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Abstract

We characterize the point-distance-2-regular hexagons as the only hexagons for
which the intersection sets have size one, and containing on ovoidal subspace all the
points of which are 3-regular. We also give a characterization of the finite split Cayley
hexagon of even order.

1 INTRODUCTION

A weak generalized n-gon T' is a point-line incidence geometry whose incidence graph has
girth 2n and diameter n, for some natural number n, n > 2. A weak generalized n-gon is
called a generalized n-gon if it is thick (i.e. if every vertex in the incidence graph has valency
> 2). Generalized polygons were introduced by Tits [4]. For an extensive survey including
most proofs, we refer the reader to [5].

We say that I' has order (s,t) if every line contains s+ 1 points, and every point is incident
with exactly ¢+ 1 lines. Distances are measured in the incidence graph, the distance function
is denoted by 0. Elements at maximal distance are called opposite. For any element x, we
denote by T'j;(z) the set of elements at distance ¢ from z, and by 2+ the set of elements not
opposite z. In this paper, we only deal with hexagons (n = 6). We denote by H(q) the split
Cayley hexagon over the field GF(q) (for a description, see [5]).

Let T" be a generalized hexagon. A subhexagon I" of I' is a subgeometry which is itself
a (weak) generalized hexagon. A subhexagon I" is called ideal if every line pencil of T
coincides with the corresponding line pencil of I'. A subhexagon I" is called full if every
point row of I coincides with the corresponding point row of I'. If two elements u,v of T’
are at distance 4, then the unique element of I'y(u) N T'y(v) will be denoted by u M v. If
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two elements v and v are not opposite, then there is a unique element incident with « and
nearest to v; we denote this element by proj,v and call it the projection of v onto u. For
two opposite elements x and y of ', we denote by z¥ the set I'y(x) N Ty(y). Also, we write
(x,y) = I3(x) NT3(y) (and such a set is called a regulus). For two opposite points = and
y, we say that the pair (z,y) is 3-regular if the set (z,y) is determined by two of its lines.
A point z is 3-regular if the pair (z, 2) is 3-regular for all points z opposite z. If all points
of the generalized hexagon are 3-regular, then I' is said to be 3-regular. If for two arbitrary
opposite points x and y, the set z¥ is determined by any two of its points, then I' is said to
be point-reqular.

2 PREPARATION TO THE THEOREMS

An ovoidal subspace O in a generalized hexagon I' is a proper subset of the point set of T’
such that each point of I' not in O is collinear with a unique point of @. An ovoidal subspace
in which all the points are opposite each other is called an ovoid. By [2], an ovoidal subspace

is either an ovoid, a full subhexagon, or the set of points at distance 1 or 3 from a given line
M.

Let x be a point of a generalized hexagon I', and z, 2z’ two points opposite x such that
§(z,2") = 4 and §(z,z M 2') = 4. Then the set 2* N z* is called an intersection set if
z* # o7

The following result is well-known :

Theorem (Ronan [3]). Let I be a 3-reqular generalized hexagon. If all intersection sets
have size 1, then I' is point-reqular, and hence a Moufang hexagon.

In the previous theorem, one can weaken the condition on the intersection sets (which is
done in [2]) or the condition of 3-regularity, which is the aim of Theorem 3.1.

Let x and y be two opposite points in a generalized hexagon I'. Then the set I(z,y) =
{x, y} is called an imaginary line. In the finite case, a long imaginary line is an imaginary
line which coincides with every regulus containing two of its elements. Then we have the
following characterization (which also exists in the infinite case):

Theorem (van Bon, Cuypers & Van Maldeghem [1]). If in a finite generalized hexagon
T, all imaginary lines are long, then I' = H(q), q even.

Theorem 3.2 weakens the conditions of the previous theorem.

3 THEOREMS

Theorem 3.1 Let I" be a generalized hexagon in which all intersection sets have size 1. If
I’ contains an ovoidal subspace O all the points of which are 3-reqular, then I' is 3-reqular
and hence a Moufang hexagon.



Proof. The condition about the intersection sets is equivalent with the fact that every two
opposite points z and y are contained in a (unique) thin ideal subhexagon, which we denote
by D(x,y). Let x and y be two opposite points : we prove that the pair (z,y) is 3-regular.
It is sufficient to find a point z at distance 3 from two lines of (z,y) such that one of the
pairs (z, z) or (y, z) is 3-regular. We may assume that neither x nor y belongs to O.

()

Suppose there is a point a € D(x,y) opposite x and at distance 4 from y such that the
pair (a,z) is 3-regular. Let L, be the line through a X y at distance 3 from z and let
z be an arbitrary point in (L,, M), L, # M € (x,y), z # x. We show that z¥ = z*.
Put u = proj;_z, v’ = projy,a, X = proj,a and 2’ the point of (L4, X) collinear with
u. Then 2v¥ = 2% = 2% = 2°.

Suppose in addition to (x) there is a point b € D(z,y) opposite y and at distance 4
from z such that the pair (b,y) is 3-regular. Then the pair (x,y) is 3-regular. Indeed,
let L, be the line through b X = at distance 3 from y. If L, # L;, put M = L, and
N=1L, f L, =1Ly, put M =L, and N € (z,y), N # L,. Applying (x), we see
that for an arbitrary point z € (M, N), © # z # y, ¥ = 2* and y* = y*, so z lies at
distance 3 from every line of (z,y), and the pair (x,y) is 3-regular.

Let first O be an ovoid not containing x or y. Then D(x,y) contains 0, 1 or 2 points of O.
Suppose first D(x,y) contains two points a and b of O. Up to interchanging = and y, one of
the following situations occurs :

e §(a,y) =4=46(b,x) and d(a,x) =6 = (b, y).

It immediately follows from (%) that the pair (z,y) is 3-regular.

d(a,z) =2, 5(b,x) =4 and 6(b,y) = 6.
Note that b lies at distance 4 from the point a X y. Let L, be the line of (z,y) at
distance 3 from b and L, the line of (z,y) through a. Then (x) shows that

(1) y* = y#, for all points 2’ € (Lq, L), 2’ # v.

Consider the point v of y* on L;. Suppose first that the unique point o of O collinear
with v does not lie on vy. Put u = proj, o. Note that u # a since o € D(z,y). Let
finally z = u ™ (proj;, u). Then applying (), we obtain

(2) 2¥ = 2" =2" for all w € (L,, Ly), w # z.

Combining (1) and (2) as in (xx), we see that the pair (z,y) is 3-regular. So we may
now assume that o lies on vy. Consider an arbitrary point p of D(z,y) collinear with
v, different from y or v X z. Since the line vp does not contain a point of O, we can
apply the previous argument to obtain that the pair (x,p) is 3-regular. But now again
applying (%) shows that also the pair (z,y) is 3-regular.

d(a,z) =2=10(b,y).
Let p be a point of D(x,y) collinear with a X y, different from a and y, and p’ a point
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of D(x,y) collinear with b X z, different from b and z. Then the previous paragraph
shows that both (z,p) and (y,p’) are 3-regular pairs, so applying (xx) gives that also
the pair (x,y) is 3-regular.

Suppose now D(z,y) contains exactly 1 point a of @. Then we have the following cases to
consider :

e i(a,x) =2.
Let v be a point of z¥ different from a and put w = v X y, w’ = a X y. Denote by o
the unique point of O collinear with v. If o lies on vw, then put z = o X (proj,,o).
If o does not lie on vw, then put u = proj,, 0 and z = u X (proj,,u). Now D(z, z)
contains two points of O, so the pair (z,z) (and hence the pair (z,y)) is 3-regular.

e §(a,z) =4 and é(a,y) = 6.
Let again L, be the line of (z,y) at distance 3 from a. We already know that

(3) y* = y?, for all points z, y # z € (Lo, M), M € (x,y), M # L,.

Choose a point v € y*, v not on L, such that the unique point 0o € O collinear with
v does not lie on the line vy. Let L, be the line of (z,y) through v. If o lies on L,,
then put z = o X (proj; o). From the previous case, it is then clear that (z,z2) is a
3-regular pair. If o does not lie on L,, put u = proj_o and z = u X proj, u. Then

(4) 2¥ =27 = 2%, for all points w, z #w € (L,, M), M € (z,y), M # L,.

Combining (3) and (4), we again see that (x,y) is a 3-regular pair.

Suppose finally D(z,y) does not contain any point of O. Similarly as before, we can find a
point z at distance 3 from two lines of (x,y) for which the hexagon D(z, z) contains a point
of O, from which the result.

Suppose now O = I'1 (M) UT'3(M), M a line of I' not incident with x or y. Then one easily
shows that either D(z,y) contains the line M, or it intersects O in either 0 points or 2
collinear points. As before, the case that D(x,y) contains no point of O can be reduced to
one of the other cases. If D(x,y) contains M, then the pair (x,y) is 3-regular because of
(*%). So we only have to consider the case that D(z,y) contains exactly two collinear points
a and b of O. We consider the following situations :

e 0(a,x) =2=4(b,y).
Since M is concurrent with the line ab, we can find a point z € O at distance 3 from
ab and another line of (z,y), hence the result.

e (a,y) =6=10(b,x) (hence d6(a,z) =4 = 5(b,y)).
Clear because of (skx).

e §(a,x) =2, 6(b,x) =4 and 6(b,y) = 6.
Note that the line ab is concurrent with M, and that a and b lie at distance 3 from M.
Let L, be the line of (z,y) through a and L’ an arbitrary line of (x,y) different from
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L,. Let u be the projection onto L’ of the intersection of M and ab. Let finally z be
the unique point of (L,, L') collinear with u. Clearly, D(z, z) contains M, hence the
pair (z, z) is 3-regular, and so is (z,y).

Suppose finally that O is a full subhexagon. If D(x,y) contains 1 point of O, then it has at
least an ordinary hexagon in common with O, and (z, y) is 3-regular because of (xx). Again,
the case that D(z,y) contains no point of O can be reduced to the previous one. O

Consider the following property in a finite generalized hexagon I :

(I) Let L and M be two arbitrary opposite lines, xz,y different points of (L, M) and
x' = proj,x, ¥y = proj;y. Let N be an arbitrary line concurrent with zz’, not through
x or z’. Then projyy = projyz, for all z € (L, M) \ {x}.

Theorem 3.2 A finite generalized hezagon I' satisfies condition (I) if and only if I' is iso-
morphic to H(q), q even.

Proof. If I' = H(q), q even, then condition (I) follows from the fact that all imaginary lines
are long. Suppose now I' is a finite generalized hexagon in which (I) holds. It is enough
to proof that I' is 3-regular. Indeed, combining the 3-regularity and (/), we obtain that an
imaginary line coincides with a regulus containing two of its points. Since I is finite, this
implies that all imaginary lines are long, hence the result.

So let L and M be two opposite lines, x,y, z different points of (L, M) and N € (z,y). We
have to proof that §(z, N) = 3. Put p = proj,y, p’ = proj,y, ' = projyx, y = projyy
and z' = proj,,.z. We first show that 2z’ = 2/. Suppose by way of contradiction that
Z' # o' and put 2" = proj,,z’. Suppose first proj,z # proj,2z”. But this contradicts (/)
since the projections of x and z onto the line through z” and 2’ X 2” do not coincide, so
proj,.z = proj,.z”. Note that 2’ M z # 2/ X 2" since otherwise, there would be an ordinary
pentagon through the points z”, p, proj; z, z and z X 2’. Let u be the projection of 2z’ onto
yp'. But now, noting that proj,,u # proj.,z, the projections of x and z onto the line through
u and u M 2’ do not coincide, the final contradiction, so #’ = z’. Interchanging the roles of
x and y, we see that y' = proj,,,z. But this creates an ordinary pentagon containing ', 3’
and z, unless 0(z, N) = 3. 0

Consider the following weaker version of condition (I) :

I') Let L and M be two arbitrary opposite lines, x,y different points of (L, M) and
Yy Yy
' = projx, ¥y = projy. Let N be an arbitrary line concurrent with za’, not through
x or 2’ and at distance 4 from yy’. Then projyy = projyz, for all z € (L, M) \ {z}.

Corollary 1 A finite generalized hexagon T of order (s,t), t < s, satisfies condition (I') if
and only if T is isomorphic to H(q), q even.

Proof. Suppose I' satisfies (I’), and let L, M, z,2’,y,y be as in (I'). Let z be a point of
(L,M), © # z # y, and put 2’ = proj;z. Let v be an arbitrary point on zz’, © # v # z'.



Because of condition (I'), proj,yy’ # proj,zz’. This shows that t > s, so t = s and (/) holds.
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