Two remarks on generalized hexagons

Eline Govaert

Hendrik Van Maldeghem

Abstract

We characterize the point-distance-2-regular hexagons as the only hexagons for which the intersection sets have size one, and containing on ovoidal subspace all the points of which are 3-regular. We also give a characterization of the finite split Cayley hexagon of even order.

1 INTRODUCTION

A weak generalized n-gon Γ is a point-line incidence geometry whose incidence graph has girth 2n and diameter n, for some natural number n, $n \geq 2$. A weak generalized n-gon is called a generalized n-gon if it is thick (i.e. if every vertex in the incidence graph has valency > 2). Generalized polygons were introduced by Tits [4]. For an extensive survey including most proofs, we refer the reader to [5].

We say that Γ has order (s, t) if every line contains s + 1 points, and every point is incident with exactly t+1 lines. Distances are measured in the incidence graph, the distance function is denoted by δ . Elements at maximal distance are called *opposite*. For any element x, we denote by $\Gamma_{[i]}(x)$ the set of elements at distance i from x, and by x^{\perp} the set of elements not opposite x. In this paper, we only deal with hexagons (n = 6). We denote by H(q) the split Cayley hexagon over the field GF(q) (for a description, see [5]).

Let Γ be a generalized hexagon. A subhexagon Γ' of Γ is a subgeometry which is itself a (weak) generalized hexagon. A subhexagon Γ' is called *ideal* if every line pencil of Γ' coincides with the corresponding line pencil of Γ . A subhexagon Γ' is called *full* if every point row of Γ' coincides with the corresponding point row of Γ . If two elements u, v of Γ are at distance 4, then the unique element of $\Gamma_2(u) \cap \Gamma_2(v)$ will be denoted by $u \bowtie v$. If two elements u and v are not opposite, then there is a unique element incident with u and nearest to v; we denote this element by $\operatorname{proj}_u v$ and call it the projection of v onto u. For two opposite elements x and y of Γ , we denote by x^y the set $\Gamma_2(x) \cap \Gamma_4(y)$. Also, we write $\langle x, y \rangle = \Gamma_3(x) \cap \Gamma_3(y)$ (and such a set is called a *regulus*). For two opposite points x and y, we say that the pair (x, y) is 3-regular if the set $\langle x, y \rangle$ is determined by two of its lines. A point x is 3-regular if the pair (x, z) is 3-regular for all points z opposite x. If all points of the generalized hexagon are 3-regular, then Γ is said to be 3-*regular*. If for two arbitrary opposite points x and y, the set x^y is determined by any two of its points, then Γ is said to be *point-regular*.

2 Preparation to the theorems

An ovoidal subspace \mathcal{O} in a generalized hexagon Γ is a proper subset of the point set of Γ such that each point of Γ not in \mathcal{O} is collinear with a unique point of \mathcal{O} . An ovoidal subspace in which all the points are opposite each other is called an *ovoid*. By [2], an ovoidal subspace is either an ovoid, a full subhexagon, or the set of points at distance 1 or 3 from a given line M.

Let x be a point of a generalized hexagon Γ , and z, z' two points opposite x such that $\delta(z, z') = 4$ and $\delta(x, z \bowtie z') = 4$. Then the set $x^z \cap x^{z'}$ is called an *intersection set* if $x^z \neq x^{z'}$.

The following result is well-known :

Theorem (Ronan [3]). Let Γ be a 3-regular generalized hexagon. If all intersection sets have size 1, then Γ is point-regular, and hence a Moufang hexagon.

In the previous theorem, one can weaken the condition on the intersection sets (which is done in [2]) or the condition of 3-regularity, which is the aim of Theorem 3.1.

Let x and y be two opposite points in a generalized hexagon Γ . Then the set $I(x, y) = \{x, y\}^{\perp \perp}$ is called an *imaginary line*. In the finite case, a *long imaginary line* is an imaginary line which coincides with every regulus containing two of its elements. Then we have the following characterization (which also exists in the infinite case):

Theorem (van Bon, Cuypers & Van Maldeghem [1]). If in a finite generalized hexagon Γ , all imaginary lines are long, then $\Gamma \cong H(q)$, q even.

Theorem 3.2 weakens the conditions of the previous theorem.

3 Theorems

Theorem 3.1 Let Γ be a generalized hexagon in which all intersection sets have size 1. If Γ contains an ovoidal subspace O all the points of which are 3-regular, then Γ is 3-regular and hence a Moufang hexagon.

Proof. The condition about the intersection sets is equivalent with the fact that every two opposite points x and y are contained in a (unique) thin ideal subhexagon, which we denote by $\mathcal{D}(x, y)$. Let x and y be two opposite points : we prove that the pair (x, y) is 3-regular. It is sufficient to find a point z at distance 3 from two lines of $\langle x, y \rangle$ such that one of the pairs (x, z) or (y, z) is 3-regular. We may assume that neither x nor y belongs to \mathcal{O} .

- (*) Suppose there is a point $a \in \mathcal{D}(x, y)$ opposite x and at distance 4 from y such that the pair (a, x) is 3-regular. Let L_a be the line through $a \bowtie y$ at distance 3 from x and let z be an arbitrary point in $\langle L_a, M \rangle$, $L_a \neq M \in \langle x, y \rangle$, $z \neq x$. We show that $x^y = x^z$. Put $u = \operatorname{proj}_{L_a} z$, $u' = \operatorname{proj}_M a$, $X = \operatorname{proj}_{u'} a$ and z' the point of $\langle L_a, X \rangle$ collinear with u. Then $x^y = x^a = x^{z'} = x^z$.
- (**) Suppose in addition to (*) there is a point $b \in \mathcal{D}(x, y)$ opposite y and at distance 4 from x such that the pair (b, y) is 3-regular. Then the pair (x, y) is 3-regular. Indeed, let L_b be the line through $b \bowtie x$ at distance 3 from y. If $L_a \neq L_b$, put $M = L_a$ and $N = L_b$. If $L_a = L_b$, put $M = L_a$ and $N \in \langle x, y \rangle$, $N \neq L_a$. Applying (*), we see that for an arbitrary point $z \in \langle M, N \rangle$, $x \neq z \neq y$, $x^y = x^z$ and $y^x = y^z$, so z lies at distance 3 from every line of $\langle x, y \rangle$, and the pair (x, y) is 3-regular.

Let first \mathcal{O} be an ovoid not containing x or y. Then $\mathcal{D}(x, y)$ contains 0, 1 or 2 points of \mathcal{O} . Suppose first $\mathcal{D}(x, y)$ contains two points a and b of \mathcal{O} . Up to interchanging x and y, one of the following situations occurs :

- $\delta(a, y) = 4 = \delta(b, x)$ and $\delta(a, x) = 6 = \delta(b, y)$. It immediately follows from (**) that the pair (x, y) is 3-regular.
- $\delta(a, x) = 2$, $\delta(b, x) = 4$ and $\delta(b, y) = 6$. Note that b lies at distance 4 from the point $a \bowtie y$. Let L_b be the line of $\langle x, y \rangle$ at distance 3 from b and L_a the line of $\langle x, y \rangle$ through a. Then (*) shows that
 - (1) $y^x = y^{z'}$, for all points $z' \in \langle L_a, L_b \rangle, z' \neq y$.

Consider the point v of y^x on L_b . Suppose first that the unique point o of \mathcal{O} collinear with v does not lie on vy. Put $u = \operatorname{proj}_{L_a} o$. Note that $u \neq a$ since $o \notin \mathcal{D}(x, y)$. Let finally $z = u \bowtie (\operatorname{proj}_{L_b} u)$. Then applying (*), we obtain

(2) $z^y = z^x = z^w$, for all $w \in \langle L_a, L_b \rangle, w \neq z$.

Combining (1) and (2) as in (**), we see that the pair (x, y) is 3-regular. So we may now assume that o lies on vy. Consider an arbitrary point p of $\mathcal{D}(x, y)$ collinear with v, different from y or $v \bowtie x$. Since the line vp does not contain a point of \mathcal{O} , we can apply the previous argument to obtain that the pair (x, p) is 3-regular. But now again applying (**) shows that also the pair (x, y) is 3-regular.

• $\delta(a, x) = 2 = \delta(b, y)$. Let p be a point of $\mathcal{D}(x, y)$ collinear with $a \bowtie y$, different from a and y, and p' a point of $\mathcal{D}(x, y)$ collinear with $b \bowtie x$, different from b and x. Then the previous paragraph shows that both (x, p) and (y, p') are 3-regular pairs, so applying (**) gives that also the pair (x, y) is 3-regular.

Suppose now $\mathcal{D}(x, y)$ contains exactly 1 point *a* of \mathcal{O} . Then we have the following cases to consider :

• $\delta(a, x) = 2.$

Let v be a point of x^y different from a and put $w = v \bowtie y$, $w' = a \bowtie y$. Denote by o the unique point of \mathcal{O} collinear with v. If o lies on vw, then put $z = o \bowtie (\operatorname{proj}_{aw'} o)$. If o does not lie on vw, then put $u = \operatorname{proj}_{aw'} o$ and $z = u \bowtie (\operatorname{proj}_{vw} u)$. Now $\mathcal{D}(x, z)$ contains two points of \mathcal{O} , so the pair (x, z) (and hence the pair (x, y)) is 3-regular.

- $\delta(a, x) = 4$ and $\delta(a, y) = 6$. Let again L_a be the line of $\langle x, y \rangle$ at distance 3 from a. We already know that
 - (3) $y^x = y^z$, for all points $z, y \neq z \in \langle L_a, M \rangle, M \in \langle x, y \rangle, M \neq L_a$.

Choose a point $v \in y^x$, v not on L_a such that the unique point $o \in \mathcal{O}$ collinear with v does not lie on the line vy. Let L_v be the line of $\langle x, y \rangle$ through v. If o lies on L_v , then put $z = o \bowtie (\operatorname{proj}_{L_a} o)$. From the previous case, it is then clear that (x, z) is a 3-regular pair. If o does not lie on L_v , put $u = \operatorname{proj}_{L_a} o$ and $z = u \bowtie \operatorname{proj}_{L_v} u$. Then

(4) $z^y = z^x = z^w$, for all points $w, z \neq w \in \langle L_v, M \rangle, M \in \langle x, y \rangle, M \neq L_v$.

Combining (3) and (4), we again see that (x, y) is a 3-regular pair.

Suppose finally $\mathcal{D}(x, y)$ does not contain any point of \mathcal{O} . Similarly as before, we can find a point z at distance 3 from two lines of $\langle x, y \rangle$ for which the hexagon $\mathcal{D}(x, z)$ contains a point of \mathcal{O} , from which the result.

Suppose now $\mathcal{O} = \Gamma_1(M) \cup \Gamma_3(M)$, M a line of Γ not incident with x or y. Then one easily shows that either $\mathcal{D}(x, y)$ contains the line M, or it intersects \mathcal{O} in either 0 points or 2 collinear points. As before, the case that $\mathcal{D}(x, y)$ contains no point of \mathcal{O} can be reduced to one of the other cases. If $\mathcal{D}(x, y)$ contains M, then the pair (x, y) is 3-regular because of (**). So we only have to consider the case that $\mathcal{D}(x, y)$ contains exactly two collinear points a and b of \mathcal{O} . We consider the following situations :

- δ(a, x) = 2 = δ(b, y).
 Since M is concurrent with the line ab, we can find a point z ∈ O at distance 3 from ab and another line of ⟨x, y⟩, hence the result.
- $\delta(a, y) = 6 = \delta(b, x)$ (hence $\delta(a, x) = 4 = \delta(b, y)$). Clear because of (**).
- δ(a, x) = 2, δ(b, x) = 4 and δ(b, y) = 6.
 Note that the line ab is concurrent with M, and that a and b lie at distance 3 from M.
 Let L_a be the line of ⟨x, y⟩ through a and L' an arbitrary line of ⟨x, y⟩ different from

 L_a . Let u be the projection onto L' of the intersection of M and ab. Let finally z be the unique point of $\langle L_a, L' \rangle$ collinear with u. Clearly, $\mathcal{D}(x, z)$ contains M, hence the pair (x, z) is 3-regular, and so is (x, y).

Suppose finally that \mathcal{O} is a full subhexagon. If $\mathcal{D}(x, y)$ contains 1 point of \mathcal{O} , then it has at least an ordinary hexagon in common with \mathcal{O} , and (x, y) is 3-regular because of (**). Again, the case that $\mathcal{D}(x, y)$ contains no point of \mathcal{O} can be reduced to the previous one. \Box

Consider the following property in a finite generalized hexagon Γ :

(I) Let L and M be two arbitrary opposite lines, x, y different points of $\langle L, M \rangle$ and $x' = \operatorname{proj}_M x, y' = \operatorname{proj}_L y$. Let N be an arbitrary line concurrent with xx', not through x or x'. Then $\operatorname{proj}_N y = \operatorname{proj}_N z$, for all $z \in \langle L, M \rangle \setminus \{x\}$.

Theorem 3.2 A finite generalized hexagon Γ satisfies condition (I) if and only if Γ is isomorphic to H(q), q even.

Proof. If $\Gamma \cong H(q)$, q even, then condition (I) follows from the fact that all imaginary lines are long. Suppose now Γ is a finite generalized hexagon in which (I) holds. It is enough to proof that Γ is 3-regular. Indeed, combining the 3-regularity and (I), we obtain that an imaginary line coincides with a regulus containing two of its points. Since Γ is finite, this implies that all imaginary lines are long, hence the result.

So let L and M be two opposite lines, x, y, z different points of $\langle L, M \rangle$ and $N \in \langle x, y \rangle$. We have to proof that $\delta(z, N) = 3$. Put $p = \operatorname{proj}_L y, p' = \operatorname{proj}_M y, x' = \operatorname{proj}_N x, y' = \operatorname{proj}_N y$ and $z' = \operatorname{proj}_{xx'} z$. We first show that z' = x'. Suppose by way of contradiction that $z' \neq x'$ and put $z'' = \operatorname{proj}_{py} z'$. Suppose first $\operatorname{proj}_{z'} z \neq \operatorname{proj}_{z'} z''$. But this contradicts (I) since the projections of x and z onto the line through z'' and $z' \bowtie z''$ do not coincide, so $\operatorname{proj}_{z'} z = \operatorname{proj}_{z'} z''$. Note that $z' \bowtie z \neq z' \bowtie z''$ since otherwise, there would be an ordinary pentagon through the points $z'', p, \operatorname{proj}_L z, z$ and $z \bowtie z'$. Let u be the projection of z' onto yp'. But now, noting that $\operatorname{proj}_{z'} u \neq \operatorname{proj}_{z'} z$, the projections of x and z onto the line through $u \bowtie z'$ do not coincide, the final contradiction, so x' = z'. Interchanging the roles of x and y, we see that $y' = \operatorname{proj}_{yy'} z$. But this creates an ordinary pentagon containing x', y' and z, unless $\delta(z, N) = 3$.

Consider the following weaker version of condition (I):

(I') Let L and M be two arbitrary opposite lines, x, y different points of $\langle L, M \rangle$ and $x' = \operatorname{proj}_M x, y' = \operatorname{proj}_L y$. Let N be an arbitrary line concurrent with xx', not through x or x' and at distance 4 from yy'. Then $\operatorname{proj}_N y = \operatorname{proj}_N z$, for all $z \in \langle L, M \rangle \setminus \{x\}$.

Corollary 1 A finite generalized hexagon Γ of order (s,t), $t \leq s$, satisfies condition (I') if and only if Γ is isomorphic to H(q), q even.

Proof. Suppose Γ satisfies (I'), and let L, M, x, x', y, y' be as in (I'). Let z be a point of $\langle L, M \rangle$, $x \neq z \neq y$, and put $z' = \operatorname{proj}_L z$. Let v be an arbitrary point on $xx', x \neq v \neq x'$.

Because of condition (I'), $\operatorname{proj}_v yy' \neq \operatorname{proj}_v zz'$. This shows that $t \geq s$, so t = s and (I) holds.

ACKNOWLEDGMENT.

The first author is a Research Assistant of the National Fund for Scientific Research – Flanders (Belgium). The second author is a Research Director of the National Fund for Scientific Research

The second author is a Research Director of the National Fund for Scientific Research – Flanders (Belgium).

Eline Govaert	Hendrik Van Maldeghem
University of Ghent	University of Ghent
Pure Mathematics and Computer Algebra	Pure Mathematics and Computer Algebra
Galgaan 2	Galgaan 2
9000 Gent	9000 Gent
BELGIUM	BELGIUM
egovaert@@cage.rug.ac.be	hvm@@cage.rug.ac.be

References

- VAN BON, J., H. CUYPERS and H. VAN MALDEGHEM, Hyperbolic lines in generalized polygons, *Forum Math.* 8 (1994), 343 – 362.
- [2] BROUNS, L. and H. VAN MALDEGHEM, Characterizations for classical finite hexagons, in *Finite Geometry and Combinatorics*, (ed. F.De Clerck *et al.*), Third International Conference at Deinze, 1997, (*Bull.Belg.Math.Soc.Simon. Stevin*) 5 (1998), 163-175.
- [3] RONAN, M. A., A combinatorial characterization of dual Moufang hexagons, *Geom. Dedicata* 11 (1981), 61 67.
- [4] TITS, J., Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 14 - 60.
- [5] VAN MALDEGHEM, H., Generalized Polygons, Birkhäuser Verlag, Basel (1998).