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ABSTRACT 

THEOREM A: If  ~3 is an infinite Moufang polygon of finite Morley rank, 
then ~3 is either the projective plane, the symplectic quadrangle, or the 
split Cayley hexagon over some algebraically closed field. In particular, 
~3 is an algebraic polygon. 

It follows that any infinite simple group of finite Morley rank with a 
spherical Moufang BN-pair of Tits rank 2 is either PSL3(K), PSp4(K ) 
or G2(K) for some algebraically closed field K. 

Spherical irreducible buildings of Tits rank _> 3 are uniquely determined 
by their rank 2 residues (i.e. polygons). Using Theorem A we show 

THEOREM B: If  G is an infinite simple group of finite Morley rank with 
a spherical Moufang BN-pair of Tits rank ~ 2, then G is (interpretably) 
isomorphic to a simple algebraic group over an algebraically closed field. 
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THEOREM C: Let K be an infinite field, and let G(K) denote the group 
of  K-rational points of  an isotropic adjoint absolutely simple K-algebraic 

group G of  K-rank  > 2. Then G(K) has finite Morley rank i f  and only i f  

the field K is algebraically closed. 

We also obtain a result about BN-pairs in split K-algebraic groups: such 

a BN-pair  always contains the root groups. Furthermore, we give a proof 

that  the sets of points, lines and flags of any Rl-categorical polygon have 

Morley degree 1. 

I n t r o d u c t i o n  

The Cherlin-Zil 'ber Conjecture states that any infinite simple group of finite 

Morley rank is an algebraic group over an algebraically closed field. Even in the 

special case where G(K) is the group of K-rational points of a simple algebraic 

group G defined over some infinite field K there is no general result stating 

that  if G(K) has finite Morley rank, then K has to be algebraically closed.* 

The problem stems not only from the fact that the Borel subgroups (i.e. the 

groups of rational points of the minimal K-parabolic subgroups) of G(K) are not 

necessarily solvable. But even if they happen to be solvable and one could define 

some field K ~ like in [36, 3.20], it is not clear that K ~ has to be isomorphic to K.  

Using Tits '  theory of buildings we here answer this question for groups with 

spherical Moufang BN-pairs,  in particular for all groups with spherical irre- 

ducible BN-pairs  of Tits rank at least 3 (by the Tits rank we mean the rank 

of the associated Coxeter complex; we chose this terminology to avoid confusion 

with the different notions of rank occurring in this paper). Roughly speaking, 

a spherical building is uniquely determined by its rank 2 residues, i.e. by the 

polygons contained in it as subbuildings. Therefore most of the work is in fact in 

the rank 2 case. Our approach is rather geometric than group theoretic: the clas- 

sification of the groups is a consequence of the classification of their underlying 

geometries. 

Some of those who read an early version of this paper raised the question to 

what extent our results rely on the classification of Moufang polygons, and we 

would like to comment on that. We do use Tits '  classification of the spherical 

Moufang buildings; for buildings of Tits rank at least three, a proof can be found 

in [50]. The complete classification of the Moufang polygons (Moufang buildings 

* After this paper was accepted, this result was proved for isotropic groups in [60]. 
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of Tits rank 2) has not yet appeared in print (see the remarks in Section 3), but  

the result is well-known (see the forthcoming book of Tits and Weiss [57] for a 

proof). However, we would like to stress the fact that  the only place where this 

classification enters into our result is that we have indeed covered all Moufang 

polygons and their groups. The groups that  occur (classical groups over fields or 

skew fields, algebraic groups, and what could vaguely be called Chevalley groups 

(e.g. twisted groups like 2F4(K), see [9]) are comprehensively covered by the 

present paper. In our context, the classification of Moufang polygons amounts to 

the statement that  there is no other class of simple groups which act on Moufang 

polygons besides these. The proofs that we give for each class of polygons do not  

depend on the classification. 

We would like to add some remarks on the proof. As mentioned above, one 

difficulty is that  the Borel subgroups of the little projective group of a Moufang 

polygon need not be solvable. Also, the root groups will in general not be abelian 

(the quadrangles belonging to hermitian or pseudo-quadratic forms are good 

examples for these phenomena). These facts make it in some cases quite difficult 

to recover the underlying (skew) field from the polygon. 

As the results of Baldwin [1], [2] and Tent [61] indicate, there is no hope to 

prove some kind of Feit-Higman Theorem [14] or other classification theorem for 

polygons of finite Morley rank without further assumptions. 

Algebraic polygons and algebraic BN-pairs in characteristic 0 have been clas- 

sified in [27, 28]. So our result for the rank 2 case may also be stated as follows 

(at least in characteristic 0): the algebraic polygons are precisely the infinite 

Moufang polygons of finite Morley rank. 

We have organized the paper as follows. An introduction to the theory of 

polygons is given in Section 1 below. To keep the paper essentially self-contained 

and accessible we also give a short introduction to the modeltheoretic notions 

involved at the beginning of Section 2. For more details we refer the reader to 

[6], which also gives a brief exposition of Tits buildings and BN-pairs.  Tha t  

section contains also some general results about polygons of finite Morley rank. 

In Section 3 we classify the Moufang polygons of finite Morley rank. The section 

ends with a summary for the rank 2 case. Section 4 is a brief introduction to 

spherical buildings and the relevant notions, and this is applied in Section 5 to 

groups with spherical BN-pairs.  
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1. B a s i c  f a c t s  a b o u t  p o l y g o n s  

In this section we give the  necessary background on (generalized) polygons or 

spherical  Ti t s  buildings of Ti t s  rank 2. Some of the results are hard  to find in 

the l i terature,  even though most  of t hem are known to geometers .  Buildings of 

higher T i t s  rank  are introduced in Section 4. 

1.1 Incidence structures: An i n c i d e n c e  s t r u c t u r e  is a tr iple ~ = (7), / : ,9 v) 

consist ing of a set P of p o i n t s ,  a set £: of l ines ,  and a set ~" C_ p × /~  of f lags .  

We always assume tha t  7 ) and £: are disjoint nonempty  sets. If  (a, g) is a flag, 

then  we say t ha t  the  point  a and the line g are i n c i d e n t .  

A k - c h a i n  is a sequence ( xo , x l , . . .  ,xk) of elements  xi E P U/:: wi th  the  

p rope r ty  t h a t  xi is incident with xi-1 for i -- 1 , . . . ,  k. In this case, we say tha t  

the  d i s t a n c e  of x0 and xk is d(xo,xk) ~ k, and we say tha t  d(xo,xk) =- k if there  

is no j -cha in  joining x0 and Xk for j < k. Note t ha t  d(x0, Xk) is necessarily even 

if x0 and  xk are of the  same sort,  i.e. if Xo and xk are bo th  points  or bo th  lines. 

We call a set {Xo, X l , . . . ,  x2,~-1} consisting of 2n dist inct  elements  an o r d i n a r y  

n - g o n  if ( x 0 , x l , . . .  , x 2 ~ - l , x 0 )  is a 2n-chain. 

For x E 7) U E we pu t  Dk(x) ---- {y e 7) U E t d(x,y) = k}. If a is a point ,  then  

D l ( a )  is called a l ine  p e n c i l ;  if e is a line, then D1 (g) is called a p o i n t  r ow .  

Note  t ha t  if y is in Dk(x), and if z is incident with y, then d(x, z) = k =J= 1. 

1.2 Polygons: Let n _> 3 be  a n  integer. An incidence s t ruc ture  ~ = (7), 1:, ~-) is 

called an n - g o n ,  or g e n e r a l i z e d  n -gon ,  if it satisfies the  following three  axioms: 

(i) Every  e lement  x C 7) U E is incident with a t  least three other  elements.  

(ii) For all e lements  x, y E 7) U £: we have d(x, y) <_ n. 

(iii) If  d(x, y) = k < n, then there  is a unique k-chain (xo -- x, X l , . . . ,  xk = y) 

joining x and y. 

Note  t ha t  the  definition of a polygon is self-dual: if we replace ~ = (7), E, b v) 

by its dual  ~3 dual = (~ ,7 ) , .~ - -1 ) ,  where ~--1 =_ {(~,a) I (a,g) E ~'},  t hen  ~3 is an  

n-gon if and  only if ~3 dual is an n-gon. For that reason we will prove or s t a t e  

a result sometimes only for points; the corresponding statement for lines then 

follows by duality. 

1.3 Remark: W h a t  we have called an n-gon is often called a t h i c k  g e n e r a l i z e d  

n-gon in the  l i terature  [7, 40, 50]. Note tha t  we obta in  an o r d i n a r y  n - g o n  if we 

require t h a t  every element is incident with exact ly  two elements  ( instead of ax iom 

(i)). We have excluded digons, since they  are tr ivial  geometr ies  (7),/:,  7) × / : )  
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where every point is incident with every line. Note also that  the triangles (3-gons) 

are precisely the projective planes. As customary, we use the words quadrangle, 

hexagon and octagon for 4-, 6- and 8-gons, respectively. 

1.4 Geometric operations: Let ~ be an n-gon. Suppose that d(x, y) = k < n. 

By axiom (iii), there is a unique element z ~ Dk- l ( x )  N DI(y), which we denote 

by z = fk (x, y) (in the terminology of buildings, fk (x, y) is essentially the same as 

projyx, see [50]). The maps fk are sometimes called the g e o m e t r i c  o p e r a t i o n s  

of the polygon ~ .  

We will make frequent use of the following fact: if d(x, y) = k < n, then 

d(x, z) = k+  1 for all z • Dl(y)  except fk (x, y); if d(x, y) = n, then d(x, z) -- n -  1 

for all z • DI(y).  Thanks to condition (i), the set Dn(x) is not empty. Similarly, 

if ( x 0 , x l , . . .  ,xk) is a k-chain with the property that xi ~ xj for 0 < i < j < k, 

for some k < n, then it can be completed into an ordinary n-gon. 

1.5 Projectiyities: If d(x,y)  = n, then there is a bijection [y,x] : Dl(x)  -4 

DI(y),  given by z ~-+ f~ - l ( z , y ) ,  with inverse [x,y]. We call the map [y,x] a 

p e r s p e c t i v i t y  between x and y; a concatenation of perspectivities is called a 

p r o j e c t i v i t y ,  and we put [x3,x2][x2,xl] --[x3,x2,xl]  etc. Thus the set H of all 

projectivities of ~3 forms a groupoid. The group of all projectivities from x to x 

is denoted by II(x). 

The next lemma basically says that many projectivities exist in an n-gon. 

1.6 LEMMA: Let h, 6 be lines of the n-gon (~ , / : ,  5r). Then there exists an element 

x E On(h )N  Dn(6) and therefore a projectivity [h, x, 6]: O1(6) -4 O1(h). Hence 

the groupoid H has two components if n is even, and one component if  n is 

odd, that is, i f  n is odd, then there exist projectivities between any two elements 

x, y • P U f-., and i f  n is even, then such a projectivity exists i f  and only if  x and 

y are of the same sort, i.e. i f x  and y are both points or both lines. In particular, 

the isomorphism type of the permutation group II(x) on Dl(x)  depends only on 

the sort of the element x. 

Prook We have to show that  D,~(h) nDn(g) is non-empty (cf. [50] 3.30). Choose 

x E Dn(h) such that  k = d(x,6) is maximal. We claim that  k = n. Otherwise 

we would have k < n - 2, and we could choose an element y E D1 (x) with 

d(y, 6) = k + 1. Now pick z E 01 (y) \ {fn-1 (h, y), fk+l (h, 6)}. Thus d(z, h) = n, 

and d(z, 6) = k + 2, contradicting the choice of x. I 

Suppose that {x0 , . . . ,  x2n-1} is an ordinary n-gon. For 

y e Dl(x,~) \ { x ,~ - l , x n + l }  
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we may put  zr = [X2n_l ,  y, xl]. This projectivity maps x2 to x~n-2 and fixes Xo. 

Applying this construction twice we get the following lemma due to Knarr: 

1.7  LEMMA ([25, 1.2]): The stabilizer II(xl)~o is transitive on Dl(Xl) \ {x0}  

and hence H(Xl) is 2-transitive on the set Dl(Xl). See also 1.10 and 2.9. 

SCHUBERT CELLS, COORDINATES, AND ALGEBRAIC OPERATIONS. W e  have di- 

vided the point set of a polygon ~3 into sets Do(a) UD2(a) UD4(a) U. . . .  We need 

to refine this partition a little more. For example, the point space of a projective 

plane can be partitioned into a point {(oc)}, an affine line {(t)l t E T}, and an 

affine plane {(s,t)l s , t  E T} by means of coordinates; see [20]. To do this in 

general, we introduce S c h u b e r t  cells. 

1.8 Schubert ceils: Let u, v be incident elements of the n-gon ~3. We put 

Dk (u, v) = Dk+l (u)A Dk (v) = Dk (v) \ Dk- l  (U), and we call this set a S c h u b e r t  

cell. Note that  Ok (v) = Ok (u, v) U Ok-1 (v, u), and that D~ (u) -- Dn_ l(U, v). If 

(a, l) is a flag, then we have 7 ~ = D0(t, a) U D1 (a, ~) U D2(~, a) U . . . ,  and thus 7 ) 

and £: are each partitioned into n Schubert cells. The set Dn-l (u ,  v) is called a 

b ig  cell. 

For the remainder of this section, we fix an ordinary n-gon {x0, x l , . . . ,  x2n-1} 

in the n-gon gl. Note that in the terminology of buildings, the Schubert cell 

Dk(Xo, Xl) is the preimage of xk under the retraction of ~3 onto the apartment 
[ [2n--1 

{x0, . . .  ,X2n-1} based at the flag {x0,xl}; see [50] 3.3. The set ~,=0 Dl(Xi) is 

called a h a t - r a c k .  

1.9 Coordinatization: Consider an element x E Dk(x2,~-l, xo), and let 

X 2 n _ I , X O ,  t ! X l , X 2 , . . .  , x~  = X) 

! x denote the corresponding (k + 1)-chain. Note that d(xi, ,~+~) = n, for i -- 

1 , . . .  ,k, so we may put t~(x) = f n - l ( X ~ , X n + i - 1 )  E Ti, where 

Ti = Dl(x,~+i, x~+i-1). 

In this way we have attached c o o r d i n a t e s  

( t l (x) , t2(x) , . . .  ,tk(x)) e T1 x T2 x . . .  x Tk 

to the element x. Note that  we can recover x from these coordinates: x~ -- 

f ,~-l( t l (x) ,xo) ,  x~ -- f,~-l(t2(x),x~), and so on. Clearly, we may coordinatize 
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the Schubert cells Dk(xo,X2n-1) in a perfectly similar way. Note also that  we 

have a bijection 

Dk(X2~-l ,xo)  x Dl (x ,+k)  --+ U{{x} x DI(X)I x e Dk(x2,~-l ,xo)} 
(x, y) 

hence we get a decomposition of ~- into n sets of the form C x Dl(a),  where C 

is a Schubert celt contained in W and where a is a point. 

In modeltheoretic terminology, this amounts to saying that  the d e f i n a b l e  

c l o su re  (see Section 2) of a hat-rack is the whole polygon gl. I 

This coordinatization uses 2n - 2 'parameter  sets', the sets T1 , . . . ,  Tn-1, and 

their counterparts  for the Schubert cells Dk(xo,X2~_l). Of course, we could 

choose fixed projectivities between Ti and Ti-2 and thus reduce the number of 

parameter  sets to two if n is even, and to one if n is odd. Also, in a projective 

plane one can define a planar ternary ring (and a double loop), and similar results 

hold for polygons. This leads to quadratic quaternary rings etc.; see [18], [19], 

[58], [23]. We will use this fact in the classification of Moufang quadrangles of 

finite Morley rank. 

The additive right loop will be important  later: 

1.10 Addition: Fix an ordinary n-gon (x0, . . .  ,x2n-1). Put  D = Dl(Xl,XO) = 

Dl(xo)  \ {Xl} ,  and put 0 = x2n-1. Next choose an element a e Dl(Xl)  \ {x2 ,  x0}. 

For y E D put  ay = f~ - l (a ,  [x=, x0](y)) and consider the projectivity 

Try = [xo, ay, x2, ao, xo]. 

I t  fixes Xl and maps 0 to y. Note also that  rr0 ---- id. Hence we may define maps 

4- : D x D --+ D by putt ing x + y = 7ru(x) and x - y = r~ l (x ) .  The structure 

(D, +)  is a r i g h t  loop ,  i.e. satisfies the following identities: (x + y) - y = 

( x - y ) + y = x , O + x = x + O = x - O - - x .  I 

REGULARITY AND PAPPIAN POLYGONS. Regularity is an important  geometric 

concept in quadrangles and hexagons. Let ~ be an n-gon, and let a E P be a 

point. For x e Dn(a) and 0 < i _< n/2 put a S[i] = Di(a)MD,~-i(x).  The point a is 

called d i s t a n c e - i - r e g u l a r  if for all x, y E Dn(a) the sets a S[/] and a~] are either 

equal or have at most one element in common. Clearly, automorphisms (see 

below) preserve'regularity. A point is called r e g u l a r  if it is distance-j-regular, 

for all 1 < j <'n/2.  Regular lines are defined dually. 

The point a is called p r o j e c t i v e  if it is distance-2-regular, and if in addition 

for all x, y E D,~(a) the intersection a~2 ] Ma~2 ] contains a unique element whenever 
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a~] ~ a~2 ]. It is easy to see that the de r i ved  inc idence  s t r u c t u r e  

~3a A = ({a} U D2(a), {Dl(g)] g E Di(a)} U {a~2]I x E Dn(a)}, E) 

is a projective plane if and only if a is projective. 

One of the main results of [43, 44] is that if n = 4, 6, and if every point of 

is projective, then ~ is either the symplectic quadrangle or the split Cayley 

hexagon over some field K,  and the derived projective planes are in fact Pappian 

over K. Therefore, these two types of polygons are called P a p p i a n  (in addition 

to the Pappian projective planes). 

ROOT GROUPS AND MOUFANG POLYGONS. 

1.11 Group actions: Suppose a group G acts on a set X. The action is called 

e f fec t ive  (or fa i thful)  if only 1a fixes all elements of X. It is called f ree  if 1G 

is the only group element fixing any element of X, and it is called r e g u l a r  if it 

is free and effective (i.e. if G acts sharply transitively). 

1.12 Automorphisms: An a u t o m o r p h i s m  of a polygon ~3 is a permutation of 

:P U £: that  maps points onto points, lines onto lines, and flags onto flags. We 

denote the group of all automorphisms of q3 by Aut(~) .  Note that this coincides 

precisely with the model theoretic notion of an automorphism of the structure 

(P, E, ~-) (see Section 2 below). 

Suppose that  g is an automorphism of the polygon ~3 and that 7r = [Xl , . . . ,  xk] 

is a projectivity from xk to Xl. Then clearly 7r g = [g(xl) , . . .  ,g(xk)] is a projec- 

tivity from g(xk) to g(xl) ,  and g~T = 7raglDl(xl ). This simple fact leads to the 

following lemma. 

1.13 LEMMA: Let g be an automorphism of the n-gon ~3, and suppose that 

g fixes the point row DI(~) elementwise. Let h be any line, and let h' = g(h). 

Then the restriction giDl(h) : Dl(h)  --+ Dl (h  ~) can be written as a projectivity 

lr = [h', x', g, x, hi of length at most 4. 

Proof: Choose x E D~(£) M D~(h), and put x' = g(x). I 

1.14 Root groups: A r o o t  of an n-gon ~ is an n-chain a = (x0, . . .  ,x,~) con- 

sisting of (n + 1) distinct elements. The r o o t  g r o u p  Ua is the group of all 

automorphisms that  fix the set X = Dl(Xl) U Dl(X2) t3 . . .  U Dl(xn-1)  element- 

wise (note that  we disregard the elements x0, xn). The group Ua fixes x0 and 

Xl, and hence acts on the set D = Dl(xo) \ { x l } .  The elements of Ua are called 

r o o t  e la t ions .  
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The group E = (U~[ c~ a root} generated by all root groups is called the l i t t le  

p r o j e c t i v e  g r o u p  of the polygon 9 .  It is a normal subgroup of Aut(~3). 

There are strong connections between root elations and projectivities: let 

{x0, . . .  ,XUn-1} be an ordinary n-gon, and consider the root a = (x0 , . . . ,  xn). 

Consider also the addition defined in 1.10 (with respect to some a E 

DI(Xl) \{x2 ,x0}) .  We use the notation of 1.10. Let g E U~ be a root ela- 

tion, with g(0) = c. Because of g(ao) -- g(ac), it follows from 1.13 that  g(x) = 

[xo,ac, x2,ao,xo]x = x + c for all x ~ D, and, similarly, that g - l ( x )  = x - c. 

1.15 LEMMA: The action of the root group U~ on 

D = DI(Xl,XO) = DI(xo) \ { x l }  

is free. 

Proof'. Suppose that 9 E U~ fixes x E D. Then it fixes also the ordinary n-gon 

{x0 , . . . ,  x2n-1 = x} determined by this element. Pick a ~ Dl(Xl)  \ {x0 ,  x2} and 

consider the projectivity ~r = Ix0, f n - l (a ,  xn+l),x2]. Since 7r = 7r g, and since g 

fixes D1 (x2) elementwise, it fixes Dl(x0) elementwise. It follows that g fixes the 
[ [2n--1 hat-rack ~j=o Dl(Xj)  elemeutwise, and hence, by the coordinatization, fixes ~3 

elementwise. | 

In particular, we have: 

1.16 LEMMA: The map g ~-+ 9-1(0) is an imbedding of U~ into (D, +). 

Proof: Clearly, we have (hg)- l(0)  = g - l ( h - l ( o ) )  -- h - l (0)  4-9-1(0).  It follows 

from the definition of the subtraction map that (hg-1) - l (o)  = g(h- l (0) )  = 

h - l (0 )  - g-1(0). Since the action of U~ is free, the map is injective. | 

1.17 Definition: The root a is called M o u f a n g  if the group U~ acts transitively 

(and thus regularly) on the set D or, equivalently, on the set of all ordinary 

n-gons containing x0 , . . .  ,xn. The polygon is called M o u f a n g  if every root is 

Moufang. 

So in a Moufang polygon we may identify the root group U~ with the additive 

loop (D, +). Moreover, there is the following result due to Knarr [25]: 

1.18 PROPOSITION: Let H+(x) denote the group of all projectivities which can 

be written as a concatenation of  an even  number of  projectivities. Clearly, 

II+(x) is a normal subgroup of index at most  2 in H(x). ff~3 is Moufang, then 

E~[DI(¢) = H+(x) [25, 2.3]. I f  n is even, and i f  x is distance-n/2-regular, then 
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the identity can be written as a projectivity of length 3, so II(x) = YI+(x); see 

Knarr  [25, 1.5]. 

It has been proved by Tits [53] and Weiss [59] that  Moufang n-gons exist only 

for n = 3, 4, 6, 8. All Moufang polygons have been classified by Tits although 

a complete proof has not yet been published [51]. We will inspect the Moufang 

polygons in Section 3. 

2. P o l y g o n s  o f  f in i te  M o r l e y  r a n k  

SOME MODEL THEORY. Let T be a countable first-order theory in some fixed 

language L, and let M be a model of T, which for technical reasons we assume to 

be saturated (see [10] or [38]). An a u t o m o r p h i s m  of M is a permutation of the 

elements in M which preserves all relations in the language L. The automorphism 

group of a structure therefore depends on and, as we will see below, determines 

the underlying language. We will usually consider the language Lpoz = {79, Z:, ~'} 

consisting of unary predicates 7 9 and Z: and a binary predicate ~ ,  for which the 

modeltheoretic notion of automorphism coincides with the definition given in 

1.12. 

We denote the group of automorphisms of M fixing a set A C M pointwise 

by hut(M/A)  and write hu t (M)  for hu t (M/0) .  If a E M '~, B C M, then the 

t y p e  of a over B is defined as tp (5 /B)  = {¢(~,b)l b C_ B,¢(a ,b)  holds} and 

tp(~) = tp(~/0).  

The set A C M '~ is def inab le  (over B C M) if there is some L-formula ¢(~, b) 

(with parameters b C B) such that ¢(~, b) is satisfied exactly by the elements of 

A. A set is called 0-def inable  if it is definable over the empty set. If there is no 

danger of confusion, we usually identify A with its defining formula ¢(~, b) (or 

even, e.g., the predicate 79 with the set of points in a polygon). In the special 

case where A = { a l , . . . , a n }  is a finite set, the elements ai,i = 1 , . . . , n ,  are 

a lgeb ra i c  over B, and if ¢(~, b) is satisfied by a single element al ,  then al is 

said to be de f inab le  over B. For B C_ M, acl(B) and dcl(B) denote the set of 

elements of M algebraic (resp. definable) over B. 

An i n t e r p r e t a b l e  set is a set of the form A/E,  where A C_ M ~ is a definable 

set and E a definable n-ary equivalence relation on A. It is clear that the inter- 

pretable sets comprise the definable ones by taking E to be equality. To say that  

a structure (M',  L') is interpretable in some model M means that  its underlying 

set M' ,  the un ive r se ,  as well as all relations in the language L' are interpretable 

in M, e.g. a polygon, group, etc. with L r the corresponding language. 
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To facilitate working with interpretable sets we extend L into a many-sorted 

language L eq by adding for any 0-definable (in L) equivalence relation E on 

M ~ a sort SE and an n-ary function symbol fE. Any L-structure M can be 

canonically embedded into an Lea-structure Meq: The elements of sort SE in 

M eq are the equivalence classes modulo E in M n. We identify S= with M. 

The interpretation of fE is a function from S~ to SE taking any n-tuple to its 

equivalence class modulo E. Any automorphism of M uniquely determines an 

automorphism of M eq. There is a unique way of extending T to a theory T eq 

in this language and for any model N of T there is a unique extension N eq to a 

model of T eq. If M '  is interpretable in M, the i n d u c e d  s t r u c t u r e  of M on M ~ 

consists of the traces of the 0-definable sets in M eq on M'.  We refer the reader 

to [38] for details of this construction. 

2.1 Fact: If M is a saturated Ll-structure and L2 C_ L1 is a sublanguage with 

the property that  AutL1 (M) = AutL2 (M), then L1 = L2 in the sense that  there 

are exactly the same 0-definable sets. (See e.g. [38], chapter 9.) 

2.2 Morley Rank: The M o r l e y  r a n k  RM(A) of an interpretable set A is defined 

inductively as follows: 

(i) RM(A) >_ 0 if A ¢ 0. 

(ii) RM(A) > a + 1 for an ordinal a if there are pairwise disjoint interpretable 

sets Ai C_ A for i < w with RM(A~) > a. 

(iii) RM(A) > 5 for a limit ordinal 5 if RM(A) > a for all a < 5. 

We say RM(A) = a if RM(A) >_ (~ and not RM(A) > ( ~ + 1 .  In that  case 

we define the M o r l e y  d e g r e e  deg(A) to be the biggest n such that  there are 

pairwise disjoint A1 , . . . ,  An C A such that  RM(Ai) = a for all i = 1 , . . . ,  n. 

Note that  RM(A) = 0 if and only if A is finite. Thus the Morley rank and 

Morley degree measure the complexity of the definable (or interpretable) subsets 

of a given set. Note that  in general RM(A) need not be finite or even ordinal 

valued. We say that  a structure interpretable in M has finite Morley rank if its 

universe (as an interpretable set) has finite Morley rank. If M itself has finite 

Morley rank, then all structures interpretable in M have finite Morley rank as 

well, and in that  case we say that  the theory T has finite Morley rank. For 

E M '~, B C_ M, we define 

aM(m/B)  = aM( tp (~ /B) )  = min{RM(¢(~, b))l ¢(2, b) C tp(~/B)}.  
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If M has finite Morley rank, we can make the following definitions: For ~ E M n 

and B , C  C M, we say that  ~ is independent from B over C if RM(~/C)  = 

R M ( a / C  tJ B) (see e.g. [35] for more details). 

If A is definable (or interpretable) over B and a E A is such that  R M ( a / B )  = 

RM(A), we say that  a is a gene r i c  of A over B. Note that  if deg(A) = 1, then 

all generics have the same type as there are no disjoint definable subsets having 

the same rank as A. 

If T is Rl-categorical (i.e. there is a unique model of T of cardinality R1 (up 

to isomorphism)), then the Morley rank is finite and has the useful property of 

being additive: For all a, b, A C M eq it satisfies 

RM(ab/A)  = RM(a/Ab)  + RM(b/A) .  

POLYGONS OF FINITE MORLEY RANK. We now prove some general model theo- 

retic results about  polygons. For simplicity we assume that  our language contains 

predicates for points, lines and flags. But everything we say remains true also if 

the polygon and these predicates are merely interpretable in some other structure. 

Our first s tatement is true without the assumption of finite Morley rank: 

2.3 PROPOSITION: Let q3 = ( P , £ , 5  r)  be a generalized n-gon. Let 

{Xo,. . . ,  X2n-1} be an ordinary n-gon and set 

X = DI(X0) t J D I ( x l )  U {xo , . . . , x2n -1} .  

Then P U £ C dcl(X). 

Proof: Since for x, y with d(x, y) = n the projectivity Ix, y] defines a bijection be- 

tween Dl(X) and Dl(y) ,  it follows easily that  Dl(Xi) C dcl(X) for i = 0 , . . .  2 n - 1 .  

The rest follows from 1.9. | 

If  there is a definable surjection from Dl(X0) to Dl(Xl),  which is the case, e.g., 

if n is odd, or if the polygon has a definable polarity, one can drop D l ( x l )  at 

the expense of adding the necessary parameters  for the surjection in order to get 

that  the polygon is in the definable closure of a point row and a finite set (see 

also [50] Chap. 4, Theorem 1.1). 

Next, we will show that  the set of points in an infinite Rl-categorical polygon 

is necessarily of degree 1. We should point out that  the Moufang polygons of 

finite Morley rank all turn out to be Rl-categorical. 

2.4 Definition: Let ~1 = (P, E,.7") be a generalized n-gon of finite Morley rank. 

Let a be a point and let ~ be a line. We put m = RM(DI(~)) and m'  = 

RM(DI(a) ) ,  and we call the numbers (m, m')  the p a r a m e t e r s  of ~ .  
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The parameters (m, m') do not depend on the specific elements a, ~, and m -- 

m'  if n is odd: If a, b are points, then there exists a projectivity [b, x, a], hence the 

sets D1 (a) and D1 (b) have the same Morley rank; if n is odd, then projectivities 

exist also between points and lines. 

2.5 Example:  Let ~3 = (7), £, ~-) be a polygon and let (a, ~) be a flag. Suppose 

that a group G C Aut(gl) acts transitively on the set 5 c of flags. Then ~3 

is isomorphic to the coset geometry ( G / G ~ , G / G e , { ( g a ,  g~)I g C G}). If the 

structure (G, Ga, Ge, 1, .) has finite Morley rank, then the resulting polygon ~3 is 

interpretable in this structure and has finite Morley rank. 

In particular, the Pappian polygons associated to the simple algebraic groups 

PSL3(K) ,  P S P 4 ( K  ), G2(K) over some algebraically closed field K (i.e. the 

projective plane, the symplectic quadrangle and the split Cayley hexagon over 

K) have finite Morley rank (and parameters (1, 1), as we will see). The full 

automorphism groups of these polygons are semidirect products of the groups 

themselves extended by the group of all field automorphisms of K [50] 5.10. 

2.6 Remark:  Since the Pappian polygons have projective points, there is a de- 

finable bijection between the point rows and the line pencils even if n is even - -  

the lines in their derived projective plane are either ordinary point rows, or sets 

of the form a ~ which are in definable bijection with line pencils. So it follows [21' 
from 2.3 that  the Pappian polygons are contained in the definable closure of one 

of their point rows and a finite collection of points. 

2.7 Definition: Let gl be an n-gon of finite Morley rank, with parameters 

(m, m~). It is convenient to make the following definitions: m k  ---- m + m ~ + 

m + m' + . - -  (k summands) and m k + rn + m' + - - .  (k summands). 

We will need the following formulas for the Morley rank of various sets. 

2.8 PROPOSITION: Let  ~ = (7~,/:,~ ") be an b~l-categorical n-gon with 

parameters  (m, m ' ) .  Let  a C P be a point. Then  R M ( D k ( a ) )  = m k  for h < n, 

and RM(D,~(a)) = m',~_l. Moreover RM(7 ~) = m~- l ,  RM(£) = ran_l; and 

RM(5 c) = n ( m  + m ' ) / 2  -- rn,~ = m~. In particular, g3 is finite i f  and only i f  

Proof." This is clear from the coordinatization in 1.9. I 

2.9 PROPOSITION: Let  ~3 be an Rl-categorical n-gon and suppose that  m > O. 

Let  g E E be a line. I f  a, b, c, d E Dl(g) are independent  generics, we can find a 
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finite set A and an A-definable projectivity ~r • n(£) with ~r(a) = c and 7r(b) = d 

such tha t  a, b are independent of  A over ~. 

Proof." We first construct  a project ivi ty 71-1 = [~, y, h, x, ~] E l'I(~) with Zrl(a) = c 

with {a, b} generic over {y, h, x, ~}. 

Choose h E D2(I) independent  of {a, b, e, d} over ~ (note tha t  this implies tha t  

a, b, c, d • D l (h ) ) .  Next  choose x e On(h) MDn(f) independent  of {h, ~, a, b, c, d}. 

P u t  s = [h,x,~](a) and 0 = f2(h,f).  Next  choose an ordinary n-gon 

{xo = o, xl  = h, x2 = s , . . . , x 2 n _ 2  = c, x2n_l = g} 

and let y • Dl (xn) \ {x ,~ - l ,X~+l} .  Now r l  = [f ,y ,h ,z , f]  takes a to c fixing 0 

and it is left to  show tha t  we can choose y such tha t  {x, h, y} is independent  of 

{a, b} over ~. 

Since the ordinary  n-gon {xo, • • •, x2,~-1} is uniquely determined by the element 

Xn--1 • D~-3(h,s)  and since every y • D l ( X n ) \ { x ~ - l , x ~ + l }  works for 7rl, the  

set Y = {y • On(h) M Dn(~)l [~,y,h](s) = c} has Morley rank m~_ 3 + m'  (note 

tha t  m = m' if n is odd). 

If y • Y is generic over {h, ~, x, a, b, c}, we have the following rank inequalities: 

m '  > RM(y) n- -1  - -  

>_ RM(y/h ,  ~, x) 

> RM(y/h ,  g, x, a, b) 

= RM(y,  c/h, ~, x, a, b) (since c = 7rl(a)) 

= RM(y/h ,  ~, x, a, b, c) + RM(c /h ,  ~, x, a, b) 
! ! 

= (ran_ 3 + m' )  + m = mn_ l ,  

showing tha t  y is indeed independent  of {a, b} over h , l ,  x. Since {x, h} is, by 

choice, independent  of {a, b} over g, it follows tha t  {x, h, y} is independent  of 

{a, b} over £, as desired. 

We repeat  this construct ion to find a project ivi ty ~r2 = [g, y' ,  h' ,  x ' ,  g] fixing c 

and taking ~rl (b) to d, where we have to choose h'  • Dl(C) independent  of {a, b, d} 

over £.. As above, we can find x '  and y'  with the required properties.  I 

2.10 THEOREM: Let ~3 = (7), £, yz) be an Rl-categorical polygon with m > O. 

Let  £ E E be a line. Then the point row D1(£) has Morley degree 1. 

Proof." Let ¢(x)  C D1 (~) be a formula (possibly with parameters)  of maximal  

rank and degree 1. If D1(£) does not have degree 1, we can find generics a, b, c, d E 

D1 (f) independent  over f with a, b, c E ¢(x) and d C -~b(x). 
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By the previous corollary there is some A-definable projectivity 7r with 7r(a) = 

c, ~r(b) = d and a, b generic over A. But now a satisfies ¢(x) A ¢(Tr(x)), whereas 

b satisfies ¢(x) A -~¢(7r(x)), contradicting the assumption that  ¢ has degree 1. 

fl 

2.11 COROLLARY: If~3 is an Rl-categorical polygon with m , m  p > O, then 7~,E 

and b v all have Morley degree 1. 

Proof: This is immediate from 2.10 and 1.9. II 

The previous corollary was proved by Hrushovski for the case n = 3 and 

generalized by Nesin to odd n (see Theorem 12.7 in [6] and [32]). However, the 

proof in [6] is wrong for n > 5 (p. 262, last paragraph). The formulas 2.8 for the 

Morley rank of the Schubert varieties are also proved in [32]. 

3. T h e  c lass i f ica t ion  

By the results of Tits and Weiss [53, 59] Moufang n-gons exist only for n = 

3, 4, 6, 8. Now we are going to consider each class of Moufang n-gons individually. 

We will assume the classification of the Moufang polygons as stated by Tits 

and Weiss in [57] (this classification includes one class of Moufang quadrangles 

overlooked by Tits in [51]). 

The  classification of Moufang projective planes amounts to the classification 

of alternative fields; see [34]. For the Moufang octagons the classification may be 

found in [54]. For the Moufang hexagons and quadrangles see [51] and [57]. A 

discussion of the classification without proof may be found in [58]. 

The following lemmata will be used in our classification of Moufang polygons 

of finite Morley rank. 

3.1 LEMMA: Let K be a field. In the group PSL2(K),  a copy K '  of the field K 

is definable. 

Proof." Consider the standard action of PSL2(K)  on the projective line 1?~c = 

K U {oc}. Let Ub C PSL2(K)  denote the transvection x ~4 x + b. The centralizer 

of Ul = (x ~-4 x + l )  in PSL2(K)  is V = {Ub = (x ~-4 x+b)l b c g } ,  and this group 

is isomorphic t(y the additive group (K, +). The stabilizer of cx) is the normalizer 

B of U; thus B = PSL2(K)o~ = {g] [g-lulg,  ul] = 1} is definable as well, and 

so is the torus T = B N Bg = {(x ~-4 a2x)l a E K2},  where g E PS L2 (K )  \ B. 

The torus T acts on U by ta2 : Ub ~ Ua2b and we may identify it with the subset 
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V = {ua2 [ a E K} C U. We transfer the multiplication from T to V and denote 

it by .. 
If char(K) = 2, then (V,+, . )  is isomorphic to the subfield K 2 C_ K.  If 

char(K) ~ 2, then 4a = (1 + a )  2 -  ( l - a )  2, whence V - V  -- U, and we 

can extend the multiplication • from the set V of squares to all of U. This yields 

in either case (K, +, .) ~ (U, +, .). | 

Next we observe the following (using the same notation as in 1.10): 

3.2 LEMMA: Let ~3 be a polygon. The additive right loop (D, +) is definable. 

If  the root a = (xo,. . .  , x,~) is Moufang, then the root group U~ is isomorphic to 

(D, +) (and therefore definable), and acts definably on the polygon. 

Proof." The first part follows from the remarks after 1.17: we may identify U~ 

with (D, +). But it is clear from the coordinatization how to extend the action 

of (D, +) from D to a definable action on P U £, and the Moufang condition 

guarantees that  this extension is an automorphism. | 

The following lemma will be also important for the classification of Moufang 

polygons of finite Morley rank. 

3.3 LEMMA: Let ~3 be a Moufang polygon (not necessarily of finite Morley 

rank). Suppose that one of the groups of projectivities II(x) is (as a permutation 

group) isomorphic to a subgroup of PGL2(K),  for some field K. Then PSL2(K)  

is a definable subgroup of II(x). 

Proof: Since the group II(x) is 2-transitive, it contains PSL2(K)  by Lemma 4.9 

below. Let o E Dl(x). The stabilizer II(x)o contains a unique normal abelian 

subgroup Uo ~- (K, +) which acts regularly on Dl(x) \ { o }  (namely the group of 

strictly upper triangular matrices). On the other hand, the additive right loop 

(D, +) (which is in the case of a Moufang polygon the same as a root group by 

the lemma above) is a set of fixed-point free projectivities that acts transitively 

on D l (X) \{o} .  Therefore the group Uo ~- (D,+) is definable. Pick another 

element cx~ E D l ( X ) \ { o }  and consider the corresponding group U~ (which we 

may identify with the group of all strictly lower triangular matrices). It follows 

readily from the Gaussian algorithm that PSL2(K)  = UoUooUoUooUo, hence this 

group is definable. | 

If the polygon gl in the lemma above is infinite and of finite Morley rank, then 

it follows from 3.1 that  the field K is algebraically closed. The same proof shows 

also the following: 
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3.4 LEMMA: Let ~3 be an infinite Moufang polygon of finite Morley rank, and 

let ~ be a line. If the restriction E~[DI(~) is contained in PGL2(K) ,  for some 

field K, then K is algebraically closed, and E~[DI(e) ~ PSL2(K) is a definable 

subgroup of II(x). 

MOUFANG PROJECTIVE PLANES. The triangles are precisely the projective 

planes. A Moufang projective plane is coordinatized by an alternative field, see 

[20] - -  this fact was proved first by Moufang [30], and that 's where the terminol- 

ogy comes from. It is clear from the definition that the coordinatizing alternative 

field of a Moufang projective plane of finite Morley rank is definable and hence 

has finite Morley rank. Thus the classification is reduced to the classification of 
alternative fields of finite Morley rank. By the results of Macintyre [29], Cherlin 

[11], and Rose [41] an infinite alternative field of finite Morley rank is an alge- 

braically closed field. Thus an infinite projective Moufang plane of finite Morley 

rank is Pappian over some algebraically closed field. 

MOUFANG QUADRANGLES. According to the classification of Moufang quad- 

rangles by Tits and Weiss [57], there are (up to duality) the following types of 

Moufang quadrangles: 

(1) Orthogonal quadrangles. These belong to quadratic forms of Witt  index 

2 over fields. They live in projective spaces of dimension >_ 4. The orthogonal 

quadrangle in p4 is - -  via the Klein correspondence - -  the dual of the symplectic 

quadrangle over the same field (the symplectic quadrangle consists of the totally 

isotropie subspaces of the symplectic form in a four dimensional vectorspace). 

(2) Hermitian quadrangles. These belong to hermitian or pseudo-quadratic 
forms over (skew) fields which admit an involutive antiautomorphism [8]. They 
live in projective spaces of dimension > 3. 

(3) Mixed quadrangles. These are certain subquadrangles of symplectic quad- 

rangles over fields of characteristic 2, containing orthogonal quadrangles over a 
subfield [52, 51]. 

(4) Exceptional quadrangles of type E6, E7, Es associated to forms of algebraic 

groups of type E6, ET, and Es [56]. 

(5) Exceptional quadrangles of type F4, discovered recently by Weiss. By 

an unpublished result of Miihlherr and Van Maldeghem, they are associated to 

certain involutions in mixed buildings of type F4. The name of this class is not 

standard and has been given by Van Maldeghem in [58] in connection with the 

association with these F4-buildings of mixed type. 

The underlying vectorspaces in the first two cases need not be finite dimen- 
sional. 
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First we treat some special cases. 

3.5 PROPOSITION: An infinite orthogonal quadrangle ~3 has finite Morley rank 
if and only if its underlying field K is algebraically closed. Since a quadratic form 
over an algebraically closed field has always maximal Witt index, this implies that 
the corresponding projective space is four dimensional (so the quadrangle is dual 
to the symplectic quadrangle over K). 

Proo~ Let e be a line. The little projective group induces a subgroup of 

P G L 2( K )  on DI(~), because every root elation of ~ is induced by a linear map 

of the ambient vectorspace (so E C_ PGL(V)) .  By 3.4 the field K is algebraically 

closed. | 

Projective planes are coordinatized by planar ternary rings. Similarly, general- 

ized quadrangles are coordinatized by quadratic quaternary rings; see [18], [19]. 

We use this coordinatization method to get rid of some more quadrangles. 

3.6 PROPOSITION: An infinite mixed quadrangle ~3 has finite Morley rank if and 
only if the underlying field K is algebraicaly closed (in which case it is in fact an 

orthogonal quadrangle). 

Proof: We will first give an explicit description of the quadrangle: there is a 

field K of characteristic 2 and a subfield K ~ containing the subfield K 2 of all 
squares of K. Fhrthermore, there are sub-vectorspaces L and L ~ of K and K ~ 

respectively, viewed as vectorspaces over K ~ and K 2 respectively. The subsets L 

and L t generate K and K' ,  respectively (the latter viewed as a ring). 

Let c~ be an element not contained in K. The points of ~3 can be presented 

as (co), (a), (k, b), (a,l,a') with a,a ' ,  b E L and k,l C L'. The lines of ~ can 

be presented as [oo],[k], [a, l], [k, b, k'] with a, b e L and k, k', l e L'. Incidence is 

given by 

[k, b, k'] I [k, ak + a', a2k + l] I (a, l, a') I [a, l] 

I (a) I [ ~ ]  I ( ~ )  I [kl I (k, b) I [k, b, k'l, 

where T stands for 'is incident with'. The elements (co), [c~], (0), [0, 0], (0, 0, 0), 

[0, 0, 0], (0, 0), [0] form an ordinary quadrangle. For this description, see Hanssens 

-Van Maldeghem [18]. 

From this description it is clear that the abelian groups L and L ~ act as root 

groups with roots ([0, 0, 0], (0, 0), [0], (eo), [c~]) and ((0, 0, 0), [0, 0], (0), [oo], (oo)), 

respectively, and hence (L, +) and (L ~, +) are definable. Unfortunately, there 



Vol. 109, 1999 GROUPS OF FINITE MORLEY RANK 207 

is no obvious way to define K from ~.  Instead we will define an orthogonal 

quadrangle contained in it and show that it coincides with ~ .  

We define an inclusion L r C L by identifying k C L I with the unique b E L 

such that  the point (k, b) is collinear with (1, 0, 0). Note that the point (1, 0, 0) 

plays no special role, as the automorphism group of the symplectic quadrangle 

containing ~ acts transitively on the ordinary pentagons contained in it; see e.g. 

Joswig [22]. The multiplication a- k, with a C L and k E L ~, can be recovered as 

follows: the point ( k , a .  k) is given by f3((a,0,0),  [k]). The set K "  of all k C L' 

such that  L ~ • k = L ~ is clearly a subfield of K and it contains K 2. Moreover, 

it is definable. Restricting coordinates to K ' ,  we obtain a definable orthogonal 

quadrangle [58]. By 3.5 the field K "  is algebraically closed. This implies however 

K "2 = K " ,  hence K 2 = K and ~3 is an orthogonal quadrangle. I 

3.7 PROPOSITION: Let  K be an infinite proper skew field wi th  an involut ive 

an t iau tomorphism a. The  a-hermit ian quadrangle ~J in P3 g does not  have finite 

Mor ley  rank. 

Proof: For the proof it will suffice to show that  the skew field K (and the in- 

volution a) is definable in ~ as a proper skew field does not have finite Morley 

rank. 

We use the following description of ~ (see [58]): 

The points are the elements (c~), (a), (k, b) and (a, l, a') with a, a', b E K and 

k , l  e Ka  = {t ~ - t [  t e K } .  The lines are the elements [cx~], [k], [a,l] and [k,b,k'] 

with a, b E K and k, M, l C K~. Incidence is given by 

(a, l, a') I [a, l ] I  (a) I [c~] I (cx~) I [k] I (k, b) I [k ,  b, k'], 

and (a , l ,a ' )  is incident with [k,b,k'] if and only if 

{ k I = l + aaka + aa ~° - ata a, 

b = a I - ak. 

In fact, this description of ~3 comes from the standard embedding of ¢~ in a 

3-dimensional projective space P3 g over K.  For the proof it will be useful to have 

the coordinates of the points and lines of ~ in P3 K . This is given in the following 
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table, where we denote the line incident with two points x and y by <x, y): 

POINTS 
Coordinates in ~ Points in F3K 

(oo) (1,0,0,0) 
(a) (a, 0, 1, 0) 

(k,b) (-b,  1,k,O) 
(a,l,a') (l+aa'~,-a",a'",l) 

LINES 
Coordinates in ~ Lines in ]~K 

[cxD] ((1,0,0,0),(0,0,1,0)) 
[k] <(1, 0, 0, 0), (0, 1, k, 0)) 

[a, l] ((a, 0, 1, 0), (1, - a  ~, 0, 1)> 
[k,b,k'] ((-b,l,k,O),(k',O,b°,l)) 

Let B be the set of points 

B = {(c~), (0), (0, 0), (0, 0, 0), (1), (0, 1), (1, 0, 0), (0, 0, 1)}. 

Notice that the line [c~] is definable from B, and the point row defined by [oo] 
is the projective line K U {oc}. 

Now consider ~3 in the language of polygons extended by parameters for B, a 
predicate/< for the point row defined by [oo] minus the point (oo), and let +, . ,  a 
be function symbols with the obvious interpretation on/<.  

The proposition will now follow from 2.1 and the following lemma: 

3.8 LEMMA: Aut(~,  B) = Aut(~3, B, K,  +, . ,  a). 

Proof." Note that clearly Aut(K, +, ., a) = {¢ E Aut(K)l Ca = a¢}, and also 
Aut(~3, B,/<,  +, . ,  a) C_ Aut(~3, B). So suppose that ¢ E Aut(~)  fixes B elemen- 
twise. By Tits [50] 8.6.II, every automorphism of ~3 is induced by a semi-linear 
mapping of ~K" Let us denote by ¢* the extension of ¢ to Fag. Since ~b fixes 
B elementwise, ¢* fixes the points (1, 0, 0, 0), (0, 1,0, 0), (0, 0, 1, 0), (0, 0, 0, 1), 
(1,0,1,0), ( -1 ,1 ,0 ,0) ,  (0 , -1 ,0 ,1)  and (0,0,1,1). So, by the fundamental the- 
orem of projective geometry, ¢ is (induced by) a field automorphism. It is ob- 
vious that  the point (a) is mapped onto the point (a ¢) (because (a,0, 1,0) in 
Fag is mapped onto (a¢,0, 1, 0) by ¢*). Hence (a, 0, 0) in ~3 is mapped onto 
(a ~, 0, 0). This means that ¢* maps (0, - a  ~, 0, 1) onto (0, ( -a¢)  ~, 0, 1), but 
clearly ( 0 , - a  a, 0, 1) is mapped onto (0, ( - a ° )  ¢, 0, 1). Hence a¢  = Ca, so ¢ E 
Aut(K,  +,- ,  a), and in fact ¢ E Aut(q3, B , / ( ,  +, . ,  a). I 
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It follows that  (9 ,  B, /~,  + , . ,  a) and (~3, B) have the same 0-definable sets; i.e. 

the field structure of K is definable (in the polygon language) in ~ and hence K 

is commutative, a contradiction. 

3.9 COROLLARY: Let ~ be an infinite Moufang quadrangle of finite Morley rank. 

If~3 has a regular line (cf. Section 1) and i f ~  is not dual to a hermitian quadrangle 

over a skew field of characteristic 2 in k-dimensional space, with k > 3, then ~3 

is the orthogonal quadrangle over some algebraically closed field K (and hence 

the dual of the symplectic quadrangle over K).  

Proof: If ~ is a Moufang quadrangle with regular lines, then ~ is either an 

orthogonal quadrangle, or a quadrangle of mixed type, or the dual of a hermitian 

quadrangle over a proper skew field in three dimensional projective space, or the 

dual of a hermitian quadrangle over a proper skew field of characteristic 2 in 

k-dimensional space, with k > 3. | 

3.10 THEOREM: Let ~3 be an infinite Moufang quadrangle of finite Morley rank. 

Then ~3 is either the orthogonal quadrangle, or its dual, the symplectie 

quadrangle, over some algebraically closed field K.  

Proof." Suppose that ~3 has no regular line and no regular point. Let Ui, i E 

{1, 2, 3, 4, 5, 6, 7, 8), be the set of root groups corresponding to the eight roots 

in an ordinary quadrangle, ordered as in Tits [55]. Then, according to the clas- 

sification of Moufang quadrangles (see also Tits [55]), we may assume that  //2 

is commutative. According to Tits [56], the restriction of U2i+1 to [U2i, U2i+2] 

defines a subquadrangle ~ with either regular lines or regular points, and such 

that ~ is not isomorphic or dual to a hermitan quadrangle over some skew field 

of characteristic 2 in k-dimensional space, k > 3. This subquadrangle is definable 

by the coordinatization process - -  we merely restrict the coordinates from U2~+1 

to the definable subsets [U2i, U2i+2]. By the previous theorem ~ is isomorphic to 

the orthogonal quadrangle over an algebraically closed field, or to the symplectic 

quadrangle over an algebraically closed field. The only Moufang quadrangles ex- 

tending orthogonal quadrangles are the exceptional ones, but in that  case either 

lives in a 9, 11 or 15 dimensional projective space (exceptional quadrangles of 

type E6, ET, Es),  or the underlying field is not perfect (exceptional quadrangles 

of type F4) which is impossible over an algebraically closed field. II 
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MOUFANG HEXAGONS. 

3.11 PROPOSITION: Let 9~ be an infinite Moufang hexagon of finite Morley rank. 

Then ~ is isomorphic to the split Cayley hexagon over some algebraically closed 

field K.  

Proof: We may assume that every point of the hexagon ~3 is regular; see [39]. 

Let x be a point and £1,£2 two distinct lines incident with x. Let Gi, i = 1,2, 

be the definable group acting on the set of lines through x obtained from the 

action of any root group fixing all elements incident with £ /and acting faithfully 

on the lines through x. Then G1 and G2 generate PSL2(K) ,  for some infinite 

field K. Hence by the Gaussian algorithm, PSL2(K)  is definable, hence K is 

algebraically closed. 

More geometrically, one could alternatively argue as follows; see [58]. For two 

opposite points x, y, let x ~ = x~2 ] denote the set of points collinear with x and 

not opposite y, cf. Section 1. Now fix x and y. The set of points 

U{v l  • and v • yx, d(u, = 6} 

forms the point set of a (definable) projective plane 9~ the lines of which are the 

sets a b for b a point of iR and a an element of the set 

U{uvl  • and v • yX,d( ,v) = 6}. 

The plane 9~ is Pappian over some field K,  hence by the previous section, K is 

algebraically closed. 
The Moufang hexagons besides the split Cayley hexagon are either associated 

to field extensions of degree 3 over K,  to proper subfields of characteristic 3 of 

K containing K 3, or to certain simple Jordan division algebras (including some 

skew fields) over K. Since K is algebraically closed, these do not exist over K.  

| 

MOUFANG OCTAGONS. 

3.12 LEMMA: Let ~3 be a Moufang octagon and let x be a point of ~3. Up to 

duality, we may  assume that the group H(x) is isomorphic to a general Suzuki 

group GSz(K, a), where a is an endomorphism of K whose square is the Frobenius 

endomorphism x ~ x 2. Then every projectivity in H(x) that fixes two elements 

(lines) of D1 (x) has length < 4. 

Proo£" Using the coordinatization of ~ as in [24], we can parametrize Dl(X) 

by the set K (2) U {(c~)} (see also [54]) where K(~ 2) = {(a, b) • g 2} is a group 
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with operation (a,b) G ( c , d )  = ( a + c , b + d + c a ~ ) .  For k C K,  one defines 

k ® (a, b) = (ka, kl+°b). The stabilizer in II(x) of (0,0) and (cxD) is the group 

{Tk : (a,b) ~-~ k @ (a,b)[ k e K \ { 0 } }  (according to [24], Theorem F). By the 

same reference, there is a generalized homology 0 fixing all lines through a point 

y collinear with x and inducing ~k on Dl(x).  If z is a point with d(x,z)  = 

d(y, z) = n, then the projectivity Ix, 0(z), y, z, x] induces ~ on Dl(X). | 

3.13 PROPOSITION: There exists no infinite Moufang octagon of finite Morley 

rank. 

Proof." Let x be a point of the octagon. It follows from the previous lemma 

that  every projectivity fixing two elements in Dl(X) has lenght _< 4. Thus H(x) 

is bounded and hence definable. The commutator group of II(x) is an infinite 

Suzuki group, hence a 2-transitive Zassenhaus group of finite Morley rank in 

which the stabilizer of a point splits as H ~ T with H containing a central 

involution (see e.g. [46] 12.52 - 12.54). But this contradicts the classification of 

such groups by De Bonis-Nesin (see [6] 11.90). | 

SUMMARY: MOUFANG POLYGONS OF FINITE MORLEY RANK. Putt ing together 

the information about Moufang polygons of finite Morley rank, we have the 

following results: 

3.14 THEOREM: Let ~3 be an infinite Moufang polygon of finite Morley rank. 

Then the little projective group ~ is definably isomorphic to a simple linear K-  

algebraic group of K-rank 2 where K is an algebraically Closed field definable in 

~3, and precisely one of the following cases occurs: 

(i) ~3 is definably isomorphic to the projective plane over K with ~ ~- 

PSL3 (K) .  

(ii) 9~ is definably isomorphic to the sympleetic quadrangle over K with ~ -~ 

PSP4(K) .  
(iii) ~3 is definably isomorphic to the split Cayley hexagon over K with ~ ~- 

G2(K).  

In particular, each projectivity group in ~ is (as a permutation group) 

definably isomorphic to the action of PSL2(  K)  on the projective line P1K. Thus 

~3 has parameters (1, 1). 

Moreover, the group ~ is the unique maximal definable subgroup of Aut (~)  

>~ Aut(K).  

Proof: We have shown that ~3 is abstractly isomorphic to one of the three 

polygons above. 
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First we prove that the little projective groups are definable. The full auto- 

morphism groups of these three Moufang polygons are semidirect products of 

their little projective groups E and the group Aut(K) of all field automorphisms; 

see [50] 5.10. The group E is generated by all root groups; it follows from [4, 1.2.2] 

that  there is a finite sequence of roots ( a l , . . .  ,ak) such that E = U~I.- .U~ k. 

This implies that  E is a definable group. 

Now we want to show that the isomorphisms are definable. It is proved in 

[25] that  in each of the three cases the point rows and line pencils are projective 

lines with the groups of projectivities being isomorphic to PSL2(K)  (in [25] this 

fact is stated only for finite polygons, but the proofs given for the symplectic 

quadrangle and the split Cayley hexagon go through over infinite fields). By 3.3, 

all the groups of projectivities are definable and we can define an algebraically 

closed field K on the point rows of ~ by 3.1. Clearly, once we have defined K,  

we can also define PSL2(K)  and the corresponding isomorphic Pappian polygon 

~3', say, inside ~3. 

Let II(x) be a group of projectivities in 9 .  We identify the field K with 

Dl(X) \ {x0}  for some xo • Dl(x). Since II(x) ~ PSL2(K)  is sharply 3-transitive 

on Dl(x), it is clear that we can definably identify II(x) with PSL2(K) .  

Since ~ is in the definable closure of D1 (x) U X for some finite set X by 

2.5, it is enough to show that we can find an isomorphism between ~ and ~1 

whose restriciton to Dl(X) is definable. Let ¢ be any isomorphism from ~3 to ~3 I 

(not necessarily definable). Then there is a K-algebraic (and hence definable) 

isomorphism ¢ from Dl(x), which we have identified with P~,  to Dl(¢(x)) .  

It follows from [15] that the set of isomorphisms between the permutation 

groups (H(x),Dl(X)) and (H(¢(x)),DI(¢(x))is in one-to-one correspondence 

with P G L 2 ( K )  )4 Aut(K) (by composing one fixed isomorphism with all auto- 

morphisms of the projective line). Since Aut(~3) = N )4 Aut(K),  it follows readily 

that Aut(~/X)[Dl(~) ~- P G L 2 ( K )  )~ Aut (g ) ,  so there exists an extension of ¢ 

to ~]3. 
Finally, if N' ~ Aut(~3) is definable, then N' h E  is normal in N' and N'/(NNN') 

is a definable group of field automorphisms, hence reduced to the identity by 

[21, Prop. 3]. | 

Thus, we have established Theorem A. 

4. Spherical  bui ldings  

In this section we give a short exposition of spherical buildings. There are sev- 
eral excellent references on this subject: the books by Ronan [40], Brown [7], 
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and Taylor [46], the chapter on buildings in the book by Suzuki [45], the (very 

readable) overview article by Scharlau [42], and finally Ti ts '  monograph [50]. 

Buildings may be introduced in different ways, e.g. as complexes, as diagram 

geometries, or as chamber systems. We will consider spherical buildings as com- 

plexes, i.e. as posets with certain geometric properties. 

4.1 Complexes: A k - s i m p l e x  is a poset (partially ordered set) (S, C) which is 

as a poset isomorphic to the powerset 2 x of a finite set I of cardinality k. The 

number k is called the r a n k  of the simplex. A c o m p l e x  is a poset (A, _C) with 

the following two properties: 

C p l x l :  for every A C A, the poset {B E A I B C_ A} is a simplex. 

Cplx2:  any two elements A, B C A have a unique greatest lower bound A~B.  

A complex has a unique minimal element 0. If the elements A and B have a 

common upper  bound, then their least upper bound is denoted by A U B, and 

we say that  A U B exis ts .  

A m o r p h i s m  between two complexes is an order-preserving map whose 

restriction to each simplex is an isomorphism. A subset of a complex is called a 

s u b c o m p l e x  if the inclusion is a morphism. 

A c h a m b e r  in a complex A is a maximal element. If A is contained in a 

chamber C, and if r a n k C  - rankA = 1, then A is called a p a n e l  o f  C. Two 

chambers are called a d j a c e n t  if they have a panel in common. A complex is 

called a c h a m b e r  c o m p l e x  if 

C h C p l x l :  every element is contained in some chamber, and 

C h C p l x 2 :  given two chambers C, C t there exists a ga l le ry ,  i.e. a sequence 

C = C 0 , C 1 , . . . , C k  = C'  of chambers such that  Ci is adjacent with Ci-1 for 

i =  l , . . . , k .  

The r a n k  of a chamber complex is the rank of its chambers; by C h C p l x 2 ,  

this is well-defined. To avoid confusion with the Morley rank, we will call this 

the T i t s  r ank .  A chamber complex is called t h i n  if every panel is contained in 

precisely two chambers; it is called th i ck  if every panel is contained in at least 3 

chambers. 

A n u m b e r i n g  or t y p e  f u n c t i o n  of a chamber complex (A, C) is a surjective 

morphism type : A --+ 21 where the t y p e  se t  I is some finite set (this should not 

be confused with the modeltheoretic notion of a type given in Section 2). 

Before we come to the notion of a building, we have to consider a special 

class of thin chamber complexes, the Coxeter complexes. The relation between 

Coxeter complexes and buildings is very much the same as the relation between 

ordinary polygons and polygons. 
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4.2 Coxeter  complexes: Let I be a finite set. A C o x e t e r  m a t r i x  over I is 

a symmetric matrix (rnij) i , jeI  with integral entries, subject to the conditions 

m i i =  1 and rnij ~ 2 for j ¢ i. We assign to it a C o x e t e r  d i a g r a m :  it is the 

graph that  has the elements of I as nodes, where the nodes i and j are joined by 

mij  --  2 strokes, or by a single stroke labeled mij  if mij > 3. Finally, we assign 

to each Coxeter matrix the C o x e t e r  s y s t e m  (W, I),  where the C o x e t e r  g r o u p  

W is presented as W = (I  I ( i j )  m`j --- 1). The subgroups P j  = (JI ,  where J C I,  

are called the p a r a b o l i c  subg roups ;  they are again Coxeter groups. The set 

A = { w P j w - l l  w • W and ~ ¢ J C I}, ordered by the reversal of the inclusion, 

is a thin numbered chamber complex (with minimal element PI -- W )  of Tits 

rank IJI, the C o x e t e r  complex .  Its type function is given by g p j g - 1  ~ I \ J .  

The Coxeter diagram of a Coxeter complex is uniquely determined by its iso- 

morphism class. 

A Coxeter complex is called spher i ca l  if it is finite or equivalently if its 

Coxeter group W is finite. It is called i r r edu c i b l e  if its diagram is connected, 

or equivalently if it is not the join of two Coxeter complexes. 

Finally, we can give the definition of a building. 

4.3 Buildings: Let (A, _C) be a chamber complex. A subcomplex A C_ A is called 

an a p a r t m e n t  if A is a Coxeter complex. A thick chamber complex fl~ -- (A, C_) 

is called a bu i ld ing  if 

B l d g l  Given two chambers C, C ~ E A, there exists an apartment A containing 

both chambers. 
Bldg2 Given two apartments A, B C_ A there exists an isomorphism A --+ B 

fixing the intersection A N B elementwise. 

By Bldg2 the isomorphism type of the apartments is uniquely determined, and 

we may assign a Coxeter diagram to the building ~ .  Moreover, the numbering 

of the apartments extends to a numbering type : A --+ 2 I. 

We call the building ~ spher i ca l  or i r r ed u c i b l e  if its Coxeter diagram has 

the corresponding properties. A reducible building is the join of two buildings. 

The generalized polygons are precisely the spherical irreducible buildings of 

Tits rank 2: given an n-gon ~ = (P, t : ,br) ,  put 

= ({¢} u p u = u  (a,e) e 7 } ,  c ) .  

The apartments in a polygon are the ordinary polygons contained in it, and its 

Coxeter group is the dihedral group of order 2n. 

Another important class of buildings are the finite dimensional projective 

spaces: the chamber complex associated to such a projective space is the set 
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of all flags, ordered by inclusion. The type of a subspace is its (projective) di- 

mension. 

4.4 Roots and the Moufang condition: Let A be a spherical Coxeter complex. 

A fo ld ing  is an idempotent homomorphism ¢ : A -~ A which is two-to-one on 

the chambers in A. The image a = ¢(A) of a folding is called a r o o t .  Each 

panel in A determines a root: given two distinct adjacent chambers C, C ~ E A, 

there exists precisely one root containing C and not containing C I. Every root c~ 

has an o p p o s i t e  r o o t  - a ,  obtained by switching the roles of C and C .  Their 

common wall  0a  is given by ac~ -- ( - a )  N a. 

Let ~ be a spherical building. We let Au t (~ )  denote the group of all type- 

preserving automorphisms of the poset ~ (this group is denoted by Spe(~)) in 

[50], and Au t (~ )  is reserved there for the group of all order-preserving, but  not 

necessarily type-preserving automorphisms. The latter kind of automorphisms is 

not important  here, so to keep our notation consistent with the case of polygons, 

we deviate from [50] at this point). Now let A be an apartment in ~ ,  and let 

a C_ A be a root. The r o o t  g r o u p  Us is the subgroup of automorphisms in 

Aut (~)  fixing all chambers that have a panel in c~ \ 0a. The root a is called 

M o u f a n g  if the group Us acts transitively on the set of all apartments containing 

~. The building is called a M o u f a n g  bu i ld ing  if every root is Moufang. For 

polygons, this is precisely the Moufang condition stated in Section 1. 

One of the main results in [50] is that every spherical irreducible building of 

Tits rank > 3 is Moufang. In [50] Tits also classified the irreducible spherical 

buildings of Tits rank > 3 explicitly. This is a far-reaching generalization of the 

well-known fact that  every projective space of dimension > 3 is desarguesian. 

4.5Residues: Let ~ -- (A, C_) be a building, and let A E A. The r e s i d u e  or s t a r  

of A in A is defined as ResAA -- {B E A I B _~ A}. Endowed with the induced 

ordering this is again a building of Tits rank (rank A - rank A). Its Coxeter 

diagram is the restriction of the Coxeter diagram of A to the set I \ type(A). If 

is an irreducible spherical building of Tits rank > 3, then its irreducible residues 

of Tits rank 2 are either Moufang projective planes or Moufang quadrangles. 

If A is a panel and if C _~ is a chamber, then we put Si(C) -- ResAA, where 

{i} = I \ type(A). If I -- {1 , . . . ,  k}, then each chamber is contained in precisely 

k rank one residues S I ( C ) , . . . ,  Sk(C), and the intersection of these residues is 

precisely {C}. The union SI(C) U . - - U  Sk(C) is denoted by El(C) in [50]. 

4.6 Strongly transitive groups and BN-pairs: Let ~ be a spherical building. 

If a group G C_ Au t (~ )  acts transitively on the pairs (A,C) ,  where A is an 
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apartment containing and C a chamber contained in A, then the group G has a 
(saturated) BN-pair or Ti t s  s y s t e m  (G, B, N, S): fix such a pair (A,C),  put 

B = Gc, and let N denote the group of all elements of G fixing A setwise. The 
group W = N/(N A B) may be identified with the Coxeter group of the building. 

It has a distinguished set {sii i E I} of involutive generators. The subgroups of G 

containing B are called the parabol ic  subgroups;  they correspond precisely to 

the stabilizers GA, where A C_ C. Such a group G is called s t rong ly  t rans i t ive .  

We refer the reader to [7], [40], [45], [46], [50] for more details about BN-pairs. 

If ~ is a spherical Moufang building, and if E is the group generated by all root 

groups, then E acts strongly transitively on ~ .  As in the case of polygons, we call 

E the l i t t le  p ro jec t ive  g roup  of the building. If G acts strongly transitively 

on ff~, and if G induces the little projective group E on ~ ,  then the BN-pair of 

G will be called Moufang .  

4.7 Some examples: Spherical buildings of rank _> 3 are typically associated to 

the following classes of groups: 

(1) Algebra ic  g roups .  Let K be an infinite field, and let G be an isotropic 

adjoint absolutely simple algebraic K-group (an algebraic K-group G is 

called isotropic if it contains a K-split torus, and it is called absolutely 

simple if G(L) is simple for every algebraically closed field extension L/K. 
'Adjoint' means that it is in a certain sense minimal among all K-groups 
which are isogeneous to G, or, in other words, that  it acts effectively on 

its building. See also [5, 49]). If G has a K-split torus of K-rank _> 2, 

then the groups of the K-rational points of the K-parabolic subgroups of 
G give rise to a Moufang building whose little projective group is given 

by the group of K-rational points G(K). See [5, 4, 42] and in particular 

[50] Chap. 5 for more details. 

(2) Classical  groups .  Let G be a classical group over a skew field D acting 

on a projective space. By a classical group we mean the unimodular 

group PSLkD,  or orthogonal resp. unitary groups belonging to (pseudo-) 

quadratic forms of finite Witt  index > 2 in (possibly infinite-dimensional) 

D-vectorspaces; see [8], [50], [12], [17], [46]. 

(3) (Twis ted)  Cheva l ley  groups.  These groups are twisted by some field 

and diagram automorphism; these need not be algebraic groups (an 

example in rank 2 are the twisted Ree groups 2F4(K)). See the book 

by Carter [9]. 
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The Borel (i.e. minimal parabolic) subgroups of these buildings need no t  be 

solvable. 

UNIQUENESS OF THE B N - P A I R  IN PAPPIAN POLYGONS AND BUILDINGS. W e  

call a spherical irreducible building P a p p l a n  if its irreducible residues of rank 2 

are Pappian polygons. 

4.8 THEOREM: A spherical building is Pappian if  and only if  it arises from an 

isotropic K-split  absolutely simple adjoint K-algebraic group. Thus, the Pappian 

buildings of Tits rank _> 3 are the following: 

Ak the Pappian projective spaces over fields. 

Bk the polar spaces belonging to orthogonal groups of maximal Wit t  index in 

even-dimensional projective spaces over fields. 

Ck the polar spaces belonging to symplectic groups in odd-dimensional 

projective spaces over fields. 

Dk the oriflame geometries belonging to orthogonal groups of maximal Wit t  

index in odd-dimensional projective spaces over fields. 

Ek (k -- 6, 7, 8) the unique Ek-buildings over fields. 

F4 the metasymplectic spaces belonging to K-split  groups of type F4 over fields 

K.  

Proof: This is immediate from Tits '  classification [50]. | 

The automorphism group of a Moufang or even Pappian polygon can have sev- 

eral quite different BN-pairs ;  see e.g. [50, 11.14] for a particularly bad example. 

However, the little projective group E of a Pappian polygon or building does not 

contain any proper strongly transitive subgroup, as we will see. First we need a 

lemma about  the smallest case, i.e. P G L 2 ( K ) .  

4.9 LEMMA ([48, 3.2]): Let K be a field and let G C P G L 2 ( K )  be a two- 

transitive subgroup (with respect to the usual action on the projective line p 1  = 

K U {~} ) .  Then P S L 2 ( K )  C G; in particular, PSL2(K)  has no proper  two- 

transitive subgroups. 

Proof: Consider the stabilizer G ~  acting on K.  Since G is two-transitive, the 

action of G ~  on K is still transitive; hence for each b E K there exists an gb C C ~  

with gb(0) = b. We want to show that  Goo contains the maps ub : x ~-~ x + b 

for a l l b  E K.  I fgb  = (x ~-~ a x + b )  ~ Ub, t h e n a  5£ 1, andgb  has the unique 

fixed point c = b/(1 - a) in K.  Then g[lgbgc fixes 0, hence g[lgbgc = (x ~-+ ax), 

and thus Ub = gbgclgblgc EGo. .  Now let g ~ G \ G ~ .  Since the transvections 

{ub,g-lubgl b E K}  generate PSL2(K) ,  the claim follows. | 
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The Papp ian  polygons are the polygons associated to the absolutely simple 

K-algebra ic  groups of K- rank  2 which are K-split .  

The  point  rows and the line pencils of these polygons are projective lines ~ ( ,  

and the group induced by E on such a point row or line pencil is P G L 2 ( K ) .  

4.10 PROPOSITION: Let E be the little projective group of a Pappian n-gon !]1 

over a field K with at least four elements. I f  G C_ E is strongly transitive on ~3, 

then G = ~. 

Proof:  Let  x0 be any vertex in 9 .  Since ~ is Pappian,  the induced group Ex on 

Dl(xo) is ExiDl(xo) ---- P G L 2 ( K ) ,  except if ~II is the symplectic quadrangle  and 

x0 is a point,  in which case ExiDl(xo) = P S L 2 ( K ) .  Let xn be a vertex opposite 

to x0. Since G acts strongly transitively on 6 ,  the group G~o,~ . acts still two- 

transit ively on D1 (x0). By Lemma 4.9 above, P S L 2  (K) C_ G~o,~n I D~(~o). 

Let { x 0 , . . . ,  x2n-1} be an ordinary n-gon, and let a = ( x 0 , . . . ,  xn). We want  

to show tha t  Us C G~o,~ ~ ..... x . We may identify Dl(XO) \ { X l }  = D with K.  

Then  G~ o ..... x,  -- G~o,~l,~, induces the group {(x ~-~ a2x + b)] a, b E K}  on D. 

Now let a C K be an element with a 2 ~ 1, and let t E G~o,x ~ ..... ~2,-1 = 

G~2,_~,xo,xl,x" be an element which induces the map x ~+ a2x on D. Note tha t  

t is contained in the torus T = E~ o ..... ~2,-~ ~ K* × K* of E. For every b E K we 

can find an element g E G~ o ..... ~, which induces the map x ~-~ x + b/(1 - a 2) on 

D. The  element g can be wri t ten as g = us, where s E T is a torus element, and 

u C Us is a root  elation. The  commuta to r  It, g] induces the map  x ~-~ x + b on 

D, and we claim tha t  It, g] C Us: 

[t ,g]  -~- It, itS] = t u s t - - l s - - l ~  - 1  = ( tU t -1 )U  -1 e U s ,  

since tut -1 E Us. Therefore G contains all root  groups, and thus G = E. I 

Propos i t ion  4.10 holds also over the fields F2 and F3, as one can check directly. 

4.11 THEOREM: Let K be a field, and let G be an absolutely simple isotropic K -  

split K-algebraic group; let G + C_ G(K)  denote the normal  subgroup generated 

by all root  groups U(K)  (thus G + is the little projective group of the corre- 

sponding building). Let H C__ G(K) be an abstract subgroup which acts s t rongly  

transitively in the building of G(K),  i.e. a subgroup with H • T ( K )  = G(K) .  

Then G + C H.  Thus, i f  K is algebraically dosed, then H = G(K).  

Proof'. If  G has K- r ank  1, then this is Lemma 4.9. The  case of K - r a n k  2 is 4.10. 

The  proof  for K- r ank  > 3 is literally the same as in 4 .10- - the  ordinary n-gon 
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has to be replaced by an apartment A, and xo,xl  by a pair of opposite panels. 
| 

A special case of Theorem 4.11 is proved in [6, pp. 282-285]: there the assump- 

tions are that K is algebraically closed and that H is a definable subgroup. The 

proof is quite long and uses some non-trivial modeltheoretic results. 

5. A p p l i c a t i o n :  s imple  g r o u p s  o f  f ini te  M o r l e y  r a n k  

5.1 THEOREM: Let fg = (A, C) be an infinite irreducible spherical building of 

Tits rank >_ 3 and of finite Morley rank. Then f8 is the building associated to a 

simple linear algebraic group G over some algebraically closed field K.  The field 

K is definable in ~ ,  and the little projective group Z o f ~  is definably isomorphic 

to the algebraic group G. 

Proof: This follows directly from 3.14 and 4.8. For the diagrams which have only 

single strokes (type Ak, Dk, E6, E7, E8) there is a shortcut, since the residues of 

rank 2 are projective planes over the corresponding field K,  hence K is directly 

interpretable in the building. The case of polar spaces (type Bk) and metasym- 

plectic spaces (type F4) requires the classification 3.14 of Moufang quadrangles 

of finite Morley rank. (This case is missing in [6], Fact 12.38.) 

The proof that  E is a definable group which is definably isomorphic to G is 

more or less the same as the one given in 3.14 for the polygons. To see that  the 

isomorphism is definable, one can use [50] 4.1.1. to reduce to a problem about 

definable isomorphisms between copies of PSL2(K) .  | 

We have classified the infinite spherical irreducible Moufang buildings of finite 

Morley rank and Tits rank > 2. Now we want to apply this result to simple groups 

of finite Morley rank. Of course we want to consider these groups in the pure 

group language {e,- , -1  }, so we have to show that  a spherical Moufang building 

is interpretable in its little projective group E. The following proposition, which 

is the main step towards this, is due to B. Miihlherr. 

5.2 PROPOSITION: Let ~ be an irreducible spherical building of Tits rank 

k >_ 2, let G C Aut (~)  be a group containing the Iittle projective group, and let 

B = Gc  be the stabilizer of a chamber C. Then there is an infinite subgroup Z 

of B which is definable in the pure group G. 

Proof: For i = 1 , . . .  k, let a~ C_C_ A denote the root which is determined as follows: 

the wall of ai  is given by the reflection on the / -pane l  of C, and - a i  contains 
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C. Note that  the root group U~ fixes C. Pick an element ui E U~ \{ id} .  Then 

Fix(ui) M Si(C) = {C}; see [42, 5.3.12.(b)]. 

Now let H denote the group generated by {Ul , . . . ,  uk}. Our next claim is that  

H fixes no chamber except for C: suppose that  H fixes a chamber D ~ C. Let 

C = C o , . . . ,  Cr = D be a minimal gallery. Since H fixes C and D, it fixes C1 as 

well. But C1 E Si(C) \ { C }  for some i, and so ui has to fix C1, a contradiction. 

Now consider the centralizer Z -- Zc(t-I). This is a definable group, and since 

Fix(H) n C h a m ~  -- {C}, the group Z is contained in B. It  remains to show 

that  Z is infinite. 

Let us first consider the case that  ~ is not an octagon. Then there is a 

root system (I) C_ ]~k (which may have multiple root vectors). The roots of A 

correspond precisely to the half-rays {tp] t > 0} where p E (I) is a root vector, 

and the commutators  of these groups and the root groups can be determined in 

terms of the root vectors, i.e. [Up, U~] C U(p,~), cf. [5] 2.5. 

Let ~ 1 , . . . ,  ~k be simple roots corresponding to the reflections on the walls of 

the Weyl chamber C _C A, and let ~ be a m a x i m a l  root vector. Then we have 

[U~,U~] C_ U(a,~) = 0 for all ~ E {tc~il t > 0, i ---- 1 , . . .  ,k}, so the infinite group 

Ufl is contained in Z. 

In the case of octagons the same argument goes through if the axioms of a root 

system are slightly changed, cf. [55]. I 

5.3 THEOREM: Let G be a group of finite Morley rank. Suppose that G acts 

effectively and strongly transitively on an infinite irreducible Moufang building 

fB of Tits rank >_ 2. If either G is Moufang (i.e. if G contains the little projective 
group E of ~) ,  or if the parabolic subgroups of G are definable in G, then 

G is simple and definably isomorphic to a simple K-algebraic group over some 
algebraically dosed field K, and ~ is the standard building of G defined in terms 

of its Bore1 subgroups. 

Proof: We show first that  the building is interpretable in G, provided that  E C_ G. 

Let C be a chamber and put B = Go. We know from 5.2 that  an infinite group 

Z C_ B is definable in G. Now let P _D B be a maximal parabolic subgroup. We 

claim tha t  P is definable. Let Z ° denote the connected component of Z; since 

Z is infinite, Z ° is infinite as well. The group (gZ°g-11 g E P) C_ P is definable 

by Zil 'ber 's  Indecomposability Theorem and infinite. Hence the normalizer of 

this group is also definable and contains P.  Since the maximal parabolic sub- 

groups are maximal subgroups, and since G is simple, we conclude that  P is the 

normalizer of (gZ°g-11 g E P), and hence definable. 
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Every parabolic subgroup of G is a finite intersection of maximal parabolic 

subgroups. Hence every parabolic subgroup is definable in G. Since we may 

identify ~B with the cosets of the parabolic subgroups containing B, the building 

is interpretable in G (and has finite Morley rank). 

It follows from 5.1 that  ~B is Pappian over an algebraically closed field K.  It  

remains to show that  G -- E. Since E is interpretable in G, so is their intersection 

E ;3 G. This is a normal subgroup of G, and GIG Cl E is a definable group of 

field automorphisms (note that  both K and the action of GIG n E on K are 

interpretable in G), whence G = G ~ E = E by 4.11. | 

This establishes Theorem B. 

In the case of Tits rank at least 3, a similar result to Theorem 5.3 is stated 

without proof in Borovik-Nesin [6, 12.39], based on [Fact 12.38, loc. cit.]. How- 

ever, Fact 12.38, which is at tr ibuted there to Tits [50], is not correct (and not 

stated in [50])--the polar and the metasymplectic spaces yield counterexamples. 

5.4 COROLLARY: Let G be an adjoint absolutely simple isotropic K-group of 

K-rank ~_ 2, where K is an infinite field. Then the group G(K) of K-rational 

points has finite Morley rank if and only if K is algebraically closed. (See also 

[60].) 

In particular, for K = JR, we obtain: 

5.5 COROLLARY: Let G be a simple noncompact real Lie group of R-rank > 2. 

Then G has finite Morley rank if and only if G is a complex Lie group. 

This is a complement to a result of A. Pillay and A. Nesin who showed that  a 

compact connected simple Lie group does not have finite Morley rank [33]. See 

4.7 for other (non-algebraic) groups covered by our classification. 
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