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Abstract

We characterize the point-distance-2-regular hexagons as the only hexagons for

which the intersection sets have size one, and containing on ovoidal subspace all the

points of which are 3-regular. We also give a characterization of the finite split Cayley

hexagon of even order.

1 Introduction

A weak generalized n-gon � is a point-line incidence geometry whose incidence graph has
girth 2n and diameter n, for some natural number n, n � 2. A weak generalized n-gon is
called a generalized n-gon if it is thick (i.e. if every vertex in the incidence graph has valency
> 2). Generalized polygons were introduced by Tits [4]. For an extensive survey including
most proofs, we refer the reader to [5].
We say that � has order (s, t) if every line contains s+ 1 points, and every point is incident
with exactly t+1 lines. Distances are measured in the incidence graph, the distance function
is denoted by �. Elements at maximal distance are called opposite. For any element x, we
denote by �[i](x) the set of elements at distance i from x, and by x?? the set of elements not
opposite x. In this paper, we only deal with hexagons (n = 6). We denote by H(q) the split
Cayley hexagon over the field GF(q) (for a description, see [5]).

Let � be a generalized hexagon. A subhexagon �0 of � is a subgeometry which is itself
a (weak) generalized hexagon. A subhexagon �0 is called ideal if every line pencil of �0

coincides with the corresponding line pencil of �. A subhexagon �0 is called full if every
point row of �0 coincides with the corresponding point row of �. If two elements u, v of �
are at distance 4, then the unique element of �2(u) \ �2(v) will be denoted by u 1 v. If
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two elements u and v are not opposite, then there is a unique element incident with u and
nearest to v; we denote this element by proj

u

v and call it the projection of v onto u. For
two opposite elements x and y of �, we denote by xy the set �2(x) \ �4(y). Also, we write
hx, yi = �3(x) \ �3(y) (and such a set is called a regulus). For two opposite points x and
y, we say that the pair (x, y) is 3-regular if the set hx, yi is determined by two of its lines.
A point x is 3-regular if the pair (x, z) is 3-regular for all points z opposite x. If all points
of the generalized hexagon are 3-regular, then � is said to be 3-regular. If for two arbitrary
opposite points x and y, the set xy is determined by any two of its points, then � is said to
be point-regular.

2 Preparation to the theorems

An ovoidal subspace O in a generalized hexagon � is a proper subset of the point set of �
such that each point of � not in O is collinear with a unique point of O. An ovoidal subspace
in which all the points are opposite each other is called an ovoid. By [2], an ovoidal subspace
is either an ovoid, a full subhexagon, or the set of points at distance 1 or 3 from a given line
M .

Let x be a point of a generalized hexagon �, and z, z0 two points opposite x such that
�(z, z0) = 4 and �(x, z 1 z0) = 4. Then the set xz \ xz

0
is called an intersection set if

xz 6= xz

0
.

The following result is well-known :

Theorem (Ronan [3]). Let � be a 3-regular generalized hexagon. If all intersection sets
have size 1, then � is point-regular, and hence a Moufang hexagon.

In the previous theorem, one can weaken the condition on the intersection sets (which is
done in [2]) or the condition of 3-regularity, which is the aim of Theorem 3.1.

Let x and y be two opposite points in a generalized hexagon �. Then the set I(x, y) =
{x, y}???? is called an imaginary line. In the finite case, a long imaginary line is an imaginary
line which coincides with every regulus containing two of its elements. Then we have the
following characterization (which also exists in the infinite case):

Theorem (van Bon, Cuypers & Van Maldeghem [1]). If in a finite generalized hexagon
�, all imaginary lines are long, then � ⇠= H(q), q even.

Theorem 3.2 weakens the conditions of the previous theorem.

3 Theorems

Theorem 3.1 Let � be a generalized hexagon in which all intersection sets have size 1. If
� contains an ovoidal subspace O all the points of which are 3-regular, then � is 3-regular
and hence a Moufang hexagon.
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Proof. The condition about the intersection sets is equivalent with the fact that every two
opposite points x and y are contained in a (unique) thin ideal subhexagon, which we denote
by D(x, y). Let x and y be two opposite points : we prove that the pair (x, y) is 3-regular.
It is su�cient to find a point z at distance 3 from two lines of hx, yi such that one of the
pairs (x, z) or (y, z) is 3-regular. We may assume that neither x nor y belongs to O.

(⇤) Suppose there is a point a 2 D(x, y) opposite x and at distance 4 from y such that the
pair (a, x) is 3-regular. Let L

a

be the line through a 1 y at distance 3 from x and let
z be an arbitrary point in hL

a

,Mi, L
a

6= M 2 hx, yi, z 6= x. We show that xy = xz.
Put u = proj

La
z, u0 = proj

M

a, X = proj
u

0a and z0 the point of hL
a

, Xi collinear with
u. Then xy = xa = xz

0
= xz.

(⇤⇤) Suppose in addition to (⇤) there is a point b 2 D(x, y) opposite y and at distance 4
from x such that the pair (b, y) is 3-regular. Then the pair (x, y) is 3-regular. Indeed,
let L

b

be the line through b 1 x at distance 3 from y. If L
a

6= L
b

, put M = L
a

and
N = L

b

. If L
a

= L
b

, put M = L
a

and N 2 hx, yi, N 6= L
a

. Applying (⇤), we see
that for an arbitrary point z 2 hM,Ni, x 6= z 6= y, xy = xz and yx = yz, so z lies at
distance 3 from every line of hx, yi, and the pair (x, y) is 3-regular.

Let first O be an ovoid not containing x or y. Then D(x, y) contains 0, 1 or 2 points of O.
Suppose first D(x, y) contains two points a and b of O. Up to interchanging x and y, one of
the following situations occurs :

• �(a, y) = 4 = �(b, x) and �(a, x) = 6 = �(b, y).
It immediately follows from (⇤⇤) that the pair (x, y) is 3-regular.

• �(a, x) = 2, �(b, x) = 4 and �(b, y) = 6.
Note that b lies at distance 4 from the point a 1 y. Let L

b

be the line of hx, yi at
distance 3 from b and L

a

the line of hx, yi through a. Then (⇤) shows that
(1) yx = yz

0
, for all points z0 2 hL

a

, L
b

i, z0 6= y.

Consider the point v of yx on L
b

. Suppose first that the unique point o of O collinear
with v does not lie on vy. Put u = proj

La
o. Note that u 6= a since o 62 D(x, y). Let

finally z = u 1 (proj
Lb
u). Then applying (⇤), we obtain

(2) zy = zx = zw, for all w 2 hL
a

, L
b

i, w 6= z.

Combining (1) and (2) as in (⇤⇤), we see that the pair (x, y) is 3-regular. So we may
now assume that o lies on vy. Consider an arbitrary point p of D(x, y) collinear with
v, di↵erent from y or v 1 x. Since the line vp does not contain a point of O, we can
apply the previous argument to obtain that the pair (x, p) is 3-regular. But now again
applying (⇤⇤) shows that also the pair (x, y) is 3-regular.

• �(a, x) = 2 = �(b, y).
Let p be a point of D(x, y) collinear with a 1 y, di↵erent from a and y, and p0 a point
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of D(x, y) collinear with b 1 x, di↵erent from b and x. Then the previous paragraph
shows that both (x, p) and (y, p0) are 3-regular pairs, so applying (⇤⇤) gives that also
the pair (x, y) is 3-regular.

Suppose now D(x, y) contains exactly 1 point a of O. Then we have the following cases to
consider :

• �(a, x) = 2.
Let v be a point of xy di↵erent from a and put w = v 1 y, w0 = a 1 y. Denote by o
the unique point of O collinear with v. If o lies on vw, then put z = o 1 (proj

aw

0o).
If o does not lie on vw, then put u = proj

aw

0o and z = u 1 (proj
vw

u). Now D(x, z)
contains two points of O, so the pair (x, z) (and hence the pair (x, y)) is 3-regular.

• �(a, x) = 4 and �(a, y) = 6.
Let again L

a

be the line of hx, yi at distance 3 from a. We already know that

(3) yx = yz, for all points z, y 6= z 2 hL
a

,Mi, M 2 hx, yi, M 6= L
a

.

Choose a point v 2 yx, v not on L
a

such that the unique point o 2 O collinear with
v does not lie on the line vy. Let L

v

be the line of hx, yi through v. If o lies on L
v

,
then put z = o 1 (proj

La
o). From the previous case, it is then clear that (x, z) is a

3-regular pair. If o does not lie on L
v

, put u = proj
La
o and z = u 1 proj

Lv
u. Then

(4) zy = zx = zw, for all points w, z 6= w 2 hL
v

,Mi, M 2 hx, yi, M 6= L
v

.

Combining (3) and (4), we again see that (x, y) is a 3-regular pair.

Suppose finally D(x, y) does not contain any point of O. Similarly as before, we can find a
point z at distance 3 from two lines of hx, yi for which the hexagon D(x, z) contains a point
of O, from which the result.

Suppose now O = �1(M) [ �3(M), M a line of � not incident with x or y. Then one easily
shows that either D(x, y) contains the line M , or it intersects O in either 0 points or 2
collinear points. As before, the case that D(x, y) contains no point of O can be reduced to
one of the other cases. If D(x, y) contains M , then the pair (x, y) is 3-regular because of
(⇤⇤). So we only have to consider the case that D(x, y) contains exactly two collinear points
a and b of O. We consider the following situations :

• �(a, x) = 2 = �(b, y).
Since M is concurrent with the line ab, we can find a point z 2 O at distance 3 from
ab and another line of hx, yi, hence the result.

• �(a, y) = 6 = �(b, x) (hence �(a, x) = 4 = �(b, y)).
Clear because of (⇤⇤).

• �(a, x) = 2, �(b, x) = 4 and �(b, y) = 6.
Note that the line ab is concurrent with M , and that a and b lie at distance 3 from M .
Let L

a

be the line of hx, yi through a and L0 an arbitrary line of hx, yi di↵erent from
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L
a

. Let u be the projection onto L0 of the intersection of M and ab. Let finally z be
the unique point of hL

a

, L0i collinear with u. Clearly, D(x, z) contains M , hence the
pair (x, z) is 3-regular, and so is (x, y).

Suppose finally that O is a full subhexagon. If D(x, y) contains 1 point of O, then it has at
least an ordinary hexagon in common with O, and (x, y) is 3-regular because of (⇤⇤). Again,
the case that D(x, y) contains no point of O can be reduced to the previous one. 2

Consider the following property in a finite generalized hexagon � :

(I) Let L and M be two arbitrary opposite lines, x, y di↵erent points of hL,Mi and
x0 = proj

M

x, y0 = proj
L

y. Let N be an arbitrary line concurrent with xx0, not through
x or x0. Then proj

N

y = proj
N

z, for all z 2 hL,Mi \ {x}.

Theorem 3.2 A finite generalized hexagon � satisfies condition (I) if and only if � is iso-
morphic to H(q), q even.

Proof. If � ⇠= H(q), q even, then condition (I) follows from the fact that all imaginary lines
are long. Suppose now � is a finite generalized hexagon in which (I) holds. It is enough
to proof that � is 3-regular. Indeed, combining the 3-regularity and (I), we obtain that an
imaginary line coincides with a regulus containing two of its points. Since � is finite, this
implies that all imaginary lines are long, hence the result.

So let L and M be two opposite lines, x, y, z di↵erent points of hL,Mi and N 2 hx, yi. We
have to proof that �(z,N) = 3. Put p = proj

L

y, p0 = proj
M

y, x0 = proj
N

x, y0 = proj
N

y
and z0 = proj

xx

0z. We first show that z0 = x0. Suppose by way of contradiction that
z0 6= x0 and put z00 = proj

py

z0. Suppose first proj
z

0z 6= proj
z

0z00. But this contradicts (I)
since the projections of x and z onto the line through z00 and z0 1 z00 do not coincide, so
proj

z

0z = proj
z

0z00. Note that z0 1 z 6= z0 1 z00 since otherwise, there would be an ordinary
pentagon through the points z00, p, proj

L

z, z and z 1 z0. Let u be the projection of z0 onto
yp0. But now, noting that proj

z

0u 6= proj
z

0z, the projections of x and z onto the line through
u and u 1 z0 do not coincide, the final contradiction, so x0 = z0. Interchanging the roles of
x and y, we see that y0 = proj

yy

0z. But this creates an ordinary pentagon containing x0, y0

and z, unless �(z,N) = 3. 2

Consider the following weaker version of condition (I) :

(I 0) Let L and M be two arbitrary opposite lines, x, y di↵erent points of hL,Mi and
x0 = proj

M

x, y0 = proj
L

y. Let N be an arbitrary line concurrent with xx0, not through
x or x0 and at distance 4 from yy0. Then proj

N

y = proj
N

z, for all z 2 hL,Mi \ {x}.

Corollary 1 A finite generalized hexagon � of order (s, t), t  s, satisfies condition (I 0) if
and only if � is isomorphic to H(q), q even.

Proof. Suppose � satisfies (I 0), and let L,M, x, x0, y, y0 be as in (I 0). Let z be a point of
hL,Mi, x 6= z 6= y, and put z0 = proj

L

z. Let v be an arbitrary point on xx0, x 6= v 6= x0.
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Because of condition (I 0), proj
v

yy0 6= proj
v

zz0. This shows that t � s, so t = s and (I) holds.
2
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Sci. Publ. Math. 2 (1959), 14 – 60.

[5] Van Maldeghem, H., Generalized Polygons, Birkhäuser Verlag, Basel (1998).

6


