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The flag geometry 1=(P, L, I) of a finite projective plane 6 of order s is the
generalized hexagon of order (s, 1) obtained from 6 by putting P equal to the set
of all flags of 6, by putting L equal to the set of all points and lines of 6, and
where I is the natural incidence relation (inverse containment), i.e., 1 is the dual of
the double of 6 in the sense of H. Van Maldeghem (1998, ``Generalized Polygons,''
Birkha� user Verlag, Basel). Then we say that 1 is fully and weakly embedded in the
finite projective space PG(d, q) if 1 is a subgeometry of the natural point-line
geometry associated with PG(d, q), if s=q, if the set of points of 1 generates
PG(d, q), and if the set of points of 1 not opposite any given point of 1 does not
generate PG(d, q). In three earlier papers we have shown that the dimension d of
the projective space belongs to [6, 7, 8], that the projective plane 6 is
Desarguesian, and we have classified the full and weak embeddings of 1 (1 as
above) for d=6 and for d=7 in the case that there exists a line L of 1 and four
distinct lines L1 , L2 , L3 , L4 concurrent with 1 which generate a 4-dimensional
space. In the present paper, we drop all these additional assumptions by completing
the case d=7 and handling the case d=8. In particular, we find new examples for
d=8 (contrary to our original conjecture (J. A. Thas and H. Van Maldeghem, Des.
Codes Cryptogr. 17 (1999), 97�104)). This means that we have now the complete
classification of all fully and weakly embedded geometries 1 in PG(d, q), with 1 the
flag geometry of a finite projective plane. � 2000 Academic Press
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1. DEFINITIONS AND STATEMENT OF THE MAIN RESULT

We finish our program of determining all full weak embeddings of
generalized hexagons of order (q, 1) in the projective space PG(d, q). Let
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us briefly recall that this is motivated by an attempt to characterize the
``natural'' embeddings of all finite Moufang classical hexagons. For more
details, we refer to Parts 1 and 2 of this paper (see Thas and Van
Maldeghem [6, 7]).

The problem we consider may be stated as follows. Let 6 be a (finite)
projective plane of order s. We define the flag geometry 1 of 6 as follows.
The points of 1 are the flags of 6 (i.e., the incident point-line pairs of 6);
the lines of 1 are the points and lines of 6. Incidence between points and
lines of 1 is reverse containment. It follows that 1 is a (finite) generalized
hexagon of order (s, 1) (see (1.6) of Van Maldeghem [9]). The advantage
of viewing 1 rather as a generalized hexagon than as a flag geometry of a
projective plane is that one can apply results from the general theory of
generalized hexagons. We will call 1 a thin generalized hexagon (since there
are only 2 lines through every point of 1).

Throughout, we assume that 1 is a thin generalized hexagon of order
(s, 1) with corresponding projective plane ?(1 )=6. We introduce some
further notation. For a point x of 1, we denote by x= the set of points
of 1 collinear with x (two points are collinear if they are incident with a
common line); we denote by x{ the set of points of 1 not opposite x (i.e.,
not at distance 6 from x in the incidence graph of 1 ). For a line L of 1,
we write L{ for the intersection of all sets p{ with p a point incident with
L (in this notation we view L as the set of points incident with it). For an
element x of 1 (point or line), we denote by 1i (x) the set of elements of
1 at distance i from x in the incidence graph of 1. In this notation, we have
p==10( p) _ 12( p), p{=10( p) _ 12( p) _ 14( p) and L{=11(L) _ 13(L),
with p any point and L any line of 1. Furthermore, an apartment of 1 is
a thin subhexagon of order (1, 1). It corresponds with a triangle in ?(1 ).
Also, if x and y are two points of 1 at distance 4, then the unique point of
12(x) & 12( y) will be denoted by x�y.

Let PG(d, q) be the d-dimensional projective space over the Galois field
GF(q). We say that 1 is weakly embedded in PG(d, q) if the point set of 1
is a subset of the point set of PG(d, q) which generates PG(d, q), if the line
set of 1 is a subset of the line set of PG(d, q), if the incidence relation in
PG(d, q) restricted to 1 is the incidence relation in 1, and if for every point
of 1, the set x{ does not generate PG(d, q). If moreover s=q, then we say
that the weak embedding is also full.

The only previously known examples of weak full embeddings of finite
thin hexagons in PG(d, q) arise from full embeddings of the dual classical
generalized hexagons of order (q, q), and here d=6 or d=7; see Thas and
Van Maldeghem [5]. Let us call these examples classical. In this paper, we
will define a new class of fully weakly embedded finite thin hexagons (in
PG(8, q)), which we call semi-classical, and we will show that no more
examples exist.
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The following result is proved in [5�7].

Theorem. Let 1 be a thin generalized hexagon of order (q, 1) weakly
embedded in PG(d, q), d=6, 7. If for some (and then for every) line L of 1
there exist four distinct lines L1 , L2 , L3 , L4 # 12(L) such that the subspace
(L1 , L2 , L3 , L4) has dimension 4, then L{ is contained in a 4-dimensional
space and the embedding is one of the classical examples.

All classical examples arise in this way. In the present paper, we remove
the extra condition in the theorem. More exactly, we will show:

Main Result. Let 1 be a thin generalized hexagon of order (q, 1)
weakly embedded in PG(d, q). Then for every line L of 1 the subspace (L{)
has dimension \�5. There do not exist examples with \=5, d=7 and such
that for some (and hence for every) line L of 1, the space generated by four
arbitrary distinct lines concurrent with L has dimension 5. If d=8, then only
the semi-classical examples exist.

Conclusion. Let 1 be a thin generalized hexagon of order (q, 1) weakly
embedded in PG(d, q). Then it is one of the classical or semi-classical
examples.

2. THE NEW EXAMPLES

Let V be a 3-dimensional vector space over GF(q), and let V* be the
dual space. We choose dual bases. Then the vector lines of the tensor
product V�V* can be seen as the point-line pairs of the projective plane
PG(2, q). Indeed, it is easily calculated that the pair [(x0 , x1 , x2), [a0 , a1 ,
a2]] (we use parentheses for the coordinates of points and brackets for
those of lines) corresponds to the vector line generated by the vector (a0 x0 ,
a0 x1 , a0x2 , a1x0 , a1x1 , a1x2 , a2x0 , a2x1 , a2x2). Hence we have a
mapping % of the point-line pairs of PG(2, q) into the set of points of
PG(8, q) (and the image of % is the Segre variety S2; 2 ; see Hirschfeld and
Thas [2, Sect. 25.5]). Let _ be any field automorphism of GF(q). We define
a twisted version %_ of % as follows. If p is a point of PG(2, q) and L a line
of PG(2, q), then [ p, L]%_=[ p_, L]%, where p_ is defined coordinatewise.

We denote coordinates in PG(8, q) by X00 , X01 , X02 , X10 , ..., X22 . It is
then easy to calculate that the image under %_ of the set of flags of PG(2, q)
is a set of points which generates PG(8, q) if and only if _{1. If _=1, then
we will obtain the classical examples defined in [5]. So from now on we
assume _{1.

Consider the flag F=[(x0 , x1 , x2), [a0 , a1 , a2]] of PG(2, q). Any flag of
PG(2, q) not opposite F (viewed as a point of the thin generalized hexagon
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1 corresponding with PG(2, q)) has the form [( y0 , y1 , y2), [b0 , b1 , b2]]
with b0 y0+b1 y1+b2 y2=0 and either

b0 x0+b1x1+b2x2=0 (1)

or

a0 y0+a1 y1+a2 y2=0. (2)

Hence we see that, by multiplying Eq. (1) with y_
0 , y_

1 , y_
2 , respectively,

and first raising Eq. (2) to the power _ and then multiplying the result by
b0 , b1 , b2 , respectively, the corresponding point p=(b i y_

j ) i, j=0, 1, 2 of
PG(8, q) satisfies either x0X0 j+x1X1 j+x2X2 j=0, j=0, 1, 2, or a_

0 Xi0+
a_

1 Xi1+a_
2 Xi2=0, i=0, 1, 2. Making the appropriate linear combinations

(multiplying with a_
j and x i , i, j=0, 1, 2), we see that the point p satisfies

the equation

:
2

i, j=0

a_
j xiXij=0. (3)

Remarking that the set of flags containing one fixed point (respectively
line) of PG(2, q) is mapped under %_ onto the set of points of a line of
PG(8, q)��which is immediately checked with an elementary calcula-
tion��and identifying every flag of PG(2, q) with its image under %_ , we
obtain a weak and full embedding of 1 in PG(8, q). We call this embedding
(and every equivalent one with respect to the linear automorphism group
of PG(8, q)) a semi-classical embedding of 1 in PG(8, q) (with respect to _).

It is easily seen that the group PGL3(q) acts in a natural way as an
automorphism group and as a subgroup of PGL9(q) on the embedding.
Hence every two pairs of opposite lines of 1 are projectively equivalent.
Consider the point (1, 0, 0) and the line [1, 0, 0] of PG(2, q). The corre-
sponding (opposite) lines of 1 are respectively given by

L :=( (0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0, 0))

and

M :=( (0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0)).

The set of points 13(L) & 13(M) corresponds to the set of flags of PG(2, q)
with a point on [1, 0, 0] and a line through (1, 0, 0); hence flags of the
form [(0, y, 1), [0, 1, &y]], with y # GF(q), or [(0, 1, 0), [0, 0, 1]]. The
corresponding set of points of 1 is given by

[(0, 0, 0, 0, y_, 1, 0, &y_+1, &y) | y # GF(q)] _ [0, 0, 0, 0, 0, 0, 0, 1, 0].

We call this set a _-curve. It lies in a 3-dimensional projective space.
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We now look at some properties of _-curves.

Lemma 1. Let A be a _-curve in PG(3, q), for some automorphism _ of
GF(q).

(i) Then the stabilizer G of A in PGL4(q) contains a subgroup G0

which induces a sharply 3-transitive group on A isomorphic to PGL2(q). If
_ is not involutive, then G=G0 ; if _2=1, then G is isomorphic to the
subgroup of Aut(PGL2(q)) containing PGL2(q) and all semi-linear
maps with corresponding field automorphism _. It follows that each plane
containing three distinct points of A, contains exactly q$+1 points of A,
with GF(q$) the field of fixed elements of _.

(ii) If _ is not involutive, then for every x # A, the stabilizer Gx fixes
exactly two lines T and T $ through x. If _2=1, then for every x # A, the
stabilizer Gx has a unique orbit [T, T $] of length 2 on the set of lines of
PG(3, q) through x.

(iii) Let x # A. Assume that for some point y # A"[x], there exists a
line Tx through x and a line Ty through y such that each plane through Tx

(respectively Ty) contains at most two points of A; hence there is a unique
plane ?x (respectively ?y) through Tx (respectively Ty) meeting A in a
unique point. Further, assume that the mapping (Tx , z) [ (Ty , z) , ?x [
(Ty , x) and (Tx , y) [ ?y , for z # A"[x, y], is a (linear) projectivity and
that each line of the unique hyperbolic quadric containing the intersections
(Tx , z) & (Ty , z) , for all z # A"[x, y], contains exactly one point of A.
Then Tx=T or Tx=T $.

Proof. Let 1 be the thin generalized hexagon arising from the
Desarguesian plane PG(2, q), and consider a semi-classical embedding with
corresponding _. Let l be any point of PG(2, q) and m be any line of
PG(2, q) not incident with l. Let L and M be the respective corresponding
(opposite) lines of 1. Then the first assertion of (i) follows from the following
facts: (a) 13(L) & 13(M) is a _-curve, (b) the automorphism group induced
by PGL9(q) on 1 contains PGL3(q), (c) the stabilizer in PGL3(q) (viewed
as a permutation group on PG(2, q)) of [l, m] acts sharply 3-transitive on
the set of flags [x, u], where x is a point incident with m and u is a line
incident with both x and l, (d) this stabilizer induces on (13(L) & 13(M))
a permutation group G0 isomorphic to PGL2(q), acting sharply 3-transitive
on the _-curve.

Let

A=[(1, r, r_, r_+1) | r # GF(q)] _ [(0, 0, 0, 1)].

The plane ( (1, 0, 0, 0), (0, 0, 0, 1), (1, 1, 1, 1)) contains exactly q$+1 points
of A, with GF(q$) the field of fixed elements of _. By the 3-transitivity it
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follows that each plane containing three distinct points of A contains
exactly q$+1 points of A.

Let x be the point (0, 0, 0, 1) # A. A generic element of G0 fixing only x
has matrix

Ac :=\
1
c
c_

c_+1

0
1
0
c_

0
0
1
c

0
0
0
1+ ,

c # GF(q), while a generic element of G0 fixing the points x and y :=
(1, 0, 0, 0) has matrix

Bd :=\
1
0
0
0

0
d
0
0

0
0

d _

0

0
0
0

d _+1+ ,

with d # GF(q)_. It is now easy to check that the orbit of the line S
through x containing the point (1, 1, 0, 0) under the group (Ac , Bd | c #
GF(q), d # GF(q)_) is the set of lines through x not lying in the plane ?x

with equation X0=0. One can easily see that there are planes through S
meeting A in at least three points (indeed, if l is any element of
GF(q)"GF(q$) and if r is defined as

r_=
l_(l+1)

l_&l
,

then one checks that the plane through S and the point (1, r, r_, r_+1) also
contains the point (1, s, s_, s_+1), with s= r+l

1+l). On the other hand, all
planes through the lines T :=(x, (0, 1, 0, 0)) and T $ :=(x, (0, 0, 1, 0))
contain at most two points of A. Hence Gx preserves ?x . Similarly
H :=Gx, y, z preserves ?x , ?y and ?z , with y :=(1, 0, 0, 0) and z :=
(1, 1, 1, 1). Note that ?y has equation X3=0 and ?z has equation
X0+X3=X1+X2 . It is easy to calculate that a generic element %a of H (as
a linear automorphism of PG(3, q)) has matrix

M :=\
1
0
0
0

0
a

1&a
0

0
1&a

a
0

0
0
0
1+ ,
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for some a # GF(q). Expressing that %a maps a point with coordinates
(1, x, x_, x_+1) onto a point of A, we obtain the conditions

(ax+(1&a)x_)_=(1&a)x+ax_,

x_+1=(ax+(1&a)x_)((1&a)x+ax_),

for all x # GF(q). The last condition is, after an elementary computation,
equivalent with a2&a=0 (taking into account that x&x_ is not identical
zero). Hence a=0 or a=1. Now the first condition says that either a=1,
or a=0 and _ is involutive. This proves (i) completely.

It is now easy to prove (ii) with the explicit form of the elements of Gx

above.
We finally prove (iii). Any quadric H containing A has equation

:
0�i, j�3

aijXi Xj=0,

with a00=a33=0 and

a01+a02 r_&1+a03r_+a11r+a12 r_

+a13r_+1+a22r2_&1+a23r2_=0,

for all r # GF(q)_. If _{2 and _&1{2, then this implies a01=a02=
a03+a12=a11=a13=a22=a23=0. So in such a case the quadric H has
equation X0X3=X1X2 . As Tx is a generator of H we necessarily have
either Tx : X0=X1=0 or Tx : X0=X2=0, that is, Tx # [T, T $]. Next let
either _=2 or _&1=2. Then A is a twisted cubic. In such a case Tx , T,
T $ are special unisecants of A at x (see Hirschfeld [1]) and so
Tx # [T, T $]. For the last assertion, we remark that in [7, Lemma 16], we
have derived the equation above of A precisely under the assumptions of
the lemma, and the result was that the lines Tx and Ty are two generators
of the hyperbolic quadric in question, which has equation X0X3=X1X2 . It
is now easy to see that the generators of this quadric through x are
precisely T and T $.

The lemma is proved. K

We will call the lines T and T $ the tangent lines or special unisecants of
A at x, and the plane (T, T $) will be called the osculating plane of A at
x (unlike in [7], where we called it a tangent plane; the reason for this
change is the fact that for q even and _ a generating automorphism, we
obtain precisely the osculating plane of a (q+1)-arc, see property ARC2 in
Section 4 below).

We have the following corollary.
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Corollary 2. Let _ and _$ be two automorphisms of GF(q). Then a
_-curve is isomorphic to a _$-curve, for the group PGL3(q), if and only if
_$ # [_, _&1].

Proof. Let A be the _-curve with points

A=[(1, r, r_, r_+1) | r # GF(q)] _ [(0, 0, 0, 1)],

and let A$ be the _$-curve with points

A$=[(1, r, r_$, r_$+1) | r # GF(q)] _ [(0, 0, 0, 1)].

Suppose there is a collineation % mapping A to A$. Then by the previous
lemma, we may assume that % fixes (1, 0, 0, 0), (0, 0, 0, 1) and (1, 1, 1, 1).
Moreover, the pair of intersection points (0, 1, 0, 0) and (0, 0, 1, 0) of the
coplanar common tangents of A and A$ at the respective points (1, 0, 0, 0)
and (0, 0, 0, 1) is preserved. If % fixes (0, 1, 0, 0), then A=A$ and so
_=_$. If % interchanges (0, 1, 0, 0) and (0, 0, 1, 0), then one easily deduces
_$=_&1.

Conversely, if either _=_$ or _$=_&1, then it is clear that A and A$
are isomorphic. K

Corollary 3. Let _ and _$ be two automorphisms of GF(q). Let 1 be
the dual of the double of PG(2, q). Then a semi-classical embedding of 1 in
PG(8, q) with respect to _ is isomorphic, with respect to PGL9(q), to a semi-
classical embedding of 1 in PG(8, q) with respect to _$ if and only if
_$ # [_, _&1].

Proof. In view of the previous corollary, we only have to show that two
embeddings of 1 with respect to _ and _&1, respectively, are isomorphic for
PGL9(q). But this is obvious by considering the map sending the point in
the first representation corresponding with the flag [(x, y, z), [a, b, c]],
with x, y, z, a, b, c # GF(q) and ax+by+cz=0, of PG(2, q) to the point
in the second representation corresponding with the flag [(a_, b_, c_),
[x_, y_, z_]]. It is easy to check that this induces a linear isomorphism
from the above defined embedding of 1 with respect to _ to the one with
respect to _&1. K

Remark 4. Let 1 be the thin generalized hexagon of order (q, 1) arising
from the Desarguesian plane PG(2, q), and consider the semi-classical
embedding of it in PG(8, q), with respect to the field automorphism _, as
described above. Let L and M be two opposite lines of 1 (respectively
corresponding with a point and a line of PG(2, q)). Let x1 , x2 , x3 , x4 be
four points of 1 on L and let yi , i=1, 2, 3, 4, be the unique point of M
not opposite xi . Then we claim that (x1 , x2 ; x3 , x4)_=( y1 , y2 ; y3 , y4).
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Indeed, without loss of generality, we may assume that L corresponds
with the point (1, 0, 0) of PG(2, q), and M with the line [1, 0, 0]. We may
then identify the points xi and yi with the following flags of PG(2, q),

x1 � [(1, 0, 0), [0, 1, 0]], y1 � [(0, 0, 1), [1, 0, 0]]

x2 � [(1, 0, 0), [0, 0, 1]], y2 � [(0, 1, 0), [1, 0, 0]],

x3 � [(1, 0, 0), [0, 1, 1]], y3 � [(0, 1, &1), [1, 0, 0]],

x4 � [(1, 0, 0), [0, k, 1]], y4 � [(0, 1, &k), [1, 0, 0]],

for some k # GF(q). It is now an elementary exercise to calculate the coor-
dinates of the points xi and yi , i=1, 2, 3, 4, and to deduce the above given
relation between the cross-ratios. Note also that everything in this section
can be generalized to the infinite case without notable change.

3. PRELIMINARY RESULTS

3.1. Some Known Results

Standing Hypotheses. From now on we suppose that 1=(P, L, I) is
a generalized hexagon of order (q, 1) weakly embedded in PG(d, q), and we
denote by ?(1 ) the projective plane for which the dual of the double is
isomorphic to 1.

We now recall some facts and definitions from [5�7].
Let x # P. The set x{ does not generate PG(d, q); hence it generates

some (proper) subspace of PG(d, q) which we will denote by `x . For any
line L of 1, we denote by !L the subspace of PG(d, q) generated by 13(L).

Lemma 5. For every x # P, the space `x=(x{) is a hyperplane which
does not contain any point of 16(x). In particular, `x {`y for x, y # P with
x{ y. Also, there is a unique (d&2)-space !� L contained in all `x , L # L and
xIL.

Lemma 6. For every line L # L, the space !L=(L{) has dimension
either d&3 or d&2, and it contains no point of 15(L).
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Lemma 7. Every apartment 7 of 1 generates a 5-dimensional subspace
of PG(d, q).

Lemma 8. Let U be any subspace of PG(d, q) containing an apartment
7 of 1. Then the points x of 1 in U for which 11(x)�U together with
the lines of 1 in U form a (weak) subhexagon 1 $ of 1. Let L, M be two
concurrent lines of 7 and let x, y be two points not contained in 7 but
incident with respectively L and M. If U contains 11(x) and 11( y), then 1 $
has some order (s, 1), 1<s�q.

Lemma 9. Let 1 be weakly and fully embedded in PG(d, q). Then 6�
d�8.

Lemma 10. The projective plane ?(1 ) is isomorphic to PG(2, q).

Lemma 11. Let L and M be two arbitrary opposite lines of 1. Let L0 ,
L1 , ..., Lk be k+1 distinct elements of 12(L), 1�k�q, and put 12(M) &
12(Li)=[Mi], 0�i�k. Then the dimension of the subspace U of PG(d, q)
generated by L0 , L1 , ..., Lk is equal to the dimension of the subspace V
generated by M0 , M1 , ..., Mk .

Lemma 12. Let L0 , L1 , L2 be three distinct lines of 1 concurrent with
some line L # L. Then U :=(L0 , L1 , L2) has dimension 4.

Lemma 13. Let L be any line of 1, and let x0 , x1 , x2 , x3 be four distinct
points on L. Without loss of generality, we may assume that L corresponds
with a line L$ of ?(1 ). Let xi , 0�i�3, correspond in ?(1 ) with the flag
[x$i , L$]. Let % be any self-projectivity of L$ in ?(1 ), that is, % is induced by
perspectivities of ?(1 ), and suppose that the point yi of 1 corresponds with
the flag [x$%

i , L$] of ?(1 ). Then the cross ratios (x0 , x1 ; x2 , x3) and
( y0 , y1 ; y2 , y3) (considered as cross-ratios of points in PG(d, q)) are equal.

The last lemma follows directly from Lemma 5 and the proof of Proposition 6
in [5].

An immediate consequence of Lemma 11 is the following

Corollary 14. Let L and M be two arbitrary lines of 1. Let L0 , L1 ,
L2 be three distinct elements of 12(L), and let M0 , M1 , M2 be three distinct
elements of 12(M). Then the number of elements of 12(L) contained in the
space (L0 , L1 , L2) is equal to the number of elements of 12(M) contained
in the space (M0 , M1 , M2).

Finally, we have:

Lemma 15. Let L and M be two arbitrary opposite lines of 1 and sup-
pose that (L{) has dimension 5. If there exist four distinct lines L1 , L2 , L3 ,
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L4 # 12(L) such that (L1 , L2 , L3 , L4) is a 4-dimensional subspace, then the
set 13(L) & 13(M) is contained in a 3-dimensional space and is projectively
equivalent (with respect to PGL4(q)) with the following set of points of
PG(3, q),

[(1, x, x_, x_+1) | x # GF(q)] _ [(0, 0, 0, 1)],

where _ is some field automorphism with at least 3 fixed elements. Hence it
is a _-curve.

3.2. Case Distinction
Suppose that (L{) is a subspace of dimension \L�5, for all lines L of

1 (the case \L�4 has already been taken care of by the Theorem in the
introduction and Lemmas 6 and 12). By Lemma 11, \L is independent
of L, and we write \L=\. Clearly \�d&2, hence d=7, 8. If d=7, then
\=5 and we distinguish the following cases (where NE stands for non-
existence):

NE(7.1) d=7, \=5, and for every line L of 1, there exists a set
[L1 , L2 , L3 , L4]�12(L) of cardinality 4 such that the subspace generated
by L1 , L2 , L3 , L4 has dimension 4.

NE(7.2) d=7, \=5, and for every line L of 1, and every set
[L1 , L2 , L3 , L4]�12(L) of cardinality 4, the subspace generated by L1 ,
L2 , L3 , L4 has dimension 5.

If d=8, then we have \=5 or \=6. Here, we distinguish the following
cases (where EX stands for existence of examples):

NE(8.1) d=8 and \=6.

EX(8.2) d=8 and \=5.

In [7] it was proved that Case NE(7.1) cannot occur. Some preliminary
results to Case EX(8.2) were also proved (as, for instance, Lemma 15
above). In the present paper, we take care of Cases NE(7.2) (Section 4),
NE(8.1) (Section 5), and EX(8.2) (Section 6).

4. THE CASE d=7

Let L and M be two opposite lines of 1. It is clear that !L {!M . Hence
the space 'L, M=!L & !M has dimension either 4 or 3. Suppose that the
dimension of 'L, M is equal to 4. Then there is a point x of L which belongs
to 'L, M , and hence to !M . This contradicts Lemma 6. Hence the dimension
of 'L, M is 3. Now let AL, M be the set of points of 1 in 'L, M , then
AL, M=13(L) & 13(M). From our assumption (see NE(7.2)) it readily
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follows that no four points of AL, M are contained in a plane of 'L, M .
Hence AL, M is a (q+1)-arc. These objects are well studied, and we
summarize some elementary properties which we will need below (see [1]).
Let A be a (q+1)-arc in PG(3, q).

(ARC1) Let p # A be arbitrary, and let 6 be a plane of PG(3, q) not
containing p. Then the projection of A"[ p] from p onto 6 is a q-arc,
which can be completed in a unique way to a (q+1)-arc by adding one
point p$ if q is odd, and which can be completed in a unique way to a
(q+2)-arc by adding two points p$, p" if q is even. The line pp$ (q odd) and
the pair of lines [ pp$, pp"] (q even) are independent of 6 and are called
special unisecants or tangents to A at p.

(ARC2) For each point p # A, there is a unique plane ?p containing
at least one tangent to A at p and intersecting A in [ p]. This plane is
called the osculating plane of A at p. For q even, the osculating plane at
p contains the two tangents at p.

(ARC3) Let q be even. Then all the tangents to A form the set of
lines of a hyperbolic quadric. If p and p$ are two points of A, and if L is
the intersection of the respective osculating planes at p and p$, then there
are two points s, s$ on L such that ps, ps$, p$s, p$s$ are tangent to A; inter-
secting a plane through p, p$ and x # A"[ p, p$] with L is a bijection from
the set of q&1 planes through p, p$ not containing any tangent to A at p
(or equivalently p$) to the set of points of L different from s and s$.

(ARC4) Let T be a line through some point p # A. If no plane
through T contains at least 3 points of A, then T is tangent to A at p.
Also, no point of PG(3, q) is contained in every tangent of A.

(ARC5) If q is even, then there exists an automorphism _ of GF(q),
generating the automorphism group of GF(q), such that, with respect to a
suitably chosen coordinate system, A consists of the points (0, 0, 0, 1) and
(1, x, x_, x_+1), with x # GF(q).

Now we put 12(L)=[L0 , L1 , ..., Lq] and 12(Li) & 12(M)=[Mi],
0�i�q. It is clear that (!L , !L0

)=`x0
, where x0 is the intersection of

L and L0 . Consequently the space U :=!L & !L0
is 4-dimensional. Now the

3-dimensional space 'L, M is not contained in U (since it contains
L1 & 'L, M which is not contained in U). Furthermore, both spaces U and
'L, M are contained in !L , which is 5-dimensional. Hence U$='L, M & U=
'L, M & !L0

is a plane. Let yi be the intersection of Li and Mi , 0�i�q. It
is obvious that y0 is contained in U$, but yi , 1�i�q, is not. We now claim
that U$ contains a tangent to AL, M at y0 . Therefore, we consider a point
s on L0 , with x0 {s{ y0 , a line R{L0 of 1 through s, and a point r{s
on R. It is easy to see (translating the situation to the projective plane
?(1 )) that |14(r) & AL, M |=2. So we may put 14(r) & AL, M=[ y0 , yl(r)],
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for some l(r) # [1, 2, ..., q]. Obviously Ur=`r & 'L, M is a plane of 'L, M

containing the intersection !R & 'L, M , which is a line T in 'L, M (as yl(r) is
not in !R). The planes Ur and `s & 'L, M=!L0

& 'L, M=U & 'L, M=U$ con-
tain y0 , q of them meet AL, M in at most two points, and exactly one
(namely, U$) meets AL, M in exactly one point. By property (ARC4), T is
a tangent and (ARC2) implies that U$ is the osculating plane of AL, M at y0 ,
and as such independent of the line of 1 through y0 , i.e., U$=!M0

& 'L, M .
Now it is also clear that U$=`s$ & 'L, M for any s$ # 11(L0) & 11(M0) and
s$ � 11(L) _ 11(M).

We now have to distinguish between q odd and q even.

4.1. The Case q Odd
In this case, the tangent T is unique (see (ARC1)). Also, any (q+1)-arc

in PG(3, q) is a twisted cubic (see [1]) and the (q+1)-arc in PG(2, q)
mentioned in (ARC1) is a conic.

Since T is unique, it is independent of R. Also, we can write T=
!R & 'L, M=!R & !M & !L='R, M & !L . Consequently, T is also tangent
to AR, M at y0 . Hence, if we consider any two lines X and Y of 16(M),
then the (q+1)-arcs AX, M and AY, M have the same tangents at their
intersection. We now choose a subspace PG(3, q) of !M skew to M0 and
we project !M "11(M0) from M0 onto PG(3, q). Let CL be the projection of
AL, M"[ y0] from M0 onto PG(3, q) together with the point (M0 , T) &
PG(3, q)=: y$. Then CL is a conic. The projections M$i of Mi , 1�i�q, are
q generators of the quadratic cone Q containing CL and with vertex M$,
where M$ is the intersection of (M0 , M) and PG(3, q). Let ?0 be the plane
!M0

& PG(3, q). By the arguments above, !M0
contains the osculating

plane, and hence the tangent line, of each AX, M at the common point of
AX, M and M0 , with X opposite M. Hence ?0 is a plane meeting M$i exactly
in the point M$, 1�i�q, and it contains the projection of all tangents. It
follows that ?0 is the tangent plane of the cone Q at M$y$. Let G be the
generator of the cone containing y$. Let X be an arbitrary line of 1
opposite M. Then the projection C$ of AX, M "[x] (where [x]=13(X) &
11(M0)) from M0 onto PG(3, q) lies on the cone Q. If x$ is the projection
of the tangent (minus x) of AX, M at x, then obviously C$ _ [x$] is a conic;
also, x$ is on ?0 & ?, where ? is the plane of C$. Further, C$ _ [x"], with
[x"]=G & ?, is a conic. As x$, x" # ? & ?0 and both extend C$ to a conic,
we necessarily have x$=x". Hence x$ # G.

Let y1 # M0 "[ y0], and let T1 be the tangent at y1 of the twisted cubic
AX, M , with X opposite M and y1 # 13(X). Assume, by way of contra-
diction, that T & T1=[t]. Then t # `s$ with s$ # 1i ( y0) _ 1j ( y1), with i,
j=0, 2, 4. It easily follows that t belongs to `s$ for each point s$ of 1. In
particular, t belongs to any tangent of the twisted cubic AL, M , clearly a
contradiction by (ARC4).
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Let CR be the unique conic on Q corresponding with AR, M . Then, since
CL & CR=[ y$], the conics CL and CR have the same tangent line at y$.
Now let p be an internal point of CL . Consider an arbitrary line P in
PG(3, q) through p not containing the vertex M$ of Q, not contained in the
plane of CL , and such that P meets Q in two points p$1 , p$2 . Then p$1 , p$2 are
the projections from M0 onto PG(3, q) of two points p1 , p2 (non-collinear
in 1 ), respectively, belonging to 13(M). Now, there is a unique line X
opposite M with p1 , p2 # AX, M . Let CX be the unique conic on Q corre-
sponding to AX, M . The sets AL, M and AX, M have just one point in
common. This common point is not on M0 , as otherwise CX contains y$,
and CX and CL have a common tangent line at y$, contradicting the fact
that p belongs to the planes of CL and CX . So AL, M & AX, M does not
belong to M0 . Hence CX and CL meet in a unique point not on G (by a
previous paragraph CX and CL do not have a common point on G). At that
point the tangent lines of CX and CL coincide. Hence p is contained in that
common tangent line and therefore cannot be an internal point of CL . This
is a contradiction.

4.2. The Case q Even

The way to handle this case is by looking at subhexagons arising from
subplanes of order 2 of ?(1 ). We first prove a lemma about these structures.

Lemma 16. Let 1 $ be a thin generalized hexagon of order (2, 1), weakly
embedded in PG(n, K), for some (not necessarily finite) field K. Then n=7
and, if F is the prime subfield of K, then 1 $ is contained in a subspace
PG(7, F) of PG(7, K). In particular, if the characteristic of K is equal to 2,
then 1 $ is fully and weakly embedded in PG(7, F). Also, the embedding is
unique up to a linear projectivity of PG(n, K).

Proof. Let ei be the point of PG(n, K) with coordinates (0, 0, ..., 0, 1,
0, ..., 0), where there are i zeros preceding the coordinate 1, 0�i�n. Now
the points of any apartment 7 of 1 $ span a 5-dimensional space. For if a
point p of 7 is contained in the space generated by the other points of 7,
then p is contained in U :=(p${) , where p$ is in 7 opposite p. It is now
easily seen that 1 $ must be contained in U, a contradiction. Hence n�5.
Similarly, one shows that, for every point p, the space (p{) is a hyper-
plane which does not contain points of 1 $ opposite p, and that the six
hyperplanes thus obtained from the points of any apartment are linearly
independent. Also, it is easily seen that the subspace of PG(n, K) generated
by an apartment and two well chosen points must contain all the points of
1 $. Hence n�7.

So we may choose any apartment of 1 $ and identify its points with e0 ,
e1 , ..., e5 , with ei # e=

i+1 , i=0, 1, ..., 4, and e0 # e=
5 . For any point p of 1 $ we
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denote the subspace (p{) by `p . It follows from an argument above that
`p does not contain any point of 1 $ opposite p. So all `p 's are distinct, if
p runs through the set of points of 1 $.

Suppose first n=5. Let the point p of 1 $ be defined by 1 $3(e1e2) &
1 $3(e4 e5)=[e0 , e3 , p]. Then p # `e1

& `e2
& `e4

& `e5
, and the latter is a

1-dimensional space. Hence p is on the line joining e0 and e3 in PG(5, K).
Similarly, if [ p126]=1 $3(e1 e2) & 1 $2( p) and [ p23]=1 $2(e2) & 1 $2(e3), then
[e0 , p23 , p126]=1 $3(e1 e2) & 1 $3(L), with [L]=1 $3(e0) & 1 $3(e5), and so e0 ,
p23 , p126 are collinear in PG(5, K). This implies that e0 , e1 , e2 and e3 are
contained in a plane, a contradiction.

Now let n=6, 7. Without loss of generality, we may assume that p, with
1 $3(e1 e2) & 1 $3(e4e5)=[e0 , e3 , p], is not contained in the subspace of
PG(n, K) generated by the points of 7 (with notation as above). Hence we
may put p=e6 . Let p$ (respectively p") be the unique point of 1 $ not
contained in 7 and at distance 3 from both the lines e0e5 and e2 e3

(respectively e0e1 and e3 e4). If n=7, we may assume that e0 , e1 , ..., e6 ,
p$ generate PG(n, K). Let pij be the point of 1 $ on the line eiej , if the latter
corresponds to a line of 1 $, i< j. Then we may choose coordinates in such
a way that pij=ei+ej , for all suitable pairs [i, j]. Also, we may put
p126=e1+e2+e6 (where p126 is defined as above). Let p057 (respectively
p348) be the unique point of 1 $ on the line p$p05 (respectively p"p34) distinct
from p$ and from p05 (respectively p" and p34). Then p126 , p057 and p348 are
collinear in 1 $. Hence, if we identify a point with its coordinates, we may
put

p057 =e0+e5+xp$,

p348=(e1+e2+e6)+c(e0+e5+xp$),

p"=(e1+e2+e6)+c(e0+e5+xp$)+d(e3+e4),

for some non-zero elements c, d, x # K. Similarly we define the points p237 ,
p456 , p018 of 1 $ respectively on the lines p$p23 , e6 p45 , p"p01 , and such that
they form a line of 1 $. We may now put

p237 =e2+e3+ap$,

p456=e4+e5+be6 ,

p018=(e2+e3+ap$)+ f (e4+e5+be6),

p"=(e2+e3+ap$)+ f (e4+e5+be6)+ g(e0+e1),

for some non-zero elements a, b, f, g # K.
We now suppose that n=7. Then p$ can be chosen such that p$=e7 and

x=1. Comparing the two expressions for p" obtained above, we easily
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deduce a=b=c=d=f =g=1. Hence 1 $ is contained in the subspace
PG(7, F) of PG(7, K), where F is the prime field of K. The embedding is
automatically weak since `p , p any point of 1 $, is generated by 7 points,
as can be easily checked.

Now let n=6. Our first aim is to write p$ as a linear combination of e0 ,
e1 , ..., e6 . Therefore, we note that `e2

contains (and hence is generated by)
e0 , e1 , e2 , e3 , e4 , e6 . Since p$ # `e2

, we deduce that e5 is not involved in p$.
Similarly, e2 is not involved in p$. Moreover, `p$ contains (and hence is
generated by) e1 , e2 , e3 , e5 , p126 and p456 . So we may put

p$=r(e4+be6)+ue3+ve0+w(e1+e6),

for some non-zero r, w # K (non-zero indeed because otherwise p$ is con-
tained in `ei for i # [1, 4], a contradiction), and u, v # K, with (u, v){(0, 0)
(for otherwise p$ # `e6

). So we may put r=1.
Now we note that `e0

& } } } & `e5
is a unique point p*. We also know that

`e1
& `e2

& `e4
& `e5

is 2-dimensional and that it contains e0 , e3 , e6 . Hence
p* belongs to ?036 :=(e0 , e3 , e6). Similarly p* belongs to ?147 :=
(e1 , e4 , p$) (and this is a plane, for if it were a line, then p$ would belong
to `e6

, a contradiction) and to ?258 :=(e2 , e5 , p"). It is clear that the
planes ?036 and ?147 intersect in the point (b+w)e6+ue3+ve0= p*. Since
p* must also belong to ?258 , we conclude that we can write

p"=(b+w)e6+ue3+ve0+se2+te5 ,

for some non-zero s, t # K (if s=0, then p" # `e5
, a contradiction; if t=0,

then p" # `e2
, a contradiction). Plugging in the expression of p$ in the two

expressions above for p", we obtain

p"=(c+cxv)e0+(1+cxw)e1+e2+(d+cxu)e3

+(d+cx)e4+ce5+(1+cxw+cxb)e6

and

p"=(g+av)e0+(g+aw)e1+e2+(1+au)e3

+( f +a)e4+ fe5+( fb+aw+ab)e6 .

Comparing coefficients, we obtain after a tedious computation u=v=2
(hence the characteristic of K is not equal to 2), s=t=&2 and b=c=d=
f =g=w=1=&a=&x. Hence `p057

contains the points e2+e3 , e0 , e5 ,
p$=2e0+e1+2e3+e4+2e6 , e6 , e1+e2 and e3+e4 . These points,
however, generate the space (e0 , e1+e2 , e3+e2 , e4+e3 , e5 , e6 , 2e3) =
PG(6, K) (remember that the characteristic of K is different from 2), a
contradiction.
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The lemma is proved. K

Remark 17. If n=7 in the above lemma, then it is easy to check by a
direct computation (given the coordinates of the points and lines of 1 $ in
the proof) that, with the notation of the above proof, the subspaces
(1 $3(e0e1) & 1 $3(e3 e4)) and (1 $3(e1e2) & 1 $3(e4e5)) are disjoint.

Remark 18. It is easy to check that the automorphism group induced
by PGL8(K) on any embedded thin hexagon of order (2, 1) in PG(7, K),
for any field K, is equal to PGL3(2). Since we will not need this fact, we
will not explicitly prove it. It can be done as an elementary exercise by the
interested reader.

We can now continue with our proof of the Main Result for d=7 and
q even. Notice that q>2. We use the same notation as in Subsection 4.1.
Let xi and zi be the intersection of L and Li , and of M and Mi , respec-
tively, 0�i�q. Then the space `x0

& `y0
& `z0

& `xq & `yq & `zq is a line N,
and by previous considerations it is also equal to the intersection of the
osculating planes of AL, M at y0 and at yq .

Now the projective plane ?(1 ) is Desarguesian, hence if s is an arbitrary
point of 1 on L0 , x0 {s{ y0 , then every point x i , 1�i�q&1, is together
with s, x0 , y0 , z0 , xq , yq , zq contained in a subhexagon 1s, i of order (2, 1),
which is weakly embedded in a subspace of PG(7, q). By Lemma 16 above,
1s, i is fully and weakly embedded in a subspace PG(7, 2) of PG(7, q). For
p a point of 1s, i , it is clear that the space generated by the points not
opposite p in 1s, i coincides with `p . Hence N is the intersection of all
hyperplanes Hp generated by the points of 1s, i not opposite (in 1s, i) the
point p, with p # [x0 , y0 , z0 , xq , yq , zq].

Now let s$ be the unique point of 1s, i collinear with s and at distance 3
from Mq . Then we can choose s such that the intersection x of the plane
(z0 , s$, xq) with N does not lie on any tangent to AL, M at y0 (because
there are q&1 choices for s giving rise to q&1 choices for x by property
(ARC3) above, because there are only 2 ``forbidden'' points on N, and as
q�4). Hence we can now choose i such that x belongs to the plane
( y0 , yi , yq). But then the 6-dimensional space generated by x0 , y0 , z0 , xq ,
yq , zq and x contains also s$ and yi and hence 1s, i , contradicting Lemma 16.

This completes the case d=7.

5. THE CASE d=8 AND \=6

From now on we put d=8 and in the present section we assume that the
dimension of !L is equal to 6, for all lines L of 1.

We will use the following notation: a sequence (X0 , X1 , ..., Xq) of distinct
subspaces of PG(d, q) of a certain dimension m, where all Xi contain
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a fixed subspace of dimension m&1, and where all Xi are contained
in a fixed subspace of dimension m+1 of PG(d, q), is projective with
another such sequence (Y0 , Y1 , ..., Yq) (where the dimension m$ of Yi

is not necessarily equal to m) if the cross-ratios (Xi , Xj ; Xk , Xl) and
(Yi , Yj ; Yk , Yl) are the same for all [i, j, k, l]�[0, 1, ..., q], with
|[i, j, k, l]|=4.

Choose L # L and let M # L be opposite L. Put 'L, M :=!L & !M .
Lemma 6 implies that (!L , !M) =PG(8, q), hence 'L, M is 4-dimensional.
Let L0 , L1 be two elements of 12(L) and put [Mi]=12(Li) & 12(M),
i=0, 1. Let [N1 , N2 , ..., Nq=M]=12(M0)"[L0]. Furthermore, put
U :='L, M & `u , where u is the intersection point of L0 and M0 . Then U
has dimension 3. Also, we let xi , i # [1, 2, ..., q], be the intersection point of
M0 and Ni . Since all `xi , i=1, 2, ..., q, and `u share the same 6-dimensional
space !M0

, we deduce that U contains ? i :='L, Ni & 'L, M for all
i # [1, 2, ..., q&1]. It is clear that ?i is either 2-dimensional or 3-dimen-
sional. Suppose, for some i<q, that ?i is 3-dimensional. Then
V :=('L, M , 'L, Ni) is 5-dimensional. But clearly the intersection of L1 with
V contains at least two points (one of 'L, M and one of 'L, Ni). Inter-
changing the roles of L1 and any element of 12(L)"[L0], we see that V
contains L and hence !L , a contradiction. Hence ?i is a plane for all i #
[1, 2, ..., q&1]. Now we fix an arbitrary i # [1, 2, ..., q&1]. We consider a
3-dimensional space Wi inside !L skew to ?i , and we project all elements
of 11(L), 12(L)"[L0], (13(L) & 13(M))"[u] and (13(L) & 13(Ni))"[u]
from ?i onto Wi . The spaces 'L, M , 'L, Ni and L are mapped onto three
different pairwise skew lines, say, M$, N$i , L$. Hence the projection of
the elements of 12(L)"[L0] forms a set of q lines of a regulus Ri . The
projection of (U, L0)"[?0] clearly must complete this regulus (the
projection of U"[?i] is a point on M$ distinct from the projection of any
element of (13(L) & 13(M))"[u]). As the hyperplanes !n , with n # Ni , are
the q+1 hyperplanes containing !Ni , we have also that (?i , u1){(?i , u2)
for distinct points u1 , u2 on (13(L) & 13(M))"[u].

Hence, if we denote the set of points incident with L by [ y0 , y1 , ..., yq],
with y0IL0 , and if we denote the unique element of 13(L) & 13(M) collinear
in 1 with yj , j # [1, 2, ..., q], by zj , then the sequence ( y0 , y1 , ..., yq) is projec-
tive with the sequence (U, (?i , z1) , ..., (?i , zq) ). Now fix j # [1, 2, ..., q&1],
j{i. Then the sequence (U, (?i , z1), ..., (?i , zq) ) is projective with
(U, (?j , z1), ..., (?j , zq) ). Suppose first that ?i {?j . Let K be the intersection
line of ?i and ?j . We choose a plane ?$ in 'L, M skew to K and project the
above sequences from K onto ?$. Denote by U$ the projection of U"K, by p$i
(respectively p$j) the projection of ?i"K (respectively ?j"K), and by z$k the
projection of zk , k=1, 2, ..., q. Then we obtain that the sequence (U$=
p$i p$j , p$iz$1 , p$iz$2 ,..., p$iz$q) is projective with (U$= p$j p$i , p$jz$1 , p$jz$2 , ..., p$jz$q).
Hence the points p$i , p$j , z$1 , z$2 , ..., z$q lie on a conic, which must be degenerate.
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So the points z$1 , z$2 , ..., z$q are incident with a common line K$. Hence !L is
equal to the 5-dimensional space (L, K, K$), a contradiction.

So we have ? i=? j=: ?, for every i, j # [1, 2, ..., q&1]. Let H be a line of
1 concurrent with M1 , but distinct from L1 and from M. Let h be a point
on H not incident with M1 . Then ? & `z1

& `h contains a point w. It is clear
that w is contained in `x , for all points x incident with one of the lines L,
L0 , L1 , M0 , M1 , Ni , M, H, with i # [1, 2, ..., q]. Clearly, for every point v
on a line X meeting two of these lines, the space !v also contains w. Hence
w is contained in `x for every point x which corresponds to a flag of the
subplane of ?(1 ) generated by the elements corresponding with L, L0 , L1 ,
M0 , M1 , Ni , M, H, i # [1, 2, ..., q]. But this subplane obviously is ?(1 )
itself. Consequently w is contained in `x , for all points x of 1. We now
project 1 from w onto some hyperplane PG(7, q) of PG(8, q) not
containing w. We claim that we obtain a full weak embedding in PG(7, q)
of a generalized hexagon isomorphic to 1, with !L$ 5-dimensional for every
line L$ of the embedding. Indeed, it suffices to show that there is no line in
PG(8, q) incident with w and two points t1 , t2 of 1. It is easy to see that
there would be a point t # 16(t1) & 14(t2). Then w, t2 # `t and hence t1 # `t ,
a contradiction. Our claim follows. But now we contradict the classification
of all such embeddings in PG(7, q); see the theorem in the Introduction
and the previous section.

6. THE CASE d=8 AND \=5

Let L, M be opposite lines of 1. As before, our assumption implies that
'L, M is 3-dimensional. Let AL, M be the set of points of 'L, M at distance 3
in 1 from both L and M.

Lemma 19. The set AL, M is a _-curve in 'L, M , for some automorphism
_ of GF(q).

Proof. If q is even, then either AL, M is a (q+1)-arc, or there exists a
set of 4 different lines of 1 concurrent with L and contained in a 4-space.
In the former case, AL, M is a _-curve by (ARC5). In the latter case, the
result follows from Lemma 15.

If q is odd, then the result again follows from Lemma 15 if there exists
a set of 4 different lines of 1 concurrent with L and contained in a 4-space.
Suppose now that AL, M is a (q+1)-arc.

Let L0 , L1 , L2 # 12(L) and put [Mi] :=12(Li) & 12(M), i=0, 1, 2.
Also, let N be any element of 12(L0) distinct from both L and M0 . Assume,
by way of contradiction, that the subspace UN :=(L, L0 , M0 , M, M1 , L1 ,
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L2 , N) is k-dimensional, with k<7. Let N$ # 12(L0)"[L, M0 , N]. The
subspace (UN , N$) induces a subhexagon which corresponds with some
subplane ?$ of ?(1 ). Then N$ can be chosen in such a way that ?$=?(1 ).
So the subhexagon coincides with 1, hence 1 is in (UN , N$) , which is at
most 7-dimensional, a contradiction. Consequently UN is 7-dimensional.
Now UN induces a subhexagon 1* of order (q*, 1), with q*>2 (indeed,
since a subhexagon of order (q*, 1) corresponds with a subplane of ?(1 )
of order q*, we have that q* divides q, hence q*>2 as q is odd). Let N$
be an element of 12(L0) not contained in 1*. We define UN$ similarly as
UN above and we obtain a subhexagon 1** of 1 induced by UN$ . The
intersection of UN and UN$ is a 6-dimensional space U and it contains L,
L0 , L1 , L2 , M, M0 , M1 , M2 . If U contains !L & !M , then there must be
a point u of !L & !M inside (L, M) (by comparing dimensions). Hence the
plane (u, M) (this is indeed a plane as follows from Lemma 6) meets the
line L, and so there is a point of L in !M , contradicting Lemma 6. Hence
U & !L & !M is the plane ? containing Li & Mi , i=0, 1, 2, and so, as ?
contains just three points of AL, M , 1* & 1** is the configuration formed
by L, L0 , L1 , L2 , M, M0 , M1 , M2 . But as ?(1 ) is Desarguesian over a
field of odd characteristic, this is a contradiction.

The lemma is proved. K

Now let L and M again be two opposite lines of 1, put 12(L)=
[L0 , L1 , ..., Lq] and let [Mi]=12(M) & 12(Li), i=0, 1, ..., q. Also, let N be
a line of 1 concurrent with L0 , but distinct from L and from M0 . We put
A :=AL, M and ' :='L, M . By Lemma 19, we know that A is a _-curve in
the 3-dimensional space '. Put A=: [x0 , x1 , ..., xq], with LiIxiIM i ,
i # [0, 1, ..., q], and put 12(M0)=[N0=L0 , N1=M, N2 , ..., Nq]. First, let
A be a (q+1)-arc. Choose i # [2, 3, ..., q]. The q+1 hyperplanes `n , with
n incident with Ni , intersect ' in q+1 planes which share a common line
Ti . If n is not incident with M0 , then such a plane contains x0 and one
other point of A; if n is incident with M0 , then `n & A=[x0]. Hence Ti

is a tangent of A at x0 and `n , with n on M0 , is the osculating plane ?0

of A at x0 . We also have ?0=' & !� M0
and Ti=' & !� Ni . If A is not a

(q+1)-arc, then the same conclusions follow from the proof of Lemma 13
in [7]. Suppose now that there exist indices i, j # [2, 3, ..., q] such that
Ti {Tj . Without loss of generality, we may assume that for a certain
tangent T of A at x0 , we have T=Ti , for all i # [2, 3, ..., (q+2)�2], and
there exists at least one line N$ # 12(L0) with T=' & !� N$ . Denote by x the
intersection point of T and `x1

. Clearly, the set of lines K of 1 with x # !� K

corresponds to a closed subconfiguration in ?(1 ). But this configuration
contains a triangle (corresponding to L, L0 , M0 , M, M1 , L1), up to duality
at least (q+4)�2 points on one side of the triangle (the points corre-
sponding to the lines L0 , M, Ni , 2�i�(q+2)�2), and one line, but not a
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side, through a vertex incident with that side (namely, the line corre-
sponding with N$). We conclude that the closed subconfiguration must be
a subplane, and that it must coincide with ?(1 ). Hence x belongs to the
hyperplane `z , for every z # P. Hence, similarly as at the end of Section 5,
we can project the embedded hexagon 1 from x onto a hyperplane
PG(7, q) (not containing x) of PG(8, q) to obtain a full weak embedding
in PG(7, q) of a generalized hexagon isomorphic to 1. Since the point x
belongs to ', we see that this embedding in PG(7, q) satisfies the
assumption of the last part of the theorem in the introduction (with the
projection L$ of L playing the role of L). Hence the projection of A from
x onto a hyperplane of ' not containing x is a conic. Take, with respect to
a suitable coordinatization, for A the set of points [(1, r, r_, r1+_) |
r # GF(q)] _ [(0, 0, 0, 1)], with _ an automorphism of GF(q); take
x0=(1, 0, 0, 0) and x1=(0, 0, 0, 1), which is allowed by Lemma 1. Then x
is either (0, 1, 0, 0) or (0, 0, 1, 0). No choice leads to a conic, a contradic-
tion.

Hence Ti=Tj=: T for all i, j # [2, 3..., q]. Let T $ be the tangent of A at
x0 which is the intersection of ' with !� N$ , for any N$ # 12(L0)"[L, M0].
The same argument as in the previous paragraph shows that T{T $.

Let [ yi] :=11(L) & 11(Li) and [zi]=11(M) & 11(Mi), i # [0, 1, ..., q].
Put '$='L1, M0

. It is clear that the subspace U :=(', '$) is contained in
the 6-dimensional space `y1

& `z0
. But clearly (', '$, y1 , z0) is the whole

space PG(8, q), hence U is 6-dimensional and ' & '$ is a point u.
Now consider the space W :=(!N$ , '). Since it clearly contains M, it

contains !M , and hence W=(!N$ , !M) . But then W=(M, N$, 'M, N$) , so
W has dimension 7. Consequently !N$ & ' is a line, which is contained in
!� N$ & '=T $. Hence !N$ & '=T $. Now since q>2, we deduce that T $ is
contained in the space !N$ & !N" , with N" # 12(L0)"[L, M0 , N$]. Now note
that (!N$ , !N") induces a subhexagon of order (q, 1) of 1, hence
(!N$ , !N") =PG(8, q) and so !N$ & !N" is a plane }L0

.
Of course, in a similar way, there must be a tangent T* of AL1, M0

at y0

contained in }L0
. Hence u is the intersection of T $ and T*. Also similarly,

we deduce that the intersection point u$ of ' and 'L0 , M1
is incident with T.

If u" is the intersection point of '$ and 'L0 , M1
, then u, u$ and u" form a

triangle in the plane `x0
& `x1

& `y0
& `y1

& `z0
& `z1

(indeed, !� L & !� M='~ L, M

is 4-dimensional and '~ L, M & `x0
{'~ L, M & `x1

, as equality would imply
'�`x0

& `x1
, a contradiction; if u, u$, u" were collinear, then they all would

belong to ' & '$ & 'L0 , M0
, a contradiction as ' & '$ is a point). Moreover,

we see that !L=(L, L0 , L1 , u, u$) , !L1
=(L1 , L, M1 , u, u") , !M1

=
(M1 , L1 , M, u$, u") , !M=(M, M0 , M1 , u, u$) , !M0

=(M0 , M, L0 , u, u")
and !L0

=(L0 , L, M0 , u$, u"). Remark also that u" is not in ', and so
!� L & !� M=(', u"), that is, PG(8, q)=(x0 , x1 , y0 , y1 , z0 , z1 , u, u$, u").

We now show that 1 is completely determined by the _-curve.
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In order to do this explicitly, we choose coordinates in PG(8, q) as

y0=(1, 0, 0; 0, 0, 0; 0, 0, 0), x0=(0, 0, 0; 0, 0, 1; 0, 0, 0)

y1=(0, 1, 0; 0, 0, 0; 0, 0, 0), u=(0, 0, 0; 0, 0, 0; 1, 0, 0)

x1=(0, 0, 1; 0, 0, 0; 0, 0, 0), u$=(0, 0, 0; 0, 0, 0; 0, 1, 0)

z1=(0, 0, 0; 1, 0, 0; 0, 0, 0), u"=(0, 0, 0; 0, 0, 0; 0, 0, 1).

z0=(0, 0, 0; 0, 1, 0; 0, 0, 0),

We may choose coordinates such that AL1, M0
is then equal to the set

[(x1+_, 0, 0; 1, 0, 0; x, 0, x_) | x # GF(q)] _ [ y0],

with _ the automorphism of GF(q) of the _-curve under consideration.
Moreover, we can choose coordinates such that the point v1 :=(1, 0, 0; 1,
0, 0; 1, 0, 1) is in 1 collinear with w2 :=(0, 0, 0; 0, 1, 1; 0, 0, 0). Now let
wi=(0, 0, 0; 0, 1, ai ; 0, 0, 0) # 11(M0), i # [1, 2, ..., q], ai # GF(q),
(a1 , a2)=(0, 1). Fix i # [3, 4, ..., q]. Then the cross-ratio (x0 , z0 ; w2 , wi) is
equal to ai . Let K # 12(M1)"[L1 , M], and denote by x$0 , z$0 , w$2 , w$i the
unique point of 12(K) at distance 4 in 1 from x0 , z0 , w2 , wi , respectively.
Clearly, we have (x0 , z0 ; w2 , wi)=(`x$0

, `z$0
; `w$2

, `w$i
). Now let ?x0

, ?z0
, ?w2

,
?wi

be the intersection of '$ with `x$0
, `z$0

, `w$2
, `w$i

, respectively. Then
(`x$0

, `z$0
; `w$2

, `w$i
)=(?x0

, ?z0
; ?w2

, ?wi
). Now ?z0

is clearly the osculating
plane of AL1, M0

at z1 . By an above argument, the planes ?x0
, ?w2

and ?wi

contain the tangent uz1 to AL1, M0
at z1 . Moreover, the plane ?x0

contains
y0 # AL1, M0

and the plane ?w2
contains v1 . Also, the plane ?wi

contains a
unique point vi of AL1, M0

(namely, the unique point of AL1, M0
collinear in

1 with wi). One easily calculates that (?x0
, ?z0

; ?w2
, ?wi

)=ai if and only if
vi=(a_+1

i , 0, 0; 1, 0, 0; ai , 0, a_
i ). Hence we may choose subscripts in such a

way that the line Ni of 1 contains the points (0, 0, 0; 0, 1, ai ; 0, 0, 0) and
(a_+1

i , 0, 0; 1, 0, 0; ai , 0, a_
i ), ai # GF(q) (for A not a (q+1)-arc, this also

follows from Remark 17 of [7]). We put N�=L0 (remark that N1=M).
Now consider again the line K of the previous paragraph. For every line

Ni # 12(M0), there exists a unique line Ki of 12(K) & 12(Ni). The line Ki

meets the space !L is a unique point u i , which is also the intersection of the
space (Ni , K) with !L (the space (N i , K, !L) induces 1, hence is 8-dimen-
sional; therefore the 3-space (Ni , K) and the 5-space !L meet in a point).
Now ui # 13(L) & 13(K). Hence the set [ui | i # [�, 1, ..., q]] is contained
in a 3-dimensional subspace 'L, K of PG(8, q).

By choosing the unit point (1, 1, 1; 1, 1, 1; 1, 1, 1) in a suitable way, we
may assume that K contains the points (0, 0, 1; 1, 0, 0; 0, 0, 0) and (0, 1,
0; 0, 1, 0; 0, 1, 1), because the map (X0 , X1 , ..., X8) [ (X0 , AX1 , BX2 ; X3 ,
CX4 , CX5 ; X6 , DX7 , X8), with A, B, C, D # GF(q)_ arbitrary, preserves

194 THAS AND VAN MALDEGHEM



the coordinates of points introduced so far. We can now explicitly compute
the coordinates of the point ui and we obtain

ui=(&a_+1
i , a_

i , 1; 0, 0, &a1+_
i ; &ai , a_

i , 0),

ai # GF(q), i=1, 2, ..., q, and u�=(1, 0, 0; 0, 0, 1; 0, 0, 0). In order to find
the unique point yj on 11(L) collinear in 1 with ui , i=1, 2, ..., q, we use the
property that ui yj meets the space (x0 , x1 , u, u$) in a point. We obtain
yj=(&ai , 1, 0; 0, 0, 0; 0, 0, 0) and we may reindex the set 11(L) so that this
point is called yi .

There is a unique line Li, j of 1 meeting both ui yi and Nj , 1<i�q and
Nj � [L0 , M]. There is also a unique point pi, j on Li, j at distance 3 from
M1 . As above, we can explicitly calculate the coordinates of p i, j . After an
elementary computation, we obtain

pi, j=(0, a_+1
j , aj ; ai , a_+1

i , 0; 0, a_
i aj , aia_

j ).

It is then easy to calculate the coordinates of the point qi, j on Nj collinear
with pi, j . We obtain

qi, j=(a_+1
j , 0, 0; 1, a_

i , a_
i a j ; a j , 0, a_

j ).

Hence we know the coordinates of Li, j= pi, j qi, j .
Now similarly as above, the space (L2, 2 , Li, i) , i{2, meets the space !L1

in a unique point ri of 1, and this determines the lines of 12(L1), just in
the same way as above. Similarly, we can determine the elements of 12(L0)
and of 12(M). This means that we have determined all lines at distance at
most 4 from L. In a completely similar way, all lines at distance 4 from M
can be calculated, hence all elements of 1 are determined and the embed-
ding is uniquely determined.

This concludes the proof of our Main Result.
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