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Abstract

We study the question: what is the smallest number n of subquadrangles of order (s; t′) of a
�nite generalized quadrangle � of order (s; t) such that the union of the point sets of all these
subquadrangles is equal to the point set of �? It turns out that n¿s + 1 and if n= s + 1, then
except for a �nite list of small examples, either all the subquadrangles are disjoint, or

√
t= s= t′

and all the subquadrangles meet pairwise in a common subquadrangle of order (s; 1). Examples
exist in both cases and they show that a further classi�cation is out of reach. A similar result
holds for �nite polar spaces. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction, notation and statement of the results

A �nite generalized quadrangle of order (s; t), s; t¿1, is a point-line geometry
�=(P;L; I) (where we treat the incidence relation I as a symmetric relation) satisfying
the following axioms:
(GQ1) each point is incident with 1 + t lines and two distinct points are incident

with at most one line;
(GQ2) each line is incident with 1+ s points and two distinct lines are incident with

at most one point;
(GQ3) if x is a point and L is a line not incident with x, then there is a unique pair

(y;M) ∈ P×L for which xIM IyIL.
Generalized quadrangles were introduced by Tits [8]. The above de�nition is taken

from Payne and Thas [4].
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A subquadrangle �′ = (P′;L′; I′) of a given generalized quadrangle � = (P;L; I)
is a generalized quadrangle for which P′ ⊆P, L′ ⊆L and I′ is the restriction of
I to (P′ × L′) ∪ (L′ × P′). Let us de�ne a large subquadrangle of a generalized
quadrangle of order (s; t) as a subquadrangle of order (s; t′) with t′¡t, i.e., they are
‘large’ with respect to the point set (a large subquadrangle in this sense is often called
a full subquadrangle). Natural questions are
(1) whether a given generalized quadrangle has a (large) subquadrangle;
(2) are there restrictions on the orders of a quadrangle and a (large) subquadrangle;
(3) how many large subquadrangles do we need to cover a generalized quadrangle?
Considerable attention is always given to the �rst question when a new class of

quadrangles is discovered. The second question has been solved by Thas [5] and the
answer is as follows, see also Payne and Thas [4].

Theorem 1 (Thas [5]). Let � be a generalized quadrangle of order (s; t). If � con-
tains a large subquadrangle �′ of order (s; t′); then t¿st′. If t′¿ 1; then t¿

√
s3. If

t = st′; then every line of � not in �′ is incident with a unique point of �′. If �′

contains a large subquadrangle of order (s; t′′); then t′′ = 1; t′ = s and t = s2.

In the present paper, we give a fairly general answer to the third question. For short,
we say that a generalized quadrangle is the union of n large subquadrangles if its point
set is the union of the point sets of n large subquadrangles. Our main result is:

Theorem 2. Let � be a generalized quadrangle of order (s; t) with s; t ¿ 1. Then
� cannot be the union of fewer than s + 1 large subquadrangles. Also; if � is the
union of s+1 subquadrangles; then; if s¿ 2; these subquadrangles all have the same
order (s; t′); and one of the following holds (denoting by S the set of s + 1 large
subquadrangles):

(i) the point set of � is the disjoint union of the points sets of the members of
S; and t′ = (t − 1)=(s+ 1);
(ii) there exists a large subquadrangle �∗ of order (s; 1) such that every two mem-

bers of S meet precisely in �∗. Every member of S has order (s; s); and t = s2;
(iii) (t′; s; t)=(2; 4; 8); every two members of S meet in the nine points of an ovoid

in both members; there are exactly 30 points of � which lie in at least two members
of S and every such point lies in exactly 3 members; every member contains exactly
18 points which lie in three members of S and no line is contained in at least two
members of S;
(iv) (t′; s; t)=(1; 3; 3) and there are exactly two non-isomorphic examples; one with

no line of � in at least two members of �; and the other with two unique concurrent
lines contained in 3 members of �.
(v) (t′; s; t)= (10; 15; 160) and there exists a line L of � such that every two mem-

bers of S meet precisely in L.

There are plenty of examples for the �rst two cases. In fact, for case (i), every
known generalized quadrangle � of order (s; s+ 2) has at least s+ 2 di�erent sets of
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s+1 large subquadrangles of order (s; 1) whose union is �. Indeed, every known such
quadrangle arises from a quadrangle �′ of order (s + 1; s + 1) by deleting a regular
point p, all points collinear with p and all lines through p, and adding as new lines all
traces containing p (a trace is the set of points collinear with two given non-collinear
points). The set of points of � collinear in �′ with a given point x of �′\�; x 6= p,
is easily seen to be the point set of a large subquadrangle of �. Varying x over some
�xed line L of �′ through p, we obtain a partition of the point set of � into large
subquadrangles. Varying L, we obtain s+ 2 such partitions.
For case (ii), it is enough to have a regular line for which the corresponding dual

net satis�es the axiom of Veblen, see Thas and Van Maldeghem [7]. Examples in-
clude the classical quadrangles Q(5; q), the Tits quadrangles T3(O) (for O an ovoid in
three-dimensional projective space), the generalized quadrangles discovered by Kantor
[2], and the dual of the Roman generalized quadrangles discovered by Payne [3].
Concerning case (iii), an example exists which is the smallest case of a covering of

H (4; q2) by a set of 2q2 − 2q + 1 large subquadrangles isomorphic to H (3; q2). It is
not known whether or not case (v) occurs.
Applied to the classical quadrangles Q(5; q) and generalized to �nite polar spaces

of arbitrary (�nite) rank, we obtain (with similar de�nitions for polar spaces as for
quadrangles above):

Theorem 3. Let � be a �nite polar space of rank r naturally embedded in PG(d; q).
Suppose that � is the union of k6q + 1 large polar subspaces of rank r; and that
q¿ 2 if r = 2. Then k = q+ 1 and either r = 2 and one of the cases (iii) or (iv) of
Theorem 2 holds (where for case (iii) the quadrangle � is isomorphic to H (4; 4)); or
� is an elliptic quadric and there exist q + 1 hyperplanes of PG(d; q) containing a
(d− 2)-dimensional space U such that each hyperplane meets � precisely in a large
polar subspace (which is a parabolic quadric). Also; U meets � in a large polar
subspace of rank r (which is a hyperbolic quadric).

Hence one can see that the fact that makes it possible to write an elliptic quadric in
d-dimensional projective space as the union of (q+1) subquadrics is strongly related to
the fact that there exist (hyperbolic) quadrics of the same rank in (d− 2)-dimensional
projective space.
Let us mention here that Peter Johnson (unpublished) proves related results, allowing

also in�nite polar spaces of possibly in�nite rank.
Finally, we mention a corollary, which gives a characterization of the quadrangles

of Kantor mentioned above. For the de�nition of ock quadrangle, we refer to e.g.
Thas [6].

Corollary. Let � be a ock quadrangle of order (q2; q); q odd; with elation point
(∞). Then � is isomorphic to the ock quadrangle of Kantor; or to the classical
quadrangle H (3; q2) if and only if the dual of � is the union of q+ 1 large subquad-
rangles all containing (∞).
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2. Proof of Theorem 2

Let � be a �nite generalized quadrangle of order (s; t); s; t¿2. Suppose that S is
a set of n large subquadrangles whose union is �.

Lemma 4. We have n¿s+ 1.

Proof. Suppose by way of contradiction that n6s. Let L be any line of �. Since there
are s+1 points incident with L, there must be at least two points of the same member
of S on L; hence, L belongs to at least one member of S. So we have the inequality

s(1 + t′)(1 + st′)¿(1 + t)(1 + st):

Since t¿st′, this implies s + t¿1 + st¿1 + 2t, hence s¿ t, in contradiction with
t¿st′¿s.

From now on we assume that n= s+ 1.

Lemma 5. If a point of � is contained in at least two members of S; then every line
of � incident with x is a line of some member of S.

Proof. Let S′ ⊆S be de�ned such that x is contained in every member of S′ and
in no member of S\S′ and suppose that S′ has cardinality ‘¿ 1. Let M be a line
through x not belonging to one of the members of S. Then the s + 1 − ‘ elements
of S\S′ have to cover the s points on M distinct from x. This is only possible if at
least one member covers at least two points, hence M is contained in some member
�M of S\S′.

The following lemma is crucial.

Lemma 6. If every point of some line L of � is contained in at least two members
of S; then either s= 2; or L is contained in at least s members of S.

Proof. Suppose that the line L of � is contained in ‘¿1 members of S, which we
gather in the set S′ ⊆S (note that indeed ‘¿1 by the previous lemma). Let x be
any point on L. There are at most ‘t′ lines through x distinct from L and belonging
to one of the members of S′, where

t′ =max{t∗| some member of S has order(s; t∗)}:
Let M be a line through x not belonging to one of the members of S′. Then by
Lemma 5 M is contained in some member �M of S\S′. Suppose some other line
M ′ concurrent with L is also contained in �M . If M ′ is not incident with x, then this
implies that L is in �M , a contradiction to our assumptions. Therefore, M ′ is incident
with x. Since there are at least t − ‘t′ lines through x not contained in any member
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of S′, there are at least (t − ‘t′)=(t′ +1) members of S\S′ containing x. Varying x,
this gives us a total of at least

‘ +
(t − ‘t′)(s+ 1)

t′ + 1
elements of S. Expressing that this is at most equal to s+ 1, we obtain after a short
calculation

l¿
(t − t′ − 1)(s+ 1)

st′ − 1 ;

which, using t¿st′, simpli�es to

‘¿s− t′ + 1
st′ − 1 :

Noting that t′ +1¿st′ − 1 (which is equivalent with (s− 1)t′62) if and only if s=2
or 3, we are done if s¿ 3. Suppose now that s = 3 and ‘¡ 3. Then t′ + 1¿3t′ − 1,
hence t′=1 and ‘=2. Consequently, equality holds in the above expressions, implying
�rst that t= st′=4, and second that each x is contained in exactly (t−‘t′)=(t′+1)= 1

2
members of S\S′, a contradiction.

We now treat some special cases.

Lemma 7. If all members of S have order (s; 1); then either s= t=2; or s= t=3; or
t = s+ 2 and S forms a partition of the point set of �.

Proof. Since all points of � must be covered, we have

(s+ 1)3¿(s+ 1)(1 + st):

This implies 2s+ s2¿st, hence t6s+ 2. By the divisibility condition s+ t | (1 + st)st
(see Payne and Thas [4, 1.2.2]), t 6= s+ 1. Hence t = s+ 2 or t = s. If t = s+ 2, then
the assertion follows from the equality (s+ 1)3 = (s+ 1)(1 + st). So we may suppose
that s = t. Note that every line of � meets every member of S in exactly one point
if it is not contained in it (this follows from Theorem 1).
(i) First suppose that some line L of � is contained in ‘¿ 1 members of S. Since

this implies that all points of L are contained in at least two members of S, we
conclude with Lemma 6 that L is contained in at least s members of S. Let S′ be
the set of elements of S containing L.
Assume �rst that s¿4 and ‘= s. If every line of � concurrent with L is contained

in a member of S′, then every point is in a member of S′, contradicting Lemma 4.
So there exists a line N meeting L not contained in a member of S′. But that means
that two members of S′ share a line L′ 6= L incident with the meeting point y of
L and N . Again, L′ is contained in at least s members of S. Suppose �rst that it is
contained in precisely s members, which we gather in S′′. Then clearly |S′ ∩S′′| is
either s or s − 1. In the �rst case, the s − 1 lines through y distinct from L and L′

must lie in the unique element of S\S′; in the second case these s − 1 lines must
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lie together with L and L′ in one of the members of S\(S′ ∩S′′). In either case we
deduce s − 162, or s = 3, a contradiction. Now, suppose that L′ is contained in all
members of S, then we interchange the roles of L and L′ in the next paragraph.
So assume now that s¿4 and ‘ = s + 1. Let x be any point on L. Then some line

K 6= L through x is also contained in at least s members of S. At most one member
remains to cover the points of � collinear with x and not incident with L or K , and
that member also contains L. Hence s= 2.
(ii) Now, suppose that no line of � lies in two distinct members of S. It follows

readily from Lemma 5 that any point x which is contained in at least two members of
S, lies in exactly (s+ 1)=2 members of S.
Now, consider any line M contained in some member of S, say, �′. Every member

of S\{�′} meets M in exactly one point. But every point de�nes exactly (s − 1)=2
members of S\{�′}. Hence s is odd and 2s must be divisible by s− 1, which implies
that s= 3.
This completes the proof of the lemma.

Lemma 8. If at least one member of S has order (s; t′) with t′¿ 1; and if two
collinear points x; y of � lie each in at least two members of S; then all points of
the line joining x and y do; or s= 2; or (t′; s; t) = (2; 4; 8).

Proof. Suppose z is a point of the line L of � incident with both x and y, with the
property that it lies in a unique member �′ of S, and suppose that x, respectively,
y is contained in two members of S, say �1 and �2, respectively, �3 and �4. By
Lemma 5, we may assume that L belongs to �1, and similarly to �3 as well. This
implies that �1 = �3 = �′ (otherwise z is contained in at least two members of S).
Let M be a line through x not belonging to �1. Remark that by Lemma 5 every line
through x lies in some member of S.
Let t′ be the largest number such that S contains a member of order (s; t′). Then

it is clear that x lies in at least
t − t′
t′ + 1

members of S\{�′}. We now show that, provided s¿ 2 and s 6= 4, this is more than
half of the members of S\{�′}, i.e., we show that

t − t′
t′ + 1

¿
s
2
:

Suppose on the contrary that

t − t′
t′ + 1

6
s
2
:

Then 2t−2t′6st′+s. From Theorem 1, we infer t¿st′, hence 2t−2t′6t+s. Multiplying
with s, we obtain st − 2t6s2. Since we may suppose that t′¿ 1 and s¿ 2, we use
t¿

√
s3 (see Theorem 1) to obtain s − 26√

s, which implies after a short calculation
(s−4)(s−1)60. Hence s=3; 4, disregarding the case s=2. If s=3, then automatically
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t′=3 and hence, since t¿st′, t=9. But in this case there are at least (t−t′)=(t′+1)= 3
2 ,

hence 2 members of S\{�′} containing x.
If s = 4, then since (s − 4)(s − 1) = 0, equality holds in every equation above, so

(t′; s; t) = (2; 4; 8).
If s¿ 2 and (t′; s; t) 6= (2; 4; 8), then we similarly deduce that y is contained in more

than half of the members of S\{�′}. Hence at least one member of S\{�′} contains
both x and y and hence L is contained in at least two members of S, therefore also
z is.

Lemma 9. Suppose that at least one member of S has order (s; t′) with t′¿ 1 and
that st ¿ 9. If (t′; s; t) 6= (2; 4; 8); then one of the following holds:

(i) no line of � is contained in at least two members of S;
(ii) all members of S have the same order; (t′; s; t) = (s; s; s2) and there exists a

large subquadrangle �∗ of order (s; 1) such that the intersection of any two members
of S is exactly �∗;
(iii) there is a unique line L of � belonging to at least two members of S. In this

case L belongs to all members of S and (t′; s; t) = (10; 15; 160).

Proof. We may assume that there exists a line L contained in at least two members
of S. By Lemma 6, L is contained in ‘¿s members of S. Suppose �rst that ‘ = s.
Let �′ be the unique element of S not containing L. Let u be any point of � not on
L, and not contained in any member of S\{�′} (u exists by Lemma 4). Let Lu be the
unique line of � through u meeting L. Then the s points of Lu not on L all belong to
�′ (since if one such point belongs to a member �′′ of S\{�′}, the line Lu and hence
the point u also belongs to �′′), and hence so does Lu. So there exists a point x on L
(namely, the intersection of L and Lu) contained in �′. It is easily seen that there is
at least one other point z in �′ not collinear with x. Let M be the line of � through
z and meeting L. Since M is not incident with x, the line M belongs to a member
of S\{�′}. But that means that z is contained in at least two members of S. By
Lemmas 8 and 6, the line M , and hence the point z belongs to at least s members of
S. We can do this reasoning with every point of �′ collinear with z, but not collinear
with x. But by Lemma 8, this property also holds for all points of �′ collinear with
x. Hence all points of �′ are contained in at least s members of S. Deleting �′ from
S, we obtain a contradiction to Lemma 4.
Now, suppose that L is contained in exactly s+ 1 members of S. By the previous

paragraph, we may assume that every line which is contained in at least two members
of S, is contained in all members of S. Let x be any point on L. Let C be the
number of lines through x contained in all members of S. Then, since by Lemma
5 every line through x is contained in either 1 or all members of S, C satis�es the
equation (s+ 1)C + (s+ 1− C) = �, where � is the sum of all t∗ + 1 such that (s; t∗)
is the order of a member of S. Hence C is a constant. If C¿ 1, then the set of all
points lying in all members of S forms a large subquadrangle �∗, which is also a
large subquadrangle of any member of S. Now (ii) follows from Theorem 1.
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So we may assume that C = 1. Then, clearly, there is a unique line L contained in
all members of S and every point of � contained in at least two members of S is
incident with L. Let �′ ∈S have order (s; t′). Let R be the set of all lines of � not
contained in any member of S. Then every element of R is incident with a unique
point of every element of S, hence with a unique point of �′. Conversely, every point
of �′ not incident with L is incident with exactly t − t′ elements of R. So the set
R has size (1 + s)st′(t − t′). Similarly, if �′′ ∈S has order (s; t′′), then R has size
(1 + s)st′′(t − t′′). It follows that t′(t − t′) = t′′(t − t′′), therefore either t′ = t′′ or
t′ + t′′ = t. In the latter case, we consider a point of L and deduce from C = 1 and
Lemma 5 that S = {�′; �′′}, so s = 1, a contradiction. We conclude that t′ = t′′, so
all members of S have the same order (s; t′). If x is incident with L, then every line
through x distinct from L belongs to exactly one member of S, so we deduce from
this that (1 + s)t′ = t.
We now show that the parameter set (t′; s; t)=(t′; s; t′+ st′) is never feasible, except

for (t′; s; t)=(10; 15; 160). Indeed, we must have s+ t | (1+ st)st, which is readily seen
to be equivalent with s + t | (s2 − 1)s2. Let k be the greatest common divisor of s2
and s + t. Let pi divide k, with p prime and i maximal. Let pj divide s, with j6i
maximal. Then pj divides t=(1+s)t′, and so pj divides t′. It follows that p2j divides
st′, so pi divides s+ t− st′= s+ t′ (because i62j). We conclude that k divides s+ t′.
Suppose �rst that k6(s+ t′)=3.
Note that s+ t = s+ (1 + s)t′ and s+ 1 are relatively prime. Hence (s+ t)=k must

divide s−1. However, the greatest common divisor of s−1 and s+ t′+ st′ is a divisor
of (s− 1)+1+ t′+(s− 1)t′+ t′, hence of 1+2t′. Consequently, (s+ t)=k must divide
1 + 2t′. So we obtain

1 + 2t′¿
s+ t′ + st′

k

¿
s+ t′ + st′

s+t′
3

¿ 3 + 3
st′

s+ t′
;

which implies 2t′2¿2s+ 2t′ + st′. This is only possible if 2t′¿2 + s.
On the other hand, we also have

s− 1¿ s+ t′ + st′

k

¿ 3 + 3
st′

s+ t′
;

which implies that s2¿2st′+4s+4t′. Using the inequality 2t′¿2+ s, this means that
s2¿s2 + 8s + 4, a contradiction. Hence we have shown that k = s + t′ or k = (s +
t′)=2. Moreover, we have shown that, if T = [(1 + 2t′)(s + t′)]=(s + t′ + st′)¿3, then
S = [(s− 1)(s+ t′)]=(s+ t′ + st′)¡ 3.
First, let k = s + t′. Then (s + t′ + st′)=(s + t′) divides both s − 1 and 1 + 2t′.

Hence both S and T (de�ned above) are positive integers. We �rst show that T¿3.
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Indeed, the only other possibilities are T = 1 and 2. If T = 1, then one calculates that
st′ +2t′2 = 0, a contradiction. If T =2, then one computes that 2t′2 = s+ t′, and since
s6t′2, this implies t′26t′, so t′ = 1 = s, a contradiction. So we must have S = 1 or
2. If S = 1, then an elementary calculation shows s2 = 2s + 2t′. Since t′¡s (indeed,
t′ = s implies t ¿ s2), we have s2¡ 4s, so s = 2 (because s must clearly be even).
But now t′ = 0 follows, a contradiction. Suppose now S = 2. Then s2 = 3s+ 3t′ + st′.
Hence the quadratic equation s2 − (3 + t′)s− 3t′ = 0 in s has an integer solution. The
discriminant is, however, t′2 + 18t′ + 9 = (t′ + 9)2 − 72. So the square root d of the
discriminant satis�es t′ +3¡d¡t′ +9. If d= t′ + i, with i=4; 6; 8, then t′ is not an
integer. If d= t′ + 5, then t′ = 2 and s= 6, a contradiction. If d= t′ + 7, then t′ = 10,
s= 15 and t = 160 and all divisibility conditions are satis�ed.
Now, suppose that k = (s + t′)=2. Then both S and T must be even integers. But

T 6=2 as above, hence S=2. This again implies (t′; s; t)=(10; 15; 160), except that this
cannot happen now since it means that s+ t′ is odd.

Lemma 10. Suppose that at least one member of S has order (s; t′) with t′¿ 1;
that st ¿ 9 and that (t′; s; t) 6= (2; 4; 8). If no line of � is contained in at least two
members of S; then (the point set of ) � is the disjoint union of (the point sets of)
the members of S and (t′; s; t) = (t′; s; st′ + t′ + 1).

Proof. Let R be the set of points of � contained in at least two members of S. Let
x ∈ R. Assume that x is not contained in all members of S and let �′ be a member
of S not containing x. Let y be a point of �′ collinear with x. By Lemma 5, the line
xy belongs to some member of S. Clearly, xy does not belong to �′ since otherwise
x would belong to �′. So xy belongs to another member, which implies y ∈ R. By
Lemmas 8 and 6, the line xy belongs to at least two members of S, a contradiction.
Hence x belongs to all members of S.
Now, let z be a point of � not belonging to R. Then z is contained in a unique

member �1 of S. Consider two members �2 and �3 of S with �1 6= �2 6= �3 6= �1.
Let �i have order (s; ti), i=1; 2; 3. The number of points of �j, j=2; 3, collinear with z
is 1+stj (since this set forms an ovoid in �j). Every line through z not in �1 meets �j,
j=2; 3, because every such line is contained in no member of S and therefore cannot
contain two points of the same member. Hence there are precisely 1 + stj − (t − t1)
lines of �1 through z meeting �j, or in other words, there are precisely 1 + stj −
t + t1 elements of R collinear with z. Since this number should be independent of j,
we conclude t2 = t3. It is now easy to see that all members of S have the same
order (s; t′).
There remains to show that R is empty. Suppose it is not empty. Then by Lemma 5

we have (s + 1)(t′ + 1) = t + 1. Let z, �1 and �2 be as above. Remember that there
are precisely 1 + (s+ 1)t′ − t elements of R collinear with z. In view of the equality
(s+ 1)(t′ + 1) = t + 1, this number becomes 1− s, a contradiction.
The lemma is proved.
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All we still have to consider are the small cases, i.e., the cases st ¡ 9 and
(t′; s; t) = (2; 4; 8).

Lemma 11. If (s; t) = (4; 8); then every member of S has order (4; 2); every two
members of S meet in the nine points of an ovoid in both members; there are
exactly 30 points of � which lie in at least two members of S and every such point
lies in exactly 3 members; every member contains exactly 18 points which lie in three
members of S and no line is contained in at least two members of S.

Proof. Note that by counting the points, there are at least 2 members of S of order
(4; 2). Since every possible subquadrangle of � has either order (4; 2) or order (4; 1),
and since 45+45+25+25+25=165, we see that, if S contains exactly two members
of order (4; 2), then the point set of � is the disjoint union of the point sets of the
elements of S. But similarly as before, we count in two ways the number of lines
not belonging to any member of S. Starting with the points of a member of S of
order (4; 2), we obtain 45 × 6 = 270; starting with the points of a member of S of
order (4; 1), we obtain 25× 7 = 175, a contradiction. Hence S contains at least three
members of order (4; 2) and there exists at least one point of � lying in at least two
members of S. Let D be the set of all such points.
(i) First suppose that no line of � is contained in at least two members of S. We

showed that D is non-empty. By Lemma 5, we can now write 9 as the sum of a
number of 3’s and at most two 2’s. So clearly only 3’s are possible, hence no element
of D belongs to a member of S of order (4; 1). Hence, again, the number of lines of
� which do not belong to any member of S is equal to 25 × 7 = 175, provided S

contains an element of order (4; 1). So 175 = d × 6, where d is de number of points
of a member of S of order (4; 2) not belonging to any other member of S. Since 6
does not divide 175, this leads to a contradiction. Therefore, all members of S have
order (4; 2). Also, the number of points of such a member of S not belonging to any
other member of S must be a constant d. And so there are exactly 6d lines of � not
contained in any member of S. Counting all lines of �, we obtain

297 = 6d+ 5× 27;
hence d=27. Counting the number of pairs (x; �′), where x is a point of �′ ∈ S and
x lies in at least two (and hence exactly in three) elements of S, we obtain that the
number of points contained in three members of S is equal to

5× (45− d)
3

= 30:

Note that, since t = st′, with (t′; s; t) = (2; 4; 8), every line of any member of S meets
every other member of S in a point. Hence two members meet in an ovoid of both
members. Since d=27, there are 45− d=18 points of each member of S belonging
to three members of S.
(ii) Now, suppose that there exists a line L of � belonging to at least two members

�1 and �2 of S = {�1; �2; �3; �4; �5}. Since every line through every point of L
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must belong to some member of S (by Lemma 5), and these members have either
order (4; 2) or (4; 1), we deduce that every point of L is in at least two members of
{�3; �4; �5}. Since L is incident with 5 points, at least one pair must appear twice, so
we have shown that L lies in at least 4 elements of S, say, �1; �2; �3 and �4.
(a) First, suppose that L does not lie in �5. If no line of �5 meets L, then we

consider any pair of collinear points x; y with xy concurrent with L, and such that L
is incident with neither x nor y. If both x and y belong to �5, then xy belongs to �5,
a contradiction. Hence we may assume that x does not belong to �5. Consequently,
x belongs to, say, �1. But then also the line xy and the point y belong to �1. We
conclude that in this case � is the union of S\{�5}, contradicting Lemma 4. So
there is a unique point x on L incident with some lines of �5. We claim that every
line M meeting L not in x is contained in a unique element of S\{�5}. Indeed, M
is contained in at least one such element and the order (4; t′) of �i, i ∈ {1; 2; 3; 4},
satis�es t′62. So 2× 4= 8 implies that �i has order (4; 2), for all i ∈ {1; 2; 3; 4}, and
our claim follows.
Now, consider a point z of �5 not collinear with x. Then z is incident with a line N

meeting L, and N belongs to, say, �1, but not to �2; �3 or �4. But z is incident with
�1 and with �5, hence it is incident with at least one other element of S (indeed, if
not, then by Lemma 5, the order (s; t′′) of �5 satis�es 3 + t′′ + 1¿9, since �1 has
order (4; 2), and this contradicts Theorem 1), say, �2. But then N belongs to �2 as
well, a contradiction.
(b) So we may suppose that L belongs to all members of S. In fact, by the foregoing,

we may assume that every line of � which belongs to at least two members of S,
belongs to all members of S. Suppose now that a line M meeting L belongs to at
least two members of S. Each line through the meeting point x of L and M must
belong to a member of S. But every member of S has at most 3 lines through x, two
of which are L and M . This leads to a contradiction. So every line of � meeting L
belongs to a unique element of S. It follows that three elements of S, say �1; �2; �3,
have order (4; 2), and two of them, say �4; �5, have order (4; 1). Since �1; �2 and
�3 each have 40 points o� L, and �4 and �5 each have 20 points o� L, and since
165=3 ·40+2 ·20+5, no point o� L belongs to at least two members of S. Counting
in two ways (as above) the number of lines not belonging to any member of S, we
obtain 40 · 6 = 20 · 7, a contradiction.
The lemma is proved.

Example. Let � be the unitary quadrangle H (4; q2) embedded in a standard way in
PG(4; q2). Let � be a plane of PG(4; q2) meeting H (4; q2) in a non-degenerate hermitian
curve C. Let L be the polar line of �. Then L meets H (4; q2) in q+1 points x0; x1; : : : xq.
Let xq+1; : : : ; xq2 be the remaining points on L. The hyperplane determined by � and
xi, i ∈ {q + 1; q + 2; : : : ; q2}, meets H (4; q2) in a non-degenerate hermitian variety
H (3; q2), which is a subquadrangle of order (q2; q). These q2−q subquadrangles cover
already all points of �, except for the points o� C and collinear with one of the xi,
i ∈ {0; 1; : : : ; q}. Let �′ be a plane containing q + 1 lines of � through x0. Then the
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hyperplane generated by �′ and L meets H (4; q2) in a subquadrangle of order (q2; q).
The lines of � through x0 form a hermitian curve in the residue of x and the tangent
hyperplane of H (4; q2) in x. The point set of a hermitian curve U can be partitioned
into q2− q+1 intersections with (q+1)-secants. Indeed, it su�ces to consider a point
o� U in a projective plane where U lives, and the (q+ 1)-secants through x together
with the polar line of x with respect to U do the job. Hence we can �nd q2 − q + 1
additional subquadrangles containing {x0; x1; : : : ; xq} and covering all points on all lines
of � through xi, i ∈ {0; 1; : : : ; q}. So we have covered the point set of � by 2q2−2q+1
subquadrangles of order (q2; q). For q= 2, this number equals exactly 5 = q2 + 1. My
conjecture is that 2q2 − 2q + 1 is the least possible number to cover H (4; q2) with
subquadrangles of order (q2; q), and the proof probably will not be too di�cult at all.

Lemma 12. If (s; t)=(3; 3); then there are exactly two non-isomorphic examples; one
with no line of � in at least two members of �; and the other with a unique pair of
concurrent lines contained in 3 members of �.

Proof. We distinguish two cases.
(i) Suppose �rst that there is some line L, which is contained in at least two members

of S = {�1; �2; �3; �4}, say, �1 and �2. By Lemma 4, L is contained in at least 3
members of S, say L is also contained in �3. If L is, moreover, contained in �4, then
through every point x of L, there is a line Lx 6= L contained in at least 2, and hence
in at least 3 members of S. Taking x 6= y, both incident with L, we see that Lx and
Ly are contained in at least two members of S, a contradiction because two opposite
lines determine a subquadrangle completely. Hence L is not contained in �4. But L
must be incident with a unique point z of �4 (by Theorem 1). Through z, there must
be a line M 6= L contained in at least 2, and hence again 3 members of S. Suppose
these members are �2; �3; �4. Let M ′ be the unique line of �1 through z distinct from
L. No line concurrent with L and not incident with z can belong to �4. On the other
hand, whenever a point u not collinear with z belongs to �i, for some i ∈ {1; 2; 3},
then the unique line through u concurrent with L belongs to �i. Hence we deduce
easily that every line concurrent with L and not incident with z must belong to some
�i, i = 1; 2; 3. Now, notice that L is a regular line (since � contains subquadrangles
of order (3; 1), � is isomorphic to Q(4; 3)). It is now easily seen using the projective
plane corresponding to L that �1 and �2 share a line N concurrent with L and not
through z. But then �3 should contain three lines through the meeting point of L and
N , a contradiction. So M belongs to �1; �2 and �3. It follows that �4 contains the
two lines through z which are distinct from L and M . There are actually three choices
for �4 at this stage, but they are easily seen to be equivalent under the automorphism
group of � (which is a classical quadrangle) �xing the line L pointwise, and �xing all
lines meeting L (root elations).
(ii) Now, suppose that no line of � is contained in at least 2 members of S. Notice

that the lines of � can be viewed as the non-isotropic points of a unitary polarity in
PG(3; 4). Let Q be the corresponding hermitian variety. The points of � are then the
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sets of ‘polar quadrangles’, i.e., sets of 4 pairwise conjugate (w.r.t. the unitary polarity)
points of PG(3; 4). It is readily seen that the lines of a subquadrangle of order (3; 1) of
� correspond to the points o� Q but in a tangent plane of Q. And two subquadrangles
meet in 4 non-collinear points if and only if the corresponding points (the intersections
of Q with the tangent planes) on Q are on a line contained in Q. Hence S de�nes a set
of 4 points on a line T of Q. Now, let � be an element of order 5 of the automorphism
group of Q, preserving T . Then the corresponding set S′ of 5 subquadrangles of �
covers � and no line of � belongs to two members of S′. Since every point of � is
in at most two members of S′, the number of pairs (x; �′), where x is a point in a
member �′ of S′, is at most 80, if we �rst count the points x. But it is exactly 80 is
we �rst count the members of S′. Hence every point lies in exactly 2 members of S′.
Now, the members of S correspond to 4 collinear points on Q. Hence these points

are contained in a line of Q and so S arises from S′ by deleting one member. Any
members gives rise to an isomorphic set of 4 subquadrangles because of the transitive
group of order 5 acting on it. Since every point is covered twice by the S′, deleting
a member does give rise to a set S of 4 subquadrangles whose union is �.
This completes the proof of the lemma.

The case s = 2 will not be treated here. It is an easy case. Indeed, if t = 4, then
there are coverings with 3 subquadrangles of order (2; 1). Extending any number of
them to a subquadrangle of order (2; 2) gives an example of a covering with s + 1
subquadrangles for which the order is not necessarily a constant pair. If t=2, then all
coverings with 3 subquadrangles of order (2; 1) can be found as an easy exercise.
We now turn our attention to �nite polar spaces, in order to show Theorem 3.

3. Proof of Theorem 3

Let � be a �nite non-degenerate classical polar space of rank ‘¿2, viewed as a
geometry over the diagram of type B‘. This just means that we consider quadrics and
hermitian varieties together with their totally singular subspaces. We assume ‘¿ 2,
since otherwise the result follows readily from Theorem 2. Indeed, this is clear if
we show that Case (i) of Theorem 2 never occurs with classical quadrangles of order
(s; t) with t¿s¿ 2. The only possibilities are (s; t) ∈ {(q; q); (q; q2); (q2; q3)}, for some
prime power q. Then t′ ∈ {(q− 1)=(q+ 1); q− 1; (q3 − 1)=(q2 + 1) and this leads to a
contradiction (every subquadrangle of a classical quadrangle must again be a classical
quadrangle). Denote by PG(m; q), q a power of a prime, the ambient projective space
(and in characteristic 2 we consider a symplectic polar space embedded as a quadric).
We suppose that the point set of � is covered by the point sets of k6q + 1 polar
subspaces of rank ‘ and each of these polar subspaces has also q+1 points on a line.
Let P be the set of these polar subspaces. First, we want to show that k = q+ 1. To
that end, we prove a lemma, which is well-known (it is a special case of the main
result of Bose and Burton [1]), but we include a proof for the sake of completeness.
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Table 1

Polar space Number of points Number of maximal subspaces

Q+(2‘ − 1; q) (q‘−1)(q‘−1+1)
q−1 2(q + 1)(q2 + 1) : : : (q‘−1 + 1)

Q(2‘; q) q2‘−1
q−1 (q + 1)(q2 + 1) : : : (q‘ + 1)

Q−(2‘ + 1; q) (q‘+1+1)(q‘−1)
q−1 (q2 + 1)(q3 + 1) : : : (q‘+1 + 1)

H (2n− 1; q2) (q2n−1)(q2n−1+1)
q2−1 (q + 1)(q3 + 1) : : : (q2n−1 + 1)

H (2n; q2) (q2n+1+1)(q2n−1)
q2−1 (q3 + 1)(q5 + 1) : : : (q2n+1 + 1)

Lemma 13. Let the point set of PG(d; q); d¿2; be the union of q + 1 hyperplanes.
Then all these hyperplanes have a (d−2)-dimensional subspace in common and hence
every point of PG(d; q) either belongs to all these hyperlanes; or to exactly one. Also;
the point set of PG(d; q) cannot be the union of q hyperplanes.

Proof. Let S be the set of these q+ 1 hyperplanes. Let H1 and H2 be two of them,
and suppose they meet in the (d − 2)-dimensional subspace U . Suppose that H3 is
a member of S not containing U . Then there is some hyperplane H of PG(d; q)
containing U , but not belonging to S. If we intersect every member of S with H ,
then we obtain a set of at most q di�erent (d−2)-dimensional subspaces of H covering
all points of H . Hence

qd−1 + qd−2 + · · ·+ q+ 16q(qd−2 + · · ·+ q+ 1);

a contradiction. The result follows, noting that a similar counting argument proves that
q hyperplanes cannot cover all points of PG(d; q).

Now, we list the number of points and the number of maximal singular subspaces of
the various �nite polar spaces of rank ‘. We use the following notation: Q−(2‘+1; q)
for the elliptic quadric, Q(2‘; q) for the parabolic quadric, Q+(2‘ − 1; q) for the hy-
perbolic quadric, H (n; q) for the hermitian variety in PG(n; q) (see Table 1). Note that
we do not have to consider symplectic polar spaces since they are either isomorphic
to a quadric (in characteristic 2), or they do not have proper large polar subspaces of
the same rank (odd characteristic).
Note that, if � ∼= Q−(2‘+1; q), then every member of P is isomorphic to Q(2‘; q) or

Q+(2‘−1; q); if � ∼= Q(2‘; q), then every member of P is isomorphic to Q+(2‘−1; q);
if � ∼= H (2‘; q), then every member of P is isomorphic to H (2‘ − 1; q); �nally, �
cannot be isomorphic to either Q+(2‘ − 1; q) or H (2‘ − 1; q).

Lemma 14. With the above notation; we must have k = q+ 1.



H. Van Maldeghem /Discrete Mathematics 208=209 (1999) 589–605 603

Proof. Suppose that k6q. Consider a maximal singular subspace U of � and suppose
that U does not belong to any member of P. Note that U has dimension ‘− 1. Then
every member of P can have at most an (‘ − 2)-dimensional subspace in common
with U . That implies that U must be the union of at most q subspaces of dimension
at most ‘ − 2, contradicting Lemma 13. Hence every maximal singular subspace U
belongs to a member of P. So the number of maximal singular subspaces of � must
be at most q times the number of maximal singular subspaces of any element of P
having a maximum number of maximal singular subspaces, contradicting the number
of maximal singular subspaces given above.

Lemma 15. Each point of � belongs to a maximal singular subspace which does not
belong to any member of P.

Proof. Suppose by way of contradiction that a point x exists such that every maximal
singular subspace of � through x belongs to some member of P. Then every line xy on
� is contained in some member of P. Projecting the whole situation on a hyperplane
of PG(m; q) (the space of �) not containing x, we obtain a covering of a polar space
�′ of rank ‘ − 1 by at most q+ 1 proper polar subspaces of the same rank such that
every maximal singular subspace of �′ is contained in one of the polar subspaces.
The same counting argument as in the previous proof leads to a contradiction (now
considering q+ 1 polar subspaces instead of q, but the contradiction remains).

Lemma 16. Every maximal singular subspace U of � which does not belong to any
member of P contains a unique (‘−3)-dimensional subspace V such that every point
of V belongs to every member of P; and every other point of U belongs to exactly
one member of P.

Proof. It is easily seen that P induces a covering of the point set of U consisting of
at most q+1 proper projective subspaces of U . Counting the points, one immediately
�nds that there must be exactly q+ 1 proper subspaces of dimension ‘− 2 and hence
the result follows directly from Lemma 13.

The last two lemmata imply:

Lemma 17. Every point of � is contained in either every member of P; or in exactly
one. Also; if two points x and y belong to all members of P and x and y are collinear
in �; then all points of the line xy belong to all members of P.

So the geometry �′ having as point set the set of all points of � which belong to all
members of P (with lines and other subspaces induced by �) satis�es the one-or-all
axiom of polar spaces; hence it is a polar space of rank ‘ provided we prove that it
contains at least one singular subspace of dimension ‘ − 1, and that no point of it is
collinear in � with all other points of �′.
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We know by Lemma 16 that there is at least one singular subspace V of dimension
‘−3 contained in all members of P. We project from V onto a subspace of dimension
m − ‘ + 2, skew to V . The projection of � is a generalized quadrangle �∗, and
the projections of the members of P induce a covering P∗ of �∗ of q + 1 large
subquadrangles such that each point of �∗ is in either a unique member of P∗, or in
all members of P∗. From Theorem 2, it readily follows that either �∗ is isomorphic
to the elliptic quadric Q−(5; q), all members of P∗ are isomorphic to Q(4; q), and the
intersection of all members is isomorphic to Q+(3; q), or q = 2. In the �rst case, it
follows that there are plenty of maximal singular subspaces in �′. Now, suppose q=2.
We may assume that �′ does not contain a singular subspace of dimension ‘−1, hence
that no line of �∗ belongs to all members of P∗. If �∗ is isomorphic to Q(4; 2), then it
is readily seen that exactly 6 points of �∗ are contained in each member of P∗ (which
has order (2; 1)), contradicting the fact that no two such points can be collinear in �∗.
Now, suppose that �∗ is isomorphic to Q−(5; 2). Let the three members of P∗ have
respective orders (2; t1), (2; t2) and (2; t3). If there is a point of �∗ in all members
of P∗, then by Lemma 5, 3 + t1 + t2 + t3 = 5, a contradiction. Hence the point set
of �∗ is the disjoint union of the point sets of the members of P∗. This implies that
all members of P∗ are isomorphic to Q−(3; 2). Consequently, every element of P

is isomorphic to Q+(2‘ − 1; 2) and � itself is isomorphic to Q−(2‘ + 1; 2), n¿3.
Counting the number of points, we must have 3(2‘−1 + 1)¿2‘+1 + 1, implying ‘62,
a contradiction.
Hence we have shown that there is a maximal singular subspace contained in all

members of P. Moreover, our arguments show that � is isomorphic to Q−(2‘+ 1; q)
and every member of P is isomorphic to Q(2‘; q).
Now, suppose that there exists a point x of �′ such that all points which belong to

�′ are collinear in � with x. The number of points of � not collinear with x is q2‘.
The number of points in each member of P not collinear with x is q2‘−1. Since each
point must occur exactly once, this implies (q+ 1)q2‘−1 = q2‘, a contradiction.
Hence we have shown that the intersection of all members of P is a polar subspace

of rank ‘. And it is clear that it must be isomorphic to Q+(2‘ − 1; q). Theorem 3 is
proved.

4. Proof of the Corollary

For the notions below not de�ned in this paper, we refer to Payne and Thas [4] or
Thas [6].
Let � be a ock quadrangle of order (t2; t), t odd, covered (as set of lines!) by

a set S of t + 1 subquadrangles of order (t; t), all containing the point (∞). Then
all these subquadrangles meet in a subquadrangle �′ of order (1; t), by Theorem 2.
According to Theorem 7:2 of Thas and Van Maldeghem [7], we have to show that the
net corresponding with the point (∞) satis�es the axiom of Veblen. By Theorem 8:1
of loc.cit., this is equivalent to showing that every two non-collinear points x; y, with
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x collinear with (∞) and y not collinear with (∞), are contained in a subquadrangle
of order (t; t). Since � is an elation generalized quadrangle, we may assume that y
belongs to �′ (because there is an automorphism group acting regularly on the points
of � not collinear with (∞)). It is now easy to see that exactly one member of S
contains x, namely the unique member containing all lines of � through x.
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