exists forp # 2.

This takes care of all cases with no residue isomorphic to a generalized hexagon.

THEOREM 11. No p-adic Moufang rank3 building of typeA,_4 ¢ exists for
p#3

Proof. We use similar notation as in the previous proof, except that we now
assume that the walV, contains vertices labelled 2 and 6, agd and P are
vertices of Ny with label 6 and at minimum distance. Note that there is a unique
vertex labelled 2 in P, Q1], and through that vertex there is a unique wall distinct
from Ny, and that wall isV;-parallel tode3. Leth’ andg’ be arbitrary elements of,
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respectivelypU (a1, N1) and pU (a3, N1) (corresponding with the root groupg
andUs respectively, see Figure 3).

Using Condition (HPM4), an elemeit € pU(ai, N;) and an element €
pU (a3, N1) exist such that’ = h? andg’ = g”2 (the square of appears here
because there is aM;-parallel wall betweerd«} and das — the latter through?
corresponding witt/3 — namely one through the point labelled 2). By Lemma 8
we obtain[h?, g”z] = [h, g]l’s, and so, restricted to ReR), we havelh/, g’'1 = 1.
This implies[U,, Us] = 1.

A similar argument using the walV, (see Figure 3), which contains vertices
labelled 6 and 4, implied/,, Us] = 1. This implies thap = 3, see Tits [3]. O

In a similar way we prove the following theorem:

THEOREM 12.No p-adic Moufang raniB building of typeA,_¢_6 (a € {2, 3, 4, 6})
Or Az 3.6 0r Ay_4_g €Xists forp £ 3.

This shows Theorem |V.

4. The p-adic Moufang Condition Applied to Irreducible Affine Rank 3
Buildings

In the affine case, separating walls in an apartmeate walls that are nonparallel

in the Euclidean plane. It is easily seen tiaparallel walls are just parallel walls,

for allwalls N. Now it is also easily seen that the convex closure of a half apartment
a and a chamber having a panel in common wighis a half apartment’ such
that d« is parallel withde’ and both walls are at minimum distance (i.e., there is
no wall parallel tod« in the closure oba andda’).

In view of these remarks, it is now easy to see that condition (HPM3) is super-
fluous in the affine case, and that the notiorpeddic Moufang introduced in this
paper and applied to affine rank 3 buildings is equivalent to the notion of affine
p-adic Moufang buildings of rank 3 introduced by the second author in Part IlI
[11].
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