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In this paper, we classify all generalized quadrangles weakly
embedded of degree 2 in projective space. More exactly, given
a (possibly infinite) generalized quadrangle Γ = (P, L, I) and
a map π from P (respectively L) to the set of points (respec-
tively lines) of a projective space PG(V ), V a vector space
over some skew field (not necessarily finite-dimensional), such
that:
(i) π is injective on points,
(ii) if x ∈ P and L ∈ L with x I L, then xπ is incident with

Lπ in PG(V ),
(iii) the set of points {xπ | x ∈ P} generates PG(V ),
(iv) if x, y ∈ P such that yπ is contained in the subspace of

PG(V ) generated by the set {zπ | z is collinear with x in
Γ}, then y is collinear with x in Γ,

(v) there exists a line of PG(V ) not in the image of π and
which meets Pπ in precisely 2 points,

then we show that Γ is a Moufang quadrangle and we can ex-
plicitly describe the weak embedding of Γ in PG(V ). This
completes the classification of all weak embeddings of ar-
bitrary generalized quadrangles (using the classification of
Moufang quadrangles).

1. Introduction.

Weakly embedded polar spaces were introduced by Lefèvre-Percsy, see e.g.,
[4] (although she had a stronger notion of weak embedding, but it was
proved to be equivalent with the present one by Thas & Van Maldeghem
[11, Lemma 2]). In the same paper, she proves that the number of points
of a weakly embedded polar space Γ on a secant line (i.e., a line of the pro-
jective space not belonging to the polar space and meeting Pπ in at least
two points) is a constant (and hence does not depend on that line). Fol-
lowing Thas & Van Maldeghem [11], we call this constant the degree of the
weak embedding. In [3], Lefèvre-Percsy classifies the finite weakly embed-
ded generalized quadrangles (which are the nondegenerate polar spaces of
rank 2) in PG(3, q). All those thick weak embeddings have automatically
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degree > 2. In Thas & Van Maldeghem [12], all weakly embedded general-
ized quadrangles in finite projective space are classified. Also, Steinbach &
Van Maldeghem [9] classify the weakly embedded generalized quadrangles
of degree > 2 in arbitrary projective space. In the present paper, we com-
plete the classification of all weakly embedded generalized quadrangles in
any projective space by considering the case of degree 2. This has been an
open problem for almost twenty years and it is a far-reaching generalization
of a result of Dienst [2], who classifies all full embeddings of generalized
quadrangles in arbitrary projective space. A full embedding satisfies con-
ditions (i), (ii) and (iii) (of the abstract) and the additional condition that
every point in PG(V ) of the image of every line of the quadrangle is also
the image of a point of the quadrangle. A direct and elementary argument
then shows that a full embedding also satisfies condition (iv). Hence every
full embedding is also a weak embedding. Dienst’s result says that only the
classical Moufang quadrangles turn up with their natural embedding in a
(possibly degenerate) polarity, see Tits [15]. Asking for a further general-
ization (i.e., embeddings satisfying only conditions (i), (ii) and (iii) in the
abstract above and calling this a lax embedding) is not reasonable, as is
evidenced by the fact that one can then laxly embed a freely constructed
finitely generated generalized quadrangle (in the sense of Tits [18]) in some
projective space; see Section 8 below. Hence, our result is the best one
can do and finishes the general problem. It also provides new and indepen-
dent proofs for the full case (Dienst [2]) and the finite case (Thas & Van
Maldeghem [12]).

Finding new techniques was essential because, unlike the finite case, there
are generalized quadrangles which can be weakly embedded in projective
space, but which do not admit a full embedding. In fact, all Moufang quad-
rangles can, up to duality, be weakly embedded, except for the exceptional
ones (see below, also for a list of the generalized quadrangles, Γ say, such that
Γ and the dual generalized quadrangle ΓD is weakly embeddable). Hence
the classification of weakly embedded general quadrangles requires methods
which are different from those used in the finite or full case. One of the
tools we use is the classification of all Moufang quadrangles, recently fin-
ished by Tits & Weiss [20], but not yet available in the literature. Without
invoking this classification, our result remains true if restricted to all known
generalized quadrangles. But we emphasize the fact that the part of the
classification that we use, namely, that every Moufang quadrangle is in a
well defined list (to the classes of Moufang quadrangles enumerated in Tits
[16], one has to add the so-called exceptional quadrangles of type F4, discov-
ered by Richard Weiss in February 1997, and proved to be of exceptional
type by Mühlherr & Van Maldeghem [5]), is completely finished; the yet
unfinished parts in the manuscript of Tits & Weiss [20] merely concern the
existence problem, which does not affect our proof.
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Note that results of Steinbach [7] and Thas & Van Maldeghem [11] treat
the same kind of question for polar spaces with some additional conditions.
In all cases, the assumptions imply that the polar space is classical (i.e.,
arises from a vector space with form). In the present paper, we hypoth-
esize an arbitrary generalized quadrangle weakly embedded of degree 2 in
arbitrary projective space and prove that it must belong to the class of so-
called Moufang quadrangles. Then we have to treat several classes (amongst
them the classical cases). In the course of our proof, we slightly improve
the result of Steinbach & Van Maldeghem [9] in that we determine when a
weak embedding π : Γ → PG(V ) is obtained from a full embedding in a
subspace of V (defined over a skew subfield of K) by extending the ground
field. In Section 8, we put together the results of the present paper with
those of Steinbach & Van Maldeghem [9] and list all generalized quadrangles
weakly embedded in projective space. We then also show that no further
generalization is possible.

So the eventual determination of all weakly embedded generalized quad-
rangles of degree 2 requires some knowledge about the classification of
Moufang quadrangles. We will introduce notation and repeat some known
results in the next section.

2. Definitions and Notation.

2.1. Generalized quadrangles. A generalized quadrangle Γ = (P,L, I )
is a point-line incidence geometry (where P is the set of points and L the
set of lines) satisfying the following two axioms:

(i) Each point is incident with t + 1 lines; each line is incident with s + 1
points; two distinct points are never incident with two distinct lines
(here s, t ≥ 1, possibly infinite).

(ii) If x is a point and L is a line not incident with x, then there is a unique
pair (y, M) ∈ P × L for which x I M I y I L.

The pair (s, t) is usually called the order of Γ. If s, t > 1, then the quad-
rangle is said to be thick. Furthermore, we use standard terminology such
as collinear points, concurrent lines, etc. Also, there is a duality for gen-
eralized quadrangles: Every statement has a dual, i.e., if one interchanges
the names point and line (and the numbers s and t), then a (usually new)
statement is obtained. The dual of Γ is denoted by ΓD. Further, the line M
(respectively the point y) of (ii) is called the projection of L onto x (respec-
tively of x onto L). A subquadrangle Γ′ of Γ is called an ideal subquadrangle,
if all lines of Γ incident with a point of Γ′ belong to Γ′ as well. Dually, one
defines the notion of a full subquadrangle. In a generalized quadrangle, a
line L is called regular if for every line M not meeting L, the two lines L
and M are contained in a full subquadrangle with two lines per point.
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Generalized quadrangles were introduced by Tits in [14]. For more infor-
mation, we refer to the monograph of Payne & Thas [6], to Thas [10], or
Van Maldeghem [21] (in the latter also the infinite case is covered).

There is no hope of classifying all generalized quadrangles (the situation is
more or less the same as for projective planes), as there are (many variations
of) free constructions of such geometries, see e.g., Tits [18]. Nevertheless, if
one imposes some extra conditions, then classification is possible. Two such
conditions are related to our Main Result, namely, the Moufang condition,
and the condition of being weakly embedded in a projective space.

2.2. Moufang quadrangles. Let Γ = (P,L, I ) be a thick generalized
quadrangle. We denote by Γ(a) the set of elements of Γ incident with the
element a (point or line). A point-elation is an automorphism of Γ fixing
the set Γ(x) ∪ Γ(y) ∪ Γ(L) elementwise, where x, y, x 6= y, are two distinct
points incident with the line L. Such a collineation is also called an (x, L, y)-
elation. If for some line M I x, M 6= L, the group of all (x, L, y)-elations
acts transitively on Γ(M) \ {x}, then we say that (x, L, y) is a Moufang
path. Dually, one defines line-elations and Moufang paths (L, x,M). Let
x, y ∈ P, L,M ∈ L. If the paths (x, L, y), for all choices of x I L I y, x 6= y
(respectively the paths (L, x,M) for all choices of L I x I M , L 6= M) are
Moufang paths, then we say that Γ is a half-Moufang quadrangle and that
all point-elation groups (respectively line-elation groups) act transitively. If
all paths (x, L, y) and all paths (L, x,M) are Moufang paths, then we say
that Γ is a Moufang quadrangle.

The standard examples of Moufang quadrangles are the classical quad-
rangles, i.e., generalized quadrangles related to a vector space with a form.
Namely, let W be a (left) vector space over some skew field L endowed
with either a pseudo-quadratic form or a (σ, ε)-hermitian form in the sense
of Tits [15, §8]. Suppose that the from is nondegenerate and of Witt in-
dex 2. Define the geometry Γ with points and lines the 1-dimensional and
2-dimensional subspaces of W , where the form vanishes, and symmetrized
inclusion as incidence. Then Γ is a generalized quadrangle. (We neglect
the case that W is a 4-dimensional vector space endowed with an ordinary
quadratic form, in wich Γ is not thick.)

When Γ arises from a (σ, 1)-quadratic from with σ 6= 1, then we will call
such a quadrangle a hermitian quadrangle. When Γ arises from an ordinary
quadratic form, we have an orthogonal quadrangle. The dual of such a Γ is
a dual hermitian or a dual orthogonal quadrangle, respectively.

Proportional pseudo-quadratic froms give rise to the same generalized
quadrangle. We see as follows that a hermitian quadrangle also arises from
a (σ′,−1)-quadratic form. Choose a ∈ L such that c := a − aσ 6= 0. Then
qc is a (σ′,−1)-quadratic form, where tσ

′
= c−1tσc for t ∈ L. Furthermore,

1 ∈ {t + tσ
′ | t ∈ L}.
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The mixed quadrangles are certain subquadrangles of orthogonal quad-
rangles defined over a (non-perfect) field of characteristic 2, see Section 7
below. There is a further class of Moufang quadrangles not related to
pseudo-quadratic or (σ, ε)-hermitian forms, the so-called exceptional quad-
rangles. We will not need an explicit description of these quadrangles (see
the reduction in 4.4).

The classification of Moufang quadrangles by Tits & Weiss [20] yields
that up to duality every Moufang quadrangle is isomorphic to a hermitian,
an orthogonal, a mixed or an exceptional quadrangle.

For later use, we say a generalized quadrangle Γ is a symplectic quad-
rangle, if Γ arises from a 4-dimensional vector space over a commutative
field endowed with an alternating form. A symplectic quadrangle is a dual
orthogonal quadrangle (associated to a 5-dimensional vector space), but it
is convenient to have a separate name for it.

For any (σ, ε)-hermitian form f , the radical of f is Rad(W, f) = {v ∈ W |
f(v, w) = 0 for all w ∈ W}.

Let Γ be a generalized quadrangle and p a point in Γ. If a collineation
fixes every point collinear with p, then we call that collineation a central
collineation or a central elation. Dually, one defines an axial elation or axial
collineation. Every Moufang quadrangle contains, up to duality, nontrivial
central elations. This can easily be deduced from the main result of Tits
[19].

2.3. Weak embeddings of generalized quadrangles. Let PG(V ) be
a projective space, where V is a vector space over some skew field (not
necessarily finite-dimensional). The subspace of V generated by vectors
v1, v2, . . . , vn will be denoted by 〈v1, v2, . . . , vn〉; we also sometimes write
Kv for 〈v〉, when the vector space is defined over K and we want to make
this clear.

Let Γ be a generalized quadrangle with point set P, line set L and inci-
dence relation I. Then we say that Γ is weakly embedded in PG(V ) if there
exists a map π from P (respectively L) to the set of points (respectively
lines) of PG(V ), such that the following conditions are satisfied:

(i) π is injective on points,
(ii) if x ∈ P and L ∈ L with x I L, then xπ is incident with Lπ in PG(V ),
(iii) the set of points {xπ | x ∈ P} generates PG(V ),
(iv) if x, y ∈ P such that yπ is contained in the subspace of PG(V ) gen-

erated by the set {zπ | z is collinear with x in Γ}, then y is collinear
with x in Γ.

Condition (iv) may be replaced by the (a priori weaker) condition (see
Thas & Van Maldeghem [13], Corollary 1):
(iv)′ for each point x ∈ P, the set {zπ | z is collinear with x in Γ} does not

generate PG(V ).
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Another equivalent statement is: The subspace spanned by {zπ | z collinear
with x in Γ} is a hyperplane of PG(V ).

The map π is called the weak embedding. It will sometimes be convenient
to see a weak embedding as an injective morphism from the point-line geom-
etry Γ to the geometry of 1- and 2-dimensional subspaces of a vector space
(and then to write π(x) instead of xπ for a point x). Also, for a given weak
embedding π, we will denote by Γπ the quadrangle whose points and lines
are the images under π of the points and lines of Γ. The quadrangle Γπ is a
subgeometry of PG(V ).

Let π be a weak embedding of Γ. A line of PG(V ) which intersects the
set of points of Γπ in at least two elements, and which is not a line of Γπ, is
called a secant line. It has been shown by Lefèvre-Percsy [4] that the number
of points of Γπ on a secant line is a constant, and we call that constant the
degree. In this paper, we will mainly be concerned with weakly embedded
quadrangles of degree 2.

A full embedding π of a generalized quadrangle Γ in PG(V ) is a weak
embedding such that all points of PG(V ) on a line of Γπ are also points of
Γπ (this definition has been justified in the Introduction).

3. Main Result.

Main Result. Let π be a weak embedding of degree 2 of a thick generalized
quadrangle Γ in the projective space PG(V ), where V is a vector space over
the skew field K (not necessarily finite-dimensional). Then Γ is a Moufang
quadrangle. Up to isomorphism, we have the following cases:

(1) Γ is an orthogonal quadrangle (arising from an ordinary quadratic
form) and the weak embedding is induced by an injective semi-linear
mapping. In other words, there is a (commutative) subfield F of K, a
subspace V0 of V (viewed as vector space over F) and a quadratic form
Q : V0 → F of Witt index 2, such that for each point x of Γ there is a
unique point Fx′ of the associated quadric with π(x) = Kx′, and every
point of the quadric arises in this way.

If the radical of the corresponding bilinear form has (vector) dimen-
sion at most 1 (which happens for instance whenever charK 6= 2), then
an F-basis of V0 is a K-basis of V . Hence, in this case, π is obtained
from a full embedding in PG(V0) by extending the ground field.

(2) Γ is a mixed quadrangle and the weak embedding is induced by an in-
jective semi-linear mapping. In other words, there is a (commutative)
subfield F of K, a subspace V0 of V (viewed as vector space over F)
and a quadratic form Q : V0 → F of Witt index 2, such that for each
point x of Γ there is a unique point Fx′ of the associated quadric with
π(x) = Kx′. Not every point of the quadric arises in this way.
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(3) Γ is the unique generalized quadrangle of order (2, 2) (symplectic quad-
rangle W (2) over GF(2)) and the weak embedding is the universal
weak embedding in the sense of Thas & Van Maldeghem [12], with
charK 6= 2.

In particular this means that Γ can never be a hermitian quadrangle, nor
can Γ be isomorphic or dual to an exceptional quadrangle.

The Main Result will follow from the reduction in 4.4, and from Lemma
5.1, Lemma 5.5, Lemma 6.3, Lemma 6.4 and Lemma 7.2.

In the case where Γ is an orthogonal quadrangle weakly embedded (of
degree 2) in PG(V ), let Γ be associated to a vector space W over the field L
and to the ordinary quadratic form q on W . In Case (1) of the Main Result,
there exists an embedding α : L → K and an injective semi-linear mapping
ϕ : W → V (with respect to α) such that π(Lw) = Kϕ(w) for all points Lw
of Γ (which means that the weak embedding π : Γ → PG(V ) is induced by
a semi-linear mapping). In particular, Γ is fully embedded in the projective
space PG(ϕ(W )), where ϕ(W ) is a vector space over the (commutative)
subfield α(L) of K.

A central tool in the classification is the notion of regular lines (as de-
fined above) in generalized quadrangles. Indeed, it is easily seen (as we will
show in Lemma 4.2) that every line of a weakly embedded quadrangle of de-
gree 2 is regular. Once the Moufang condition is proved, this will facilitate
considerably the rest of the proof.

The paper is organized as follows. In the next section we reduce the
problem to Moufang quadrangles and discuss which classes of Moufang
quadrangles have regular lines. To prove the Moufang condition, we show
that any generalized quadrangle weakly embedded of degree 2 admits ax-
ial elations, see Lemma 4.2. (Compare the approach in Steinbach & Van
Maldeghem [9] and Steinbach [8], where the weakly embedded generalized
quadrangles admit central elations.) In Section 5, we handle the case of or-
thogonal quadrangles (Cases (1) and (3) of the Main Result). In Section 6,
we show that the only weak embeddings of degree 2 of the dual hermitian
quadrangles are given by semi-linear mappings of orthogonal quadrangles.
In Section 7, we deduce from Steinbach & Van Maldeghem [9, (6.1.3)] that
for any weakly embedded mixed quadrangle Γ of degree 2, Γπ is part of the
null set of a quadratic form of Witt index 2 in a subspace V0 of V (over a
subfield F of K). This is Case (2) of the Main Result. In Section 8, we state
the complete classification of generalized quadrangles weakly embedded in
projective space independent of the degree of the weak embedding. Then
we show that a further generalization to lax embeddings is not possible.
Furthermore, we mention a corollary on generalized quadrangles Γ with the
property that both Γ and the dual ΓD are weakly embeddable in projective
space.
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We remark that part of the proof of the Main Result is contained in other
papers. Indeed, the classification of weak embeddings of generalized quad-
rangles arising from a vector space with a form has been done in Steinbach
[7] and Steinbach & Van Maldeghem [9], independently of the degree of the
weak embedding. The latter reference also covers the mixed case. It is only
when it became clear to us that for degree 2, the Moufang condition can
be proved, that a complete classification came into reach. This reduction to
the Moufang quadrangles is the crux of the proof. It is based on a lemma
of Steinbach [8].

4. Reduction to Moufang quadrangles.

For any point p of a generalized quadrangle Γ weakly embedded in PG(V ),
we denote by ξp the unique hyperplane of PG(V ) spanned by the points xπ,
with x collinear with p. A special linear transformation of V is an element
of SL(V ) (the subgroup of the group of all invertible linear mappings from
V to V , which is generated by the transvections).

The following lemma is due to Steinbach [8, Proposition 2.1]. We phrase
it a little differently, according to our needs.

Lemma 4.1 ([8]). Let Γ be a generalized quadrangle weakly embedded of
degree 2 in PG(V ), where V is a vector space over some skew field K. Let
L be any line of Γ. Except for the universal weak embedding of W (2), there
is a unique subspace ξL of codimension 2 contained in all ξp with p on L.

The subspace ξL in Lemma 4.1 is ξL = ξp∩ ξq, where p and q are different
points on L.

Lemma 4.2. Let Γ be a generalized quadrangle weakly embedded of degree
2 in PG(V ), where V is a vector space over some skew field K. Then all
lines of Γ are regular. Also, Γ is a half-Moufang quadrangle. More exactly,
for every line L of Γ, and every pair (x, x′) of collinear points of Γ such that
xx′ is concurrent with L and x, x′ not on L, there exists an axial elation
with axis L mapping x to x′. Moreover, this elation is induced by a special
linear transformation of V .

Proof. First, if the weak embedding is the universal one of W (2) (with
charK 6= 2), then it is proved in Van Maldeghem [21, Section 8.6] that
all collineations of Γ are induced by special linear transformations of V . Al-
ternatively, this also follows from Thas & Van Maldeghem [13]. Hence from
now on, we may assume that for any line L of Γ, there is a unique subspace
ξL of codimension 2 contained in all ξy, for all points y of L. To simplify
notation, we identify Γ with Γπ in this proof.

Let M be any line of Γ not concurrent with L. Let PG(3, K) be the
3-dimensional projective space generated by L and M . Then PG(3, K)
intersects Γ in a full subquadrangle Γ′ weakly embedded in PG(3, K). Let
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t + 1 be the number of lines of Γ′ through a point of Γ′, then considering
u⊥ ∩ v⊥ for two noncollinear points of Γ′, we obtain a line of PG(3, K),
which is not a line of Γ′, meeting Γ′ in precisely t + 1 points. Since the
degree of the weak embedding is 2, we obtain t + 1 = 2 and L is a regular
line.

Let a be the intersection of the lines xx′ and L. Then a 6= x, x′, since
x, x′ are not on L. Let b be any other point of Γ on L. Let L′ be any line
of Γ through b, with L′ 6= L. Let y and y′ be the unique points of Γ on L′

collinear with x and x′, respectively. Notice that y and y′ are not contained
in ξa. Hence there exists a unique collineation θ1 of PG(V ) fixing all points
of ξa, stabilizing all subspaces through b, and mapping y to y′. Similarly,
there is a unique collineation θ2 of PG(V ) fixing all points of ξb, stabilizing
all subspaces through a, and mapping x to x′. We put θ = θ1θ2. Clearly
θ fixes all points of ξL(= ξa ∩ ξb), it maps x to x′, and it maps y to y′.
Moreover, every subspace of PG(V ) containing L is stabilized by θ, since it
is stabilized by both θ1 and θ2.

Now let z be any point of Γ. We show that zθ is a point of Γ. This is
clear if z lies on L. Now suppose that z is incident with xy. Since the line
L is regular, there is a unique point z′ on x′y′ collinear in Γ with z and the
line zz′ meets L in, say, the point c of Γ. Since θ fixes the plane 〈L, z〉, it
maps the intersection z of xy and 〈L, z〉 onto the intersection z′ of x′y′ and
〈L, z〉 = 〈L, z′〉.

Notice that the restriction of θ to ξc fixes all points in the hyperplane ξL

of ξc (see Lemma 4.1); hence it must fix all subspaces of ξc through some
point of ξc. Clearly this point must belong to zz′; also it must belong to
L, since every subspace through L is stabilized. Hence this point is c. We
conclude that θ leaves invariant every line of Γ meeting L.

Now let z be collinear with x, but z not on ax. We may suppose that z
is not collinear with y. Let again c 6= a be the projection of z onto L. Also,
let w be the projection of d onto xz, where d is a point of Γ on L different
from a and c, and let w′ be the projection of x′ onto dw. By the regularity
of lines, the line x′w′ meets the line cz in, say, the point z′. Since wx is the
unique line of PG(V ) through x meeting both cz and dw, and since w′x′ is
the unique line of PG(V ) through x′ meeting both cz and dw, the image of
wx under θ is w′x′. It follows that wθ = w′ and zθ = z′.

Now let z be arbitrary, but not collinear with either x or a. We may
assume that z is not on L. Let Nz be the projection of L onto z. Let N be
any line on z different from Nz and from the projection of ax onto z. Let w
be the projection of x onto N . Then w is collinear with x and not on ax,
hence wθ belongs to Γ by the previous step. Let Na be the projection of
N onto a. As before, N θ is the unique line of PG(V ) through wθ meeting
both Na and Nz (which are both fixed by θ). By the regularity of L, N θ is
a line of Γ and it meets Nz in the point z′ of Γ, with clearly z′ = zθ.



236 H. VAN MALDEGHEM

Now let z be collinear with a. Then we interchange the roles of (a, x, x′)
and (b, y, y′), and we conclude that also in this case zθ belongs to Γ.

Hence θ preserves Γ and induces clearly an axial elation in Γ with axis L.
The lemma is proved. �

Lemma 4.3. Let Γ be a generalized quadrangle weakly embedded of degree
2 in PG(V ), for some skew field K. Then Γ is a Moufang quadrangle and
the little projective group of Γ is induced by PSL(V ).

Proof. We can copy word for word the proof of Lemma 4.0.2 of Steinbach
& Van Maldeghem [9]. �

Reduction 4.4. We have shown that, in order to prove the Main Result, we
have to classify the weak embeddings of degree 2 of Moufang quadrangles.
Candidates must have regular lines. Using the classification of Moufang
quadrangles as carried out by Tits & Weiss [20], Van Maldeghem discusses
the regularity of points and lines of Moufang quadrangles in [21], Table
5.1. It follows that the only Moufang quadrangles with regular lines are
the mixed quadrangles, the orthogonal quadrangles, and the duals of some
hermitian quadrangles. The classification of weakly embedded mixed and
orthogonal quadrangles has been treated in general (for every degree) in
Steinbach & Van Maldeghem [9]. Sections 5 and 7 take care of them. In
Section 6, we look at the dual hermitian case.

5. Weakly embedded orthogonal quadrangles of degree 2.

In this section, we handle the weakly embedded orthogonal quadrangles of
degree 2. Let Γ be a thick orthogonal quadrangle with natural embedding
in the projective space PG(W ), where W is a vector space over the com-
mutative field L. So Γ arises from an ordinary quadratic form q on W . Let
there be given a weak embedding π : Γ → PG(V ), where V is a vector space
over the skew field K. Then π is induced by a semi-linear mapping (with
respect to the embedding α : L → K) by Steinbach [7], Steinbach & Van
Maldeghem [9, (5.1.1)] (apart from the universal weak embedding of W (2)).

We show that there is a (commutative) subfield F of K and a subspace
V0 of V (viewed as vector space over F) such that the point set of Γπ is the
point set of a projective quadric of Witt index 2 in PG(V0).

Lemma 5.1. Let Γ be an orthogonal quadrangle arising from the vector
space W over the field L, endowed with the ordinary quadratic form q. As-
sume that Γ is weakly embedded of degree 2 in the projective space PG(V ),
where V is a vector space over the skew field K (not the universal weak
embedding of W (2)).

Then there exists a commutative subfield F of K, a subspace V0 of V (over
F) and a quadratic form Q : V0 → F of Witt index 2, such that for each point
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x of Γ there is a point Fx′ of the associated quadric with π(x) = Kx′. Every
point of the quadric arises in this way.

Proof. By Steinbach [7], Steinbach & Van Maldeghem [9, (5.1.1)], the weak
embedding π is induced by a semi-linear mapping. Hence there exists an
embedding α : L → K and a semi-linear mapping ϕ : W → V such that
π(Lw) = Kϕ(w), for all points Lw of Γ.

Since the degree of π is 2, we may conclude as follows that ϕ is injective.
By Steinbach & Van Maldeghem [9, Subsection 5.3], we know that kerϕ ⊆
Rad(W, f), where f is the bilinear form associated to the quadratic form q
defining Γ. If 0 6= r ∈ Rad(W, f) with ϕ(r) = 0, then there exist vectors
x, y ∈ W such that Lx, Ly and L(x + y + r) are (noncollinear) points of
Γ. But then π(L(x + y + r)) is a third point on the secant line spanned by
π(Lx) and π(Ly), a contradiction.

We consider the subspace V0 := ϕ(W ) of V (over the commutative subfield
F := α(L) of K). We define a quadratic form Q : V0 → F of Witt index
2, by Q(ϕ(w)) := α(q(w)), for w ∈ W . This yields an orthogonal space
isomorphic to W . Now Lemma 5.1 is obvious. �

The proof of Lemma 5.1 shows that the semi-linear mapping ϕ inducing
π is injective. Hence for each L-basis B of W , the set ϕ(B) is an F-basis of
V0. Our next aim is to decide when an F-basis of V0 is a K-basis of V in
Lemma 5.1.

General setting 5.2. We start with a more general setting (to prove the
next lemma in full generality). Let W be a (left) vector space over some
skew field L endowed with one of the following nondegenerate forms of Witt
index 2:

(a) a pseudo-quadratic form q on W (with associated (σ, ε)-hermitian form
f),

(b) a (σ, ε)-hermitian form f on W with Λmin := {c − εcσ | c ∈ L} =
{c ∈ L | εcσ = −c} =: Λmax.

By Γ we denote the associated generalized quadrangle. Let π : Γ →
PG(V ) be a weak embedding, where V is a vector space over the skew field
K. We assume that π is induced by a semi-linear mapping ϕ : W → V (with
respect to the embedding α : L → K). (By Steinbach [7], Steinbach & Van
Maldeghem [9, (5.1.1)] this is true up to few exceptions.) We set F := α(L)
and V0 := ϕ(W ).

Recall that for any point p of the generalized quadrangle Γ, we denote
by ξp the unique hyperplane of PG(V ) spanned by the points π(x), with x
collinear with p. A vector w ∈ W , on which the form vanishes (i.e., q(w) = 0
or f(w,w) = 0, respectively), is called singular. This happens if and only if
Lw is a point of Γ.
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Lemma 5.3. In the general setting of 5.2 the following holds: If Lp is a
point of Γ and w ∈ W such that ϕ(w) is contained in ξLp, then f(w, p) = 0.

Proof. If w is singular, then the claim follows from the weak embedding
axiom 2.3 (iv). Hence we may assume that w is nonsingular and w 6∈
Rad(W, f). Then there exist singular points Lx, Ly with f(x, y) = 1 such
that w ∈ Lx + Ly. We may assume f(x, p) 6= 0 and f(y, p) 6= 0. Indeed,
if f(x, p) = 0, then ϕ(x) and ϕ(w), and therefore also ϕ(y), are contained
in ξLp. This yields f(y, p) = 0 by the weak embedding axiom and hence
f(w, p) = 0.

Set H1 = 〈p, p′〉 with p′ singular and f(p, p′) = 1. Then W = H1 ⊥ H1
⊥

with H1
⊥ spanned by singular points. We write Lx = L(λp + p′ + a1),

Ly = L(µp + p′ + a2) with λ, µ ∈ L and a1, a2 ∈ H1
⊥. Then there are

0 6= c, d ∈ L with w = c(λp + p′ + a1) + d(µp + p′ + a2). Applying ϕ,
this yields that (α(c) + α(d))ϕ(p′) is contained in ξLp. Thus c + d = 0 and
f(w, p) = 0. �

Lemma 5.4. In the general setting of 5.2 the following holds: If
dim Rad(W, f) ≤ 1, n ∈ N and w1, . . . , wn ∈ W such that ϕ(w1), . . . , ϕ(wn)
are linearly independent over F, then ϕ(w1), . . . , ϕ(wn) are linearly inde-
pendent over K. In particular, an F-basis of V0 is a K-basis of V in this
case.

Proof. We use induction on n, the case n = 1 is trivial. Let n ≥ 2 and
w1, . . . , wn ∈ W such that ϕ(w1), . . . , ϕ(wn) are linearly independent over
F. Then w1, . . . , wn are linearly independent over L. There exists a sin-
gular point p in W with 〈w1, . . . , wn〉 6⊆ p⊥. (Otherwise 〈w1, . . . , wn〉 ⊆
Rad(W, f), since W is spanned by its singular points. But this is a con-
tradiction to the assumption on dim Rad(W, f).) Write 〈w1, . . . , wn〉 =
〈u1, . . . , un〉 where u1, . . . , un−1 ∈ p⊥ and un 6∈ p⊥. Then X := 〈ϕ(w1), . . . ,
ϕ(wn)〉K = 〈ϕ(u1), . . . , ϕ(un)〉K. Further, X 6⊆ ξp by Lemma 5.3. We have
〈ϕ(u1), . . . , ϕ(un−1)〉K ⊆ X ∩ ξp and the latter is a hyperplane of X. Since
〈ϕ(w1), . . . , ϕ(wn)〉F = 〈ϕ(u1), . . . , ϕ(un)〉F, we see that ϕ(u1), . . . , ϕ(un)
are linearly independent over F. Hence by induction ϕ(u1), . . . , ϕ(un−1) are
linearly independent over K and n − 1 ≤ dim (X ∩ ξp) ≤ n − 1. But then
X = (X ∩ ξp)⊕ 〈ϕ(un)〉K is n-dimensional. �

For weakly embedded orthogonal quadrangles, we have shown:

Lemma 5.5. Let Γ be an orthogonal quadrangle arising from the vector
space W over the field L, endowed with the ordinary quadratic form q (with
associated bilinear form f). Let π : Γ → PG(V ) be a weak embedding of
degree 2, where V is a vector space over the skew field K. Assume that π is
induced by the semi-linear mapping ϕ : W → V (with respect to α : L → K).
If Rad(W, f) has dimension at most 1 (which is true whenever charK 6= 2),
then for any L-basis B of W , the set ϕ(B) is a K-basis of V .
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Hence weak embeddings of degree 2 of orthogonal quadrangles are as
described in Cases (1) and (3) of the Main Theorem. The next example
shows that we cannot drop the assumption on the dimension of the radical
Rad(W, f).

Example 5.6. Let L be a nonperfect field of characteristic 2. We consider
the symplectic quadrangle over L and pass to an isomorphic quadrangle Γ
arising from a quadratic form in vector space dimension 4 + dimL2 L, see
Cohen [1, (3.23), (3.27)]. If we extend scalars to the algebraic closure K of
L, then Γ is weakly embedded in vector space dimension 5.

6. Weakly embedded dual hermitian quadrangles of degree 2.

In this section, we handle the case of weakly embedded dual hermitian quad-
rangles of degree 2. We prove that there are exactly two possibilities, oc-
curring from exceptional isomorphisms between certain dual hermitian and
orthogonal quadrangles.

Notation 6.1. Let ∆ be a hermitian quadrangle with natural embedding
in the projective space PG(W ), where W is a (left) vector space over the
skew field L. This means that ∆ consists of the singular points and lines
with respect to a (σ,−1)-quadratic form q with 1 ∈ Λmin. (Recall that for
ε = −1, we have Λmin = {c + cσ | c ∈ L} and Λmax = {c ∈ L | c = cσ}.)

If Λmin = Λmax (which can only fail when charL = 2 and σ fixes the center
Z(L) of L elementwise), then ∆ coincides with the polar space arising from
the (σ,−1)-hermitian form f associated to q. If x, y ∈ W with q(x) = 0,
q(y) = 0 and f(x, y) = 1, then (x, y) is called a hyperbolic pair.

Remark 6.2. For any generalized quadrangle Γ weakly embedded of de-
gree 2 in a projective space PG(V ) (with weak embedding π), we use the
following method to calculate image points: Recall from Lemma 4.2 that
each line of Γ is regular. We write the nine points of a 3×3-grid of points of
Γ in a 9-tuple consisting of the first, second and third row. Here · stands for
a point without name. If (x1, x2, x3; y1, y2, ·; z1, z2, z3) is such a 3 × 3-grid,
then π(z3) = 〈π(z1), π(z2)〉 ∩ 〈π(x3), π(y1), π(y2)〉.
Lemma 6.3. Let Γ be a generalized quadrangle weakly embedded of degree
2 in the projective space PG(V ), where V is a vector space over the skew
field K. Assume that ΓD is a hermitian quadrangle with natural embedding
in the projective space PG(W ), where W is a vector space over the skew
field L (see Notation 6.1).

If the vector space dimension of W is 4, then Λmin is a field and
(i) L is a commutative separable quadratic extension of Λmin (here Λmin =

Λmax), or
(ii) L is a quaternion division ring over Λmin with σ its standard involution

(here Λmin ⊂ Λmax in characteristic 2).
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In both cases Γ is isomorphic to the orthogonal quadrangle associated to
the vector space L×Λmin

4 (over Λmin) with the quadratic form (x0, x1, x2, x3,
x4) 7→ x0x0

σ − x1x3 + x2x4, σ as above.

Notice that x0x0
σ = x0 · 1 · x0

σ ∈ Λmin, since 1 ∈ Λmin. The associated
bilinear form is b(x, y) = x0y0

σ + y0x0
σ − x1x3 − y1y3 + x2x4 + y2y4 with

trivial radical. The lemma reduces the dual hermitian case with dimW = 4
to certain orthogonal quadrangles considered in the previous section.

Proof. We apply the method of Remark 6.2. The following is inspired by
the proof of Tits [15, (10.2)]. By Tits [15, (10.5), (10.9)], the result follows
from the assertion that all maps from Λmin to Λmin of the form λ 7→ cσλc,
where 0 6= c ∈ L, commute with each other.

The expression cσλc occurs in the following construction. We write W =
〈v1, w1〉 ⊥ 〈v2, w2〉 with hyperbolic pairs (vi, wi), i = 1, 2. For each point x
and each line L of the hermitian quadrangle ΓD, we set ρx(L) := 〈x, L∩x⊥〉.
For λ ∈ Λmin and 0 6= c ∈ L, we obtain

〈v1, λv2 + w2〉
ρcw1+v27→ 〈cw1 + v2, c

−σv1 + λv2 + w2〉
ρw27→ 〈w2,−λcw1 + c−σv1〉

ρw1+v27→ 〈w1 + v2, c
−σw2 − λcw1 + c−σv1〉

ρv17→ 〈v1, c
σλcv2 + w2〉

=: τc(〈v1, λv2 + w2〉).

In view of the above, we have to show that

(∗) τd(τc(〈v1, λv2 + w2〉)) = τc(τd(〈v1, λv2 + w2〉))
for λ ∈ Λmin, 0 6= c, d ∈ L.

We prove (∗) in several steps by calculation in Γ. Let 0 6= c ∈ L be fixed.
We choose notation such that the apartment (v1, w2, w1, v2) of the hermi-

tian quadrangle ΓD corresponds to the apartment (p, q, t, z) of Γ (this means
that v1 corresponds to the line pq, further 〈v1, w2〉 corresponds to q and so
on). The line 〈v1, λv2 + w2〉 corresponds to some point on pq. The points
cw1 + v2, w1 + v2 correspond to lines through z (different from pz and zt).
By ã and a, respectively, we denote the projections of q onto these lines.

We choose coordinates in Γ as follows. Let y1 be a third point on pz. We
set y2 := qa ∩ y1

⊥, e := zt ∩ y2
⊥, f := pq ∩ e⊥. Then y2 6= a, q, e 6= z, t and

f 6= p, q. We choose vectors p′, q′, t′, z′ ∈ V such that

π(p) = 〈p′〉, π(z) = 〈z′〉, π(y1) = 〈p′ − z′〉,
π(q) = 〈q′〉, π(a) = 〈a′〉, π(y2) = 〈a′ − q′〉,

π(t) = 〈t′〉, π(e) = 〈t′ + z′〉.
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Then there exists 0 6= α ∈ K such that π(f) = 〈q′ − αp′〉. Replacing p′ by
α−1p′, z′ by α−1z′ and t′ by α−1t′, we may assume that π(f) = 〈q′ − p′〉.
Let c1 := qt ∩ y1

⊥. Then π(c1) = 〈q′ + t′〉, using the method of Remark 6.2
with (p, q, f ; y1, c1, ·; z, t, e).

Set ỹ2 := qã ∩ y1
⊥, ẽ := zt ∩ ỹ2

⊥, f̃ := pq ∩ ẽ⊥. As above, we choose
vectors v′′ in V spanning the images under π of p, . . . , f̃ . Then π(y1) =
〈p′ − z′〉 = 〈p′′ − z′′〉 and π(c1) = 〈q′ + t′〉 = 〈q′′ + t′′〉. Hence there exist
0 6= α, β ∈ K such that p′′ = αp′, z′′ = αz′, q′′ = βq′, t′′ = βt′. We set
γ := α−1β. Then γ is a scalar in K depending on c ∈ L (via ã). Note that
γ is unique and well defined since one can calculate that π(f̃) = 〈γq′ − p′〉.

We denote by rλ the point on pq corresponding to the line 〈v1, λv2 + w2〉
of the hermitian quadrangle ΓD. Let µ := µ(λ) ∈ K with π(rλ) = 〈µp′ + q′〉.
We name by u1, . . . , u4 the points of Γ that correspond to the lines in the
hermitian quadrangle ΓD occurring in the above calculation of τc(〈v1, λv2 +
w2〉). Then

u1 = zã ∩ rλ
⊥, u2 = qt ∩ u1

⊥, u3 = za ∩ u2
⊥, u4 = pq ∩ u3

⊥.

With β, γ from above, we obtain

(∗∗)

π(u1) = 〈µz′ + β−1a′′〉, using (rλ, p, q; ·, y1, ỹ2;u1, z, ã),
π(u2) = 〈µγt′ − q′〉, using (u1, ã, z; ·, ỹ2, ẽ;u2, q, t),
π(u3) = 〈µγz′ + a′〉, using (u2, q, t; ·, y2, e;u3, a, z),
π(u4) = 〈µγp′ + q′〉, using (u3, z, a; ·, y1, y2;u4, p, q).

This yields that there is a scalar µ ∈ K depending on λ ∈ Λmin and a
scalar γ ∈ K depending on 0 6= c ∈ L, such that the mapping 〈v1, λv2 +
w2〉 7→ τc(〈v1, λv2 + w2〉) in the hermitian quadrangle ΓD reads in Γ as
〈µp′ + q′〉 7→ 〈µγp′ + q′〉. Let 0 6= d ∈ L and denote by δ the corresponding
scalar in K. To prove (∗), we have to show that the following equation holds
in Γ:

〈(µγ)δp′ + q′〉 = 〈(µδ)γp′ + q′〉 for all µ = µ(λ), λ ∈ Λmin.

We see that γδ = δγ as follows. If we let vary λ in Λmin \ {0} in the line
〈v1, λv2 +w2〉 of the hermitian quadrangle ΓD, then the corresponding point
rλ in Γ reaches all points on pq, different from p, q. Hence there exists
λ0 ∈ Λmin with rλ0 = f . Since π(f) = 〈q′ − p′〉, we have µ(λ0) = −1.

The calculation in (∗∗) with µ = −1 and γ and δ, respectively, shows that
there are points r, g on pq and qt, respectively, with π(r) = 〈−γp′ + q′〉 and
π(g) = 〈−δt′ − q′〉. The projection s of r onto zt satisfies π(s) = 〈t′ + γz′〉
(use (r, p, q; ·, y1, c1; s, z, t)). The projection h of g onto pz satisfies π(h) =
〈p′ − δz′〉 (use (f, p, q; ·, h, g; e, z, t)). The calculation of the remaining point
j in the grid (r, p, q; j, h, g; s, z, t) yields γδ = δγ.

Hence (∗) holds, and we obtain Lemma 6.3. This finishes the determina-
tion of Γ in the case where W is 4-dimensional. �
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The final step in this section is to show that in the situation of Lemma
6.3 the vector space W is necessarily 4-dimensional.

Lemma 6.4. Let Γ be a generalized quadrangle weakly embedded of degree
2 in the projective space PG(V ), where V is a vector space over the skew
field K. Assume that ΓD is a hermitian quadrangle with natural embedding
in the projective space PG(W ), where W is a vector space over the skew
field L (see Notation 6.1).

Then the vector space W is 4-dimensional. Hence the possibilities for Γ
and ΓD are determined by Lemma 6.3.

Proof. We identify Γ with Γπ in this proof. Since Γ is weakly embedded
of degree 2 in PG(V ), all lines of Γ are regular (see Lemma 4.2). Hence
ΓD has regular points. By the discussion in Van Maldeghem [21], Table
5.1, we may conclude that W = H1 ⊥ H2 ⊥ Rad(W, f), where H1, H2 are
hyperbolic lines and f is the underlying (σ,−1)-hermitian form.

We set ∆ = ΓD. Let ∆′ be the full subquadrangle of ∆ obtained by
intersecting the natural embedding of ∆ with PG(H1 ⊥ H2). Our aim is to
show that ∆′ = ∆, then W = H1 ⊥ H2 is a 4-dimensional vector space.

Let Γ′ = (∆′)D. Then Γ′ is an ideal subquadrangle of Γ. Further, Γ′ is
weakly embedded in PG(V ). To prove this, let p be a point of Γ′. Let ξp be
spanned by the set of points of Γ collinear with p in Γ and let ξ′p be spanned
by the set of points of Γ′ collinear with p in Γ′. Then ξ′p is contained in ξp,
which is a hyperplane of PG(V ). If a point x of Γ is in ξp, then x is collinear
with p in Γ. Since Γ′ is an ideal subquadrangle of Γ, the line on p and x is
a line of Γ′ and x is collinear with p in Γ′. Hence ξ′p = ξp. For q in Γ′, q not
collinear with p in Γ, this yields PG(V ) = 〈ξp, q〉 = 〈ξ′p, q〉 and the point set
of Γ′ generates PG(V ).

Hence we may apply Lemma 6.3 for the weak embedding π : Γ′ → PG(V ).
We obtain that Λmin is a field and L is quadratic or quaternion over Λmin.
Now let ∆′′ be a symplectic subquadrangle of ∆′, obtained by restricting
scalars to Λmin. Then ∆′′ is an ideal subquadrangle of ∆′. Hence Γ′′ = (∆′′)D

is a full subquadrangle of Γ′ and Γ′′ is weakly embedded in PG(V ′), where
the latter is spanned by the set of points of Γ′′. (Let p be a point of Γ′′.
If PG(V ′) is contained in ξ′′p , notation as above, then every point of Γ′′ is
collinear in Γ with p. This is a contradiction, since Γ′′ contains ordinary
quadrangles.)

Now PG(V ′) meets Γ in a full subquadrangle Γ′′′, which is weakly embed-
ded in PG(V ′). (Let p be a point of Γ′′′. With notation as above, PG(V ′) is
not contained in ξ′′′p . If p is in Γ′′, then ξ′′p = ξ′′′p is a hyperplane of PG(V ′).)
This implies that Γ′′ is an ideal subquadrangle of Γ′′′. But all points of Γ′′

(a dual symplectic, hence mixed quadrangle) are regular, hence Γ′′′ has also
regular points. Since all lines of Γ′′′ are regular (this even holds for Γ), Γ′′′

is a mixed quadrangle.
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Now the symplectic quadrangle ∆′′ is a full subquadrangle of the dual of
Γ′′′, with the latter a mixed quadrangle. That implies Γ′′′ = Γ′′ (indeed,
with the notation of the next section, any full subquadrangle of the mixed
quadrangle Q(L′, L2; Λ′,Λ2) can be written as Q(L′, L2

0; Λ
′,Λ2

0), with L2
0 ⊆

Λ′ ⊆ L′ ⊆ Λ0 ⊆ L0 and L0 ⊆ L and Λ0 ⊆ Λ, by Tits [17]; the latter is a
symplectic quadrangle only if Λ2

0 = L2
0 = L′ = Λ′, implying Λ2 = L2 = L′).

So Γ′′ is a full subquadrangle of Γ. Since it is also a full subquadrangle
of Γ′, we deduce that Γ′ is a full subquadrangle of Γ. But it is also an ideal
subquadrangle. Consequently, Γ′ = Γ (cp. Van Maldeghem [21], (1.8.2)).
Passing to the dual, we obtain ∆′ = ∆. �

7. Weakly embedded mixed quadrangles of degree 2.

Let Γ be a mixed quadrangle weakly embedded of degree 2 in the projective
space PG(V ), where V is a vector space over the skew field K. In this
section, we deduce from Steinbach & Van Maldeghem [9, (6.1.3)] that there
exists a commutative subfield F of K and a quadric of Witt index 2 over this
subfield, such that Γπ is part of that quadric (except for the universal weak
embedding of W (2)).

7.1. Definition of mixed quadrangles. First, we recall the definition
of a mixed quadrangle (introduced by Tits [17]), cp. Steinbach & Van
Maldeghem [9, (6.1.1)]. Let L be a (commutative) field of characteristic 2
and let

L2 ⊆ Λ′ ⊆ L′ ⊆ Λ ⊆ L,

where L′ is a subfield of L, Λ is a subspace of L considered as vector space
over L′ and Λ′ is a subspace of L′ considered as vector space over L2. We
suppose that L and L′ are generated as rings by Λ and Λ′, respectively .

A mixed quadrangle is a certain subquadrangle of the symplectic quad-
rangle W (L′). Passing from the symplectic quadrangle to an isomorphic
orthogonal quadrangle, a mixed quadrangle is a subquadrangle of the or-
thogonal quadrangle Q(W, q), associated to the vector space W := Λ× (L′)4

with usual scalar multiplication and the (nondegenerate) quadratic form
q : W → L′ defined by q((x0;x1, x2, x3, x4)) = x0

2 + x1x2 + x3x4 for x0 ∈ L,
xi ∈ L′ (i = 1, . . . , 4).

The mixed quadrangle Q(L′, L2; Λ′,Λ2) consists of the points of Q(W, q)
spanned by vectors of the form

(0; 1, 0, 0, 0), (0; a, 0, 1, 0), (k; b, 0, k2, 1), (l; l2 + aa′, 1, a′, a),

where a, b, a′ ∈ Λ′, k, l ∈ Λ.

Lemma 7.2. Assume that the mixed quadrangle Γ := Q(L′, L2; Λ′,Λ2) with
L 6= GF(2) is weakly embedded of degree 2 in the projective space PG(V ),
where V is a vector space over the skew field K.
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Then the weak embedding is induced by an injective semi-linear mapping.
In other words, there exists a commutative subfield F of K, a subspace V0

of V (over F) and a quadratic form Q : V0 → F of Witt index 2, such that
for each point x of Γ there is a point Fx′ of the associated quadric with
π(x) = Kx′.

Proof. Recall that W = Λ×(L′)4 and that W is endowed with the quadratic
form q : W → L′. By Steinbach & Van Maldeghem [9, (6.1.3)] there exists an
embedding α : L′ → K and a semi-linear mapping ϕ : W → V (with respect
to α) such that kerϕ ⊆ Λ (the kernel of the symplectic form associated to
q) and π(L′w) = K(ϕ(w)) for all points L′w of Γ.

Since the degree of π is 2, we have ϕ(k) 6= 0, for all 0 6= k ∈ Λ. Namely,
otherwise π(L′(k; 0, 0, k2, 1)) is a third point on the secant line spanned by
π(L′(0; 0, 0, 1, 0)) and π(L′(0; 0, 0, 0, 1)), a contradiction. This yields that
the semi-linear mapping ϕ is injective.

The lemma is now obvious with F := α(L′), V0 := ϕ(W ) and the quadratic
form Q : V0 → F of Witt index 2 defined by Q(ϕ(w)) := α(q(w)), for
w ∈ W . �

8. Appendix.

In this appendix, we present the list of all weakly embedded generalized
quadrangles, by putting together the results of the present paper and the
results in Steinbach & Van Maldeghem [9]. We also mention a corollary
on quadrangles Γ for which both Γ and its dual are weakly embeddable in
some projective space. Finally, we show that certain finitely generated free
generalized quadrangles admit lax embeddings in some finite dimensional
projective space.

Recall from Subsection 2.2 that for any skew field L with involutory anti-
automorphism σ and ε = ±1, we have Λmin := {c− εcσ | c ∈ L} ⊆ Λmax :=
{c ∈ L | εcσ = c}.
8.1. Classification of generalized quadrangles weakly embedded
in projective space. Let π be a weak embedding of a thick generalized
quadrangle Γ in the projective space PG(V ), where V is a vector space over
the skew field K (not necessarily finite-dimensional). Then Γ is a Moufang
quadrangle. Up to isomorphism, we have the following cases:

(1) Γ is a classical quadrangle arising as the geometry of points and lines
of PG(W ), W a (left) vector space over the skew field L, where one
of the following nondegenerate forms of Witt index 2 vanishes:

(a) a pseudo-quadratic form q : W → L/Λmin (with associated (σ, ε)-
hermitian form f),

(b) a (σ, ε)-hermitian form f : W ×W → L with Λmin = Λmax.
Furthermore, there exists a semi-linear mapping ϕ : W → V (with
respect to an embedding α : L → K) with kerϕ ⊆ Rad(W, f) such that
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π(Lw) = Kϕ(w) for all points Lw of Γ (i.e., the weak embedding π is
induced by a semi-linear mapping).

(2) There exists a quaternion skew field L with standard anti-automor-
phism σ and center Z such that Γ is isomorphic to the hermitian
quadrangle arising from the (left) vector space W = L4 endowed with
the (σ,−1)-quadratic form q : W → L/Z defined by q(x1, x2, x3, x4) =
x1x

σ
3 + x2x

σ
4 + Z for x1, x2, x3, x4 ∈ L (i.e., Γ is a quaternion quadran-

gle). Furthermore, the composition of some (nontrivial) automorphism
of Γ and the weak embedding π is induced by an injective semi-linear
mapping.

(3) Γ is a so-called special subquadrangle of a quaternion quadrangle Γ′

and the weak embedding π : Γ → PG(V ) may be extended to a weak
embedding π′ : Γ′ → PG(V ) (for which Case (1) or (2) applies).

(4) There exists a nonperfect commutative field L of characteristic 2 with

L2 ⊆ Λ′ ⊆ L′ ⊆ Λ ⊆ L,

where L′ is a subfield of L, Λ is an L′-subspace of L which generates
L as a ring and Λ′ is an L2-subspace of L′ which generates L′ as a
ring, such that Γ is the mixed subquadrangle Q(L′, L2; Λ′,Λ2) of the
orthogonal quadrangle arising from the vector space W = Λ × (L′)4

over L′ endowed with the quadratic form q : W → L′ defined by
q(x0; (x1, x2, x3, x4)) := x2

0+x1x2+x3x4 for x0 ∈ Λ and x1, x2, x3, x4 ∈
L′. Furthermore, the weak embedding π is induced by a semi-linear
mapping ϕ : W → V (with respect to an embedding α : L′ → K) with
kerϕ ⊆ Λ.

(5) Γ is the unique generalized quadrangle of order (2, 2) (symplectic quad-
rangle W (2) over GF(2)) and the weak embedding is the universal
weak embedding in the sense of Thas & Van Maldeghem [12], with
charK 6= 2.

A special subquadrangle of a quaternion quadrangle is exactly a quad-
rangle arising from the standard embedding of the dual of the quaternion
quadrangle as orthogonal quadrangle by intersecting with a suitable hyper-
plane, see Steinbach & Van Maldeghem [9, (7.2.1)].

If in Case (1) the radical of the corresponding (σ, ε)-hermitian form has
(vector) dimension at most 1 (which happens for instance whenever charK 6=
2), then an α(L)-basis of ϕ(W ) is a K-basis of V , see Lemma 5.4.

For further details on weak embeddings of degree 2 or degree > 2, we
refer to the Main Result of the present paper and the one by Steinbach &
Van Maldeghem [9].

As a corollary of Theorem 8.1, we obtain a list of all generalized quadran-
gles, Γ say, such that Γ and the dual generalized quadrangle ΓD are weakly
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embeddable. Compare Tits [15, (10.10)] for the case of full embeddings in
polarities.

Proposition 8.2. Let Γ be a thick generalized quadrangle. If Γ and the
dual generalized quadrangle ΓD are weakly embeddable, then, up to duality,
Γ is one of the following:

(1) Γ is an orthogonal quadrangle and the weak embedding of ΓD is in
a projective 3-space. Further, Γ has a standard embedding in a d-
dimensional projective space with

(a) d = 4 (ΓD is a symplectic quadrangle),
(b) d = 5 (ΓD is a hermitian quadrangle),
(c) d = 6 (ΓD is a special subquadrangle of some quaternion quad-

rangle),
(d) d = 7 (ΓD is a quaternion quadrangle).

(2) Γ is any mixed quadrangle (possibly W (2) with universal weak embed-
ding).

For the free construction of a finitely generated generalized quadrangle,
see Tits [18, (4.4)]. It is also contained in Van Maldeghem [21, (1.3.13)].
We end by proving the following result.

Proposition 8.3. Let Γ be a freely constructed generalized quadrangle gen-
erated by the finite geometry Γ0. If Γ0 can be laxly embedded in some projec-
tive space PG(V ), with V a vector space over any infinite skew field, then
Γ can be laxly embedded in PG(V ).

Proof. One step of the free construction is as follows: For each point-line
pair (x, L) with d(x, L) = 5, introduce a ‘new’ point y and a ‘new’ line M
with x I M I y I L (i.e., d(x, L) = 3 in the new geometry).

To prove the proposition, one has to show that, if x and L are a point
and a line, respectively, of some laxly embedded finite point-line geometry
Γ′, then we can find a point y of PG(V ) on L off Γ′ such that the line xy
of PG(V ) is not a line of Γ′. By the finiteness of Γ′, this is clear. �

Of course, one can extend in the obvious way the previous proposition to
quadrangles Γ generated by n points and lines, with n some infinite cardinal
number, and projective spaces PG(V ) over any field with m elements, m a
cardinal number with m > n. Indeed, in the free construction process, in
each step, no more than 2n2 = n new elements are introduced.

It is now clear that one can produce laxly embedded non-Moufang gener-
alized quadrangles. As generating structure Γ0 one can for instance choose
a usual pentagon, or a finite generalized hexagon or octagon laxly embed-
ded in the standard way in some projective space over some finite field and
then extend the field to an infinite field to obtain an embedding in PG(V ),
with V a vector space over an infinite field. In general, ‘free’ quadrangles
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have zero probability of being Moufang quadrangles. In our examples, Γ0

does not contain an ordinary quadrangle, and consequently one can easily
see that the corresponding free generalized quadrangle Γ does not contain
a (3 × 3)-grid, or a dual such grid. This implies that Γ cannot admit any
central or axial elation, and hence cannot be a Moufang quadrangle.
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